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Abstract

Federated Learning (FL) has recently emerged as the primary approach to over-
coming data silos, enabling collaborative model training without sharing sensitive
or proprietary data. Parallel Federated Learning (PFL) aggregates models trained
independently on each client’s local data, which could prevent the model from con-
verging to the optimal solution due to limited data exposure. In contrast, Sequential
Federated Learning (SFL) allows models to traverse client datasets sequentially,
enhancing data utilization. However, SFL effectiveness is limited in real-world
Non-IID scenarios characterized by category shift (inconsistent class distributions)
and domain shift (distribution discrepancies). These shifts cause two critical issues:
update order sensitivity, where model performance varies significantly with the
sequence of client updates; and catastrophic forgetting, where the model forgets
previously learned features when trained on new client data. Therefore, based on
SFL, we propose a novel updating framework, SPFL (Sequential updates with
Parallel aggregation Federated Learning), that can be integrated into existing PFL
methods. It integrates sequential updates with parallel aggregation to enhance
data utilization and ease update order sensitivity. Meanwhile, we give the con-
vergence analysis of SPFL under strong convex, general convex, and non-convex
conditions, proving that this update scheme is significantly better than PFL and
SFL. Additionally, we introduce the GLAM (Global-Local Alignment Module)
to mitigate catastrophic forgetting by aligning the predictions of the local model
with those of previous models and the global model during training. Our extensive
experiments demonstrate that integrating the SPFL framework into existing PFL
methods significantly improves performance under category and domain shifts.

1 Introduction

Deep learning models have demonstrated immense potential across various vision tasks, typically
depending on large-scale data training [1} 2 [3]. As privacy concerns regarding the centralized
collection of extensive data continue to escalate, traditional centralized training methods increasingly
fail to address clients’ privacy needs. In response, Federated Learning (FL) [4} 13, 6] has emerged as
a decentralized solution, designed specifically to prioritize data privacy by allowing models to be
trained collaboratively without centralizing sensitive information. Aligning with the foundational
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Figure 1: Top: Parallel Figure 2: (a) and (b) present cases of category shift and domain shift.
Federated Learning (PFL):  (c) and (d) illustrate the performance of three starting points for client
The server aggregates the  training (i.e., Client I— Client 2— Client 3, Client 2— Client 3— Client
local models trained inde- 7, and Client 3— Client 1— Client 2) on the three clients’ data under
pendently on each client. category and domain shift, respectively. The solid lines in (e) and (f)
Bottom: Sequential Feder- compare the performance of Client I’s data between FedAvg, which
ated Learning (SFL): The  repeatedly learns solely on Client I’s data, and SFL, which iteratively
local model will be trained  learns sequentially across different client datasets under category and
on the clients sequentially  domain shift, respectively. The dashed lines represent the sequential
without a centralized sever.  training process of SFL.

method FedAvg [7], existing FL methods [8, 9] commonly employ Parallel Federated Learning (PFL),
which aggregates models trained independently on each client at a central server, as shown in Fig.
(top). While PFL effectively enhances the global model’s performance through iterative aggregation,
it does not fully exploit all available data since each client’s model is trained solely on its local data,
potentially leading to poor model generalization. This raises the question: what strategies can be
explored to leverage client data better and improve the model generalization?

One promising strategy is to allow the model to traverse each client’s dataset sequentially, as
demonstrated in Fig. [I] (bottom), leading to Sequential Federated Learning (SFL) [10, (11} [12].
Although current SFL methods perform effectively in Independently and Identically Distributed (IID)
settings across clients to enhance generalization and leverage more data, their performance remains
constrained in real-world Non-IID scenarios. The challenges arise because the Non-1ID nature across
clients mainly manifests in two forms in image tasks: category shift and domain shift. The category
shift refers to inconsistent class distributions across clients. For instance, dog samples constitute 70%
of the Client I’s data but only 10% of the Client 2’s, as shown in Fig. [Z](a). The domain shift involves
distribution discrepancies arising from different domains, such as images sampled from paintings in
one client and real photos in another, as depicted in Fig. ] (b).

To analyze the impact of two types of shifts in SFL, we test SFL on two datasets characterized by the
category shift [[13}[14]] (i.e. CIFAR-10) and the domain shift [[15[16] (i.e. PACS) following previous
work, respectively. The results presented in Fig. [2]reveal two critical issues impacting SFL under
Non-IID conditions: (1) Update Order Sensitivity: The model becomes highly sensitive to the
order in which clients are updated. Different update sequences can lead to inconsistent results in the
same client dataset, as illustrated in Fig. 2] (c) and (d). For example, Fig. [2|(c) demonstrates that
starting the training process from Client 2 (Client 2— Client 3— Client I) leads to better performance
in the Client I dataset than starting from Client 3 (Client 3—Client 1—Client 2) under category shift.
This may be because the latter update order causes the model to become trapped in a saddle point,
resulting in consistently poor performance. In addition, we present two examples to theoretically
demonstrate the existence of this phenomenon in Appendix Section [Hl However, solving this by
exhaustively exploring all possible update sequences to determine the optimal order is impractical
due to the high computational and time costs, especially in real-world applications involving a large



number of clients. (2) Catastrophic Forgetting: As the model updates sequentially across clients
with different data distributions, it tends to forget previously learned features when trained on new
client data, a phenomenon known as catastrophic forgetting in continual learning [[17,[15 [18]]. This
issue is evident in Fig. E] (e) and (f), where SFL performs worse in Client I’s data after repeated
iterations under category or domain shift, compared to SFL, which learns repeatedly on a single
client’s dataset.

To effectively leverage the available client data and overcome these challenges under category
shift and domain shift, we propose a novel FL framework named Sequential updates with Parallel
aggregation Federated Learning (SPFL) and a Global-Local Alignment Module (GLAM).

Specifically, SPFL harnesses the strengths of both parallel and sequential learning. The server initially
distributes the global model to all clients. Each client trains the model on its local data before
passing the updated model to the next client for further training. After completing the sequential
update round starting from different clients, the server aggregates these models in parallel to form a
new global model for the next iteration. This hybrid approach maximizes data utilization and
mitigates the risk of suboptimal update sequences, improving model robustness within a single
computation round. Moreover, SPFL eliminates the need to share dataset sizes for weighting
during aggregation, which increases privacy in applications where dataset sizes may leak sensitive
information. Additionally, SPFL can be integrated into existing FL optimization approaches as a new
updating strategy to address category shift, such as Scaffold [19] and FedDyn [20]. Furthermore,
our proposed GLAM tackles catastrophic forgetting by continuously aligning the predictions of the
global model with the local model during training. It also aligns the predictions of the local model
with those from the previous client, effectively preserving learned knowledge among clients. The
GLAM demonstrates significant effectiveness in improving the performance of SPFL under domain
shift. We also provide a convergence analysis of SPFL under strong convex, general convex, and
non-convex conditions, demonstrating that this update scheme outperforms both PFL and SFL
in Appendix Section |G} In summary, the contributions of our paper are summarized as follows:

o We identify and analyze the limitations of existing SFL. methods in Non-IID scenarios, highlighting
the issues of update order sensitivity and catastrophic forgetting under category and domain shifts.

e We propose SPFL, a novel federated learning framework that combines sequential updates with
parallel aggregation. SPFL improves data utilization and model robustness by aggregating models
with different starting clients to traverse each client’s dataset sequentially. We also design GLAM to
align predictions of the local model, both with global model and previous local model to mitigate
catastrophic forgetting, ensuring that the model retains knowledge across different client updates.

e We provide a convergence analysis under strong convex, general convex, and non-convex conditions.
Extensive experiments demonstrate the effectiveness of SPFL under Non-IID conditions (domain
shift and category shift), as well as their compatibility with traditional PFL methods.

2 Related Work

2.1 Parallel Federated Learning

As privacy concerns grow, companies become increasingly hesitant to upload their data to the cloud
for centralized model training. To effectively utilize these distributed data, FedAvg [7]] pioneer
federated learning community that serves as the foundation of Parallel Federated Learning (PFL) [21]].
Building upon this work, most federated optimization algorithms have adopted the PFL paradigm,
improving FedAvg through various improvements [22| 23|19, 24| 25]]. For example, SCAFFOLD
[19] mitigates client drift in federated learning through control variates. FedSAM [25] addresses the
decline in global model generalization caused by inconsistent data distributions across clients by
employing the Sharpness Aware Minimization optimizer. Although these FL. methods significantly
enhance the handling of traditional Non-IID issues, they are less effective on complex image tasks
involving Non-IID data, such as domain shift [26] and category shift [[13]]. Therefore, to address
domain shift, FedCSA [27] addresses the inconsistency in the global model due to Non-IID data,
using a model bias-based client data clustering method. Furthermore, to address the category shift,
FedDisco [28] tackles the poor convergence of the global model under the category shift. However,
existing PFL methods fall short in fully exploiting the available client data, since each local model is
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Figure 3: (Left) The process of our update method Sequential Updates with Parallel Aggregation
(SPFL). The serial numbers indicate the steps to be executed sequentially. (Right) The module that
solves the forgetting problem when the domain differences of each client are too large, that is, the
module that Global-Local Alignment Module (GLAM). Lines of different colors represent the update
order of different starts, and the black represents aggregation to the central server.

limited access to its corresponding client data. This limitation may result in suboptimal convergence
of model training due to insufficient data exposure, which motivates our proposed SPFL.

2.2 Sequential Federated Learning

Nowadays, studies on Sequential Federated Learning (SFL) remain relatively limited. Some research
addresses the issue of information leakage in federated learning by performing membership inference
attacks in the SFL setting [29]. Although other research uses sequential updates for privacy protection
[29], they do not address the issue of poor model performance on Non-IID data. FedGSP [30] seeks
to address the decline in model performance caused by Non-IID data in federated learning through a
dynamic collaborative training approach that transitions from sequential to grouped parallel updates.
However, this approach deviates from the standard SFL setting. Similarly, FedSeq [10] mitigates the
issues of slow convergence and performance degradation caused by computational heterogeneity in
federated learning by sequentially training on heterogeneous client groups, referred to as super-clients.
Although some experimental results demonstrate the advantages of FedSeq on Non-IID data, and
some scholars theoretically prove the convergence of SFL under Non-IID conditions [31]], these
models still perform poorly on complex tasks involving domain shift and category shift.

3 Method

In this section, we first introduce the problem formulation. Then, we provide the convergence analysis
of SPFL, comparing it with PFL and SFL. Next, to tackle the challenges associated with domain
shift for SPFL, we propose a Global-Local Alignment Module (GLAM). The workflow of SPFL is
illustrated in Fig. |3} Limited by space, notations are summarized in Appendix [D} Meanwhile, the
general assumptions for convergence are provided in Appendix [E]

3.1 Preliminaries

In our paper, we adopt a similar setting to the traditional FL and assume that each client m has its
dataset Dy, = { (2", y™)}{™, where represents the amount of data from client kand performs model
updates in this way where = € &’ is the input and y € ) its corresponding label. For each client £,
we have separate models f(-; wy). The optimization objective of PFL can be written as (IJ):

dm
min Z Z D Lo (f(@5w00m), y) (1
m=1 k=1 7'=1 a4’ =1
Unlike PFL, the server is no longer needed in SFL, and our optimization objective is written as (2)):
K gm
min Z SN Lo (fEwm), u) ©)
m=1k=1i=1



By comparing (I) and (2), we observe that the gradient of £, is solely dependent on the dataset of
client m, whereas the gradient of L, in @]) is influenced by all the datasets. Meanwhile, we can see
that SFL does not need to introduce the dataset size in the optimization. However, as we analyzed in
Fig. 2] inconsistent starting points have a great impact on model performance. To solve this problem,
we proposed Sequential updates with Parallel aggregation (SPFL), which can avoid the worst solution
of the model, but of course, this does not represent the best model performance. To distinguish the
different models at each starting point, we add conditional probability to the optimization target
to fully consider this issue. Meanwhile, because SPFL goes through each client, the dataset that
undergoes gradient descent is the same size, and we no longer need to consider the impact of the
dataset size on the model, which could be proved in Fig.

