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Abstract

Posterior sampling allows the exploitation of prior knowledge of the environment’s
transition dynamics to improve the sample efficiency of reinforcement learning.
The prior is typically specified as a class of parametric distributions, a task that
can be cumbersome in practice, often resulting in the choice of uninformative
priors. In this work, we propose a novel posterior sampling approach in which
the prior is given as a (partial) causal graph over the environment’s variables. The
latter is often more natural to design, such as listing known causal dependencies
between biometric features in a medical treatment study. Specifically, we propose
a hierarchical Bayesian procedure, called C-PSRL, simultaneously learning the full
causal graph at the higher level and the parameters of the resulting factored dynam-
ics at the lower level. For this procedure, we provide an analysis of its Bayesian
regret, which explicitly connects the regret rate with the degree of prior knowledge.
Our numerical evaluation conducted in illustrative domains confirms that C-PSRL
strongly improves the efficiency of posterior sampling with an uninformative prior
while performing close to posterior sampling with the full causal graph.

1 Introduction

Posterior sampling [51], also known as Thompson sampling, is a powerful alternative to classic
optimistic methods for Reinforcement Learning (RL) [49], as it guarantees outstanding sample
efficiency [35] through an explicit model of the epistemic uncertainty that allows exploiting prior
knowledge over the environment’s dynamics. Specifically, Posterior Sampling for Reinforcement
Learning (PSRL) [48, 35] implements a Bayesian procedure (pseudocode is provided in Algorithm 1)
in which, at every episode k, (1) a model of the environment’s dynamics is sampled from a parametric
prior distribution Pk, (2) an optimal policy πk is computed (e.g., through value iteration [2]) according
to the sampled model, (3) a posterior update is performed on the prior parameters to incorporate
in Pk+1 the evidence collected by running πk in the true environment. Under the assumption that
the true environment’s dynamics are sampled with positive probability from the prior P0, the latter
procedure is guaranteed to converge to the true model and the optimal policy asymptotically while
showcasing a Bayesian regret that scales with O(

√
K) being K the total number of episodes [37].

Although posterior sampling has been praised for its empirical prowess as well [6], specifying the
prior through a class of parametric distributions, a crucial requirement of PSRL, can be cumbersome
in practice. Let us take a Dynamic Treatment Regime (DTR) [33] as an illustrative application.
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Algorithm 1 PSRL

input: parametric prior P0, episode horizon H
for episode k = 0, 2, . . . ,K − 1 do

Sample transition modelMk ∼ Pk
Compute πk ← arg maxπ∈Π VMk

(π)
Roll out policy πk to collect data
Update posterior Pk+1 given Pk and new evidence

end for

In this setting, we aim to overcome a pa-
tient’s disease by choosing treatment at
each stage based on the patient’s evolv-
ing conditions and previously administered
treatments. The goal is to identify the best
treatment for the specific patient quickly.
Medicine provides plenty of prior knowl-
edge to help solve the DTR problem effi-
ciently. However, it is not easy to translate
this knowledge into a parametric prior dis-
tribution that is general enough to include the model of any patient while being sufficiently narrow
to foster efficiency. Instead, it is remarkably easy to list some known causal relationships between
patient’s state variables, such as heart rate and blood pressure, or diabetes and glucose level. Those
causal edges might come from experts’ knowledge (e.g., physicians) or previous clinical studies. A
prior in the form of a causal graph is clearly more natural to specify for practitioners, who might be
unaware of the intricacies of Bayesian statistics. Posterior sampling does not currently support the
specification of the prior through a causal graph, which limits its applicability.

This paper proposes a novel posterior sampling methodology that can exploit a prior specified
through a partial causal graph over the environment’s variables. Notably, a complete causal graph
allows for a factorization of the environment’s dynamics, which can be then expressed as a Factored
Markov Decision Process (FMDP) [3]. PSRL can be applied to FMDPs, as demonstrated by previous
work [36], where the authors assume to know the complete causal graph. However, this assumption
is often unreasonable in practical applications.1

Instead, we consider having partial knowledge of the causal graph, which leads to considering a set
of plausible FMDPs. Taking inspiration from [17, 26, 19, 18], we design a hierarchical Bayesian
procedure that extends PSRL to the setting where the true model lies within a set of FMDPs (induced
by the causal graph prior). We propose a novel algorithm, Causal PSRL (C-PSRL), that considers
two levels of prior knowledge. First, for every episode C-PSRL samples a factorization consistent
with the causal graph prior. Then, it samples the model of the FMDP from a lower-level prior that is
conditioned on the sampled factorization. After that, the algorithm proceeds similarly to PSRL.

Having introduced C-PSRL, we study the Bayesian regret it induces on the footsteps of previous
analyses for PSRL in FMDPs [36] and hierarchical posterior sampling [19]. Our analysis shows that
C-PSRL takes the best of both worlds by avoiding a direct dependence on the number of states in
the regret (as in FMDPs) and without requiring a full causal graph prior (as in hierarchical posterior
sampling). Moreover, we can analytically capture the dependency of the Bayesian regret on the
number of causal edges known a priori and encoded in the (partial) causal graph prior. Finally, we
empirically validate C-PSRL against two relevant baselines: PSRL with an uninformative prior,
i.e., that does not model potential factorizations in the dynamics, and PSRL equipped with the full
knowledge of the causal graph (an oracle prior). We carry out the comparison in simple yet illustrative
domains, which show that exploiting a causal graph prior improves the efficiency over uninformative
priors while being only slightly inferior to the oracle prior.

In summary, the main contributions of this paper include the following:

• A novel problem formulation that links PSRL with a prior expressed as a partial causal graph to the
problem of learning an FMDP with unknown factorization (Section 2);

• A methodology (C-PSRL) that extends PSRL to exploit a partial causal graph prior (Section 3);
• The analysis of the Bayesian regret of C-PSRL, which is Õ(

√
K/2η) where K is the total number

of episodes and η is the degree of prior knowledge (Section 4);
• An ancillary result on causal identification that shows how a (sparse) super-graph of the true causal

graph can be extracted from a run of C-PSRL as a byproduct (Section 5);
• An experimental evaluation of the performance of C-PSRL against PSRL with uninformative or

oracle priors in illustrative domains (Section 6).

Finally, the aim of this work is to enable the use of posterior sampling for RL in relevant applications
through a causal perspective on prior specification. We believe this contribution can help to close the
gap between PSRL research and actual adoption of PSRL methods in real-world problems.

1DTR is an example, where several causal relations affecting patient’s conditions remain a mystery.
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2 Problem formulation

In this section, we first provide preliminary background on graphical causal models (Section 2.1) and
Markov decision processes (Section 2.2). Then, we explain how a causal graph on the variables of a
Markov decision process induces a factorization of its dynamics (Section 2.3). Finally, we formalize
the reinforcement learning problem in the presence of a causal graph prior (Section 2.4).

Notation. With a few exceptions, we will denote a set or space with calligraphic letters A, their
elements with lowercase letters a ∈ A, constants and random variables with uppercase letters A. A
function f will also be lowercase. We denote ∆(A) the probability simplex over A, and [A] the set
of integers {1, . . . , A}. For a d-dimensional vector x, we define the scope operator x[I] :=

⊗
i∈I xi

for any set I ⊆ [d]. When I = {i} is a singleton, we use x[i] as a shortcut for x[{i}].2

2.1 Causal graphs

Let X = {Xj}dXj=1 and Y = {Yj}dYj=1 be sets of random variables taking values xj , yj ∈ [N ]

respectively, and let p : X → ∆(Y) a strictly positive probability density. Further, let G = (X ,Y, z)
be a bipartite Directed Acyclic Graph (DAG), or bigraph, having left variables X , right variables
Y , and a set of edges z ⊆ X × Y . We denote as zj the parents of the variable Yj ∈ Y , such as
zj = {i ∈ [dX ] | (Xi, Yj) ∈ z} and z =

⋃
j∈[dY ]

⋃
i∈zj{(Xi, Yj)}. We say that G is Z-sparse if

maxj∈[dY ] |zj | ≤ Z ≤ dX , and we call Z the degree of sparseness of G.

The tuple (p,G) is called a graphical causal model [38] if p fulfills the Markov factorization property
with respect to G, that is p(X ,Y) = p(X )p(Y|X ) = p(X )

∏
j∈[dY ] pj(y[j]|x[zj ]). Note that the

causal model that we consider in this paper do not admit confounding, such as we can exclude “vertical”
causal edges in Y × Y and directed edges Y × X , which allows to write p(X ,Y) = p(X )p(Y|X ).
Finally, we call causal graph the component G of a graphical causal model.

2.2 Markov decision processes

A finite episodic Markov Decision Process (MDP) [40] is defined asM := (S,A, p, r, µ,H), where
S is a state space of size S, A is an action space of size A, p : S × A → ∆(S) is a Markovian
transition model such that p(s′|s, a) denotes the conditional probability of the next state s′ given
the state s and action a, r : S ×A → ∆([0, 1]) is a reward function such that the reward collected
performing action a in state s is distributed as r(s, a) with mean R(s, a) = E[r(s, a)], µ ∈ ∆(S) is
the initial state distribution, H <∞ is the episode horizon.

An agent interacts with the MDP as follows. First, the initial state is drawn s1 ∼ µ. For each step
h < H , the agent selects an action ah ∈ A. Then, they collect a reward rh ∼ r(sh, ah) while the
state transitions to sh+1 ∼ p(·|sh, ah). The episode ends when sH is reached.

The strategy from which the agent selects an action at each step is defined through a non-stationary,
stochastic policy π = {πh}h∈[H] ∈ Π, where each πh : S → ∆(A) is a function such that πh(a|s)
denotes the conditional probability of selecting action a in state s at step h, and Π is the policy space.
A policy π ∈ Π can be evaluated through its value function V πh : S → [0, H], which is the expected
sum of rewards collected under π starting from state s at step h, i.e.,

V πh (s) := E
π

[
H∑

h′=h

R(sh′ , ah′)
∣∣∣sh = s

]
, ∀s ∈ S, h ∈ [H].

We further define the expected value function under the initial state distribution of the MDPM as
VM(π) := Es∼µ[V π1 (s)].

