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Abstract

Deep learning models generally perform well across entire datasets but often exhibit disparate
behaviors across different subgroups. Such biases hinder real-world applications. Despite
numerous efforts to identify and mitigate biases in biased subgroups using the powerful
vision-language foundation model CLIP, these approaches commonly neglect inherent biases
in CLIP’s feature encoding, which can restrict performance improvements. In our work, we
introduce a novel strategy that employs an ensemble of surrogate models for adaptive and
scalable discovery of biased subgroups, effectively reducing the impact of feature encoding
biases inherent in CLIP. Additionally, we utilize the large vision-language model to elucidate
inherent subgroup biases and employ relative Fisher information to identify critical layers for
mitigating subgroup bias and suppressing the learning of shortcuts. Extensive experiments on
CIFAR-100, Breeds, and ICSD-171K demonstrate the effectiveness of our proposed methods.
We also confirm the presence of subgroup bias by analyzing the image encoder of CLIP on
the Hard ImageNet dataset.

1 Introduction

While deep learning models have presented significant progress in many areas, such as image classification (Rao
et al., 2021; Chen et al., 2021), text-to-image generation (Zhou et al., 2022; Li et al., 2023), and robotics (Károly
et al., 2020; Chen et al., 2020), there are also some concerns regarding the reliability of their use. These
concerns include adversarial vulnerability (Zhang et al., 2024b; Wang et al., 2023), privacy leakage (Tyagi
& Goyal, 2020; Yan et al., 2021), and subgroup bias (Zhang et al., 2024a; Jain et al., 2022). Among these
issues, subgroup bias is one of the most prevalent trustworthiness problems in model development. Taking
the image classification task as an example, the well-trained model usually achieves good overall performance
on the known class divisions but performs poorly on the unannotated subgroups within each class (Zhang
et al., 2024a). Discovering and mitigating these biased subgroups is crucial for understanding model failures
and improving trustworthiness (Zhang et al., 2024a; Jain et al., 2022; Eyuboglu et al., 2022).

In recent years, many research works have been put into efforts on bias discovery but with limitations. Most
of the existing works focus on discovering the bias from known attributes, leading to unknown bias overlooked.
Some research focuses on unknown bias discovery. Li et al. (2022) designs a debiasing alternate network,
which predicts the subgroup label, but can only discover a single bias and needs human explanations for
the subgroup. For automatic bias discovery and explanation, current works usually employ the cross-modal
capacity of the vision-language foundation model (CLIP) (Radford et al., 2021) for bias discovery and
interpretation. Eyuboglu et al. (2022) leverages the CLIP embedding to represent the samples and proposes
an error-aware mixture model for clustering to group the under-performing slices and identify the systematic
error, but the use of proxies of clusters can result in interpretation distortion. Jain et al. (2022) further
propose to use a linear classifier to decompose the CLIP space for single biased subgroup explanation, while
Zhang et al. (2024a) further proposes the partial least square method for CLIP space decomposition to
multiple biased subgroup discovery and integration. However, all of these works assume the CLIP learns
unbiased latent space by training on large-scale datasets. This raises a natural question (Q1) to us: Is CLIP
itself reliable enough to encode the features without bias?
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Figure 1: CLIP is not perfect, which also learns
the bias, e.g., the spurious correlation. We use
“Cf.” to denote the decision confidence and “Cf.
Drop” to denote the confidence drop. The ✓
and x indicate whether the image is classified
correctly.