3.2 Sequential updates with Parallel aggregation

Our paper proposes a new framework of updating Sequential updates with Parallel aggregation

(SPFL), similar to the client setting in PFL. Unlike PFL, our updating framework can continuously

learn from different client datasets. From the perspective of global optimization, we are different

from PFL because the aggregation process is different from the SFL aggregation process, as shown:
K QW" sk

H},%”*Z S5 Veags [ fa g ol IZ VL )

n=1m=1k=1 =1

However, to compare the subsequent convergence analysis, according to Assumption|[T} this deviation
can be incorporated into the o in Assumption[3} For client m, the update method is simplified as ().
See (@5) for more details.

M M K-1

TR DI @

n=1m=1 k=0
To help readers better understand SPFL, we provide the pseudo-code in Appendix Algorithm [I]

3.3 Convergence analysis of SPFL

Theorem 1. For SPFL, there exists a constant effective learning rate 11 := M Kn and weights

0,, such that the weighted average of the global parameters w) = ﬁ Ef:o 0,w'") (where

Wg = Zf o 0r) satisfies the following upper bounds:

Strongly convex: Under Assumptions 2] B} and[5] there exists a constant effective learning rate
—(r+1)

:U'R <n< 6L and weights 0,. = ( - “2") , such that the following holds:

12702 18Lij%0? n 18Li%¢?

5
M?K MK MK )

E [L(ﬂ;(R)) - C(w*)} < g;ul? exp (—;uﬁR) +

General convex: Under Assumptions [2| [3| and [} there exists a constant effective learning rate
1 < g and weights 0, = 1, such that the following holds:

3A% 12702 18Lﬁ202+18Lﬁ2§f
nR = MZ2K MK MK

Non convex: Under Assumptions 2] [3| and |} there exists a constant effective learning rate 1) <
and weights 0, = 1, such that the following holds:

E [c(m<R>) - z(w*)} < O

6L(ﬁ+1)
) 3Lﬁ02 27TL%72%02%  2TL%R2(?
o in, B {ch( H } T A VES Q) Ve Gy Vi ®
A = ||w®) — w*|| for the convex cases and B := L(w ")) — L* for the non-convex case.

We include Corollary [T)in the appendix. Additionally, we compare SPFL, SFL, and PFL. As shown
in Tab. [T} SPFL achieves a smaller convergence upper bound than both SFL and PFL, indicating a
faster convergence rate. Compared to PFL and SFL, our proposed SPFL achieves a tighter upper



Table 1: The upper bounds in the strongly convex case, with absolute constants and polylogarithmic
factors omitted, are presented. The general convex and non-convex cases are included in Corollarym

Method Bound (A = ||w©® — w*||)

2 2 2
PFL (FedAvg) BI] 3575 + e + jogr + nAZexp (— 4

2
PFL (Scaffold) [19]  —%r + ~H&m + g + A% exp (— L8

2 2 2
SFL [31] ;LJ\;KR + ;LZJ\L40](R2 + ;LZLJ\%Rz + H’Az €xp 7%
o? Lo? L¢? 2 _pR
SPFL (ours) P EE T mairre T e T AT exp L

bound in the strongly convex case, notably improving the variance term from O(1 /(M KR)) to

O(1/(M?K R)). Therefore, increasing the number of Clients can enhance the convergence speed of
the model compared to other methods.

As shown in Fig. [3] we set an update order for the startup of each client and perform aggregation after
each step, enabling more effective integration with traditional personalized federated learning (PFL).
This sequential federated learning (SFL) strategy allows the model to traverse a larger volume of data,
leading to a 3% improvement in handling category shift. However, SFL alone remains insufficient for
addressing domain shift due to the inherently uneven data distributions across clients. While SPFL
inherits the PFL-style weighted aggregation, which helps maintain competitive performance under
domain shift, it still faces limitations. To mitigate these issues, we introduce a global-local alignment
module (GLAM) specifically designed to enhance robustness against domain discrepancies.

3.4 Global-Local Alignment Module (GLAM)

In SFL with client data, if the model does not learn enough in the current domain and quickly
transitions to the next domain, it may cause the model to forget the features learned in the previous
round when moving to the next. For example, in the PACS task, when the model transitions from
learning comics to the photo domain, we aim to offset the style features during the learning process.
However, it seems that some content information is also lost, making the SFL method significantly
inferior to the PFL method in domain transfer.Parameter are summarized in Appendix [D}

In real-world federated learning, the data distribution of each client is unknown, so the model needs
to be robust enough to perform well across a variety of potential scenarios. Traditional solutions to
the forgetting problem typically store part of the source domain data, which is not permissible in
federated learning. In SPFL, each client maintains not only its own trained model but also a
global model and a model passed from the previous client—an advantage that neither SFL nor
PFL possesses. To save resources as much as possible and fully leverage the advantages of SPFL,
f(wy;-) and f(wy;-) are used solely for inference prediction, while they assist model (w;;-) in
performing gradient descent. We fully leverage this advantage and develop a global-local alignment
module (GLAM) based on these three models. To prevent the local model from excessively forgetting
previous information, we designed two additional loss terms.

To ensure the convergence of the training process, we first use the cross-entropy loss function as the
basis for gradient descent. The specific loss function used during the training is as follows:

n
L0

1 & n
Lee = "B ;%Tbg(f(wi?wim k)) ®)

To mitigate catastrophic forgetting during training, we incorporate the predictions of the global model
with those of the model under training by using a mutual cross-entropy loss, as shown in (©)). This loss
L4 is named Approach to the global model, ensures consistency at the output level, and facilitates
alignment between local and global models.

B
1 T T
Lag == O Flwgial ™) log(f(wia]™")) ®
=1

For a client, we can also use the model passed from the previous client to align, thereby reducing
forgetting of the previous client. Unlike before, we use KL divergence to make the distributions of



the two outputs consistent. We refer to this loss as the Local Alignment with the Previous Output
Ly, which is defined as follows:

1 & Ly ™
Lon = ~3p 2 KIPIQ) + KLQUIP), 5. P = f(wi 7] "1),Q = flwyie™ ") (10)

Table 2: Comparison of Classic and State-of-the-Art Algorithms in Federated Learning with and

without SPFL on Cifar-10, Cifar-100, CINIC-10 and Fmnist in Category Shift

Cifar-10 Cifar-100 CINIC-10 Fmnist

Method resnet18 (num=10) resnet18 (num=10) simple-cnn (num=10) resnet18 (num=10) Avg
FedAvg [7]] 75.00 57.55 39.74 81.13 63.35

+ SPFL 78.88 (+3.88) 64.33 (+6.78) 41.01 (+1.27) 84.75(+3.62) 67.24 (+3.89)
FedDc [32] 80.52 64.44 40.92 83.44 67.33

+ SPFL 85.90(+5.38) 69.88 (+5.44) 44.14 (+3.23) 87.67(+4.23) 71.90 (+4.57)
FedDyn [20] 7791 64.11 40.91 81.35 66.03

+ SPFL 80.90(+2.99) 64.24 (+0.13) 43.06 (+2.15) 83.23(+1.88) 67.86 (+1.83)
FedNova [33] 76.02 57.64 39.82 81.38 63.46

+ SPFL 79.31(+3.29) 64.47 (+6.83) 41.32 (+1.50) 84.85(+3.47) 67.49(+4.03)
FedProx [34] 76.04 57.56 39.65 81.23 63.62

+ SPFL 77.25(+1.21) 60.46 (+2.90) 40.27 (+0.62) 83.89(+2.66) 65.47 (+1.85)
MOON [35] 78.70 58.44 40.11 81.29 63.68

+ SPFL 79.98 (+1.28) 63.54 (+5.20) 41.11 (+1.00) 84.83(+3.54) 67.37(+3.69)
SCAFFOLD [19] 76.38 56.15 36.00 80.71 62.31

+ SPFL 78.73 (+2.35) 65.05 (+8.90) 39.52 (+3.52) 85.80(+5.09) 67.26 (+4.95)
FedDisco [28] 76.32 57.50 39.67 81.24 63.68

+ SPFL 78.58(+2.26) 64.44 (+6.94) 40.79 (+1.12) 84.27(+3.02) 67.13(+3.45)

Table 3: Comparison of Classic Algorithms in FL with and without SPFL on Cifar-10 in IID

Method Fedavg [7] Feddc [32] FedDyn [20] ~ FedNova [33]  FedProx [34] = MOON [33]  SCAFFOLD 9]  FedDisco [28]
PFL 83.81 81.75 80.66 83.39 83.94 84.03 82.62 84.03
SPFL 80.85 (+6.54)  93.08 (+11.33) 8177 (+L11)  90.00 (+6.61)  86.12(+2.18)  90.16 (+6.13) 91.97 (+9.53) 89.92 (+5.89)

This approach helps to maintain a consistent output distribution across clients, thus facilitating a
smoother transition and reducing catastrophic forgetting. Combining (@) , (I0) , and (8), we can
derive the final loss function £ for our model, as shown below:

L=7Lap+ pLag+ Lee (11)

where 7 and p are hyperparameters used to control the influence of the previous client’s model and
the global model on the current gradient descent, which affects the convergence of the model.

In this paper, we enhance SFL to develop SPFL and introduce the GLAM module, making SPFL a
more effective update method than PFL. SPFL achieves significant improvements under category
shift and delivers domain shift performance comparable to that of PFL. These insights are empirically
validated through extensive experiments.

4 Experiments

4.1 Setup

In this section, we introduce the setup. Unless otherwise specified, all experiments will be conducted
under the following conditions. We include the dataset descriptions and important experimental
details in Appendix Sections[[.Tand [[.2] Here, we present only the comparison methods:

Comparing Methods. We compared our proposed method, SPFL, with the most classic algorithms
in federated learning, both with and without integration. This comparison aimed to evaluate the
performance enhancement that the integration of SPFL brings to the federated learning process.
Including: (1) Fedavg [[7] is the first algorithm for FL and PFL; (2) FedProx [34], SCAFFOLD [19],
FedDyn [20]], MOON [35]], and FedDCJ[32] focus on dynamically adjusting the client models; (3)
FedNova [33]] adjusts the iteration counts from a global perspective to optimize the federated learning
process; (4) FedDisco [28] is the first paper that focuses on addressing category shift in FL.

To comprehensively evaluate the impact of the SPFL update framework under domain shift, we
compare not only with traditional PFL methods but also with domain generalization approaches (e.g.,
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Figure 4: (a) Comparison of the performance of SPFL and PFL on IID data in the cifar 10; (b)
Comparison of the performance of SPFL and PFL on Non-IID in the cifar 10; (c) indicates that the
Weighted Average shows no significant difference from the Arithmetic Average in SPFL.

Table 4: Comparison between PFL method and GLAM under the updated framework of SPFL

Method is PFL?  with SPFL  Photo Art Cartoon  Sketch Avg
Ditto [40] v v 92.16  74.22 69.03 63.09 74.63
Fedavg [[7l v v 90.96  76.17 72.31 65.84 76.32
Fedprox [34] v v 91.62  76.07 71.20 67.68 76.64
Scaffold [19] v v 9132  76.61 67.45 67.12 75.62
AM [36] v v 92.16  81.01 67.15 68.01 77.08
RSC [37] v v 89.82  75.05 72.40 66.94 76.05
CCNet [39] v v 91.92 7510 65.10 70.78 75.73
Fedseq [41] X X 70.54  59.01 58.53 52.28 60.04
FedDG-GA [38] v v 90.78  69.63 69.58 63.76 73.44
SPFL-GLAM (ours) X v 9228 7744 74.42 67.32 77.87

AM [36], RSC [37]) and federated domain generalization methods (e.g., FedDG-GA [38]], CCNet
[39]). Ditto [4Q] is a personalized FL method that incorporates model distillation. Since our approach
also involves distillation components, we include it in our comparisons as well. As shown in Tab. E],
our proposed GLAM effectively mitigates the impact of domain shift within the SPFL framework.
Currently, the performance of most federated sequential learning methods heavily depends on data
distribution and hierarchical aggregation strategies. For comparison, we include FedSeq [41]], which
demonstrates limited effectiveness under domain shift scenarios.