2.3 Causal structure induces factorization

In the previous Section 2.2, we formulated the MDP in the most general tabular representation, where
each state (action) is identified by a unique symbol s ∈ S (a ∈ A). However, in relevant real-world
applications, the states and actions can be represented through a finite number of features. The DTR

2A recap of the notation, which is admittedly involved, can be found in Appendix A.
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problem is an illustrative example, where state features can be, e.g., blood pressure and glucose level,
action features can be indicators on whether a particular medication is administered.

Let those state and action features be modeled by random variables in the interaction between an
agent and the MDP, we can consider additional structure in the process by considering the causal
graph of its variables, such that the value of a variable only depends on the values of its causal parents.
Looking back to DTR, we might know that the value of the blood pressure at step h+ 1 only depends
on its value at step h and whether a particular medication has been administered.

Formally, we can show that combining an MDPM = (S,A, p, r, µ,H) with a causal graph over its
variables, which we denote as GM = (X ,Y, z), gives a Factored MDP (FMDP) [3]

F = ({Xj}dXj=1, {Yj , zj , pj , rj}
dY
j=1, µ,H,Z,N),

where X = S ×A = X1 × . . .×XdX is a factored state-action space with dX = dS + dA discrete
variables, Y = S = Y1 × . . . × YdY is a factored state space with dY = dS variables, and zj are
the causal parents of each state variable, which are obtained from the edges z of GM. Then, p is
a factored transition model specified as p(y|x) =

∏dY
j=1 pj(y[j] | x[zj ]),∀y ∈ Y, x ∈ X , and r is

a factored reward function r(x) =
∑dY
j=1 r(x[zj ]), with mean R(x) =

∑dY
j=1R(x[zj ]),∀x ∈ X .

Finally, µ ∈ ∆(Y) and H are the initial state distribution and episode horizon as specified inM, Z
is the degree of sparseness of GM, N is a constant such that all the variables are supported in [N ].

The interaction between an agent and the FMDP can be described exactly as we did in Section 2.2 for
a tabular MDP, and the policies with their corresponding value functions are analogously defined.
With the latter formalization of the FMDP induced by a causal graph, we now have all the components
to introduce our learning problem in the next section.

2.4 Reinforcement learning with partial causal graph priors

In the previous Section 2.3, we show how the prior knowledge of a causal graph over the MDP
variables can be exploited to obtain an FMDP representation of the problem, which is well-known to
allow for more efficient reinforcement learning thanks to the factorization of the transition model
and reward function [36, 56, 50, 52, 7, 42]. However, in several applications is unreasonable to
assume prior knowledge of the full causal graph, and causal identification is costly in general [13, 44].
Nonetheless, some prior knowledge of the causal graph, i.e., a portion of the edges, may be easily
available. To name one application, in a DTR problem some edges of the causal graph on patient’s
variables are commonly known, whereas several others are elusive.

In this paper, we study the reinforcement learning problem when a partial causal graph prior G0 ⊆ GM
on the MDPM is available.3 Especially, we formulate the learning problem in a Bayesian sense, in
which the instance is sampled from a prior distribution P0(G0) consistent with the causal graph prior
G0.4 Then, analogously to previous works on Bayesian RL formulations, e.g., [35], we evaluate the
performance of a learning algorithm in terms of its induced Bayesian regret.
Definition 1 (Bayesian Regret). Let A be a learning algorithm and let P0(G0) be a prior distribution
on FMDPs consistent with the partial causal graph prior G0. The K-episodes Bayesian regret of A
is given by

BR(K) := E
F∗∼P0(G0)

[
K∑
k=1

V∗(π∗)− V∗(πk)

]
,

where V∗(π) = VF∗(π) is the value of the policy π in F∗ under the initial state distribution,
π∗ ∈ arg maxπ∈Π V∗(π) is the optimal policy in F∗, and πk is the policy played by algorithm A at
step k ∈ [K].

Intuitively, the Bayesian regret allows to evaluate a learning algorithm on average over multiple
instances. This is particularly suitable in some domains, such as DTR, in which it is crucial to
achieve a good performance of the treatment policy on different patients. Having defined the learning
problem, in the next section we introduce an algorithm that achieves a Bayesian regret rate that is
sublinear in the number of episodes K.

3For two bigraphs G? = (X ,Y, z?) and G• = (X ,Y, z•), we let G? ⊆ G• if z? ⊆ z•.
4We will specify in the next Section 3 how the prior P0(G0) can be constructed.
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3 Causal PSRL

To face the learning problem described in the previous Section 2.4, we cannot naïvely apply the PSRL
algorithm for FMDPs [36], since we cannot access the factorization z∗ of the true instance F∗, but
only a causal graph prior G0 = (X ,Y, z0) such that z0 ⊆ z∗. Moreover, z∗ is always latent in the
interaction process, in which we can only observe state-action-reward realizations from F∗. The
observed realizations can be consistent with several factorizations of the transition dynamics of F∗,
which means we can neither extract z∗ directly from data. This is the common setting of hierarchical
Bayesian methods [17, 18, 26, 19], where a latent state is sampled from a latent hypothesis space on
top of the hierarchy, which then conditions the sampling of the observed state down the hierarchy.
In our setting, we can see the latent hypothesis space as the space of all the possible factorizations
that are consistent with the prior G0, whereas the observed states are the model parameters of the
FMDP, since we can observe realizations from those parameters. The algorithm that we propose,
Causal PSRL (C-PSRL), builds on this intuition to implement a principled hierarchical posterior
sampling procedure to minimize the Bayesian regret exploiting the causal graph prior. In the following
paragraph, we describe the details of the procedure, whereas we report its pseudocode in Algorithm 2.

Algorithm 2 Causal PSRL (C-PSRL)

1: input: causal graph prior G0 ⊆ GF∗ , degree of sparseness Z
2: Compute the set of consistent factorizations

Z = Z1 × . . .×ZdY =
{
z = {zj}j∈[dY ]

∣∣∣ |zj | < Z and z0,j ⊆ zj ∀j ∈ [dY ]
}

3: Build the hyper-prior P0 and the prior P0(·|z) for each z ∈ Z
4: for episode k = 0, 1, . . . ,K − 1 do
5: Sample z ∼ Pk and p ∼ Pk(·|z) to build the FMDP Fk
6: Compute the policy πk ← arg maxπ∈Π VFk(π)
7: Collect an episode with πk in F∗
8: Compute the posteriors Pk+1 and Pk+1(·|z) with the collected data
9: end for

First, C-PSRL computes the set Z of the factorizations consistent with the prior G0, i.e., which are
both Z-sparse and include all of the edges in z0 (line 2). Then, it specifies a parametric distribution
P0, which we call hyper-prior, over the latent hypothesis space Z , and, for each z ∈ Z , a further
parametric distribution P0(·|z), which is a prior on the model parameters, i.e., transition probabilities,
conditioned on the latent state z (line 3). The former represents the agent’s belief over the factorization
of the true instance F∗, whereas the latter is the belief on the factored transition model p∗.5

Having translated the causal graph prior G0 into proper parametric prior distributions, C-PSRL
executes a hierarchical posterior sampling procedure (lines 4-9). For each episode k, the algorithm
sample a factorization z from the current hyper-prior Pk, and a transition model p from the prior
Pk(·|z), such that p is factored according to z (line 5). With these two objects, it builds the FMDP
Fk (line 5), for which it computes the optimal policy πk solving the corresponding planning problem
(line 6). Finally, the policy πk is deployed on the true instance F∗ for an episode (line 7) to collect
the evidence that serves to compute the posterior updates of the prior and hyper-prior (line 8).

As we shall see, the described Algorithm 2 has compelling statistical properties, as it suffers a sublinear
regret in the number of episodes K (Section 4) while providing a notion of causal identification as a
byproduct (Section 5), and showcases promising empirical performance (Section 6).

Informally, three key ingredients concur to make the algorithm successful. First and foremost, C-
PSRL links the reinforcement learning of an FMDP F∗ with unknown factorization to a hierarchical
Bayesian learning problem, in which the factorization acts as a latent state on top of the hierarchy, and
the transition probabilities are the observed state down the hierarchy. Secondly, C-PSRL exploits the
causal graph prior G0 to reduce the size of the latent hypothesis space Z , which is super-exponential
in the number of features dX , dY of F∗ in general [41]. Finally, C-PSRL harnesses the specific causal
structure of the problem to get a factorization z (line 5) through independent sampling of the parents
zj ∈ Zj for each variable Yj , which significantly reduces the number of hyper-prior parameters.

5A detailed description on the choice of parametric distributions P0 and P0(·|z), together with their corre-
sponding posterior updates, is reported in Appendix B.
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Crucially, this can be done as we do not admit “vertical” edges in Y and edges directed from Y to X
in our hypothesis space, such that it is impossible to select parents’ assignment that leads to a cycle.
We report a couple of notes on C-PSRL below, before going through its analysis in the next sections.

Degree of sparseness. Notably, C-PSRL takes as input (line 1) the degree of sparseness Z of the true
FMDP F∗, which might be unknown in practice. In that case, Z can be seen as an hyper-parameter
of the algorithm, which can be either implied through domain expertise or tuned independently.

Planning in FMDPs. C-PSRL requires exact planning in a FMDP (line 11), which is intractable in
general [32, 29]. While we do not directly address computational issues in this paper, we note that
efficient approximation schemes have been developed for this problem [14]. Moreover, under linear
realizability assumptions for the transition model or value functions, i.e., they can be represented
through a linear combination of known features, exact planning methods exist [57, 23, 8].

4 Regret analysis of C-PSRL

In this section, we study the Bayesian regret (see Definition 1) induced by C-PSRL taking as input a
causal graph prior G0 = (X ,Y, z0) with degree of sparseness Z. First, we further define the quantity

η ≤ min
j∈[dY ]

|z0,j |,

called degree of prior knowledge, which is a lower bound on the number of causal parents revealed
by the prior G0 for each state variable Yj of the true instance F∗. With this definition, we provide an
upper bound on the Bayesian regret incurred by C-PSRL, which we then discuss in Section 4.1.
Theorem 4.1. Let G0 be a causal graph prior with degree of sparseness Z and degree of prior
knowledge η. The K-episodes Bayesian regret incurred by C-PSRL is upper bounded as6

BR(K) ≤ Õ
((
H5/2N1+Z/2dY +

√
H2dX−η

)√
K
)
.