We conduct an experiment here to answer this question.
Specifically, we fine-tune a CLIP followed by a linear
layer for the image classification task on the whole Ima-
geNet dataset (♠). To avoid introducing novel bias during
fine-tuning, we freeze the parameters of CLIP and only
optimize the linear layer. To better understand the influ-
ence of bias, we used entropy to indicate the confidence of
the CLIP decision, where the drop in confidence reflects
the impact of the spurious correlation on this decision.
By evaluating the model performance on Hard ImageNet,
which is the subset of ImageNet consisting of more spuri-
ous correlation, it has a minor drop performance of 5.4%
(59.7% v.s. 54.3%) with nearly all classified correctly by
masking the target objects (second column in fig. 1). How-
ever, on the target object (third column in fig. 1), it only
has a classification accuracy of 0.7%. Besides, even with
correct classification, there is still a large confidence degra-
dation with up to 48.9% (see the example of “dog sled”).
These results suggest that CLIP is also biased by spuri-
ous correlation existing in the datasets, which potentially
influences the reliability and robustness of previous biased
subgroup discovery work based on CLIP.

Furthermore, the task of discovering multiple biased sub-
groups faces two significant challenges. First, the number
of subgroups within each class is unknown. Previous stud-
ies have assumed a predefined, equal number of subgroups
in each class for biased subgroup discovery (Jain et al.,
2022; Zhang et al., 2024a), an approach that lacks adaptivity for real-world applications. Second, after identi-
fying biased subgroups, it is crucial to understand the distribution shifts between them. This understanding
helps to better explain the inherent biases and to mitigate them, thereby improving model robustness.

In our work, we empirically find that even the studied biased model can be directly deployed to accurately
find multiple biased subgroups without the help of CLIP. Based on this observation and the fact that
different model has similar but different interests of the region for one image, we propose to use diverse
surrogate models to replace CLIP in adaptively and scalably discovering and mitigating the multiple biased
subgroups. Specifically, we first pre-train different small surrogate models on different datasets and then
fine-tune them on the studied dataset. By such design, models can recognize images from different views,
enabling the cross-model compensation of their biased feature encoding. By adaptively decomposing the
latent representation of the feature with model supervision, we derive the eigenvectors of different subgroups,
which are used to generate pseudo subgroup labels for images. Then, we propose to leverage the large
vision-language model to help us understand the distribution shifts between different subgroups as well as the
existence of multiple biased subgroups. We define a metric of relative layer importance score to find the layer
for subgroup biased mitigation efficiently and surpress the overlearning of subgroups with shortcuts.

Our contributions are summarized as follows:

1. We propose the use of an ensemble of diverse models to replace CLIP for the adaptive discovery of
multiple biased subgroups, enhancing the adaptivity and precision of bias detection.

2. We leverage a large vision-language model to facilitate a deeper understanding of the distribution
shifts between different subgroups, aiding in the explanation and mitigation of inherent biases.

3. We introduce a novel metric to identify critical layers responsible for learning biased subgroups and
suppressing shortcut learning. We then fine-tune these layers to efficiently mitigate bias.
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Figure 2: Decompose the inputs or the encoded features to discover the multiple subgroups.

4. We conduct extensive experiments on the CIFAR-100, Breeds, and ICSD-171K datasets, which
demonstrate the effectiveness of our approach. Additionally, we confirm the presence of subgroup
bias in the CLIP feature encoder by analyzing the Hard ImageNet dataset.

2 Related work

Bias Identification Numerous studies have focused on discovering and interpreting biases in machine
learning models. Eyuboglu et al. (2022) employ the cross-modal embeddings of the CLIP model to pinpoint
underperforming sample subsets. Singla & Feizi (2022) find that the activation maps of neural features can
be used to spotlight spurious or core visual features. Zhu et al. (2022) leverage a training-free framework
aimed at elucidating dataset-level distribution shifts. Generative models have been employed by Li & Xu
(2021); Lang et al. (2021) to unearth and interpret unknown biases. Jain et al. (2022) utilize a hyper-plane
to identify model failure modes, utilizing CLIP for automatic captioning to elucidate these modes. Zhang
et al. (2024a) discover multiple biased subgroups using supervised principle component analysis in latent
representations.

