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Abstract

Deep metric learning methods are widely used to learn similarities in the data. Most
methods use a single metric learner, which is inadequate to handle the variety of object
attributes such as color, shape, or artifacts in the images. Multiple metric learners could
focus on these object attributes. However, it requires a number of learners to be found
empirically for each new dataset. This work presents a Dynamic Subspace Learners to
dynamically exploit multiple learners by removing the need of knowing apriori the number
of learners and aggregating new subspace learners during training. Furthermore, the inter-
pretability of such subspace learning is enforced by integrating an attention module into our
method, providing a visual explanation of the embedding features. Our method achieves
competitive results with the performances of multiple learners baselines and significantly
improves over the classification network in clustering and retrieval tasks.

1. Introduction

Learning similarity is a key aspect in uncovering the interpretation of anatomical data in
medical images. Deep metric learning (DML) technique can learn such similarities in an
embedding space by encouraging same class images to be close to each other while pushing
away the images belonging to different classes. Most DML methods use a single learner,
which is inadequate to characterize the complex distributions of images having different
object attributes such as color, shape, size, or artifacts. A multiple learners method has
been proposed to address this complexity by splitting the manifold into several subspaces
(Sanakoyeu et al., 2019). However, it needs to empirically find the optimal number of learn-
ers, which requires a new validation for every new setting, including every use of a new
dataset. Another main limitation in the existing DML approaches is visually explaining
what constitutes similarities among a complex set of medical images. In contrast to classi-
fication models, applying GradCAM (Selvaraju et al., 2017) in embedding networks is not
feasible (Zhu et al., 2021) since the gradients are not available during inference.

These limitations motivate our work, which offers a novel dynamic learning strategy
in DML approaches. More specifically, we contribute to a novel training strategy that
(i) explores the dynamic learning of an embedding and (ii) overcomes the empirical search
of an optimal number of subspaces in approaches based on multiple learners. Furthermore,
the visual interpretation of the embedding is addressed by integrating an attention module,
encouraging the learners to focus on the discriminative areas of target objects.

2. Method

An overview of the proposed approach is depicted in Fig. 1. The main idea is to split the
embedding space into multiple subspaces (K) such that the original embedding space can
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Figure 1: Overview of our proposed method. An embedding space E is learnt by aggregating
new subspaces during training. Suppose there are K subspaces, the training data are
grouped into K groups in the embedding space (step 1) and assigned to an individual
subspace learner. Each learner later only attends the data from its subgroup in the learning
stage (step 2). In inference time, the entire embedding space is used to map an image.

be learned by refining its subspaces. Contrary to (Sanakoyeu et al., 2019), the embedding
space is split dynamically, which removes the need to search for the optimal number of
learners K in each scenario. Training consists of two iterative steps. First, input images are
mapped into the lower dimensional space using the entire embedding layer E, where images
are clustered into different groups. Second, the clustered data is consequently assigned to an
individual subspace learner so that each learner learns a part of the embedding space from
a subgroup of images. Each subspace is formed by grouping high-scoring neurons of the
embedding layer E, as and when the network accuracy plateaus and assigns a new metric

learner. Scoring function of neurons (ei) is defined as s(ei) =
∣∣∣∂fθ∂ei

ei

∣∣∣, similar to pruning

strategy (Molchanov et al., 2017). The training data is eventually re-clustered with the
updated K. The remaining neurons of the embedding layer are reset and used to explore
the new subspace. Finally, all subspaces are combined to generate a full embedding space.

Furthermore, an attention module A(·) is integrated into the learning process to enhance
the learning of the embedding space. The attention module generates the attention map,
which is element-wise multiplied with each feature map, resulting in the set of attentive
features. These attentive features are subsequently combined with global average pooling
(GAP) and mapped into the embedding space using a dense layer (Fig. 1).

3. Experiments and Results

Our method is evaluated for clustering and image retrieval tasks using NMI and Recall
scores on ISIC19 (Combalia et al., 2019) and MURA (Rajpurkar et al., 2018) datasets
with a training/testing split of 20,000/5,331 and 36,808/3,197 images, respectively. The
performance of our method is compared with single and multiple metric learner (MML)
(Sanakoyeu et al., 2019) methods. Note that, MML and our method employ a margin loss,
while MML withK = 1 is equivalent to the margin loss method. From Table 1, our proposed
method consistently achieves the best results in terms of NMI while performing on par with
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ISIC19 dataset MURA dataset

Method NMI (↑) R@1 (↑) NMI (↑) R@1 (↑)
Classification network 45.41 ± 1.95 77.85 ± 0.86 71.09 ± 1.25 74.21 ± 0.27
Contrastive loss (single-learner) 31.47 ± 0.39 78.13 ± 0.59 74.28 ± 0.53 71.65 ± 0.53
Triplet loss (single-learner) 50.97 ± 0.61 79.84 ± 0.49 74.41 ± 0.27 74.51 ± 0.78
MML (worst K = 1, 10) 50.53 ± 1.01 82.84 ± 0.39 72.88 ± 0.40 73.55 ± 0.16
MML (best K = 6, 1) 55.08 ± 0.83 82.29 ± 0.56 74.67 ± 0.35 75.36 ± 0.79
Ours (free from K) 55.14 ± 0.87 82.39 ± 0.11 74.88 ± 0.09 75.52 ± 0.18

Table 1: Quantitative results on ISIC19 and MURA datasets. The best and second-best
results are highlighted in bold and underlined. Performance of MML varies with K while
our method yields consistently better results without requiring to find an optimal K value.

the best MML settings on the recall metric. The performance of MML heavily depends on
the value of K. For instance, the difference between the worst and best MML model in NMI
score can be up to 5% on the ISIC19 dataset. Our method outperforms the classification
network and single-learner methods in both scores across datasets, highlighting the potential
of exploring embeddings via multiple subspaces. We also evaluated our generated attention
maps in a weakly supervised setting, which improves segmentation accuracy up to 15% in
Dice score when compared to the recent interpretation method (Wu et al., 2021).

4. Conclusions

This work presents a novel attention-based dynamic subspace metric learning approach for
medical image analysis. Our novel training strategy overcomes the empirical search for
the optimal number of metric learners while achieving competitive results in clustering and
retrieval tasks. Our experiments have shown consistent results with a smaller standard
deviation across the datasets, demonstrating the robustness of our method.
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