While we defer the proof of the result to Appendix D, we report a sketch of its three main steps below.

Step 1. The first step of our proof bridges the previous analyses of a hierarchical version of PSRL,
which is reported in [19], with the one of PSRL for factored MDPs [36]. In short, we can decompose
the Bayesian regret (see Definition 1) as

BR(K) = E

[
K∑
k=1

E
k

[
V∗(π∗)− V k(π∗, Z∗)

]]
+ E

[
K∑
k=1

E
k

[
V k(πk, Zk)− V∗(πk)

]]
where we denote Ek[·] := E[· | Hk] the conditional expectation given the history of observations
Hk = ((xh,l, rh,l))h∈[H],l∈[k−1] collected until episode k, and V k(π, z) = EF∼Pk(·|z) [VF (π)] the
value function of the policy π on average over the FMDPs F having factored transition model
p ∼ Pk(·|z) sampled from the posterior in episode k. Informally, the first term captures the regret
due to the concentration of the posterior Pk(·|z∗) around the true transition model p∗ having fixed
the true factorization z∗. Instead, the second term captures the regret due to the concentration of the
hyper-posterior Pk around the true factorization z∗. Each term can be bounded separately through a
non-trivial adaptation of the analysis in [19] to the FMDP setting, which leads to the upper bound

Õ
((
H5/2N1+Z/2dY +

√
H|Z|

)√
K
)
.

Step 2. The upper bound of the previous step is close to the final result up to a factor
√
|Z| related

the size of the latent hypothesis space. Since C-PSRL performs local sampling from the product
space Z = Z1 × . . .×ZdY , by combining independent samples zj ∈ Zj for each variable Yj as we
briefly explained in Section 3, we can refine the dependence in |Z| to maxj∈[dY ] |Zj | ≤ |Z|.
Step 3. Finally, we aim to capture the dependency in the degree of prior knowledge η in the
Bayesian regret. To do that, we have to express maxj∈[dY ] |Zj | in terms of η. Formally, we can
derive

max
j∈[dY ]

|Zj | =
Z−η∑
i=0

(
dX − η

i

)
≤ 2dX−η

which gives the final rate reported in Theorem 4.1.
6We report the regret rate with the common “Big-Oh” notation, in which Õ hides logarithmic factors.
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4.1 Discussion of the Bayesian regret

The regret bound in Theorem 4.1 contains two main terms, which informally capture the regret to
learn the transition model having the true factorization (left), and to learn the true factorization (right).

The first term is typical in previous analyses of vanilla posterior sampling. Especially, the best
known rate for the MDP setting is Õ(H

√
SAK) [37]. In a FMDP setting with known factoriza-

tion, the direct dependencies with the size S,A of the state and action spaces can be refined to
obtain Õ(Hd

3/2
Y NZ/2

√
K) [36]. Our rate includes additional factors of H and N , but a better

dependency on the number of state features dY .

The second term of the regret rate is instead unique to hierarchical Bayesian settings, which include
an additional source of randomization in the sampling of the latent state from the hyper-prior. In
Theorem 4.1 we are able to express this term in the degree of prior knowledge η, resulting in a rate
Õ(
√
K/2η). The latter naturally demonstrates that a richer causal graph prior G0 will benefit the

efficiency of PSRL, bringing the regret rate closer to the one for an FMDP with known factorization.

Finally, we believe that the rate in Theorem 4.1 is shedding light on how prior causal knowledge,
here expressed through a partial causal graph, impacts on the efficiency of posterior sampling for
reinforcement learning.

5 C-PSRL embeds a notion of causal identification

In this section, we provide an ancillary result that links Bayesian regret minimization with C-PSRL
to a notion of causal identification, which we call weak. Especially, we show that we can extract a
Z-sparse super-graph of the causal graph GF∗ of the true instance F∗ as a byproduct.

A run of C-PSRL produces a sequence of policies {πk}K−1
k=0 that are optimal for the FMDPs {Fk}K−1

k=0
drawn from the posteriors. Every FMDP Fk is linked to a corresponding graph (or factorization)
GFk = (X ,Y, zk), where zk ∼ Pk(·|Hk) is sampled from the hyper-posterior. Note that the
algorithm does not enforce any causal meaning to the edges zk of GFk . Nonetheless, we aim to show
that we can extract a Z-sparse super-graph of GF∗ from the sequence {Fk}K−1

k=0 with high probability.

First, we need to assume that any misspecification in the graph GFk negatively affects the value
function of the policy πk. To this purpose, we extend the traditional notion of causal minimality [46]
to value functions.

Definition 2 (ε-Value Minimality). An FMDP F fulfills ε-value minimality, if for any FMDP F ′
encoding a proper subgraph of GF , i.e., GF ′ ⊂ GF , it holds that V ∗F > V ∗F ′ + ε, where V ∗F , V ∗F ′ are
the value functions of the optimal policies in F , F ′ respectively.

Then, as a corollary of Theorem 4.1, we can prove the following result.

Corollary 5.1 (Weak Causal Identification). Let F∗ be an FMDP in which the transition model p∗
fulfills the causal minimality assumption with respect to GF∗ , and let F∗ fulfill ε-value minimality.
Then, GF∗ ⊆ GFK holds with high probability, where GFK is a Z-sparse graph randomly selected
within the sequence {GFk}

K−1
k=0 produced by C-PSRL over K ≥ Õ(H5d2

Y 2dX−η/ε2) episodes.

The latter result shows that C-PSRL does identify the causal relationships between the FMDP
variables, but cannot easily prune the non-causal edges, making GFK a super-graph of GF∗ . In
Appendix C, we report a detailed derivation of the previous result. Interestingly, Corollary 5.1
suggests a direct link between regret minimization in a FMDP with unknown factorization and a
(weak) notion of causal identification, which might be further explored in future works.

6 Experiments

In this section, we provide experiments to both support the design of C-PSRL (Section 3) and validate
its regret rate (Section 4). To this end, we consider two simple yet illustrative domains. The first,
which we call Random FMDP, benchmarks the performance of C-PSRL on randomly generated
FMDP instances, a setting akin to the Bayesian learning problem (see Section 2.4) that we considered
in previous sections. The latter is instead a traditional RL environment, called Taxi [9], which is
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Figure 1: (a,b) Regret and model error as a function of the episodes in the Random FMDP domain
with dX = 9, dY = 6, Z = 5, N = 2, H = 100. (c,d) Regret as a function of the episodes Taxi 3× 3
with dX = 5, dY = 4, Z = 5, N = [3, 3, 2, 1, 6], H = 10, Taxi 5 × 5 with dX = 5, dY = 4, Z =
5, N = [5, 5, 2, 1, 6], H = 15. The plots report the mean and 95% c.i. over 20 runs.

naturally factored and hints at a potential application. In those domains, we compare C-PSRL against
two natural baselines: PSRL for tabular MDPs [48], and Factored PSRL (F-PSRL), which extends
PSRL to factored MDP settings [36]. Note that F-PSRL is equivalent to an instance of C-PSRL that
receives the true causal graph prior as input, i.e., has an oracle prior.

Random FMDPs. In this domain, an FMDP (relevant parameters are reported in the caption of
Figure 1) is sampled uniformly from the prior specified through a random causal graph, which is
Z-sparse with at least two edges for every state variable (η = 2). Then, the regret is minimized
by running PSRL, F-PSRL, and C-PSRL (η = 2) for 500 episodes. Figure 1a shows that C-PSRL
achieves a regret that is significantly smaller than PSRL, thus outperforming the baseline with an
uninformative prior, while being surprisingly close to F-PSRL, having the oracle prior. Indeed,
C-PSRL resulted efficient in estimating the transition model of the sampled FMDP, as we can see
from Figure 1b, which reports the `1 distance between the true model p∗ and the pk sampled by the
algorithm at episode k.

Taxi. For the experiments in the Taxi domain, which was initially proposed by [9], we use the
common Gym implementation [4]. In this environment, a taxi driver needs to pick up a passenger
at a specific location, and then it has to bring the passenger to their destination. The environment
is represented as a grid, with some special cells identifying the passenger location and destination.
As reported in [45], this domain is inherently factored since the state space is represented by four
independent features: The position of the taxi (row and column), the passenger’s location and whether
they are on the taxi, and the destination. We perform the experiment on two grids with varying size
(3 × 3 and 5 × 5 respectively), for which we report the relevant parameters in Figure 1. Here we
compare the proposed algorithm C-PSRL (η = 2) with PSRL. Both algorithms converge to a good
policy eventually in the smaller grid (see the regret in Figure 1c). Instead, when the size of the grid
increases, PSRL is still suffering a linear regret after 400 episodes, whereas C-PSRL succeeds in
finding a good policy efficiently (see Figure 1d). Notably, this domain resembles the problem of
learning optimal routing in a taxi service, and our results show that exploiting common knowledge
(such as that the location of the taxi and passenger’s destination) in the form of a causal graph prior
can be a game changer for the resulting performance.

7 Related work

We revise here the most relevant related work in posterior sampling, factored MDPs, and causal RL.

Posterior sampling. Thompson sampling [51] is a well-known Bayesian algorithm that has been
extensively analyzed in both multi-armed bandit problems [25, 1] and reinforcement learning [35, 37].
Specifically, Osband et al. [37] provides a regret rate Õ(H

√
SAK) for vanilla Thompson sampling

in RL, which is called the PSRL algorithm. Recently, other works adapted Thompson sampling to
hierarchical Bayesian problems [17, 26, 18, 19]. Mixture Thompson Sampling (MixTS) [19], which
is similar to PSRL but samples the unknown MDP from a mixture prior, is arguably the closest to
our setting. In this paper, we take inspiration from their algorithm to design C-PSRL and derive its
analysis, even though we tackle a fundamentally different problem on factored MDPs resulting from
a casual graph prior instead of their tabular setting, which induces unique challenges.
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Factored MDPs. Our setting is also related to FMDPs [3]. Previous works considered reinforcement
learning in FMDPs with either known [36, 56, 50, 52, 7] or unknown [47, 54, 10, 5, 16, 15, 42]
factorization. Especially, the PSRL algorithm has been adapted to both finite-horizon [36] and infinite-
horizon [56] FMDPs. The former assumes knowledge of the factorization, which is close to our setting
with an oracle causal graph prior, and provides Bayesian regret rate of order Õ(Hd

3/2
Y NZ/2

√
K).