Bias Mitigation Various approaches have been proposed to mitigate bias in machine learning models.
These encompass re-sampling and weighting strategies Li & Vasconcelos (2019); Qraitem et al. (2023),
distributional robust optimization techniques Słowik & Bottou (2022); Wen et al. (2022), invariant risk
minimization Mao et al. (2023), and adversarial debiasing methods Zhang et al. (2018); Lim et al. (2023).
Some methods utilize identified biases to counteract model bias, such as EIIL Creager et al. (2021) and LfF
Nam et al. (2020a). However, these approaches often necessitate bias labels in the training dataset, which
are typically absent in practice, thus limiting their scalability. To address this challenge, recent research has
explored bias mitigation without access to bias annotations. Nam et al. (2020b) propose training a debiased
model against a prejudiced model. Pezeshki et al. (2021) introduce a regularization term to decouple failure
learning dynamics. Li et al. (2022) present debiasing alternate networks to uncover and unlearn multiple
identified biases in classifiers. Park et al. (2023) propose debiased contrastive weight pruning to develop
unbiased networks. Zhang et al. (2024a) propose the soft-label strategy for boosting the conventional bias
mitigation methods.

3 Methodology

3.1 Motivation

The key challenge in discovering multiple subgroups lies in identifying subgroup-specific discriminative features
that the model inadvertently learns—features that remain consistent within a subgroup but differ across
subgroups. Previous work (Eyuboglu et al., 2021; Jain et al., 2022; Zhang et al., 2024a) has demonstrated the
use of foundation models, such as CLIP, as encoders to obtain latent representations for subgroup discovery.
However, this approach introduces two additional challenges: (1) foundation models themselves carry implicit
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biases, which can hinder the effectiveness of subgroup discovery, and (2) relying on large models to debias
smaller models limits scalability when attempting to debias the large models themselves.

To find solutions to these challenges, there naturally raises a question, can we only use the studied biased
model without any supplementary to discover multiple subgroups?

Previous works have identified that it is impossible to derive invariant features from the heterogeneous data
without environmental information, which motivates their design of CLIP feature decomposition with the
model supervision. Leaving the black-box setting alone, we directly use the feature computed by the studied
biased model for the decomposition step to discover subgroups, which also serve as the model supervision.
Specifically, in example (♣), we forward all images of “small mammal” to ResNet-101, get the features
computed by the last max pooling layer, and merge these features together to a matrix followed by the
decomposition step using the PCA with setting 5 as the number of principal components. We use the obtained
5 principle components to compute, respectively, the similarity of each image to each subgroup indicator, i.e.,
the principle components, and get the pseudo subgroup label that achieves the maximum similarity, for each
image. We also set up an additional experiment by directly decomposing the group of inputs to discover
multiple subgroups. For evaluation, we report the ratio of the most frequent pseudo-subgroup label in each
ground truth subgroup of the superclass “small mammals”.

The whole pipeline of the aforementioned experiment and results are shown in fig. 2. It can be seen that even
setting 5 principle components, the direct decomposition of inputs by PCA can only find 3 subgroups, in
which the “mouse” and “hamster”, “rabbit” and “squirrel” are respectively wrongly mixed into the same
subgroup. By comparison, the decomposition of computed features after the max pooling layer of ResNet-101
can be accurately used to discover five different subgroups. It suggests that even without explicit information
about subgroups during the training process, the feature representation learned by the model is implicitly
influenced by the distribution shifts between different subgroups, which can be directly employed for subgroup
discovery without any supplementary.

Motivated by these findings, we propose to model subgroup information using an ensemble of diverse small
models and derive invariant features to discover and mitigate multiple biased subgroups.

3.2 Adaptive Biased Subgroup Discovery

We begin by pre-training N distinct models, denoted as {fn}N
n=1, on various datasets before fine-tuning them

on the target dataset D. Each model fn is composed of two components: fn = gn ◦ ϕn, where gn represents
the feature encoder, and ϕn is the classification head. This architecture encourages the model to interpret
the data in D from diverse perspectives. For instance, a model pre-trained on the Describable Textures
Dataset (Cimpoi et al., 2014) and then fine-tuned on CIFAR-100 can utilize prior texture knowledge to
classify novel images more effectively.