4.2 Results

The performance on IID. From Tab. El, it can be observed that for client data under IID, SPFL
can fully leverage its capability to encounter more data. SPFL can perfectly adapt to each method,
achieving an average improvement of over 6%. Additionally, SPFL demonstrates a fast convergence
rate; the model can reach from 40% accuracy to 70% in just one round, as shown in Fig. a] However,
most real-world data is Non-IID. So we focus more on the performance of SPFL in the domain and
category shift. In Fig. @b SPFL also shows strong performance in the category shift.

Performance under Category Shift. We evaluate SPFL on four datasets (CIFAR-10 [42], CIFAR-
100 [42]], CINIC-10 [43], and FMNIST [44]), as shown in Tab. @ SPFL can be effectively integrated
with existing federated learning methods, yielding an average performance gain of approximately 3%.
This integration highlights the compatibility and potential of SPFL in enhancing federated learning
algorithms across diverse data distributions under category shift.

Performance under Domain Shift. In Tab. 5] the proposed SPFL framework alone does not perform
well under domain shift. To address this limitation, we introduce the Global-Local Alignment Module
(GLAM), which significantly narrows the performance gap. With the integration of GLAM, SPFL’s
performance improved from 2.05% below the expected baseline to just 0.5% below, demonstrating
the module’s effectiveness in enhancing SPFL’s robustness to domain shift. Additionally, most PFL
methods integrated into the SPFL framework show suboptimal performance, as illustrated in Tab. {]

4.3 Ablation Studies

Impact of Hyperparameters 7 and p in the model. As shown in Fig. and [5b] we observe
that setting 7 and p too high leads the model to overly align with the global models and previous
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Figure 5: (a) and (b) illustrate the sensitivity to GLAM hyperparameters; (c) demonstrates increasing
the number of PFL’s local Epoch under category shift does not lead to significant improvement.

Table 5: The combination experiments of the two different loss functions £, and £, 4 were conducted
on the PACS dataset using a pre-trained ResNet-18 (Best in bold)

Method Lag Lap Photo Art  Cartoon Sketch — Avg
PFL (Fedavg)  x X 9048 7695  74.87 71.21  78.37
SFL (Fedseq) X X 70.54  59.01 58.53 5228  60.04

SPFL X X 90.96 76.17 7231 65.84  76.32
SPFL v X 91.50 7373 7240 66.58  76.05
SPFL X vioo9222 7612 7146 64.34  76.04
SPFL v voo9228 7744 7442 67.32  77.87

rounds’ models, which in turn degrades local training performance.Through our sensitivity analysis,
we observe that the combination 7 = 0.3 and p = 1 yields the best model performance.

Impact of the GLAM Module. As shown in Tab. |5} SPFL alone is insufficient to effectively address
domain shift. However, with the introduction of the proposed GLAM module, the SPFL update
method becomes competitive under domain shift scenarios. Each component of GLAM (£,,, and
L,4) contributes to the overall performance improvement. In addition, we added in the appendix Tab.
@]that if PFL is used first to improve the overall ability of the model, and then SPFL is used, the
generalization of the model can be further improved.

The Impact of Uploaded Dataset Size on the Model. In PFL, the contribution of each client is
weighted based on the size of its dataset. In contrast, SPFL iteratively updates the model over all
client datasets, effectively treating them as having equal size. As a result, SPFL does not require
uploading client data, offering stronger privacy protection compared to PFL. As shown in Fig.
our experimental results further confirm that the presence or absence of client data upload has no
significant impact on model performance in SPFL.

The impact of Epoch on the SPFL framework. In our setting, we trained for 1 epoch with 10
clients, resulting in a computational cost that is 10 times higher than PFL. However, as shown
in Fig. when the number of epochs is set to 10, the resource consumption of PFL and SPFL
becomes comparable. In Fig. we conduct 200 rounds of training to approximate the theoretical
upper bound. It can be observed that SPFL improves the upper limit of model convergence when
addressing category shift, which is consistent with the results reported in Tab. [I] Notably, even when
the number of PFL epochs is increased to 21—doubling the computational cost compared to
SPFL—the model performance of PFL remains 0.6 % lower than that of SPFL!

S Communication cost analysis

When directly applying SPFL to approximate the performance of PFL, it often incurs significant
communication and computational overhead. To demonstrate the advantage of SPFL in achieving
a lower convergence bound, the pre-trained model reported in Tab. [6] and Tab. [7]is trained on
CIFAR-10 with FedAvg for 200 rounds across 10 clients. Furthermore, to show that SPFL can
attain a superior convergence upper bound, we use SPFL to match the effect of PFL within only 10
rounds, surpassing the performance of PFL trained for thousands of rounds, while simultaneously



Table 6: Efficiency Comparison on CIFAR-10 (Dirichlet a=0.1, Number of clients=10)

Method Accuracy(%) Rounds Comm. Cost (GB) Total Time(s) Compute Cost(GB)
PFL 79.15 500 116.90 3419.91 175.35
SPFL(Ours) 84.17 15 21.042 678.6 87.675

Table 7: Efficiency Comparison on CIFAR-10 (Dirichlet a=0.1, Number of clients=100)

Method Accuracy(%) Rounds Comm. Cost (TB) Total Time(s) Compute Cost(TB)
PFL 81.38 2000 18.30 30259.82 27.46
SPFL(Ours) 86.68 10 4.68 14713.13 22.85

reducing both communication and computational costs. This provides a new direction for the practical
application of SPFL.

6 Conclusion

In this paper, we first identify and analyze the limitations of existing Sequential Federated Learning
(SFL) methods under non-independent and identically distributed (Non-IID) scenarios, with a focus on
addressing category and domain shifts caused by update order sensitivity and catastrophic forgetting.
To tackle these challenges, we propose SPFL, a novel framework that integrates seamlessly with
existing federated learning (FL) methods. SPFL combines sequential updates with parallel aggregation
to enhance data utilization and reduce sensitivity to update order. In this framework, the model is
distributed to all clients, where each client performs local training and sequentially passes the model.
The server then aggregates the updated models from each starting client to generate a new global
model. We provide a convergence analysis of the SPFL update scheme, showing that it achieves faster
convergence than both PFL and SFL across strongly convex, general convex, and non-convex settings.
Additionally, we introduce the Global-Local Alignment Module (GLAM) to address catastrophic
forgetting by aligning the predictions of the global model with those of the local and previous models
during training. Extensive experiments demonstrate the effectiveness of SPFL and GLAM under
Non-IID conditions—specifically domain and category shifts—and confirm their compatibility with
traditional Parallel Federated Learning (PFL) methods.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Yes, the main claims made in the abstract and introduction accurately reflect
the paper’s contributions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss the scope of applicability and the computation and communication
overhead in detail in section [l

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
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* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

We have provided the full set of assumptions and a complete (and correct) proof. Please
refer to Section [3]in the main paper and Section[Glin the Appendix.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have provided detailed implementation details in Section ] of the main
paper and Section [[.T]and [[.2] of the Appendix.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have provided detailed implementation details in Section f] of the main
paper, as well as in Sections|[.T|and [I.2] of the Appendix. The source code is included in the
supplementary material. All datasets used are publicly available and properly cited in the

paper.
Guidelines:
» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have provided detailed implementation details in Section ] of the main
paper, as well as in Sections |I. I{and [[.2| of the Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Our experimental results are computed three times and report the average
result.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: My research group supports me in computer resources.The specific hardware
used for the experiments is described in Appendix Section[[.2]

Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper fully adheres to the NeurIPS Code of
Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discussed both potential positive societal impacts and negative
societal impacts in Section [K|of the Appendix.

Guidelines:
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12.

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The data and code used in this paper have obtained legal permissions.
Guidelines:

» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer:

Justification: The large language model (LLM) used in this paper is solely employed for
text polishing and formatting.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Pseudocode

Here we show our algorithm process.

Algorithm 1 Sequential updates With Parallel aggregation Federated learning (SPFL)

Require: Initial global model w = wy, the number of clients is & , the client dataset D =
{D1, Do, ..., Dy }, (Hyperparameters:local epoch T total aggregation round R)
Ensure: Final global model wgr
1: Server:

2 Deploy the global model wy to each client to obtain each client model:w§ = wo
3 for eachroundi =1,2,..., Rdo

4: for each cliente = 1, 2, ..., k in parallel do

5: for each clienta =e, ..., k&1, ...,.e — 1 do

6: ife+1<k:

7 wétt < Client (e, w; )

8: else:

9: wg,; « Client (e, w; )

10: Wiyl ¢ § 25:1 Wiy

11: Deploy w;1 to all clients.

12: Client:
13: for each local epocht = 1,2, ..., T do

14: for Batchb=1,2,..., Bdo

15: VL(wiyt);75") = VLee +TVLag + pVLap
16: Wiy (141) < Wig(t) — NVL(Wig (1) xg;“)

17: ifk %R :

18: return w;+1 = w; 1 (1) to Next Client

19: else :

20: return w; 1 = Wy (r) to Server

B More Related Work

Domain generalization is also an important criterion for evaluating the model. Examining the
generalization ability of the global model is crucial, as it better reflects the overall performance of the
model rather than its tendency to overfit. Therefore, we introduce related work on Federated Domain
Generalization in this section.

B.1 Federated Domain Generalization

In recent years, Domain Generalization (DG) has developed rapidly, aiming to learn models that
generalize well to unseen domains. However, in practice, multi-source data often exhibit significant
domain shifts—for example, between general-purpose datasets and meteorological datasets [45]].
Federated Domain Generalization (FedDG) [46l 47]] is an emerging field where each domain trains
a local model, which is then aggregated, considering the generalization ability of the global model
on target clients (domains). Domain shift is one of the most important issues in FedDG, which is
consistent with this paper. Despite recent progress, research in this area is still limited. For example,
ELCEFS [48] generalizes the model by sharing spectra across domains, yet this approach risks privacy
leaks. [49] further proposes a flatness-aware optimization method for better generalization on local
updates. CCST [50] could lead to more uniform distributions of source clients and make each local
model learn to fit the image styles of all the clients to avoid the different model biases. An adaptive
weighting method, named GA [38]], is proposed to achieve a tighter generalization bound through
explicit re-weighted aggregation. However, the abovementioned studies only focus on the Federated
Aggregation. To this end, AutoFedGP [51]] tackles the domain adaptation (DA) problem by projecting
local gradients and assigning adaptive weights to align source and target domains. For domain
generalization (DG), FedOMG [52] enhances robustness to unseen domains by aligning gradient
directions across clients without access to target data. However, both approaches focus on model-level
alignment, which may be insufficient when domain shifts induce severe forgetting during sequential
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client updates. In contrast, our proposed SPFL explicitly targets this issue by introducing GLAM.
This global-local alignment mechanism concurrently aligns each client with both its predecessor and
the global model, effectively mitigating the forgetting problem caused by domain shift.

C Corollary

Due to space limitations, we introduce Corollary 1 here.

Corollary 1. Applying the results of Theorem|[I| and by selecting an appropriate learning rate (see
the proof of Theorem([l|in the Appendix Section|G)), we derive the following convergence bounds for
SPFL:

Strongly convex: Under Assumptions 2] B} and 3] there exists a constant effective learning rate

_\ —(r+1
<7 < L and weights 6, = (1 — M) , such that the following holds:

1
uR 6L 2

2 2 2
o) _ L] =0 (—2 Lo LG 2 _BR
E {‘C(“’ )~ £lw )} © <uM2KR kR e AP (pp)) (42

General convex: Under Assumptions and [5] there exists a constant effective learning rate

n < 6% and weights 0,. = 1, such that the following holds:

A e )

iRy _ )| —
E[ﬁ(w ) — L(w )]—O< MQKR+<MK)1/3R2/3 MBRE TR

Non-convex: Under Assumptions 2| B} and [} there exists a constant effective learning rate 7j <
m and weights 0,. = 1, such that the following holds:

min E [||vg(w<r>)|\2} -0 <

0<r<R

1/2 1/3 1/3
(LU2B) / . (L20282) / . (LQCQBQ) / ) LAB 14
MQKR (MK)1/3R2/3 M1/3R2/3 R

where O omits absolute constants, © omits absolute constants and polylogarithmic factors, A :=
|lw® — w*|| for the convex cases, and B := £(w?)) — L£* for the non-convex case.