Previous works have also studied reinforcement learning in FMDPs in a frequentist sense, either
with known [7] or unknown [42] factorization. The latter [42] employs an optimistic method that is
orthogonal to ours, whereas they leave as an open problem capturing the effect of prior knowledge,
for which we provide answers in a Bayesian setting.

Causal RL. Previous works have addressed the reinforcement learning problem with a causal
perspective (see [24, Chapter 7] for a survey of such methods). Those works typically exploit
causal principles to obtain compact representations of states and transitions [53, 12], or to pursue
generalization across tasks and environments [58, 20, 11, 34]. Closer to our setting, Lu et al. [28]
address the problem of exploiting prior causal knowledge to learn in both MDPs and FMDPs. Our
work differs from theirs in two key aspects: We show how to exploit a partial causal graph prior
instead of assuming knowledge of the full causal graph, and we consider a Bayesian formulation of
the problem while they tackle a frequentist setting through optimism principles. Finally, the work
in [61] shows an interesting application of causal RL for designing treatments in a DTR problem.

8 Conclusion

In this paper, we presented how to exploit prior knowledge expressed through a partial causal graph
to improve the statistical efficiency of reinforcement learning. Before reporting some concluding
remarks, it is worth commenting on where such a causal graph prior might be originated from.

Exploiting experts’ knowledge. One natural application of our methodology is to exploit domain-
specific knowledge coming from experts. In several domains, e.g., medical or scientific applications,
experts practitioners have some knowledge over the causal relationships between the domain’s
variables. However, they might not have a full picture of the causal structure, especially when they
face complex systems such as the human body or biological processes. Our methodology allows
those practitioners to easily encode their partial knowledge into a graph prior, instead of having to
deal with technically involved Bayesian statistics to specify parametric prior distributions, and then
let C-PSRL figure out a competent decision policy with the given information.

Exploiting causal identification. Identifying the causal graph over domain’s variables, which is
usually referred as causal identification or causal discovery, is a main focus of causality [38, Chapter
3]. The literature provides plenty of methods to perform causal identification from data [39, Chapter
4], including learning causal variables and their relationships in MDP settings [58, 34]. However,
learning the full causal graph, even when it is represented with a bigraph as in MDP settings [34], can
be statistically costly or even prohibitive [13, 55]. Moreover, not all the causal edges are guaranteed
to transfer across environments [34], which would force to perform causal identification anew for any
slight variation of the domain (e.g., changing the patient in a DTR setting). Our methodology allows
to focus on learning the universal causal relationships [34], which transfer across environments (e.g.,
different patients), and then specify the prior through a partial causal graph.

The latter paragraphs describe two scenarios in which our work enhance the applicability of PSRL,
bridging the gap between how the prior might be specified in practical applications and what previous
methods currently require, i.e., a parametric prior distribution. To summarize our contributions, we
first provided a Bayesian formulation of reinforcement learning with prior knowledge expressed
through a partial causal graph. Then, we presented an algorithm, C-PSRL, tailored for the latter
problem, and we analyzed its regret to obtain a rate that is sublinear in the number of episodes and
shows a direct dependence with the degree of causal knowledge. Finally, we derived an ancillary
result to show that C-PSRL embeds a notion of causal identification, and we provided an empirical
validation of the algorithm against relevant baselines. C-PSRL resulted nearly competitive with
F-PSRL, which enjoys a richer prior, while clearly outperforming PSRL with an uninformative prior.

Future works may derive a tighter analysis of the Bayesian regret of C-PSRL, as well as a stronger
causal identification result that allows to recover a minimal causal graph instead of a super-graph.
Finally, another important future direction is to address computational issues inherent to planning in
FMDPs to scale the implementation of C-PSRL to complex domains.
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A List of symbols

Basic mathematical objects
A , Set or space
A , Constant or random variable
a , Element of a set
∆(A) , Probability simplex over A
f : A → B , Function from A to B
[A] , Set of integers [A] = {1, . . . , A}
x[I] , Scope operator x[I] :=

⊗
i∈I xi for any set I ⊆ [d], x ∈ Rd

Causal graph
G , Directed acyclic bigraph G = (X ,Y, z)
X , Set of dX random variables {Xj}dXj=1 taking values xj ∈ [N ]

Y , Set of dY random variables {Yj}dYj=1 taking values yj ∈ [N ]

z , Directed edges z ⊆ X × Y
zj , Parents of Yj such that zj = {i | (Xi, Yj) ∈ z}
Z , Degree of sparseness such that |zj | < Z,∀j ∈ [dY ]
N , Size of the support of random variables

MDP
M , Markov decision processM = (S,A, p, r, µ,H)
S , State space
A , Action space
p , Transition model p : S ×A → ∆(S)
r , Reward function r : S ×A → ∆([0, 1])
µ , Initial state distribution µ ∈ ∆(S)
H , Episode horizon H <∞
S , Size of the state space S = |S|
A , Size of the action space A = |A|
s , State s ∈ S
a , Action a ∈ A
R(s, a) , Mean reward E[r(s, a)]

Factored MDP
F , Factored Markov Decision Process

F = ({Xj}dXj=1, {Yj , zj , pj , rj , }
dY
j=1, µ,H,Z,N)

dX , Number of state-action variables
dY , Number of state variables
X , Factored state-action space X = X1 × . . .×XdX
Y , Factored state space Y = Y1 × . . .× YdY
z , Directed edges z ⊆ X × Y , i.e., a factorization
zj , Parents of Yj such that zj = {i | (Xi, Yj) ∈ z}
p , Factored transition model p(y|x) =

∏dY
j=1 pj(y[j] | x[zj ])

r , Factored reward function r(x) =
∑dY
j=1 rj(x[zj ])

µ , Initial state distribution µ ∈ ∆(Y)
H , Episode horizon H <∞
Z , Degree of sparseness such that |zj | < Z,∀j ∈ [dY ]
N , Size of the support of state and action variables

Learning problem
K , Number of episodes
k , Episode index
h , Step index
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Z , Space of the consistent factorizations Z ⊆ X × Y
Zj , Space of the consistent parents of Yj such that Z = Z1 × . . .ZdY
BR(K) , K-episodes Bayesian regret

Regret analysis
Ω , Set of all the possible assignments of X = {Xi}i∈[dX ], Ω =

⊗
i∈[dX ][N ]

n , Value index on support of random variable, n ∈ [N ]
Hk , History until episode k
Zk , Random variable of the global factorization at episode k
Zkj , Random variable of the local factorization at episode k for factor j
Z∗ , Random variable of the true factorization
Zj∗ , Random variable of the true factorization for j-th factor
Ek[·] , Conditional expectation given historyHk, Ek[·] := E[· | Hk]
Pk[·] , Conditional probability given historyHk, Pk[·] := P[· | Hk]
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B Parametric priors and posterior updates

In the following, we detail how the hyper-priors and priors of C-PSRL (Algorithm 2) can be specified
through parametric distributions, and how the corresponding parameters are updated with the evidence
provided by the collected data.

The hyper-prior P0 = {P0,j}dYj=1 is defined through dY distributions over the set of local factoriza-
tions Z1, . . . ,ZdS , where each Zj contains the parents assignments for the variable Yj consistent
with the graph prior G0. Let assume any arbitrary ordering of the local factorizations zi ∈ Zj ,
such that each zi is indexed by i ∈ [|Zj |]. Then, we can specify the hyper-prior j as a categorical
distribution

P0,j(zi;ω) = Cat(i;ω) =
ωi∑
t ωt

,

where the sum is over t ∈ [|Zj |], and the vector of parameters ω is initialized as ω = (1, . . . , 1).

Then, for each local factorization zi ∈ Zj of the variable Yj , we specify the prior P0,j(·|zi) over the
model parameters of the corresponding transition factor pj . The transition factor pj is an (N |Zj |, N)
stochastic matrix. The prior is specified through a Dirichlet distribution for each row of pj , i.e.,

p0,j(· | zi;α) = Dir(θ1, . . . , θN ;α1, . . . , αN ) =
1

B(α)

N∏
n=1

θαn−1
n ,

whereα is a vector of parameters initialized asα = (1, . . . , 1) andB(α) =
∏N
n=1 Γ(αn)

/
Γ(
∑
n αn)

is a normalizing factor.

Having specified the hyper-prior and prior, we now show how to update them with the new evidence.
Let be θ1, . . . , θN ∼ Pk,j(·|x[zj ];α), and assume to collect the transition (x[zj ], y[j] = i) from the
true FMDP F∗. Then, the posterior is

Pk+1,j(θ1, . . . , θN ) ∝ P (y[j] = i | θ1, . . . , θN )Pk,j(θ1, . . . , θN ;α) ∝ θi
N∏
n=1

θαn−1,

which is still a Dirichlet distribution with parameters Dir(θ1, . . . , θN ;α1, . . . , αi+1, . . . , αN ). Then,
we can propagate the posterior up the hierarchy to update the hyper-prior as

Pk+1,j(z) ∝ P (y[j] = i | z)Pt,j(z;ω)

∝ Pk,j(z;ω)

∫
P (y[j] = i | θ1, . . . , θN )Pt,j(θ1, . . . , θN | z)d(θ1, . . . , θN ) (1)

∝ Pk,j(z;ω)

∫
θi

1

B(α)

N∏
n=1

θαn−1
n d(θ1, . . . , θN ) (2)

∝ Pk,j(z;ω)
1

B(α)
B(α1, . . . , αi + 1, . . . , αN ) (3)

∝ Pk,j(z;ω)
αi + 1∑
t αt + 1

(4)

where (2) is obtained by plugging the parametric prior in (1), we derive (3) by computing the integral
over the simplex of (θ1, . . . , θN ), and (4) follows from Γ(αi + 1)

∏
t6=i Γ(αt) = (αi + 1)

∏
t Γ(αt)

and Γ(αi + 1 +
∑
t6=i αt) = Γ(

∑
t αt)

∑
t(αt + 1). The resulting posterior is still a categorical

distribution with the parameters ωi ← ωi
αi+1∑
t αt+1 .
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C Weak causal identification

In the following, we show that we can extract, under a relatively mild causal minimality assumption,
a Z-sparse super-DAG of the true causal graph GF∗ as a byproduct of a run of Algorithm 2. We
call this result weak causal identification, to make a clear distinction between discovering a sparse
super-DAG of a causal graph and true causal identification, in which the minimal graph is discovered.