Next, we pass data from a specific class through the N different encoders {gn}N
n=1, generating encoded

features {gn(X)}N
n=1, where gn(X) ∈ RS×dn . Here, S denotes the number of samples in X, and dn is the

dimensionality of the encoded feature for the n-th model. Simultaneously, we forward the data through the
black-box model under study, obtaining a supervision signal P ∈ RS×M , where M represents the number of
supervision signals (e.g., logits, loss values, or other forms of supervision).

To dynamically identify distinct subgroups within this class, we project the concatenated encoded features
GX = {gn(X)}N

n=1 ∈ RS×
∑N

n=1
dn onto the supervision space defined by the black-box model, represented

by P . This projection is achieved through a dynamic singular value decomposition (SVD) process that
determines the optimal number of subgroup bases based on a reconstruction error threshold. Specifically,
we aim to decompose GX into a basis matrix U ∈ RD×g and a coordinate matrix Σ ∈ Rg×M such that each
column of U represents a subgroup basis vector, and Σ contains the coordinates of these basis vectors in the
supervision space.

The optimal rank g, corresponding to the number of subgroups, is determined dynamically by controlling
the reconstruction error of the low-rank approximation. We compute the SVD of GX as GX ≈ UΣV T and
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Figure 3: Overview of our proposed method: It consists of three components: (1) adaptively discovering
multiple subgroups with decomposition tolerance δ, (2) explaining the discovered subgroups with the help of
Vision-Language Models (VLLMs), and (3) leveraging Fisher information Il to fine-tune the specified layers
for bias mitigation.

incrementally retain singular values until the cumulative reconstruction error∑min(S,M)
i=g+1 σ2

i

∥GX∥2
F

≤ δ, (1)

where δ is a predefined threshold for acceptable error. This adaptive rank selection allows us to identify
the minimal set of subgroup bases that still sufficiently captures the variability of the data relative to the
supervision signals.

By leveraging dynamic SVD in this manner, we effectively discover the inherent structure of multiple subgroups
within the data, with each subgroup characterized by distinct basis vectors in U that capture unique latent
representations aligned with the black-box model’s supervision signals. This approach enables a robust
subgroup discovery process that is tailored to the complexity of the underlying data distribution.

Finally, we compute the cosine similarity between each sample’s feature encoding and the subgroup basis
vectors in U . The subgroup label for each sample is assigned by selecting the index corresponding to the
maximum cosine similarity. By assessing model performance across the identified subgroups, we can uncover
biased subgroups that exhibit lower accuracy.

3.3 Understanding the subgroup bias with VLLM

Inspired by Dunlap et al. (2024), we leverage Vision Large Language Models (VLLMs) to interpret subgroup
differences and explain subgroup biases. The key challenge is handling the large number of images and
subgroups, which complicates the reasoning of both within-group similarities and between-group differences.
To address this, we introduce a progressive retrieval-based framework for bias interpretation.

For each subgroup, we maintain two core attributes: (1) the internal similarity within the subgroup, and (2)
the distinguishing characteristics relative to other subgroups. We begin by randomly sampling N images
from different subgroups and prompting VLLMs to generate captions for each image. The VLLMs then
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summarize the common features of images within the same subgroup, which are used to update a global
similarity attribute.

Next, we concatenate images from the same subgroup into a single row and arrange images from different
subgroups into separate rows, creating a composite image. Using the composite and the global similarity
attribute, VLLMs identify the distinct characteristics between subgroups, updating a global difference
attribute. After several iterations, we use the global difference attribute to provide an explanation for the
subgroup biases.

3.4 Biased subgroup mitigation

We propose a novel approach that utilizes parameter importance scores to guide the bias mitigation process,
aiming to reduce under-learning in biased subgroups while limiting over-learning in others.