D Notations

TabJ8] summarizes the notations appearing in this paper. We follow the same settings as in [31] to
compare the convergence bounds better.

E Assumption

We assume that:
* L is lower bounded by L£* for all cases and there exists a minimizer w* such that £L(w*) =
L* for strongly and generally convex cases;
» each local objective function is L-smooth(Assumption[2);

* Furthermore, we need to make assumptions about the diversities: the assumptions on the
stochasticity bounding the diversity of {L,,,(-;&%,) : ¢ € [|Dm|]} with respect to 7 inside
each client (Assumption E]);

* the assumptions on the heterogeneity bounding the diversity of local objectives {L,,, : m €
[M]} with respect to m across clients (Assumptions 4] [5).

Assumption 1 (Gradient Boundedness). There exists a constant G > 0 such that for all clients m,
any parameter x € RY, and any sample &, the following holds:

[V Lm(w; )] < G. (15)
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Table 8: Summary of key notations.

Symbol Description

R,r number, index of training rounds

M, m number, index of clients

Kk number, index of local update steps

qm Number of datasets for client m

B Number of batch size

N number of participating clients

n Client n is the starting Client

S S represents S clients selected from M clients. When all clients participate, M = .S

™ {m1, 72, ..., mpr} is a permutation of {1,2,..., M}

A+ ) Z R () = [Wéw a0, alD, WY)}

n learning rate (or stepsize)

n effective learning rate (1) := M K1 in SFL and SPFL and 7) := K7 in PFL)

w (-strong convexity constant

L L-smoothness constant (Asm.

o upper bound on variance of stochastic gradients at each client (Asm.

B,¢ constants in Asm. 3a to bound heterogeneity everywhere

Cx constants in Asm. 3b to bound heterogeneity at the optima

L)L, global objective/local objective of client m

w() global model parameters in the r-th round

wy the global model f(-; w,) where w, represents the global model parameters.

w; Represents the parameters of the model during training,and w; = Wintermediate

wy, Indicates the parameters of the model passed from the previous client training,
and Wp = Wprevious

'wfq:?k’n When client n is the starting client, local model parameters of the m-th client after

k local steps in the r-th round

8rn k When client n is the starting client , ggrr? p = Vi (w m)k s &) denotes
(r)

the stochastic gradients of £~ regarding w,,”,

Assumption 2 (L-Smoothness). Each local objective function L, is L-smooth,m € {1,2,... , M},
.e. , there exists a constant L > 0 such that ||V Ly, (x) = VL, (y)| < L|x —y

Assumption 3. The variance of the stochastic gradient at each client is bounded.:

[V Ly (03€) = VL (w)]* ] < 02, ¥ {1,2,..., M} (16)

EfN’D

vy

Assumption 4. For strongly convex and generally convex functions, there exist constants 3% and >
such that

M
1
17 2 VL (w) = VL) < B VLw)|* + ¢ a7
m=1
Assumption 5. For non-convex functions, there exists one constant (2 such that

1 M
a7 2 VL (w)|” = ¢ (18)
m=1

F Technical Lemmas

F.1 Basic Identities and Inequalities

These identities and inequalities are mostly from [S3I[,[54],[55,[190,[56l] and [31].Thanks for the
analytical ideas provided by these works.
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E-norm identity. (1) For any random variable X, letting the variance can be decomposed as

E|llw —E[w]l’] = E [llwl’] - & [w])? (19

(2) In particular, its version for vectors with finite number of values gives

1 n o 1 n ) 1 n
I 2R e S 4 e
=1 =1 =1

where vectors w1, . .., w, € R? are the values of w and their average is w = % Z?zl w;.

2
(20)

Lemma 1. Under standard discrete summation rules, the following closed-form expressions hold for
any integer K > 1:

K-1 K-1 K-1 2
(K -1K , (K—-1)K(@2K 1) 5 ((K—l)K)
o= "/ E k? = E k= —7 21
k=1 : ’ k=1 6 ’ k=1 : b

Lemma 2 (Subadditivity of Concave Power Functions). Let 0 < n < 1 and a,b > 0. The power
Sunction f(x) = x™ is concave, and the following inequality holds:

(a+b)" <a"+b"

Jensen’s inequality. For any convex function % and any vectors x1, .. ., x,, we have
I I
hi{— i <= i
(nz.ﬂv)_nZh(m) (22)
=1 =1
As a special case with h(z) = ||z||> ,we obtain

2
1 n
s - Dl (23)
i=1

n
1

fE T;

n-
i=1

Smoothness and general convexity, strong convexity. There are some useful inequalities concerning
L-smoothness (Assumption [2), convexity, and p1 — strong convexity. Their proofs can be found in
[53] and [56].

Bregman Divergence associated with function 4 and arbitrary x, y is denoted as

Dy(z,y) = h(z) — h(y) — (Vh(y),z — y) (24)

The divergence is strictly non-negative when the function /% is convex. A more formal definition can
be found in [57]]. One corollary[58] called the three-point identity, is

Dp(z,x) + Dp(x,y) — Du(z,y) = (Vh(y) — Vh(z), z — z) (25)
where x, y, z are three points in the set.

When 4 is L-smooth, with the definition of Bregman divergence, a consequence of L-smoothness is
L
Di(@.y) = h(z) = h(y) = (Vh(y).z —y) < 5 [|lz — y|” (26)
Further, if & is L-smooth and lower bounded by h., then
IVA(@)|* < 2L (h(z) - h.) 27)
If 4 is smooth and convex in L (the definition of convexity can be found in [59])), then
1
Di(x,y) > o [Vh(x) = Vh(y)|* (28)
The function h : RY — R is u — strongly convex if and only if there exists a convex function
g : RY — R such that h(z) = g(x) + & ||
If h is p — strongly convex, it holds that
Sl —yl* < Da(a,y) (29)
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F.2 Technical Lemmas

We obtain a recurrence relation suitable for SPFL based on previous work[31L|19], as shown below:
Lemma [3|,Lemma 4|and lemma J5| Two nonnegative sequences {7 },>0 , {S¢ }r>0 » which satisfy
the relation

rep1 < (1 —aye)re — bysss + c1v? + oyl (30)
for all ¢ > 0 and for parameters b > 0, a, ¢1, c2 > 0 and non-negative learning rates {~y; },>o with
Ve < é, vVt > 0, for a parameter d > a, d > 0.

Lemma 3 (linear convergence rate and Constant Step sizes). {r;}r>0, {r:}r>0 as in (30) and a > 0.
Then there exists a constant step size v = v < é such that for weights 0, := (1 — a’y)_(“‘l) and
Wy = ZtT:o wy it holds:

T

Z s¢0y < 3arg(1 — cw)(T'H) + 1y + e2y?
— 3D

< 3argexp [—ay(T +1)] + c17 + c27?

T
b ~ aT c c
WT E st9t + arr41 = 9 (d?”o exp |:d:| + aijl_, + (12;2> (32)
t=0

Proof.  We start by rearranging (30) and multiplying both sides with 6,:

0:(1 — avy)ry B O:r 41 Wy—1T¢ 9t7"t+1

bsi0r < + c170; + c2v?0; = + c170; + 2720,
v v g
By summing from¢ = 0to ¢t =T, we obtain a telescoping sum:
b D sy < L (wo(1 ) )+ c1y + c2?
— s wo(l —ay)ro — wrr c c
Wy 2 tbr = ~Wr 0 Y)To TTT+1 17 T G2
and hence
T
i Lo S M <
= WT StUt & —— 50 + Wr W 1y + CQ'y
t=0 t=0

With the estimates
« Wr=(1—-ay) T (1 -ay)t < “Z (here we leverage ay < § < 1)
e and Wp > wyp = (1 — ay)~(T+D

We can further simplify the left and right-hand sides:

T
”
W Z sqwy +arpyr < (1 — aq/)(TH) 5 +ey+ ey < ;O exp [—ay(T + 1)] + 17y + o>
t=0
Now the lemma follows by carefully tuning .y = ln(maX{Q’ZzTroTz/”}) and v =
ln(maX{ZZsTT“Ts/ c2}) vielding two choices of ~.Consider the three cases:

e If > In(max{2, “TTOT /e1}) then we choose v = mmax{2, aTTDT /e1}) and get that qu

O (aroT exp[— In(max{2, a®>roT?/c1})]) + O (aT + GQC;Q) =0 (% + azcéwz)

asin case 2 > a’rT?/c itholds arT < 2.
o If é > ln(max{Q,Z;roT?»/cz}) then we choose N = ln(max{27Z;TOT3/cz}) and get hat Eq

~ . /c c ~/c c
@) (aroTexp[— 1n(max{2,a3T0T3/62})]) + 0O (a—} + aQ;Q) =0 (a—} + aQ;Q)

as in case 2 > a3rgT?/cy it holds argT <

2T2
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* If otherwise § < 1n(max{2’a2T°T:T/Cl’asst/CQ}) then we pick v = % and get that Eq

T
dro exp {_ad} + % + %
< droexp ~aT La In(max{2, a?rqT?/c1,a®roT3/ca})
d al
o In*(max{2, a®roT?/c1, a®roT? /ca})
* a?T?

~ al c1 Co
:OGWWﬂ‘dyﬂm+ﬁw>
Lemma 4 (linear convergence rate and Decreasmg Step sizes). {r:}r>0, {st}r>0 as in (@) and
a > 0. Then there exist step sizes vy = v < % 5 and weights 0, > 0, Wy := Zt o Wt, such that:

(33)

al 36c;  36¢o
0 < 32d —
Wr tz; Sebr + arr roexp [ Qd] oI ' adl

Proof.  Let {ri},>0, {St}r>0 be as in . for a > 0 and for constant stepsizes y; := v = é ,

Vt > 0. Then, it holds for all 7" > 0. We have

T-1 T-1
<(U-ayrra+ar+er’ <(1—an)ro+er® Y (1—ay) ++ey’ Y (1—ay)f
t=0 t=0
C C
< (1—cw)Tro+1—7++ QZ

< G P R

X —_— — — PR
Sroexp | =T |+ o

(34
Let {r¢}r>0 . {st}r>0 as in 1| for a > 0Oand for decreasing steps y; := a(Ht), Vvt > 0, with
parameter 1= 2¢, weights w; := (k +t) and Wy := ZtT=o 6;. Then
wt(l — a%)rt _ WiTe+1
Tt Tt

- 2 C1 Co (35)
=alk+t)(k+t—2)ry —alk+t) 1 + " + Pl

+ civrwe + +C2’)’tzwt

bsiwy <

C1 C2
alk+t—1)2%r —a(k +t)%r + — 4+ =
( P = als+ )i + 2+ 2

where the equality follows from the definition of +; and 6;, and the inequality from (k+t)(k+t—2) =
(k+t—1)2—=1<(k+t—1)?. Again, we have a telescoping sum:

—isw N a(k +T) TTH<a/@2r0+cl(T+1)+02(T+1)
Wy &7 Wr = Wr aWr adWr 36)
2aKk3%rg  2¢1 2co

- T2 +aT +adT

with

c Wi = Y1060 = X1 ok 4 1) = EEDIHD > TE50 > 72
2d

« and Wy = (2/£+T2)(T+1) < 2(R+T2)(1+T) < (I{+T)2 for k = 2 >1

By applying (34) and (36), we conclude the proof.
For the integer 7' > 0, we choose the step sizes and weights as follows:

if T<4, v =1 0, = (1 — ay)~ ) = (1— %)*(Hl) ’