As required for any causal discovery algorithm, we need to state an assumption that connects the
causal graph GF∗ with the distribution p∗ (i.e., the transition model) from which our observations
are sampled in an i.i.d. manner [46]. Typically, in causal discovery, it is assumed that p∗ fulfills the
faithfulness assumption with regard to GF∗ , i.e., every independence in p∗ implies a d-separation
(see Definition 4 below) in GF∗ . Faithfulness, however, is a rather strong assumption which can
be violated by path cancellations or xor-type dependencies, and weaker assumptions have been
proposed [46, 38, 31]. In this work, we build upon a strictly weaker assumption than faithfulness:
causal minimality [46].7

Definition 3 (Causal Minimality). A distribution P satisfies causal minimality with respect to a DAG
G if P fulfills the Markov factorization property with respect to G, but not with respect to any proper
subgraph of G.

Intuition. More intuitively, a distribution is minimal with respect to G if and only if there is no
node that is conditionally independent of any of its parents, given the remaining parents [39]. There
are two important points in this statement: i) none of the parents of a node is redundant, and ii) the
dependence to a parent may only be detected given the remaining parents. Aspect ii) is a strictly
weaker statement than required by faithfulness, which can be illustrated with a simple example.
Consider the causal structure X → Y ← Z, where all random variables are binary. If we generate X
and Z via an unbiased coin and assign Y as Y := X xor Z, Y will be marginally independent of
X , as well as marginally independent of Z. However, Y is not independent of X (resp. Z) when
we condition on its second parent Z (resp. X). Such an example violates faithfulness, i.e., there is
a causal edge that is not matched by a dependence, but it does not violate causal minimality. For a
more detailed discussion on such triples, we refer to Marx et al. [31].

In our context, Algorithm 2 has a positive probability of sampling all parents jointly (or a superset of
them), and does not rely on checking pairs individually. Therefore, we can build upon the weaker
assumption, causal minimality. Beyond identifiability in the limit, we are interested in the finite
sample behaviour of our approach. Therefore, we propose a slightly stronger assumption for the
value function, which is inspired by causal minimality.
Definition 2 (ε-Value Minimality). An FMDP F fulfills ε-value minimality, if for any FMDP F ′
encoding a proper subgraph of GF , i.e., GF ′ ⊂ GF , it holds that V ∗F > V ∗F ′ + ε, where V ∗F , V ∗F ′ are
the value functions of the optimal policies in F , F ′ respectively.

Intuitively, ε-value minimality ensures that if we were to miss a true parent, the resulting optimal
value function would be at most ε-optimal compared to the optimal value function evaluated on a
graph that contains all true parents. Based on this rather lightweight assumption, we can extract from
Algorithm 2 a graph GFK that is guaranteed to be either the true DAG GF∗ , or a Z-sparse super-DAG
of GF∗ with high probability.
Corollary 5.1 (Weak Causal Identification). Let F∗ be an FMDP in which the transition model p∗
fulfills the causal minimality assumption with respect to GF∗ , and let F∗ fulfill ε-value minimality.
Then, GF∗ ⊆ GFK holds with high probability, where GFK is a Z-sparse graph randomly selected
within the sequence {GFk}

K−1
k=0 produced by C-PSRL over K ≥ Õ(H5d2

Y 2dX−η/ε2) episodes.

Proof. From Theorem 4.1, we have that the K-episodes Bayesian regret of Algorithm 2 is

E

[
K−1∑
k=0

V∗(π∗)− V∗(πt)

]
≤ C1

√
H5d2

Y 2dX−η ·
√
K,

7The definition refers SGS-minimality proposed by Spirte, Glymour, and Scheines [46]. There exists an
alternative definition called P-minimality, proposed by [38]. In our setting, both assumptions are equivalent,
since they only differ on graphs that violate triangle faithfulness [59, 60]. Since no nodes within X or within Y
are allowed to be adjacent, such triangle structures cannot occur within our assumptions.
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with high probability for some constant C1 that does not depend on K. Through a standard regret-to-
pac argument [21], it follows

E [V∗(π∗)− V∗(πK)] ≤ c2
√
H5d2

Y 2dX−η · 1√
K

(5)

with high probability for some constant C2 that does not depend on K, and for a policy πK that
is randomly selected within the sequence of policies {πk}K−1

k=0 produced by Algorithm 2. By
noting that πK can be ε-optimal in the true FMDP F∗ only if GF∗ ⊆ GFK through the ε-value
minimality assumption (Definition 2), we let E [V∗(π∗)− V∗(πK)] = ε in (5), which gives K ≥
C2H

5d2
Y 2dX−η/ε2 and concludes the proof.

d-Separation. For the reader’s convenience, here we report a brief definition of d-separation. More
details can be found in [39].
Definition 4 (d-Separation). A path 〈X, . . . , Y 〉 between two vertices X,Y in a DAG is d-connecting
given a set Z, if

1. every collider8 on the path is an ancestor of Z, and

2. every non-collider on the path is not in Z.

If there is no path d-connecting X and Y given Z, then X and Y are d-separated given Z. Sets
X and Y are d-separated given Z, if for every pair X,Y , with X ∈X and Y ∈ Y , X and Y are
d-separated given Z.

8A collider C on a path 〈. . . , Q,C,W, . . . 〉 is a node with two arrowhead pointing towards it, i.e.→ C ←.
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D Regret analysis

In this section, we provide the full derivation of the following result.
Theorem 4.1. Let G0 be a causal graph prior with degree of sparseness Z and degree of prior
knowledge η. The K-episodes Bayesian regret incurred by C-PSRL is upper bounded as9

BR(K) ≤ Õ
((
H5/2N1+Z/2dY +

√
H2dX−η

)√
K
)
.

On a high level, the proof is made up of two parts. The first part (presented in Section D.1) consists of
decomposing the Bayesian regret into two components and then upper bounding the two expressions
separately. This leads to the intermediate regret bound for a general latent hypothesis space, i.e.,
where the hypothesis space is not necessarily a product space, reported in Section D.1. The second
part of the proof refines the analysis by considering a product latent hypothesis space (Section D.2)
and the degree of prior knowledge (Section D.3), ultimately reaching the theorem statement.

We define the set Ω =
⊗

i∈[dX ][N ] of all the possible assignments of X = {Xi}i∈[dX ]. For the
sake of concision, we will denote pk (y[j] | x[zj ]) as pk (x[zj ]) where it will not lead to ambiguity.
Moreover, we denote Ek[·] := E[· | Hk] and Pk[·] := P[· | Hk] the conditional expectation and
probability given the history of observationsHk = ((xh,l, rh,l))h∈[H],l∈[k−1] collected until episode
k. Auxiliary results and lemmas mentioned alongside the analysis are reported in the Sections D.4
and D.5.

D.1 Analysis for a general latent hypothesis space

We first report a decomposition of the Bayesian regret and then proceeds to bound each component
separately, which are then combined in a single regret rate.

Bayesian regret decomposition. For episode k, we define V k(π, z) = EF∼Pk(·|z) [VF (π)] as the
expected value of policy π according to the posterior conditioned on the latent factorization z ∼ Pk
and history Hk. As shown in [43, Proposition 1] for the bandit setting and in [19, Section 5.1,
Equation 6] for the reinforcement learning setting, we can decompose the Bayesian regret as

BR(n) = E

[
K∑
k=1

E
k

[
V∗(π∗)− V k(π∗, Z∗)

]]
+ E

[
K∑
k=1

E
k

[
V k(πk, Zk)− V∗(πk)

]]
(6)

by adding and subtracting V k(π∗, Z∗) and noticing that π∗, Z∗ are identically distributed to πk, Zk
givenHk. Notice that Zk and Z∗ indicate random variables, while we will indicate with the lowercase
counterpart specific values of these random variables. The first term represents the regret incurred due
to the concentration of the posteriors of the reward and transition models given the true factorization,
while the second term captures the cost to identify the true latent factorization. We will bound each
term of (6) separately.

Upper bounding the first term of (6). For episode k, we define the event

Ek =

{
∀ j ∈ [dY ],∀ x[zj ] ∈ Ω :

∣∣RFk(x[zj ])− r̄k(x[zkj ])
∣∣ ≤ ck(x[zkj ])

and ‖pFk(x[zj ])− p̄k(x[zkj ])‖1 ≤ φ(x[zkj ])

}
where the quantities are defined as follows. Fk denotes the FMDP sampled at episode k hav-
ing mean reward RFk(x[zj ]) and transition model pFk(x[zj ]) for all x[zj ] ∈ Ω. The expression
r̄k(x[zj ]) = EF∼Pk(·|z)[RF (x[zj ])] denotes the posterior mean of RFk(x[zj ]), while p̄k(x[zj ]) =
(p̄k(y[j] = n | x[zj ]))n∈[N ] with p̄k(y[j] = n | x[zj ]) = EF∼Pk(·|z) [pF (y[j] = n | x[zj ])] denotes
the posterior mean transition probability vector of size N for the j-th factor given a factorization
z. With ck(x[zkj ]) and φ(x[zkj ]) we denote high-probability confidence widths for the j-th factor of
the mean reward and transition model respectively. A detailed derivation of such confidence widths

9We report the regret rate with the common “Big-Oh” notation, in which Õ hides logarithmic factors.
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can be found in Section D.4. Informally, the event Ek expresses how close the mean rewards and
transition models sampled at the episode k are to their posterior means. We refer with Ēk to the
complementary event of Ek.