Specifically, we compute the Fisher Information as an importance indicator for each layer l in mitigating bias.
This can be formulated as follows:

Il = FIb
l

FIub
l

,

s.t., F Ib
l = E

θl

[
E

(x,y)∼Db

[
∇2

θlL(f(x), y)
]]

,

F Iub
l = E

θl

[
E

(x,y)∼Dub

[
∇2

θlL(f(x), y)
]]

,

(2)

where θl represents the parameters in layer l, Db and Dub denote the dataset containing identified biased and
unbiased subgroups, respectively, y is the superclass label of x, and L is the classification loss. A larger Il

indicates a higher sensitivity of the model’s parameters to biased subgroups compared to unbiased subgroups.

Following previous work (Wang et al., 2020; Zhang et al., 2024a), we add an auxiliary subgroup classification
head to the backbone of the biased neural network to help distinguish features among subgroups, aiding bias
mitigation. Additionally, we apply LoRA to important layers where Il > 1. This step inherently increases
the model’s parameter count, thereby improving its ability to learn robust, generalized features, ultimately
supporting the learning of under-represented subgroups. During the training process, we also scale the
learning rate of different layers by their layer importance, balancing the representation learning between
biased and unbiased subgroups.

4 Experiments

4.1 Setup

Dataset. Our experiments consist of four datasets: CIFAR-100 (Krizhevsky et al., 2009), Breeds (Santurkar
et al., 2020), Hard ImageNet (Moayeri et al., 2022), and ICSD-171k (Salgado et al., 2023). Specifically,
(1) the CIFAR-100 dataset consists of 20 superclasses, where each superclass can be divided further into 5
fine-classes. Each fine-class consists of 500 images for training and 100 for testing. (2) The Breeds dataset is
a subset of the ImageNet-1K dataset. It is manually constructed and used to study the subgroup robustness,
which has 13 superclasses with 10 fine-classes in each superclass. (3) The ICSD-171K dataset is an X-ray
diffraction dataset. It consists of 7 crystals systems, which can be further unevenly divided into 230 space
groups. (4) The Hard ImageNet dataset is another subset of the ImageNet-1K dataset, where the “hard”
comes from the spurious correlation involved in the dataset, leaving the partition of the fine-class unknown.

Baselines. Our experimental framework encompasses three pivotal tasks: detecting multiple biased subgroups,
interpreting these subgroups, and mitigating bias across them. In the detection phase, we benchmark our
approach against SVM (Jain et al., 2022), Domino (Eyuboglu et al., 2021), and DIM (Zhang et al., 2024a).
For understanding the bias, we leverage the GPT-4V to explain the discovered bias. For biased subgroup
mitigation, we first annotate samples with pseudo labels generated by different detection methods. These
labels are then leveraged by the supervised fine-tuning technique to improve the model’s subgroup robustness.
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Figure 4: Mitigation results of two models on the CIFAR-100 dataset under two different settings. The
original CIFAR-100 dataset consists of 20 superclasses, each containing an equal number of subclass images.
The biased CIFAR-100 dataset is a transformed version, where two subclasses in each superclass are randomly
selected, and their image counts are reduced to introduce a manual quantity bias, thereby influencing the
learned model.

Implementation details. We study the ResNet and fine-tuned CLIP in our experiments, where we append
a linear layer to the CLIP image encoder for classification. We train the two models on the CIFAR-100,
Breeds, and Hard ImageNet datasets. We use 5 AlexNet as the surrogate model for bias discovery. The
surrogate models are firstly respectively pre-trained on SVHN, Flower, Euro, DtD, and CIFAR-10 datasets,
then fine-tuned on the targeted dataset, where the feature encoder is frozen during the fine-tuning and only
the linear layer is updated.

4.2 Evaluation on biased subgroup discovery

Table 1: The success rate of different methods on
the biased subgroup detection task on three datasets,
including CIFAR-100, Breeds, and ICSD-171K.