Ul
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if T > gandt <tg, V&= é, 0, =0,
if T>%andt>to, = ,mpg 0= (FE+t—1t)
for k = % and tg = [5]. We will now show that these choices imply the claimed result

We start with the case T < ¢. This case is similar to the proof of the Lemma. [32|and it suffices to

consider Eq J35|for the choice v, = %. We observe that Eq [35|simplifies to

d aTl + + <4 aTl c1 n Co
o ex —_— — To €X —_ e
vexp | = | g g S droesp | = |+ n ko
7T > g, then from Eq we obtain the following :
< a + C1 ++ Co
T roexp | —— — —
o =TOSPITo0 | T ad T T ad2
From Eq [36|we have for the second half of the iterates
T
S8ak?ry 4cq 4co
Zst9t+arT+1 < T0+7+M7T

b b
—_— Z 5¢0y +arr4q =
Wr = T =

Now we observe that the restart condition 7, satisfies:

2 2 aT 2 2
ar?ry, ar’roexp (—%5) ki K2c
T T2 t gz T e SAeew | —og

aTl 401 4co
adT

Because 1" > %. These inequalities show the claim:

al 36c;  36co
2 aT adT

Z s¢0¢ + arpy1 < 32drg exp
Wr t=0

Lemma 5 ( Sub-linear Convergence rate from [31]). {7:},>0, {rt}r>0 asin (@) and a = 0. Then
there exists the step size v; < % such that for weights 0, := 1 and W; := thiO wy it holds:

When our step size is a constant, that is, v = v < é, we have

Ur = T+1Z t_7)+017+027

When we dynamically adjust the step size 7, we have
2
1 To 1 70 3 dTQ
Uy < 2cf 2¢s | =—— 37
T2 (T+1> e (T+1> T 37)

= v < 1 we can derive the estimate

(NI

Proof.  For constant learning rates ~y;

T
To 2
v E - +c1y+c <—+cavy+ec
T = T+1 t:O t+1 1Y 27 > (T+1) 1Y 27

which is the first result of this lemma. Let ST
r 2
(cl(T0+1)> and v =

} < é , there are three cases:

c1y and Spiy cay?

1
(%) ° Then choosing v =

yielding two choices of v ,v =

min { (cl(;OJrl))% , (02(;°+1)) ¥

o=
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Ifv= é, which implies that v = é < (ﬁ)i and v = é < (ﬁ) ,then:

1
drg Co drg 1 T0 2 1 7o 3
Uy < a2 : :
TSt gt B STt <T+1 Te 71

o \E r )2 rp \3

Ify = (TOH)) , which implies that v = (cl(T0+1)> < <C2(T0+1)) » then:

: :
o o 5 (_To 5(_To
Ur <2 [ — 2 — ) < 2¢? S
e <c1(T+1)> e <c1(T+1)> = (T+1) e <T+1>

: : !

Ify = (ﬁ) , which implies that v = (02(;"“)) < (01(7110"1‘1)) » then:

1 2 1 2
o 3 1 o 3 1 o 2 1 o 3
Ur <c¢ | ——r 2c3 <c? 2¢3 | ——
r=a (c2<T+1>> e <T+1> - <T+1> e (TH)
Combining these three cases, we get the second result of this lemma :

1 2
1 o \? 1 ro \? dro
U <20 (10 ) poed (10
T4 (T+1) a6 <T+1> T

Lemma 6 (Simple Random Sampling from [31]]). Let wy,wa, ..., wy be fixed units (e.g., vectors).
The population mean and population variance are given as

_ 1 " 2 1 = — 2
= — E i = - E P 38
[t e [ o=l o
Draw s € [n] = {1,2,...,n} random units Wy, , Wr,, . .. W, randomly from the population. There

”»

are two possible ways of simple random sampling, well known as “sampling with replacement (SWR)
and “sampling without replacement (SWOR)”. For these two ways, the expectation and variance of
the sample mean W, = Z; 1 Wy, satisfy

<2
SWR : Ew,=w E [||m —wn?} == (39)
) o — 2] M=S5 .9
SWOR: E[w,| =1 ]E[Hw,r ol } I (40)

Proof.  'We can easily get the relationship between variance and expectation, as well as Eq[I9]and
Eq[20] If you want this proof, refer to [31].

Lemma 7. Under the same conditions of Lemma|luse the way “sampling without replacement” and

let by 1u(3) = { Wb TSl Dhenfor § < M(M > 2), it holds that

2

1 S, S Kl m bm,k () 1
S22 D B X (wn —@)| | < 587K (41)
n=1m=1 k=0 i=1 j=0
Proof.  As shown below, the idea refers to [31]]
m b () 2 2
£|[555 )| | <2 |5 ) ke )
i=1 j=0 i
m—1 2

+ KB |[[wny, — ||| + 2K4E

(5 s -9). s )

i=1
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For the first term on the right-hand side in Eq[40] using Lemmal6] we have

N@m-nar—m-1) _,,
o M—1 K¢

m—1

Y (wep —w)

=1

K’E

For the second term on the right-hand side in Eq0} we have
8 o, ~ ] = 8 o, ] =

For the third term on the right-hand side in Eq[40] we have

m—1 m—1
(5 s =) s )] 2 S -y -] @20 D

i=1

2KEKE

where we use Lemma@ in the last equality, since ¢ € {1,2,...,m — 1} # m. With these three
preceding equations, we get

. 2
m bM,k(Z)

— (m—1)(M—(m—1)) ., 2.2 2(m—1) 2
E > (wer—w)|| | = K2+ -2 Kk
= = M-1 M-1
Then summing the preceding terms over m and k, we can get
1S S K m bk (4) ?
g E Z (W — W)
n=1m=1 k=0 i=1 j=0
MESEE R ¢ K¢ Ny 2 g2 N g2
:mZZW*U*WZ D (m=1?+8C Yk
n=1m=1 n=1m=1 k=0
2K (2 s s K—1
S(M—l)zz<m_1) k
n=1m=1 k=0

Then, applying the lemma[I] we can simplify the preceding equation as follows:
2

1SS K-l m bm k(1)

— E ('wwn — ﬁ)

S ; . :

n=1m=1 k=0 i=1 7=0

= 1SKQ(SK 1) 1SK(K2 1) L (S—-1)8 3(25 K A 1521(3(2

2 6 M—1 6 2) =2
Lemma 8 (from [19]]). Let {&;}_, be a sequence of random variables. And the random sequence
{w; }1_; satisfy that w; € R% is a function of &;,&_1, . . ., &1 for all i. Suppose that the conditional
expectation is E¢, [w;|&;—1,...,&1] = e; (i.e., the vectors {w; — e;} form a martingale difference

sequence with respect to {&;}), and the variance is bounded by Eg, {H'wi — e
Then it holds that

fz‘—17~--,€1] <o

n 2

D (w;—e)

i=1

E

= E[|lw; —e]*] <no’ (42)
i=1

Proof.  For details, please refer to [19]’s Lemma 4 and [31]’s Lemma 1.

Lemma 9 (from [19]). The following holds for any L-smooth and p-strongly convex function h, and
any x,y, z in the domain of h:

(Vh(z),z —y) > h(z) —h(y) + % ly — = - L]z — | (43)

Proof. Tt can be easily obtained using the three-point identity (24) and Jensen’s inequality (22). For
details, please refer to [31]]. Here, we only use relevant conclusions to assist our proof.
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G Proofs of Theorem

In this section, we provide the proof of Theorem 1 for the strongly convex, general convex, and
non-convex cases in and respectively.

In the following proof, we consider the partial client participation setting. So we assume that 7

{ny, 7y, ..., 7%} is a permutation of {1,2, ..., M }in a certain training round and only the first S se-
lected cllents {m}, 7y, ..., 7%} will participate in this round. Without otherwise stated, we use E[-] to
represent the expectation concerning both types of randomness (i.e., sampling data samples ¢ and sam-
pling clients 7). R represents rotation, that is, 7("*1) = [Wéﬂﬂ), 7r:(3"+1), cey WJ(\Z'H), 7r§n+1)] =

R (7)) = [wé”), 7r§”) wg\rj), m ") | where n represents the client starting with client 7.

G.1 Strongly Convex Case
G.1.1 Finding the recursion

Lemma 10. Ler Assumptions[2] B} and[3] hold and assume that all the local objectives are u-strongly
convex. If the learning rate satisfies n < 1 s = then it holds that

2
E |:Hw(7‘+l) _w* ] S <1_/1'im’) Hw—’w*H2—|—4K’I72G'2+452K2 25?4’5’)43
K-1 (44)

s S
S S S E [l — wl?

n=1m=1 k=0

2
— gSKan(w,w

W\OO

Proof. According to the pseudocode of our algorithm, the overall model updates of SFL after one
complete training round are shown in {@3).However, to compare the subsequent convergence analysis,
according to Assumption|I] this deviation can be incorporated into the ¢ in Assumption [3] For client
m, the update method is simplified as @3):

1 M M K 9.k n g
ERARTE> 9 99 SO L CH (IE SRR D ST
n=1m=1k=1 =1
M M K-1 ")
—w® _pt )
M z:: mz:: 1 k=0 & *
(45)

More generally, when S represents the number of clients selected to participate, we have

K—

s S
O RRCAEE D ) DD I
n=1m=1 k=0

—

) \

()

(r) k= Vi (w,, k i ;€) is the stochastic gradient of L» regarding the vector w,, k-

ﬂ-n

where g
Thus,

K-1
E Vﬁrr" wmkn)]

Mm

E[A

5L

CQ\H

1 k=0

3
Il

In the following, we focus on the recurrence of adjacent training rounds, so we omit the superscript
r for a while, e.g., writing wy, . ., as W, k. In particular, we would like to use w to replace
w1,0,1- Without otherwise stated, the expectation is conditioned on w".
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We start by substituting the overall updates:

E [|lw+ Aw — w*|]?]
= o — w*||* + 2E [(w — w*, Aw)] + E || Aw]*]

5 S K-1
ZZ E [(VLrr (Wi pn), w — w*)] +n°E

n=1m=1 k=0

S S K-
= Jw — w*||* — 2 §Z > Z_: grn

(46)

We can apply Lemma®|with € = wy, kn , Yy = w* , 2 = w and h = L for the second term on
the right-hand side in

CQ\H

1 S S K-1

—2n—= ZZ ZE Vﬁﬁn (Wi kn), W — W >]

n:l m=1 k=0

1 S S K-1
<-ms3 E[ﬁm(w)—cﬂn (w*) + 2 Jlw — w* | = L|[wpmpn w||} 47)

n=1m=1 k=0
1 S S K-1
2

< —QSKUDL(’LU w )_ */,LSK’I]H’LU w ” +2L77§Z Z E ”wmkn w” ]

2

1SS K-l
E gZZng,fc
n=1m=1 k=0
1 S S K-l 2
< 4E EZZZ(g% —VLn (W ken))
n=1m=1 k=0
i | S, S K-l 2
FAE <D0 D D (VL (Wikn) = VL (w)
n=1m=1 k=0
1S, S K-l 2 | S8 K- 2
FAE DY Y (VL (w) = VL ()| | +4E |1 D> > Vi (w)
n=1m=1 k=0 n=1m=1 k=0

(48)

Seeing the data sample &, k., the stochastic gradient g ., the gradient VL n (&m.keyn) as &w;
and e; in Lemma@ respectlvely and applylng the result of Lemmz@ the first term on the right-hand

side in can be bounded by 4K o

1 S S K-1
E g Z Z (gﬂ""’ k — Vﬁﬂ'" (wm k n))
n=1m=1 k=0
1 S S K-1 (49)
Sdzm 2 2 O B (8 ik — Vi (Winkn)) |
n=1m=1 k=0
<4Ko
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For the second term on the right-hand side in (48), we have
2

S K-1
Z Z V,Cﬂn (wm k n) v;Cﬂ—n ( ))
n=1m=1 k=0
‘ 1 S S K-1
K&y Z E [V £, (i) = VL, (w)||] (50)
n=1m=1 k=0
AsmEl S K-1
< 4L2KZ Z E [[wpm k0 — wl?]
For the third term on the rlght-han n@ we have
1 S K-1 2
- Z Z V,Cﬂn ) V,Cﬂ;; (w*))
n=1m=1 k=0
. S K-1