Now, by reminding that π∗, Z∗ are identically distributed to πk, Zk givenHk, we can rewrite each
element of the sum within the first term of (6) as

E
k

[
VFk(πk)− V k(πk, Zk)

]
(1)
= E

k

[
E

F∼Pk(·|Zk)

[
VFk(πk)− VF (πk)

]]
(2)
≤ E

k

[ H∑
h=1

(
RFk(Sk,h, Ak,h)− r̄k(Sk,h, Ak,h, Zk)

)
+H‖pFk(Sk,h, Ak,h)− p̄k(Sk,h, Ak,h, Zk)‖1

]
(3)
≤ E

k

[ H∑
h=1

dY∑
j=1

(
RFk(Xk,h[Zj ])− r̄k(Xk,h[Zkj ])

)
+H

dY∑
j=1

‖pFk(Xk,h[Zj ])− p̄k(Xk,h[Zkj ])‖1
]

≤ E
k

[
H

H∑
h=1

dY∑
j=1

(
RFk(Xk,h[Zj ])− r̄k(Xk,h[Zkj ])

)
+ ‖pFk(Xk,h[Zj ])− p̄k(Xk,h[Zkj ])‖1

]
(4)
≤ E

k

[
H

H∑
h=1

dY∑
j=1

(
RFk(Xk,h[Zj ])− r̄k(Xk,h[Zkj ]) + ‖pFk(Xk,h[Zj ])− p̄k(Xk,h[Zkj ])‖1

)
1{Ēk}

]

+ E
k

[
H

H∑
h=1

dY∑
j=1

(
ck(Xk,h[Zkj ]) + φk(Xk,h[Zkj ])

)
1{Ek}

]
(7)

where we have used the definition of V k(πk, Zk) in step (1), Lemma D.3 in step (2), Lemma D.4 in
step (3), and the definition of Ek in step (4).

By defining βk(Xk,h[Zkj ]) := ck(Xk,h[Zkj ]) + φk(Xk,h[Zkj ]) as the sum of both confidence widths,
we can bound the second term of (7) by using Lemma D.5, while we bound the first term of the same
equation by showing that Ēk conditioned onHk is unlikely. We rewrite the first term of (6) as

H

H∑
h=1

dY∑
j=1

(
E
k

[(
RFk(Xk,h[Zj ])− r̄k(Xk,h[Zkj ])

)
1{Ēk}

]

+ E
k

[
‖pFk(Xk,h[Zj ])− p̄k(Xk,h[Zkj ])‖11{Ēk}

])
(8)

where we have distributed the indicator function. For the first term within the sums of (8), we have

E
k

[(
RFk(Xk,h[Zj ])− r̄k(Xk,h[Zkj ])

)
1{Ēk}

]
(9)

≤
∑

x[Zj ]∈Ω

∫ ∞
r=ck(Xk,h[Zkj ])

r Pk
(
(RFk(x[Zj ])− r̄k(x[Zkj ])) = r

)
dr (10)

≤
∑

x[Zj ]∈Ω

Pk(RFk(x[Zj ])− r̄k(x[Zkj ]) ≥ ck(x[Zkj ])) (11)

(1)
≤

∑
x[Zj ]∈Ω

exp

(
−

ck(x[Zkj ])2

2/4(‖αRk (x[Zkj ])‖1+1)

)
(12)

(2)
=

∑
x[Zj ]∈Ω

exp

− log(2KdYN
Z)

2(‖αRk (x[Zkj ])‖1+1)
2/4(‖αRk (x[Zkj ])‖1+1)

 (13)

=
∑

x[Zj ]∈Ω

exp
(
− log(2KdYN

Z)
)

=
1

2KdY
(14)
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In step (1) we have used Lemma D.2 and D.1, and in step (2) we have plugged-in the definition of
ck(x[Zkj ]) from (plugged-in σ2 of R∆), where αRk (x[Zkj ]) represents the parameters of the posterior
over the mean reward for the j-th factor at episode k given factorization Zkj . For the second term
within the sums of (8), we have

E
k

[
‖pFk(Xk,h[Zj ])− p̄k(Xk,h[Zkj ])‖11{Ēk}

]
(1)
≤ N E

k

[
max
n∈[N ]

|pFk(Xk,h[Zj ], n)− p̄k(Xk,h[Zkj ], n)|1{Ēk}
]

(2)
≤

∑
x[Zj ]∈Ω

∑
n∈[N ]

∫ ∞
p=φk(Xk,h[Zkj ])/

√
N

pPk(|pFk(Xk,h[Zj ], n)− p̄k(Xk,h[Zkj ], n)| = p) dp

≤ 2Pk

(
|pFk(Xk,h[Zj ], n)− p̄k(Xk,h[Zkj ], n)| ≥

φk(x[Zkj ])
√
N

)
(3)
≤

∑
x[Zj ]∈Ω

∑
n∈[N ]

2 exp

(
−

φk(x[Zkj ])2

2N/4(‖αPk (x[Zkj ])‖1+1)

)

=
N

KdY
(15)

The steps are analogous to the ones for upper bounding the first term of (8). Specifically, in step
(1) we use a trivial upper bound on the l1-norm and in step (2) we divide the confidence width by
the square root of the vector length

√
N according to lemma [27, Theorem 5.4.c]. The parameters

αPk (x[Zkj ]) introduced in step (3) represent the parameters of the posterior over the transition model
for the j-th factor at episode k given factorization Zkj .

By plugging (14) and (15) into (8) and then (8) into (7), we can bound the first term of (6) as

E

[
K∑
k=1

E
k

[
V∗(π∗)− V k(π∗, Z∗)

]]
≤ NH2 +H

K∑
k=1

H∑
h=1

dY∑
j=1

E
k

[
βk(Xk,h[Zkj ])

]
(16)

where we recall that βk(Xk,h[Zkj ]) := ck(Xk,h[Zkj ]) + φk(Xk,h[Zkj ]).

Upper bounding the second term of (6). Since there is no fundamental distinction between latent
states in the tabular and factored MDP settings, our analysis in this section is aligned with [19,
Appendix B.3, step 2] and aims at effectively translating it into the factored MDPs notation.

In order to bound the second term of (6), we first need to define confidence sets over latent fac-
torizations. For each episode k, we define a set of factorizations Ck so that Z∗ ∈ Ck with high
probability. Since the latent factorization is unobserved, we can only exploit a proxy statistic for how
well the model parameter posterior of each latent factorization predicts the rewards. We start defining
a counting function Nk(z) =

∑k−1
l=1 1{Zl = z} as the number of times the factorization z has been

sampled until episode k. Next, we define the following statistic associated with a factorization z and
episode k,

Gk(z) =

k−1∑
l=1

1{Zl = z}

V l(πl, z)−H√2

H∑
h=1

dY∑
j=1

βl(Xl,h[zj ])−
H−1∑
h=0

dY∑
j=1

Rl,h[j]


The latter represents the total under-estimation of observed returns, as it expresses the difference
between the lower confidence bound on the returns and the observed ones, assuming that z is the true
latent factorization. Now we can define Ck = {z ∈ Z : Gk(z) ≤

√
HNk(z) logK} as the set of

latent factorizations with at most
√
HNk(z) logK excess. In the following, we show that Z∗ ∈ Ck

holds with high probability for any episode.

Fix Z∗ = z. Let Tk,z = {l < k : Zl = z} the set of episodes where z has been sampled until
episode k. We will first upper bound Gk(z) by a martingale with respect to the history, then bound
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the martingale using Azuma-Hoeffding’s inequality. We define the event

Ek,h,j =

{ ∣∣RFk(Xk,h[Zj ])− r̄k(Xk,h[Zkj ])
∣∣ ≤ √2ck(Xk,h[Zkj ])

and ‖pFk(Xk,h[Zj ])− p̄k(Xk,h[Zkj ])‖1 ≤
√

2φk(Xk,h[Zkj ])

}
in which the sampled reward and transition probabilities for factor j in step h of episode k are close
to their posterior means. Let E = ∪Kk=1 ∪Hh=1 ∪

dY
j=1Ek,h,j be the event that this holds for every factor,

step, and episode. By union bound we have that

Pk(Ēk,h,j) ≤ Pk(
∣∣RFk(Xk,h[Zj ])− r̄k(Xk,h[Zkj ])

∣∣ ≥ √2ck(Xk,h[Zkj ]))

+ Pk(‖pFk(Xk,h[Zj ])− p̄k(Xk,h[Zkj ])‖1 ≥
√

2φk(Xk,h[Zkj ]))

(1)
≤ exp

(
2ck(Xk,h[Zkj ])2

σ2

)
+ exp

(
2φk(Xk,h[Zkj ])2

Nσ2

)
≤ (KdYN

dX )−2

where we have used Lemmas D.2 and D.1 in step (1) and Ēk,h,j is the complementary event of Ek,h,j .
Hence, for Ē = ∪Kk=1 ∪Hh=1 ∪

dY
j=1Ēk,h,j , we have

P(Ē) =

K∑
k=1

H∑
h=1

∑
z∈Z

dY∑
j=1

∑
x[Zj ]∈Ω

Pk(Ēk,h,j) ≤
K∑
k=1

H∑
h=1

∑
z∈Z

dY∑
j=1

∑
x[Zj ]∈Ω

(KdYN
dX )−2 ≤ H|Z|K−1

For episode l ∈ Tk,z , let ∆l = V∗(πl) −
∑H
h=1

∑dY
j=1Rl,h[j]. Since El[∆l] = 0, (∆l)l∈Tk,z is a

martingale difference sequence with respect to the histories (Hl)l∈Tk,z . Following exactly the same
steps as in [19, Proof of Lemma 7], we derive an upper bound on the probability of Z∗ not being in
the factorizations set Ck, namely:

P(Z∗ /∈ Ck) ≤ 2|Z|HK−1 (17)

We can now decompose the second term of (6) according to whether the sampled latent factorization
is in Ck or not. Formally, we have

E

[
K∑
k=1

E
k

[
V k(πk, Zk)− V∗(πk)

]]
≤ E

[ K∑
k=1

(
V k(πk, Zk)− V∗(πk)

)
1{Zk ∈ Ck}

]

+H

K∑
k=1

P(Z∗ /∈ Ck) (18)

From the previous steps, using (17), we have that the second term of (18) is upper bounded by 2|Z|H2,
while in the following we derive an upper bound for the first term of (18) as in [19, Appendix B.3,
step 4]. We have

E
[ K∑
k=1

(
V k(πk, Zk)− V∗(πk)

)
1{Zk ∈ Ck}

]

= H
√

2E

 K∑
k=1

H∑
h=1

dY∑
j=1

βk(Xk,h[Zkj ])


+ E

 K∑
k=1

V k(πk, Zk)−H
√

2

H∑
h=1

dY∑
j=1

βk(Xk,h[Zkj ])−
H∑
h=1

dY∑
j=1

Rk,h[j]

1{Zk ∈ Ck}


(1)
≤ H
√

2E

 K∑
k=1

H∑
h=1

dY∑
j=1

βk(Xk,h[Zkj ])

+ E

[∑
z∈Z

GK+1(z) + |Z|H

]
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(2)
≤ H
√

2E

 K∑
k=1

H∑
h=1

dY∑
j=1

βk(Xk,h[Zkj ])

+
√
|Z|KH logK + |Z|H

where in step (1) we use the definition of GK+1(z) and in step (2) we upper bound the same quantity.