Method SVM Domino DIM Ours
CIFAR-100 42.5 40.0 55.0 60.0

Breeds 42.3 40.4 61.5 65.4
ICSD-171K 17.4 19.1 20.0 23.5

We start with the experiments on biased subgroup
detection. We apply the baseline methods and our
method to discover and identify the biased sub-
groups, where the detection accuracy is reported
in table 1. Compared with SVM, Domino, and DIM,
our method can achieve a better performance in de-
tecting the biased subgroups with a clear margin of
17.8%. On the in-distribution dataset of CLIP, i.e.,
CIFAR-100 and Breeds, our method achieves an av-
erage accuracy of 82.5%. On the out-of-distribution
dataset of CLIP, i.e., the ICSD-171K, the feature encoder can not work well for accurate subgroup discovery
at the clustering step of Domino and decomposition step of SVM and DIM, leading to a bad performance on
biased subgroup detection. The inconsistent number of fine-classes in each superclass makes it challenging to
accurately capture the subgroup indicator for baseline methods, which assume a fixed number of subgroups.
By eliminating the reliance on CLIP with the use of multiple surrogate models on the studied dataset as well
as the adaptive subgroup discovery, our method still achieves a good performance with 65.1% accuracy.

4.3 Evaluation on bias mitigation

We further conduct experiments on bias mitigation across three datasets: CIFAR-100, Breeds, and ICSD-171K.
We evaluate the mitigation performance in two subtasks. First, following the approach of (Jain et al., 2022;
Zhang et al., 2018), we assess classification accuracy across the worst-performing subgroups. Second, we
evaluate the model’s performance on the entire dataset. A good model should not only perform well on the
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Table 2: The classification accuracy of ResNet-101-32x8d on the Breeds, and ICSD-171K test set. We
present results on the worst four and three subgroups to study the mitigation performance of multiple biased
subgroups. The overall accuracy is also provided for a comprehensive evaluation.

Datasets Breeds ICSD-171K
Method 1 2 3 4 Avg 1 2 3 Avg

Ori. 56.3 65.5 70.2 73.9 77.1 5.7 13.6 17.3 76.5
Domino 58.1 67.4 74.5 75.3 79.4 8.4 16.7 18.9 76.9

SVM 57.9 67.4 73.2 74.6 79.3 8.1 15.2 19.5 76.7
DIM 59.5 68.1 75.6 76.3 81.2 10.6 19.0 21.8 79.2
Ours 59.3 70.9 76.5 77.8 81.1 13.9 21.6 23.6 82.1

Figure 5: We use our method to study the subgroup bias in CLIP. By adaptive subgroup discovery, we find
that there are two subgroups in “volleyball”, and four subgroups in “patio”.

worst subgroups but also demonstrate strong overall performance. The results are presented in fig. 4 and
table 2.

It is important to note that each dataset presents unique challenges. The CIFAR-100 dataset, for instance,
consists of only five subclasses per superclass. In addition to the standard setup, we follow the method in
(Jain et al., 2022) to create a biased dataset by sampling from the CIFAR-100 dataset, where two subclasses
within each superclass have only 20% of the samples compared to the other subclasses. In contrast, the Breeds
dataset contains more subclasses, which challenges the scalability of baseline methods. The ICSD-171K
dataset, being out-of-domain with respect to natural images, is particularly difficult for the CLIP model to
recognize. Furthermore, the number of subclasses varies across superclasses, which poses additional challenges
in terms of both generalization and scalability.

Our method achieves the best performance in bias mitigation across these diverse datasets. Specifically,
compared to SVM, Domino, and DIM, our method provides more accurate pseudo-subgroup labels for
supervised mode-centric mitigation methods. This results in average improvements in worst subgroup
accuracy of up to 0.83% on CIFAR-100, 0.75% on the Breeds dataset, and 2.4% on ICSD-171K.

4.4 Studying the subgroup bias on Hard ImageNet learned by CLIP

We use our method to discover the subgroup bias in CLIP. We select two signals for the supervision of
decomposition, 1) we use logits of the fine-tuned classification head which is additionally appended to the
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image encoder; 2) we use the cosine similarity between the image features and text features of paired class
labels. Results are depicted in fig. 5.