S
QKé SN S E[[IVEw, () — Vi, (w)

n=1m=1 k=0

2} 61y

S K-

i: E [DLW (w,w*)}

m=1 k=0

Bs152K2D (w0, w),

We explain it as follows, because D (w,w™) is linear concerning £(w), so it satisfies the formula:

E [ng (w,w*)} = Dy (w,w")
The fourth term on the right hand side in[d8]can be bounded by Lemmalf]as follows:
S K-1 2 (L '
o M-S
* SQKQ 2 52
nz:j > Loy (w”) Sar- % (52)

With the preceding four inequalities, we can bound the third term on the right hand side in @8):

1

S K-1

;ZS: 2 Z::gﬂ

s S K-1 (53)
< AKo? + ALK ZZZ [|wm,m w|?
M-S
8LS*K?D ) FASPK? (2
Then substituting 7)) and (53) into (@), we have
E |:||w +Aw _w*||2:| < (1= /’LSKU || *||2 +4Kn20_2 +452K2,'72M7_S<2
- S(M —1)"
K—1

L S S
+2§ 14+2LSKn) > Y

n=1m=1k

Z E ||wm,k,n - w||2]
=0
—25Kn(1 —4LSKn)D,(w,w")

Here we substitute < to get Lemman as follows:

SISK
E[Hw—i—Aw—w*H]g 1_M Jw — w*||? + 4Kn?0? + 452 K 2> M-S ¢
2 S(M —1)
) 77 S S K-1
_ §SKnD£(w,w —g Z Z E (|| km — wHQ]
=1 m=1 k=0
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G.1.2 Bounding the client drift with Assumption.
Similar to the “client drift” in PFL [[19] and SFL [31]], we define the client drift in SPFL:

1 s S K-1 ") 9
Eom 52 3 3B full, -

n=1m=1 k=0

} (54)

Lemma 11. When Assumptions. [2) Bland 5| hold, and assummg that all local objective functions are
p-strongly convex, then if the learning rate satisfies n < &1 S 7> the client drift is bounded.:

< 1521(277202 n ZSQK%QQQ + 3LSPK3)’E {Dﬁ(w“), w*)} (55)

Proof.  According to our SPFL pseudo code, we can get the model updates of SPFL from w(") to
(r)

Wy g, is
) m bm,k(2) "
Wik ~W =03 >
i=1 j=0
_ i< m—
with by, 1 (7) == { Ik(;_ 11’ ! ;inm 1 . In the following, we focus on a single training round,

and hence we drop the superscript r for a while, e.g., writing w, ;. to replace wg)k N

particular, we would like to use w to replace w1 o,1.Without otherwise stated, the expectation

is conditioned on w”. We use Jensen’s inequality to bound the term E [”wmkn —w|?

(@) 2
7o e s ]

E [nwm,k,n - wﬂ

S 4772E Z (gfr J V'C (wz i n))
i=1 j=0
I m bm,k(i) 2
+ 4772]E Z (V[,ﬂ-:b (wi,jyn) - V,Cﬂ—l?t (’LU))
i=1 j=0
i m bm,k(i) 2 m bm, k(l) 2
+4p’E || (VLn(w) = VLpn(w*)|| | +40°E | D Y VLan(
i=1 j=0 =1 j=0

Applying Lemmalg]to the first term and Jensen’s inequality to the second, third terms on the right
hand side in the preceding inequality, respectively, we can get

E [ lwmn . — ]l

< 47722 {ng g — VLgn ('wm n H }
i=1 j=0

m bm, k(1)
FAC Y Y E[[ VL)~ VL ()]

i=1 j=0

m bm k('L) m b?n.k(i) 2
F AP Cn Y Y E[VLen (w) = VL (w)[IP] +47°E || > VL (w

i=1 5=0 i=1 5=0

(56)
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where Cyp o := > 10 1 Z mld) ) = (m — 1)K + k. The first term on the right-hand side in lb is
bounded by 4C,, xn*c? For the second term on the right-hand side in , we have

Asm[P]
E (VL (wijn) = Ve (w)]?] < L?E [[|wijm — w|?]
For the third term on the right-hand side in (56), we have
*\ (12 * *
E [|VLr (w) = VLen (w?)]?] < 2LE [Dﬁﬂ (w, w )} — 20D (w, w")

Since w* is the optimal solution, its gradient V.L(w™*) = 0. As a result, we can get

m  b(i)
E {me,k,n — w\ﬂ < AC 1?0 + AL Con e Z ZE {mem — w||2} + 8L772C,2n’kD[;(w, w™)

i=1 j=0
m b (i) ?
+4’E | |1> VL (w)
i=1 j=0
(57)
Then, returning to E,. := 3 Zn 1 Zm 1 k 0 [”wm,k,n — 'w||2] , we have
S K-1 S K-1 m bm,k(7)
B <4n’0” > > Conk +4L° Y Y Crk Y Z & [Jlwijn—w|?]
m=1 k=0 m=1 k=0 i=1 =
S K-1 S K-1 m bm,k(i) 2
+ 8Ln? Z CfnykDg(w, w*) + 4n? Z E Z VL (w
m=1 k=0 m=1 k=0 i=1 j=0

Applying Lemma[7| with w,p = VLys (w*) and @ = VL(w*) = 0 and Lemma][T|that

S S K-1

gZZZ k= SK(SK—1)< S2K2
n=1m=1 k=0

1 S S K-1 1 1

gZZ C2 = (SK—l)SK(SK—§)§§S3K?’
n=1m=1 k=0

we can simplify the preceding inequality:
E, <2S8%K?n?02 4+ 2L*S*K*1’E, + gLS3K3n2D£(w7w*) +28%K3n2¢2
After rearranging the preceding inequality, we get
(1—-2L2S?°K**)E, < 2S?K*n%0? + 28°K3n°¢2 + §L5‘3K3772D£(w, w*)
Finally, using the condition that n < 77, which implies 1 — 2L25?K?n? > 8, we have
< 252K277202 + §S2K3772Cf + 3LS3K30* D (w, w*)
The claim follows after recovering the superscripts and taking unconditional expectations.
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G.1.3 Proof of strongly convex case of Theorem

Proof of the strongly convex case of Theorem 1. Substituting Lemma [TT]into Lemma [T0]and using
n < ﬁ, we can simplify the recursion as follows:

M-S ¢
S(M—1)"

E Hw(T“) — w*
2

2 K
} < (1 - W) |w — w*||* + 4Kn*0? + 452 K?n?

2 8
— gSKan(w,w*) + -LnE,

3
K 2] 1
< (1 — MS277> E {Hw(’”) —w” } — gSKnE {Dg (w(r),'w*)]
M —
+4Kn?c? + 452]{2”25(1\451)43 +6LS*K%n?0” + 6LS* K312

Let 7 = M Kn, we have

E [Hw(rH) —w*

o
< 2)eflo-

410 n 4 (M = 8)¢2 n 6L’ 6L
S2K S(M —1) SK S

2] - gE {Dﬁ(w(”’w*)
(58)

Applying Lemmawith t=r(T =R),y=10,1=E [me — w*

T * n —(7r (72 4(M—-S Z i 0'2 * j—
E[Dﬁ(w( ), w )]0 = (1 —51) () ey = K +%7C2 = 6SLK + g and § =

(= MKn < &), it follows that

R
— * 1 r *
E [/:(w<R>) ~ L(w )} < L OE [c(w< ) — L(w )}
r=0
9 2 1 12702 12(M — S)¢2  18Li0?  18L#H2(2
< Z (0) * = n n * *
= 2“”“’ v eXp( 2‘“7R> Terx T Tsar-1 sk SK

(59)

where @) = WL Zf:o 0, w(") and we use Jensen’s inequality (£ is convex) in the first inequality.
Applying LemmaR@ to Eq[59]and using a suitable dynamic learning rate yields:

E [c(w(R>) - a(w*)}

60)
(oo (R L Qi) Lot i@\
O(MA eXp( 12L>+MS2KR+MSR<M_1)+MQSKR2+M2SR2

where A := ||w(0) —w* | .Eq. (39) and Eq . are the upper bounds with partial client participation.
In particular, when S = M, we can get the claim of the strongly convex case of Theorem|T]

G.2 General Convex Case
G.2.1 Proof of general convex case of Theorem

Proof of the general convex case of Theorem 1. Letting 1 = 0 in Eq. (38), we get the recursion of
the general convex case,

2
E [Hw(”l) —w* ] <E [Hw(r) —w*

4o’ | AP (M = S)¢2 | 6Li'o> | 6LiPC
S’K S(M—1) SK S

2] - gIE {Dﬁ(w(r),w*)}

+

Applying Lemmawitht =r(T'=R),y=17,r=E [Hw(r) fw*||2} ,a=0,b = %, St =

T * —(r 0'2 4(M-S 3 02 6L$ _
E[De(w ), w")] 6, = (1 - 5)~0, 01 = e + "y e = % + g and | =
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o (1= MKn < 2) it follows that
T
(B — |« My _ *
E [c(w ) — L(w )} < W ;er (c(w ) — L(w )) o
_3 [|[w® — w*||2 N 12702 127(M — S)¢2  18Lip?o? N 18Li2¢2
- nR S?K S(M —1) SK SK
where @) = WLR Zf:o 6, w") and we use Jensen’s inequality (£ is convex) in the first inequality.

By using a suitable dynamic learning rate, we get

1 0) _ %2 3
i 102 a -5\ F (E[lw® —w|]
(R)Y _ * *
L) - Lw) <2 (SQKJr S(M — 1) ) R+1

2
610> orc2\} [E[|w® —w|*]\" 6LE [[lw® - w|’]
+2<SK+SK> R+1 + Rt1

Due to the concave nature of the power function(Lemma[2), we can get

L(@P) — L(w*) <2 [( 402 ) N <M>r E {Hw(o) _ w*[ﬂ

2K S(M —1) R+1

N

610y ronenyd (E[lw® —wr ]\ 6LE [Ju® - v
() (s )]

SK SK R+l + R+1

After finishing, we can get:

1/3 1/3

S i) — o [ oA e I 72 W
Lw'™)—L(w") =0 (\/m /1= F (SK)'/3R2/3 + S1/3R2/3 + R
(62)

where A == ||w©® —w
tion. In particular, when S = M, we can claim the strongly convex case of Theorem 1 and Corollary
L.

G.3 Nonconvex Case

Lemma 12. Let Assumptions EII and I hold. If the learning rate satisfies 1 = 1o S %> then it holds
that

E [ﬁ(w““)) —L(w(’”))} < SK”JE U]vz )H } + LSKno?
2% Se oo

m=1 k
Proof. According to the Pseudocode of SPFL, the overall model updates of SPFL after one complete
training round (with S clients selected for training) is

K—

Aw = w" D — ) = — i i Z 7(::)

1m=1

,_.

CQ \

()

ﬂ-n

()

where g . = V frn (w,,’ k n3€) is the stochastic gradient of L regarding the vector w,, " ..

Thus,
K—1

1 s S
ngz Z E v»cfr” wmkn)]

n=1m=1 k=0
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In the following, we focus on the recurrence of adjacent training rounds, so we omit the superscript
r for a while, e.g., writing w;,, ;. ., as Wy, k. In particular, we would like to use w to replace
w1,0,1. Without otherwise stated, the expectation is conditioned on w".

Starting from the smoothness of F' (applying Eq. (53), Dz (z,y) < £ ||z — y||* with z = w + Aw,
y = w,and substituting the overall updates, we have

E[L(w + Aw) — ﬁ(w)}
< E[(VL(w), Mw)] + 7B [|dw]?]