Bayesian regret for a general latent hypothesis space. Combining the upper bounds of the two
terms of (6), we get

BR(K) ≤ NH2 +H

K∑
k=1

H∑
h=1

dY∑
j=1

E
k

[
βk(Xk,h[Zkj ])

]
+H
√

2E

 K∑
k=1

H∑
h=1

dY∑
j=1

βk(Xk,h[Zkj ])


+
√
|Z|KH logK + |Z|H + 2|Z|H2

(1)
≤ NH2 + 3H2dYN

dX + 3H2dYN

√
NdXKH log(4KdYNdX ) log

(
1 +

KH

2NdXΛ0,z

)
+
√
|Z|KH logK + 3|Z|H2

where in step (1) we have used Lemma D.5, and we denote

Λ0,z = min

{
min
j,x[zj ]

‖αR0 (x[zj ])‖1, min
j,x[zj ]

‖αP0 (x[zj ])‖1
}

Due to the Z-sparseness assumption, we can rewrite the Bayesian regret as

BR(K) ≤ NH2 + 3H2dYN
Z + 3H2dYN

√
NZKH log(4KdYNZ)log

(
1 +

KH

2NZΛ0,z

)
+
√
|Z|KH logK + 3|Z|H2

= Õ
(
H2dYN

Z +H
5
2 dYN

1+Z
2

√
K +

√
|Z|KH + |Z|H2

)
Notably, this rate is sublinear in the number of episodes K and latent factorization |Z|, exponential
in the degree of sparseness Z.

D.2 Refinement 1: Product latent hypothesis spaces

As we briefly explained in Section 3, C-PSRL samples the factorization z from the product space
Z = Z1 × . . .×ZdY by combining independent samples zj ∈ Zj for each variable Yj . This allows
us to refine the dependence in |Z| to C := maxj∈[dY ] |Zj | ≤ |Z|. We can replicate the same steps
of the previous section in order to derive the Bayesian regret for the setting with a product latent
hypothesis space. For the sake of clarity, we report here the main steps highlighting the difference
with the previous section.

For an episode k ∈ [K], we define Cjk =

{
zj ∈ Zj : Gjk(z̄) ≤

√
HN j

k(zj) logK

}
where

Gjk(zj) =

k−1∑
l=1

1{Zlj = zj}H
H∑
h=1

((
r̄l(Xl,h[zj ])−Rl,h[j]

)
+ ‖p̄k(Xl,h[zj ])− p∗(Xl,h[zj∗])‖1 −

√
2βk(Xl,h[zj ])

)
and N j

k(zj) =
∑k−1
l=1 1{Zlj = zj}. While Gjk(zj) captures the under-estimation of the observed

returns at the level of a single factor, N j
k(zj) counts the number of times that the local factorization

zj has been sampled for node j until episode k. Next, we define T jk,zj = {l < k : Zlj = zj} as the
set of episodes where zj has been sampled for node j.

First, we can derive an upper bound of P(Ē) depending on C by noticing that the inner-most sum
depends only on the local factorization hence we can swap the two preceding sums over Z and dY as
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shown in step (1) of the following:

P(Ē) =

K∑
k=1

H∑
h=1

∑
z∈Z

dY∑
j=1

∑
x[zj ]∈Ω

Pk(Ēk,h,j)

≤
K∑
k=1

H∑
h=1

∑
z∈Z

dY∑
j=1

∑
x[zj ]∈Ω

(KdYN
dX )−2

=
(1)
≤

K∑
k=1

H∑
h=1

dY∑
j=1

∑
zj∈Zj

∑
x[zj ]∈Ω

(KdYN
dX )−2

≤ HCK−1

Now, we wish to upper bound P(Zj∗ /∈ Cjk). For episode l ∈ T jk,zj let ∆j
l =

∑H
h=1R∗(Xl,h[Zj∗])−∑H

h=1Rl,h[j]. Since El[∆j
l ] = 0 we have that (∆j

l )l∈T jt,zj
is a martingale difference sequence with

respect to the histories (Hl)l∈T jt,zj
.

By following the same steps as in [19], we get

Gjk(zj)1{E} =
∑

l∈T jt,zj

H

H∑
h=1

((
r̄l(Xl,h[zj ])−Rl,h[j]

)
+ ‖p̄k(Xl,h[zj ])− p∗(Xl,h[zj∗])‖1 −

√
2βk(Xl,h[zj ])

)
≤

∑
l∈T jk,zj

∆j
l

and by fixing |T jt,zj | = N j
t (zj) = u < t, and using Azuma-Hoeffding’s inequality, we derive

Pk
(
Gjk(z̄)1{E} ≥

√
Hu logK

)
≤ P

 ∑
l∈T jk,zj

∆j
l ≥

√
Hu logK

 ≤ K−2.

Therefore, by using union bounds, we can write

P (Z∗ /∈ Ck) ≤
dY∑
j=1

P(Zj∗ /∈ Cjk)

≤
dY∑
j=1

∑
zj∈Zj

k−1∑
u=1

P
(
Gjk(zj) ≥

√
Hu logK

)

≤ P(Ē) +

dY∑
j=1

∑
zj∈Zj

k−1∑
u=1

P
(
Gjk(zj)1{E} ≥

√
Hu logK

)
≤ dYHCK−1 (19)

We can now decompose the second term of (6) according to whether the sampled latent factorization
is in Ck or not, as in the previous section. Formally, we have

E

[
K∑
k=1

E
k

[
V k(πk, Zk)− V∗(πk)

]]
≤ E

[ K∑
k=1

(
V k(πk, Zk)− V∗(πk)

)
1{Zk ∈ Ck}

]

+H

K∑
k=1

P(Z∗ /∈ Ck)

From (19), we know that the second term is upper bounded by dY CH2. Meanwhile, we can bound
the first term as follows

E
[ K∑
k=1

(
V k(πk, Zk)− V∗(πk)

)
1{Zk ∈ Ck}

]
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≤ E
[ K∑
k=1

H

H∑
h=1

dY∑
j=1

(
r̄k(Xk,h[Zkj ])−R∗(Xk,h[Zj∗])

+ ‖p̄k(Xl,h[Zkj ])− p∗(Xl,h[Zj∗])‖1
)
1{Zkj ∈ C

j
k}
]

= H
√

2E

[
K∑
k=1

H∑
h=1

dY∑
j=1

βk(Xk,h[Zkj ])

]
+ E

[
K∑
k=1

H

H∑
h=1

dY∑
j=1

(
r̄k(Xk,h[Zkj ])−R∗(Xk,h[Zj∗])

+ ‖p̄k(Xl,h[Zkj ])− p∗(Xl,h[Zj∗])‖1 −
√

2βk(Xk,h[Zkj ])
)
1{Zkj ∈ C

j
k}

]
(1)
≤ H
√

2E

 K∑
k=1

H∑
h=1

dY∑
j=1

βk(Xk,h[Zkj ])

+ E

 dY∑
j=1

∑
zj∈Zj

GjK+1(zj) + dY CH


(2)
≤ H
√

2E

 K∑
k=1

H∑
h=1

dY∑
j=1

βk(Xk,h[Zkj ])

+

dY∑
j=1

∑
zj∈Zj

1

dY

√
HN j

K+1(zj) logK + dY CH

≤ H
√

2E

 K∑
k=1

H∑
h=1

dY∑
j=1

βk(Xk,h[Zkj ])

+

√
CKH logK + dY CH

where in step (1) we use the definition of GjK+1(z) and in step (2) we upper bound the same quantity.

Bayesian regret for a product latent hypothesis space Exploiting the Z-sparseness assumption,
we can write

BR(K) ≤ Õ
(
H2dYN

Z +H
5
2 dYN

1+Z
2

√
K +

√
CKH + dY CH

2
)

(20)

Notably, this rate is sublinear in the number of episodesK and the number of latent local factorizations
C, exponential in the degree of sparseness Z.

D.3 Refinement 2: Degree of prior knowledge

Finally, we aim to capture the dependency in the degree of prior knowledge η in the Bayesian regret.
To do that, we have to express C = maxj∈[dY ] |Zj | in terms of η. We can write

C =

Z∑
i=0

(
dX
i

)
=

Z∑
i=0

CdXi

where we count the empty factorization when i = 0. Given a graph hyper-prior that fixes η < Z
edges for each node j ∈ [dY ], we can count the number of admissible local factorizations as

C =

Z−η∑
i=0

(
dX − η

i

)
where we count the factorization with only the edges fixed a priori when i = 0. We can build an
upper bound on C as follows.