We can see that there are different numbers of subgroups in different classes on the Hard ImageNet dataset
detected by the CLIP. By summarizing the key difference between different subgroups using GPT-4 Vi-
sion (Achiam et al., 2023), it can be seen that the “volleyball” class can be further divided into two subgroups
according to its sports scenes, including the “gym” and “beach”. Also, the “patio” class can be divided into
four subgroups based on its surrounding objects, namely the “mountain”, “pool”, “plants”, and “house”. The
discovery of subgroups in CLIP by studying the Hard ImageNet dataset suggests that CLIP is also influenced
by multiple subgroups, even with the weak supervision of description during the contrastive learning process.

4.5 Abaltion study

On the use of δ. In our work, we leverage δ in eq. (1) to control the decomposition granularity of
subgroup discovery. Here, we conduct additional experiments on the CIFAR-100 and Breeds datasets to
study the impact of δ on the performance of discovering biased subgroups. The results are reported in table 4.

Table 3: Studying the impact of δ on the performance
of mining biased subgroups.

δ 1% 5% 10% 15% 20%
CIFAR-100 60.0 60.0 52.5 50.0 45.0

Breeds 67.3 65.4 65.4 57.5 55.7

In general, a larger value of δ results in fewer sub-
groups being discovered, which could lead to the
oversight of biased subgroups. Conversely, a smaller
δ leads to the discovery of more subgroups, enabling
the identification and clustering of finer-grained fea-
tures, thus increasing the potential to uncover more
biased subgroups. The reported results validate this
trend. Specifically, setting δ = 5% strikes a balance, achieving good performance by uncovering most biased
subgroups while maintaining low computational costs.

Table 4: Studying the impact of Il on the performance
of bias mitigation. We report the changes of the accu-
racy compared with the method using Il.

Datasets CIFAR-100 Breeds ICSD-171K
Worst +0.1 −0.2 −0.1
Best +1.3 +0.9 +3.7
Avg +0.5 +0.4 +1.1

On the use of Il. While previous works fine-tune
the entire neural network for bias mitigation, we pro-
pose using Fisher information, as shown in eq. (2), to
first identify the important layers and then fine-tune
only those layers for bias mitigation, thus avoid-
ing further over-learning of unbiased subgroups. To
demonstrate the benefits of using Fisher informa-
tion, we conduct experiments where this technique
is disabled, relying solely on the adaptive subgroup
discovery method to generate pseudo-labels for nor-
mal bias mitigation fine-tuning. We report the changes in accuracy for both the worst and best-performing
subgroups across different datasets to illustrate the impact of this technique. The results show that when
specialized layer fine-tuning with Fisher information is disabled, the model tends to perform worse on the
worst-performing subgroups and continues to improve on the well-performing subgroups, resulting in a larger
gap between the subgroups.

5 Conclusion

In this paper, we study an important problem, the discovery and mitigation of multiple biased subgroups.
Compared with previous studies, we make an effort to solve two challenging tasks, including the discovery
of inconsistent numbers of subgroups across different classes and the mitigation of novel subclasses that
are not present in the local dataset but exist in the wild. Also, previous studies are limited to the use of
CLIP embedding for bias discovery, while neglecting the fact that CLIP is also biased towards the spurious
correlation, leading to an unreliable explanation in the whole pipeline. To address these problems, we propose
to use the ensemble of surrogate models fine-tuned on the targeted dataset to replace the CLIP for feature
encoding while minimizing the impact of bias. The encoded features are used for subgroup discovery and
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pseudo-subgroup label generation, as well as bias mitigation. Extensive experiments on CIFAR-100, Breeds,
and ICSD-171K dataset sufficiently demonstrate the effectiveness of our proposed method.

Limitations. While different methods can be used for subgroup discovery, there still is a lack of trustworthy
metrics for performance evaluation due to the existence of multiple kinds of biases. Also, there remains a
problem with how to discover multiple biased subgroups in multi-modality data and models.
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