2

1 S S K- L772
g—ngzz Z: (VL@W), V Ly, (Wi )] + =5 E

(64)
For the first term on the right-hand side in Eq.(64), using the fact that 2 (a,b) = ||a||® + ||b]]> —
lla —b]|* with a = VL(w) and b = VLo (Wi 1,n), We have

| S, S K
—n1g >0 D EVL@W), Ve, ()]
n=1m=1 k=0
1 S S K-1
152 Y B IV + [V )| = VL () = T2 ]
n=1m=1 k‘:O
Asm[] SK 1 5 S
< IVE@I - 5530 3 SB[V el
n=1m=1 k=0

;]sii%} [t — )]

(65)
For the third term on the right hand side in Eq. (64), using Jensen’s inequality, we have
S S K-1 2
Ln? 1
TE 3 Z Z 8,k
n=1m=1 k=0
S S K-1 | S, S K-l 2
2
< Ln’E H SN gk 3 SN Ve (W)
n=1m=1 k=0 n=1m=1 k=0
(66)
| S, S K-l 2
2
+ LT] E g Z Z VET['" (wm’k’n)
n=1m=1 k=0
5 S K-1
2 2
< DKo + LK g 3 S S B [IVLe, (wn )]

where we apply Lemma @by seeing the data sample &,  n, the stochastic gradient g » , the gradi-
ent Vﬁﬂn (&m.ke.n) as &, w;, e; respectively, in Lemmal6|for the first term and Jensen’s inequality
for the second term in the preceding inequality. Substituting Eq. (63)) and Eq. (66) into Eq. (64), we
have

SKU 771 s S K-1
E [£(w + Aw) — L(w)] € =25 [VL@w)|* + LKy + 237 3 S E [[wpnn — wlf]
n=1m=1 k=0
n 1 s S K-1 )
~5(1=2LSKn) <> 3 > E [Hvtﬂ (W) | }

n=1m=1 k=0
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Since n < ﬁ, the last term on the right-hand side in the preceding inequality is negative. Then

S K-1
B £+ aw) - £w)] < -5 7L+ LR B0 S 3 S B i - wl]

n=1m=1 k=0

This conclusion can be obtained after restoring the superscript and taking the unconditional expecta-
tion.

G.3.1 Bounding the client drift with AssumptionEl]

Since the proof of Lemma. [TT|uses Eq. (28), which is only applicable to convex functions; we cannot
use the result of Lemma. [[1] Next, we use Assumption []to bound the client drift (defined in Eq.

GA).
Lemma 13. Assumptions and | hold. If the learning rate satisfies n < ﬁ, the client drift is
bounded

9 9 9 3 2
B, < S°K*n’0% + 1K ¢ + (462521{3772 + 253K3n2) E {ch(wW)H } 67)

Proof.  Similar to the “client drift” in PFL [19] and SFL [31]], we define the client drift in SPFL:
S 5 K-1

1 (r) »|I?
Brim gD 3 3B [l -
with by, 1 (4) := { b1 ; . In the following, we focus on a single training round,

and hence we drop the superscript r for a while, e.g., writing w, i, to replace w( )
particular, we would like to use w to replace wy o ;.Without otherwise stated, the expectatlon

} (68)

k.- ID
is conditioned on w”. We use Jensen’s inequality to bound the term E [||wmkn —w|?
n2E m, k( ) 21,
>y Z gl |

E w0 —w]’]

m bm,k(?)
< 4772E Z Z Brrj — VL (wz s n))
P —

b,

—~
S

)

vk

+4n’E Z (VLrn (Wi jn) — VLar (w))
i=1 j=0
m b'" k(l 2 m bm k(z 2

+4n’E || Z (VL (w) = VL(w))|| | +40°E | |> Z VL(w
=1 5=0 i=1 j=0

T

Applying Lemma. [§] Jensen’s inequality and Jensen’s inequality to the first, third, and fourth terms
on the right side of the previous inequality, respectively, we can get

E l[wpn k. — ]|

m an k( )

<4 2 gnr,j _VEW?('wi, ',n) ’
772;2_: [llgwr sn)lI] (69)

m bm,k(l)

AP Y Y B[V (i) = VL (w)][[*] + 40°Ty +4C2, 10 |V £(w) |
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where Cyp o := > 10 o Z mld) ) = (m — 1)K + k. The first term on the right-hand side in is
bounded by 4C,, xn*0? W1th Assumption l 3l With Assumption I 2| the second term on the right-hand
side in (36) can be defined as

m bm,k (i) m bm,k (1)
2
4772Cm,k Z Z E [Hv‘cﬂ'? (wi,j,n) - VLTr:’ (’lU)H :| < 4L27720m,k Z Z E “|wi,j,n - wHﬂ
i=1 j=0 i=1 j=0
Then, returning to £, := 5 LD DD DD Sriive {me,km — 'w||2} ,we have

brn,k ('L)

,1 s S K-1 s 8 K-1 m
2,2 2
E,. <4 E Z Z Conk +4L Z Cm,kz ‘ E [||’w”n — w| ]
n=1m=1 k=0 n=1m=1 k=0 i=1 j=0
| S S Kl m bm, k(i) 2
+4n2§ZZZE > ~ VL(w))
n=1m=1 k=0 i=1 j=0
5 S K-1
+ 41 522 Co i [ VL ()]
n=1m=1 k=0
(70)
Applying Lemma [7| with wn = VLg» (w) and T = VL(w) to the third term and

§ 0t Yot im0 Gk < 352K and § 300 300 305 €2y < §S°K? to the other
terms on the right Hand side of the preceding mequahty, we can 51mp11fy 1t

M
1
E, <2S?°K*n?c* + 2L*S*K*n*E, + 252 K*3n? (M > IVLi(w) - vc(w)||2>

4
+ S SIP |VL(w)
AsmBl o5 o o 20272, 2 27-3, 2,2 20273 2 2
< 2S8°K*n 0 +2L*S°K*“n“E, + 2S“K°n*(* + 2p°S*K°n” |[VL(w)]|

4 o .
+ S [V L (w)||”
After rearranging the preceding inequality, we get
4
(1-2L*S?K*p*)E, < 2S% K*n?0? +2S? K3 n? (> 4282 S? K*n? \|V£(w)u2+§s3f(3n2 IVL(w)|?

Finally, using the condition that n < g7 S 7 » which implies 1 — 2L2S? K202 > %, we have

3
E, < ZSQK%%? + ZSQK?’nQCQ + 15252K3n2 IVL@)|” + 55°K0* |V L(w)|?
The claim follows after recovering the superscripts and taking unconditional expectations.
G.3.2 Proof of nonconvex case of Theorem

Proof.  Substituting Lemma into Lemma and using n < sreemin{l, g} we can simplify
the recursion as follows:

1 2
E {E(w(”l)) — E(w(r))} < —§SK77]E U'Vﬁ(w(r))H }+LKU262+ZL252K2n30_2+ZL252K3n3<2

Letting 77 := SKn Subtracting £* from both sides and rearranging the terms, we have
U’ H } 202 9L27PB0?  9L2P(¢?

E [c(w(rﬂ)) B [’*} sE [,c(w“)) B L*} S°K ' 8SK 89
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Then applying Lemma witht =7r(T = R),y = i,ry = E[L(w™)—L*],b=1%,5 =
2 2,2 . ~
E[[VE@)] 6 = L = &goee = %7 + %58 and L = omin {1, %5} G

< min {1, %}) we have

1
6L(B+1)

oo (2525

Ly (L0 L S (E[Lw®) - 2]\ 6LE [L(w™) - £7]
8SK ' 8S R+1 R+1

Due to the concave nature of the power function(Lemmal[Z), we can get

L@®) — L(w") <2 (L02 )5 (E [£(w®) — c*]>2

S2K R+1
) 9L20.2 9L2C2 % E [E(w(o)) _ ﬁ*} 3 6LE [E(w(r)) _ E*]
2 sk ) T s R+1 * R+1

After finishing, we can get:

<3(£(w0)—£*) 3Lijo?  27L%7%0?  27L272(?

71
iR S2K 8SK 8S 7

0<r<R

min E {ch(ww)m

where we use ming<,<pE {HVE(w("))HZ} < g SELE [HVﬂ(w(T'))HQ} Then, using 7 =

m < min {1, g} and by dynamically adjusting the learning rate, we have
2 Lo2B)/? 120282)'/? 22\ B
win, B [[ve@o)|] <o (LZE_ o B)  (LCE) LB o
0<r<R SKR (S2K)1/3R2/3 S1/3R2/3 R

where B := L(w")—L*. Eq and Eq. are upper bounds for the case of partial client participation.
In particular, when S = M, we obtain the conclusions of Theorem in the non-convex case.

H Theoretical Analysis of Update Order Sensitivity

What differentiates PFL and SFL is that the current updated gradient is dependent on the gradient
from the previous round; thus, we represent their dependency using conditional probability, as follows
Eq. This is why order sensitivity exists.

m—1

ok ok ok
ey 1) 0TS V| # Ly (P way i) 57 ) 73)

m? m?

k

E‘n’ k f('r:-:lw

n
m?

Jj=1

We provide two examples to illustrate that the update order in SFL introduces variance: one from the
perspective of loss function differences, and the other from the data distribution perspective.

H.1 Loss Function Differences

We consider two clients A and B, each taking K = 1 steps of SGD in each training round, with a
learning rate of 7).

Definition:

« (") the global model at the beginning of round ;
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* The local gradient of client A is g4 (z) = VF4(z), and that of client B is g5 (z) = VFg(x).

Order 1 (A — B):

e By o =2 —pga(e®) B 2D = oy — g (ay)

Thus:

2 =2 —nga(x™)) —ngp (w(” - ngA(w(”))

Order 2 (B — A):

r) B T r)y A r+1
) 2 2y =2 —ngp(a) B 2V = 2 — nga(ah)
Thus: (1)
zye ) =2 —ngp @) —nga(@™) —ngp (=)

Here is the translated and refined version in academic style:

As an example, let Fu(z) = 3(z — 1), Fp(z) = 3(z + 1), representing left- and right-biased
objectives, respectively:

Thatis,VF4(x) =2z — 1, VFp(z) = x + 1. We get:
2D =20 —nga(@™) - ngp (w(” - ngA(x“)))
=2 =z —1) = (@ =" —1) +1)

1—2n+n%)z" —p

20D = 2 g (™) — nga(e® - ngp(z"))

2 —n(a + 1) = (@ — () +1) 1)
=(1-2n+nH)z" +1q
By substituting specific values (e.g., (") = 0, 7 = 0.1), we can verify that the results differ under

different update orders.Clearly, x((lrlj 2 # 2("+1)_ When the loss functions are inconsistent, the update

order in SFL influences the gradient used for model updates.

(r)

H.2 The Data Distribution Differences

Suppose two clients, A and B, have different local data distributions D4 # Dp. Then their
corresponding local objective functions differ:

© Fa(z) =Eeup, [f(2;€)]
s Fp(z) = Eeupy [f(25€)]

Therefore, for the same x, their gradients are also different:

VFy4(x) # VFp(x) (74)

This defines the mathematical nature of data heterogeneity: gradient diversity, i.e., inconsistency in
gradient distributions.

Example: Suppose we use MSE loss (Mean Squared Error)

For a linear regression task:

* Client A’s data: target value y = ax
* Client B’s data: target value y = bz

Let the model be ¢ = #z. The loss function is:

Fls€) = (5 9) = S (we — y)’ as)

Then:
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» The expected loss gradient for client A is:

VFy =E, [;L (;(wx - am)2>} =E, [(wz — ax)z]

» The expected loss gradient for client B is:

VFp =E, [ai} (;(wx - bx)ﬂ =E, [(wz — bx)x]

If the distribution of z is the same (e.g., « follows a standard normal distribution), then:

VFa(w) = (w—a)E[z?], VFp(w) = (w — b)E[z?] (76)
Order 1 (A — B):

w™ ) = — yVFs (") - nVEFp (w(r) - UVFA(IU(T)))

— 0® — (w — a)Efz?] — (™ - n(w® — WEE?) - HE[
= w — 2nwE[z?] + n?wE?[z?] — (a + b)nE[z?] — an’E2[2?]