C =

Z−η∑
i=0

(
dX − η

i

)
≤ 2dX−η−1 exp

(
(dX + η − 2Z − 2)2

4(1 + Z − dX)

)
≤ 2dX−η exp

(
(dX + η − 2Z)2

4(1 + Z − dX)

)
=: φ(dX , Z, η)
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Since it is hard to interpret the rate of the latter upper bound, we derive a looser version that is easier
to interpret. We have

C =

Z−η∑
i=0

(
dX − η

i

)

= 2dX−η −
dX−Z−1∑
i=0

(
dX − η

i

)
≤ 2dX−η − 2dX−Z + 1

≤ 2dX−η

From the latter we can notice that each unit of the degree of prior knowledge η make the hypothesis
space shrink with an exponential rate, and thus the corresponding regret terms as well. In particular,
by plugging-in the upper bound C ≤ 2dX−η = 2dX

2η in the Bayesian regret in (20), we obtain the
final upper bound, which is

BR(K) ≤ Õ
(
H2dYN

Z +H
5
2 dYN

1+Z
2

√
K +

√
2dX−ηKH + dY 2dX−ηH2

)
. (21)

D.4 High probability confidence widths

Here we define high-probability confidence widths on the reward function and transition model along
the lines of [19], but with the difference that the confidence widths are defined for all factors and their
possible assignments rather than for state-action pairs as in the tabular setting. We denote as ck(x[zj ])
and φk(x[zj ]) the confidence widths for the j-th factor of the reward function and the transition
model respectively. In the following, we indicate with RF and pF the mean reward and transition
model of the FMDP F respectively.

Reward function. First, we write the posterior mean reward for the j-th factor, given a factorization
z as r̄k(x[zj ]) = EF∼Pk(·|z)[RF (x[zj ])]. We wish to have a high probability bound of the type

Pk (|RF (x[zj ])− r̄k(x[zj ])| ≥ ck(x[zj ])) ≤
1

K

for all j ∈ [dY ] and possible assignments x[zj ] ∈ Ω. By the union bound, we have

Pk
(∣∣RF (x[zj ])− r̄k(x[zj ])

∣∣ ≥ ck(x[zj ])

)

= Pk

 dY⋃
j=1

⋃
x[zj ]∈Ω

{
|RF (x[zj ])− r̄k(x[zj ])| ≥ ck(x[zj ])

}
≤

dY∑
j=1

∑
x[zj ]∈Ω

Pk
(
|RF (x[zj ])− r̄k(x[zj ])| ≥ ck(x[zj ])

)
.

Applying a union bound again to the latter expression, we can derive the following one-sided bound:

Pk
(
RF (x[zj ])− r̄k(x[zj ]) ≥ ck(x[zj ])

)
≤ 1

2KdYNdX
.

According to Lemma D.1, R∆ := RF (x[zj ])− r̄k(x[zj ]) is a σ2-subgaussian random variable with
σ2 = 1/

(
4
(
‖αRk (zj)‖1 + 1

))
. Therefore, through the Cramèr-Chernoff method exploited in Lemma

D.2, we have that the high probability bound above holds if

exp

(
−ck(x[zj ])

2

2σ2

)
≤ 1

2KdYNdX

which holds if and only if

ck(x[zj ]) ≥
√

2σ2 log(2KdYNdX )
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=

√
log(2KdYNdX )

2
(
‖αRk (x[zj ])‖1 + 1

) (plugged-in σ2 of R∆)

Hence, we pick ck(x[zj ]) :=

√
log(2KdYNZ)

2(‖αRk (x[zj ])‖1+1)
, where Z is a lower bound on the value of dX ,

which holds due to the Z-sparseness assumption.

Transition model. The derivation is analogous to the one for the reward function, hence here we
report only the differences. First, we write the posterior mean transition probability for the j-th factor,
given a factorization z as p̄k(y[j] = n | x[zj ]) = EF∼Pk(·|z) [pF (y[j] = n | x[zj ])], which is the
probability, according to the posterior at time k, over the element n ∈ [N ] of the domain of the j-th
component of Y . Since we want to bound the deviations over all components of a factor, we define
the vector form of the previous expression as p̄k(x[zj ]) = (p̄k(y[j] = n | x[zj ]))n∈[N ]. By following
the same steps as for the confidence width of the reward function, we get

φk(x[zj ]) :=

√
N log(2KdYNZ)

2
(
‖αPk (x[zj ])‖1 + 1

) (22)

where the
√
N term is due to [27, Theorem 5.4.c], since the l1 norm sums over Nσ2-subgaussian

random variables and therefore the induced random variable is (Nσ2)-subgaussian.

D.5 Auxiliary lemmas

Lemma D.1 (Theorem 1 and 3 of [30]). Let X ∼ Beta(α, β) for α, β > 0. Then X − E[X] is
σ2-subgaussian with σ2 = 1/(4(α+β+1)). Similarly, letX ∼ Dir(α) for α ∈ Rd+. ThenX−E[X]
is σ2-subgaussian with σ2 = 1/ (4 (‖α‖1 + 1)).
Lemma D.2 (Theorem 5.3 of [27]). If X is σ2-subgaussian, then for any ε ≥ 0,

P(X ≥ ε) ≤ exp

(
− ε2

2σ2

)
Lemma D.3 (Value Difference Lemma, Lemma 6 [19]). For any MDPsM′,M, and policy π,

VM′(π)−VM(π) ≤ E
M

[
H∑
h=1

RM′ (Sh, Ah)−RM (Sh, Ah) +H ‖pM′ (Sh, Ah)− pM (Sh, Ah)‖1

]

Proof. This upper bound can be obtained by trivially upper bounding with 1 the reward at each step,
and therefore with h the value function within the statement in [22, Lemma C.1].

Lemma D.4 (Deviations of Factored Reward and Transitions [36]). Given two reward functions R
and R̄ with scopes {zj}dYj=1 we can upper bound the deviations by

|R(x)− R̄(x)| ≤
dY∑
j=1

|Rj(x[zj ])− R̄j(x[zj ])|

and, given two transition models p and p̄ with scopes {zj}dYj=1 we can upper bound the deviations by

|p(x)− p̄(x)| ≤
dY∑
j=1

|pj(x[zj ])− p̄j(x[zj ])|

Lemma D.5. For episode k and latent factorization z ∈ Z , let βk(x[zj ]) = ck(x[zj ])+φk(x[zj ]) for
any j ∈ [dY ] and x[zj ] ∈ Ω. Let Λ0,z = min

{
minj,x[zj ] ‖αR0 (x[zj ])‖1,minj,x[zj ] ‖αP0 (x[zj ])‖1

}
indicates the minimum level of concentration between the reward function and transition model priors
for any factor and latent factorization z. Then, we have

K∑
k=1

H∑
h=1

dY∑
j=1

βk(Xk,h[zj ]) ≤ HdYNdX+dYNH

√
NdXKH log(4KdYNdX ) log

(
1 +

KH

2NdXΛ0,z

)
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Proof. We define Nk(x[zj ]) =
∑k−1
l=1

∑H
h=1 1{Xl,h[zj ] = x[zj ]} as the number of times the

assignment x[zj ] was sampled up to episode k for factor j. We can decompose the sum as

K∑
k=1

H∑
h=1

dY∑
j=1

βk(Xk,h[zj ])

≤
K∑
k=1

H∑
h=1

dY∑
j=1

1{Nk(Xk,h[zj ]) ≤ h}+

K∑
k=1

H∑
h=1

dY∑
j=1

1{Nk(Xk,h[Zj ]) > H}βk(Xk,h[zj ])

where we upper bound by 1 the regret in a step due to one factor. Therefore, the first term is upper
bounded by HdYNdX since there are at most NdX assignments for each j ∈ [dY ] and the same
one can appear in the sum at most H times, thus removing the dependency on K. Due to the
assumption of Z-sparseness, we will later use the bound HdYNZ . As for the second term, we define
Nk,h(x[zj ]) = Nk(x[zj ]) +

∑h−1
p=1 1{Xk,p[zj ] = x[zj ]} as the number of times x[zj ] was sampled

up to step h of episode k, for factor j. We split βk into ck and φk. For ck we have:
K∑
k=1

H∑
h=1

dY∑
j=1

1{Nk(Xk,h[zj ]) > H}ck(Xk,h[zj ])

=

K∑
k=1

H∑
h=1

dY∑
j=1

1{Nk(Xk,h[zj ]) > H}

√
log(2KdYNZ)

2
(
‖αRk (Xk,h[zj ])‖1 + 1

)
=

K∑
k=1

H∑
h=1

dY∑
j=1

∑
x[zj ]∈Ω

1{Nk(x[zj ]) > H}

√
log(2KdYNZ)

2‖2αRk (Xk,h[zj ])‖1 + 2Nk(x[zj ]) + 2

≤
K∑
k=1

H∑
h=1

dY∑
j=1

∑
x[zj ]∈Ω

√
log(2KdYNZ)

2‖2αRk (Xk,h[zj ])‖1 +Nk,h(x[zj ])

≤
√

log(2KdYNZ)

dY∑
j=1

∑
x[zj ]∈Ω

√√√√NK+1(x[zj ])

NK+1(x[zj ])∑
u=1

1

2‖αRk (Xk,h[zj ])‖1 + u

≤
√
NdXKH log(2KdYNZ)

dY∑
j=1

√√√√KH/NdX∑
u=1

1

2Λ0,z + u

≤ dY

√
NdXKH log (2KdYNZ) log

(
1 +

KH

2NdXΛ0,z

)
where in the first step we have plugged-in ck as picked in Section 4, in the second step have
exploited the posterior update rule, in step three we have used that if Nk(x[zj ]) > H we have that
Nk,h(x[zj ]) ≤ Nk(x[zj ]) +H ≤ 2Nk(x[zj ]), and in the remaining passages we have used known
bounds as in [19, Lemma 6]. Analogously, for φk we can derive the following.
K∑
k=1

H∑
h=1

dY∑
j=1

1{Nk(Xk,h[zj ]) > H}φk(Xk,h[zj ])

≤ dYNH

√
NdXKH log (4KdYNZ) log

(
1 +

KH

2NdXΛ0,z

)
Notice that again, due to the Z-sparseness, we can replace in the steps above NdX with NZ .
Combining the terms, we have:
K∑
k=1

H∑
h=1

dY∑
j=1

βk(Xk,h[zj ]) ≤ HdYNdX+2dYNH

√
NdXKH log (4KdYNZ) log

(
1 +

KH

2NdXΛ0,z

)
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