Order 2 (B — A):

wii = ") — gV Fp(w") — gV, (wm - nVFB(w”)))

— w® — () — BE] - n(w ) - n(w® — bE[?] - o)E[s?]
= w — 2nwE([z?] + n?wE?[2?] — (a + b)nE[z?] — by’ E?[2?)

By substituting specific values (e.g., a = 1, b = 2), we can verify that the results differ under different
update orders.Clearly, wg?:r 2 # w("+1), When the Data Distributions are inconsistent, the update

order in SFL influences the gradient used for model updates.

I More Experimental Details

I.1 Dataset.

We researched our proposed method using two types of datasets. One category consists of datasets
with a category shift, which necessitates our partitioning. Our partitioning is based on the Dirichlet
distribution[35]] Dir 8. Where ( (default 0.5) is an argument correlated with the heterogeneity level.
In this problem, we set the default number of clients to 10. There are three data sets we need to
divide here, CIFAR-10[42], CIFAR-100[42], and CINIC-10[43]]. CIFAR-10 is a widely used dataset
consisting of 60,000 32x32 color images in 10 classes, with 6,000 images per class, primarily used
for image classification tasks.CIFAR-100 is similar to CIFAR-10, but with 100 classes containing
600 images each, providing a more granular challenge for image classification tasks.CINIC-10 is an
extended version of CIFAR-10, containing 270,000 images split into 10 classes, designed to bridge
the gap between CIFAR-10 and ImageNet[60] for improved training scalability.

For domain shift, we conducted experiments on two benchmark datasets: PACS [61] and Office-
Homel[l62]]. (i) The PACS [61] dataset contains four distinct domains (Photos, Art Paintings, Cartoons,
and Sketches), with a total of 9,991 images. Each domain shares the same 7-class label space, despite
the variations in image styles.

(it) The Office-Home [62]] dataset contains approximately 15,500 images across 65 categories from
four domains (Art, Clipart, Product, and Real-World), offering a diverse range of categories that
better test the robustness of our method. We have included the Office-Home experiment in the
supplementary materials.
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Table 9: Comparison of SPFL and PFL on Tiny-ImageNet and CIFAR-100 across various FL. methods
(Dirichlet & = 0.1).

Method  Tiny-ImageNet Tiny-ImageNet (SPFL) CIFAR-100 CIFAR-100 (SPFL)

FedAvg 15.69 33.82 (+18.13) 57.55 64.33 (+6.78)
FedProx 15.47 16.65 (+1.18) 57.56 60.46 (+2.90)
MOON 15.42 16.47 (+1.05) 58.44 63.54 (+5.20)
FedDyn 15.22 17.66 (+2.44) 64.11 64.24 (+0.13)
Scaffold 14.58 18.16 (+3.58) 56.15 65.05 (+8.90)
FedDC 15.37 16.45 (+1.08) 64.44 69.88 (+5.44)
FedNova 15.53 16.45 (+0.98) 57.64 64.47 (+6.83)
FedDisco 33.55 34.50 (+0.95) 57.50 64.44 (+6.94)

Table 10: Accuracy (%) on PACS under Domain Shift Setting.

Method | A C S Avg
PFL (120R) 91.02 68.61 70.85 66.84 7433
PFL (100R)+SPFL (20R) 93.11 7324 6936 6492 75.16

PFL (100R)+SPFL with GLAM (20R) 93.71 74.45 7021 64.45 7571

Table 11: Performance comparison of GLAM+SPFL with recent FL methods under domain shift.
Method P A C S Avg

CAN [18[|+SPFL 90.06 7032 77.63 6647 76.12
FedDA [51]+SPFL 90.41 73.83 69.01 74.01 76.82
FedGALA [64]+SPFL  87.58 68.58 68.17 66.56 72.72
GLAM+SPFL (Ours) 92.28 7744 7440 67.32 77.86

1.2 Implementation Details.

When we are in the domain shift setting, for local model training across the PACS and OfficeHome
datasets, we utilize architectures ResNet18 and ResNet50, as detailed by [3]], which are pre-trained on
the ImageNet [60]. We adopt a leave-one-domain-out evaluation method for all benchmarks, where
one domain is reserved for testing and the remaining domains are used for training and validation. To
ensure consistency and fairness in experiments, we standardize the batch size and learning rate at 128
and 0.2 in local training. Furthermore, to guarantee that the local models reach convergence within
each training phase, we set the number of local epochs E to 1 and define the communication rounds
R as 100.

In the category shift setting, we utilized a pre-trained model from PFL (FedAvg) that was trained
for 100 rounds. Subsequently, we ran our new algorithm for an additional 50 rounds. For datasets
Cifarl0 and Cifar100, we employed the ResNet18 model framework, while for dataset CINIC-10,
we utilized a Simple-CNN [63] model framework. We consistently employed Accuracy (acc) as the
performance metric for our evaluations.

In the training phase, we conducted our experiments on a single NVIDIA Tesla A800 GPU. We
used four NVIDIA Tesla A800 GPUs during testing to obtain results more quickly. However, the
experiments only required 5-10GB of GPU memory due to a batch size of 128.

I.3 More comparative experiments

Performance comparison on complex datasets. Tab. [9] compares SPFL and PFL on Tiny-
ImageNet and CIFAR-100 under different FL methods. SPFL consistently outperforms PFL across all
settings, showing significant gains in both accuracy and convergence speed. These results demonstrate
that SPFL achieves better generalization with most FL methods.

Performance of SPFL and GLAM under hybrid strategies. As shown in Tab. when adopting
a hybrid strategy, SPFL maintains a lower convergence margin on the main shift but converges more
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Label  Client and category distribution relationship ~ Client_num
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Figure 6: Distribution relationship between client and category

Table 12: The combination experiments of the two different loss functions were conducted on the
Office-Home dataset using a pre-trained ResNet-18 (Best in bold)

Method L., L., Product Art  Clipart Real-World  Avg

SPFL X X 57.22 43.10 46.07 59.22 51.40
SPFL v X 58.08 43.88 47.10 59.10 52.04
SPFL X v 56.75 4427 47.62 59.49 52.03
SPFL v v 5740 4447 4740 59.20 52.14

slowly. Therefore, first applying PFL to reach the boundary, followed by a low number of SPFL
rounds, can achieve a lower convergence margin. Meanwhile, GLAM remains effective under this
hybrid strategy.

Comparison with state-of-the-art methods. CAN [18] represents the latest federated continual
learning approach [65} 26], while FedDA [51] and FedGala [64] are recent advances in federated
domain generalization. However, unlike GLAM, these methods do not align the model transmitted
from the previous client, leading to limited performance gains when adapting to new domains. In
contrast, GLAM provides a more comprehensive alignment mechanism, allowing flexible adjustment
of the comparison strength through parameters 7 and p, as shown in Tab. [TT]

L4 More Ablation Study

Performance in Office-Home. Through ablation studies on PACS and Office-Home, the effective-
ness of the GLAM module is thoroughly demonstrated, with each component contributing to the
overall model performance, as shown in Fig. 2]

Comparison of different update methods. We compare the two existing update schemes, PFL and
SFL, with our proposed SPFL. As shown in Tab. [T3] SPFL consistently outperforms both methods
across various FL frameworks, demonstrating its superior effectiveness and adaptability. To quickly
converge, the initial model was initialized using a FedAvg pre-trained for 200 rounds on CIFAR-10,
with 10 clients.

Comparison of different Dirichlet . We conduct an ablation study on parameter «. As shown in
Tab. [T4] the performance improvement of SPFL becomes more pronounced as the degree of non-IID
increases.To quickly converge, the initial model was initialized using a FedAvg pre-trained for 200
rounds on CIFAR-10, with 10 clients.
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Table 13: Comparison of different update strategies (PFL, SFL, and our SPFL) under various FL.
methods on CIFAR-10 (Dirichlet o = 0.1).

Update\Method FedAvg FedProx FedDC Moon

PFL 55.60 56.65 55.16  56.33
SFL 68.59 53.75 5441  55.24
SPFL (ours) 71.39 57.66 55.26  58.44

Table 14: Accuracy (%) of SPFL and PFL (FedAvg) under different Dirichlet « settings.
Update\Dir 0.1 0.2 0.5 1 100

PFL (FedAvg) 39.25 4340 4285 46.03 53.37
SPFL (Ours) 4755 5096 49.38 4947 55.27

Table 15: Accuracy (%) of PFL, multiple SFL variants, and SPFL under different Dirichlet « settings.
Method PFL SFL(1) SFL(2) SFL(3) SFL@) SFL(5) SPFL (ours)

Dir(0.1) 41.85 49.56 54.45 49.51 47.98 55.56 55.33
Dir(0.5) 43.60 50.22 47.95 55.18 54.20 49.52 55.16

Comparison of different update orders. We conduct experiments with five clients for training,
where SFL(7) denotes using client ¢ as the starting point. As shown in Tab. [I3] different starting
points result in significant performance variations, highlighting the update sensitivity problem in SFL.
In contrast, SPFL effectively mitigates this issue, achieving more stable and consistent performance
across clients.

Effect of client participation rate. Tab. compares PFL and SPFL under different client
participation rates (F) with 100 clients. As E increases, SPFL consistently outperforms PFL,
showing greater stability and accuracy, which demonstrates its stronger adaptability to varying
participation levels.

Effect under Category and Domain Shifts. As shown in Tab. SPFL significantly improves
performance under both category and domain shifts compared to PFL and SFL, demonstrating its
stronger generalization capability. Furthermore, integrating the GLAM module further enhances
performance, especially under domain shift, by effectively aligning inter-domain representations. This
confirms that SPFL addresses update sensitivity, while GLAM strengthens cross-domain consistency
and adaptability.

J Limitation

Although SPFL demonstrates strong performance in addressing category shift and achieves com-
parable results to PFL under domain shift, this improvement imposes stricter requirements on the
deployment environment, specifically, it assumes that clients remain continuously online. Addition-
ally, while increasing the number of clients can accelerate convergence and lower the theoretical
convergence upper bound, it also introduces substantial communication overhead. As a result, SPFL
is better suited for cross-silo scenarios rather than cross-device settings.

Moreover, cross-silo environments typically entail higher computational costs, whereas SPFL is
able to match the performance of multi-epoch PFL using significantly fewer epochs. Therefore,
although SPFL is theoretically applicable to cross-device scenarios, it is more practically aligned
with cross-silo applications. A detailed comparison of computational and communication costs is
presented in Tab. [T§]

Where M is the model size, M is the number of clients, F is the epoch, and 7T is the number of
communication rounds.
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Table 16: Accuracy comparison between PFL and SPFL under different client participation rates (E)
with 100 total clients.

Update\E 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

PFL 41.78 46.99 5243 5331 54.04 5452 5447 5445 5435 54.59
SPFL 51.72  63.57 7233 76.19 80.84 82.68 84.43 8541 8598 89.95

Table 17: Performance under Category and Domain Shift with PFL, SFL, SPFL, and SPFL+GLAM.

Shift Type PFL SFL SPFL SPFL+GLAM
Category Shift 55.60 6859 71.39 71.71
Domain Shift (Avg) 78.37 60.04 76.32 77.87

Table 18: Cost calculation analysis

Method Calculate costs Communication costs
PFL TxMxEx3xM x Batch_Size TxKx2xMx4
SFL TxMxEx3xM x Batch_Size TxMxMx4

SPFL TXxMxEXx3xMx Batch_SizexK T x M x2x M x4x(K+1/2)

K Broader impacts

The proposed SPFL framework enhances the robustness and generalization of federated learning
systems under category and domain shifts, potentially benefiting applications involving privacy-
sensitive and heterogeneous data, such as healthcare, finance, and education. By reducing the
dependency on data centralization, it supports data sovereignty and regulatory compliance.

However, stronger model generalization across clients may inadvertently increase the risk of model
inversion or membership inference attacks. Additionally, more complex update schemes could
amplify computational inequality between clients with varying resources. Future work should
consider fairness and security safeguards to mitigate these risks.
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