
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DEMYSTIFYING THE TOKEN DYNAMICS OF
DEEP SELECTIVE STATE SPACE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Selective state space models (SSM), such as Mamba, have gained prominence
for their effectiveness in modeling sequential data. Despite their outstanding em-
pirical performance, a comprehensive theoretical understanding of deep selective
SSM remains elusive, hindering their further development and adoption for ap-
plications that need high fidelity. In this paper, we investigate the dynamical
properties of tokens in a pre-trained Mamba model. In particular, we derive the
dynamical system governing the continuous-time limit of the Mamba model and
characterize the asymptotic behavior of its solutions. In the one-dimensional case,
we prove that only one of the following two scenarios happens: either all tokens
converge to zero, or all tokens diverge to infinity. We provide criteria based on
model parameters to determine when each scenario occurs. For the convergent
scenario, we empirically verify that this scenario negatively impacts the model’s
performance. For the divergent scenario, we prove that different tokens will di-
verge to infinity at different rates, thereby contributing unequally to the updates
during model training. Based on these investigations, we propose two refinements
for the model: excluding the convergent scenario and reordering tokens based
on their importance scores, both aimed at improving practical performance. Our
experimental results validate these refinements, offering insights into enhancing
Mamba’s effectiveness in real-world applications.

1 INTRODUCTION

State space models (SSMs) have undergone significant advancements to mitigate the computational
inefficiency associated with the sequence modeling (Gu et al., 2021a; Gupta et al., 2022; Gu et al.,
2021b;a; 2022; Gupta et al., 2022; Li et al., 2022b; Kosma et al., 2023; Orvieto et al., 2023; Smith
et al., 2022), and they have been successful applied in various domains involving continuous signal
data such as audio and vision (Goel et al., 2022; Nguyen et al., 2022; Saon et al., 2023). SSMs can
be viewed as a combination of recurrent neural networks (RNNs) and convolutional neural networks
(CNNs), drawing on concepts from traditional state space frameworks (Kalman, 1960). Unlike
transformers, which experience quadratic scaling with respect to input sequence length and exhibit
significant computational demands (Vaswani, 2017), SSMs are designed for efficient computation
through recurrence or convolution, achieving linear or near-linear scaling as the sequence length in-
creases. Furthermore, SSMs incorporate robust mechanisms for capturing long-range dependencies
(Gu et al., 2020) across various data types, and they have excelled in benchmark tasks such as the
Long Range Arena (Tay et al., 2020).

Selective SSMs such as Mamba is a particular SSM which involves the selective state-space layer
(S6) as their core component (Gu & Dao, 2023). In an S6 layer, parameters are functions of the
input, endowing the SSM with the content awareness ability. Mamba has showcased exceptional
performance across a variety of applications, such as language modeling (Pióro et al., 2024; Lieber
et al., 2024), image processing (Liu & Li, 2024; Zhu et al., 2024), video analysis (Yang et al., 2024;
Li et al., 2024a), medical imaging (Ma & Wang, 2024; Wang et al., 2024b), tabular data analysis
(Ahamed & Cheng, 2024), reinforcement learning (Ota, 2024), point-cloud analysis (Liang et al.,
2024), graph processing (Wang et al., 2024a), and N -dimensional sequence modeling (Li et al.,
2024b). It has been argued that Mamba’s significant success across various domains stems from its
ability to compute complicated representations for different data types (Jafari et al., 2024; Patro &
Agneeswaran, 2024; Xu et al., 2024; Zhu et al., 2024).
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Despite their remarkable empirical success, a thorough theoretical understanding of deep selective
SSM is still lacking, which poses challenges for their advancement and application in high-fidelity
tasks. As these models are scaled at a remarkable rate, understanding their internal mechanisms
has become a major problem. In this paper, we take an initial step toward addressing this gap by
analyzing the dynamical properties of tokens in a pretrained Mamba.

1.1 BACKGROUND: MAMBA

The building block of a selective state-space model is a Mamba block, which is built on top of the
S6 layers, along with linear layers, convolutions, and other token-wise operators. The S6 layer,
which serves as the core component of the Mamba block, plays a pivotal role in the success of these
models.

Formally, an S6 layer is defined as a function that maps a sequence of tokens x = (x1, . . . , xL) ∈
RD×L to another sequence of tokens y = (y1, . . . , yL) ∈ RD×L (with the same number of
channels). In this context, each vector xl (or yl) represents a token, while the whole sequence
x = (x1, . . . , xL) (or y = (y1, . . . , yL)) is called a prompt. For each d = 1, . . . , D, the d-th chan-
nel output ŷd = (yd1, . . . , ydL) ∈ RL is determined recurrently from the corresponding d-th channel
input x̂d = (xd1, . . . , xdL) ∈ RL via a sequence of hidden states hd1, . . . , hdL ∈ RN as follows:{

hdl = Adl · hd,l−1 +Bdl · xdl, hd0 = 0,

ydl = Cl · hdl,
(1)

for l = 1, . . . , L. Here, the matrices Adl, Bdl, and Cl are input-dependent and time-varying, deter-
mined by

Adl = e∆d(xl)Ad , Bdl = ∆d(xl)SB · xl, Cl = (SC · xl)
⊤, (2)

where ∆d : RD ! R is the step size function at the d-th channel and is defined by

∆d(u) = softplus(S∆,du) = ln
(
1 + eS∆,d·u

)
, u ∈ RD. (3)

The hidden matrices Ad ∈ RN×N and the step size vectors S∆,d ∈ R1×D for d = 1, . . . , D, as
well as the input and output matrices SB , SC ∈ RN×D, are learnable from input data. The matrices
Ad are diagonal matrices with negative eigenvalues. In recent developments of selective state space
models, the matrices Ad are chosen to be of the scalar form Ad = −adIN for some positive number
ad (see (Dao & Gu, 2024)), which does not compromise model performance. We will also use this
scalar form for Ad in our paper. In our context, the matrix S⊤

CSB ∈ RD×D, which we will refer
to as the input-output matrix, plays an essential role in characterizing the dynamical properties of
tokens.

1.2 CONTRIBUTION

This paper aims to describe the dynamical properties of tokens in a pre-trained Mamba model. To
achieve this, we consider the dynamical system governing the continuous-time limit of Mamba. The
dynamical properties of tokens are described through the asymptotic behavior of the solutions of the
dynamical system. Additionally, we empirically investigate the relationship between the dynamical
properties of the tokens and model performance. In summary, our main contributions are three-fold:

1. In the one-dimensional case, we prove that only one of the following two scenarios occurs:
either all tokens converge to zero, or all tokens diverge to infinity. We provide criteria based
on model parameters to determine when each scenario occurs. Our experiments suggest that
these observations generally hold in high-dimensional cases.

2. For the convergent scenario, we empirically verify that this situation negatively impacts the
model’s performance. In contrast, for the divergent scenario, we prove that different tokens
will diverge to infinity at different rates, thereby contributing unequally to the updates during
model training.

3. Based on these investigations, we propose two refinements for the model: (i) we exclude the
convergent scenario before training as it negatively impacts performance, and (ii) we reorder
the tokens according to their ascending importance scores, as different tokens are prioritized
unequally during training.

We empirically demonstrate the benefits of our token rendering method in improving the model’s
accuracy and convergence speed compared to the baseline Mamba on the large-scale ImageNet
classification task (Deng et al., 2009)
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Organization of the paper After surveying related works in Section 2, we introduce the dynam-
ical system that governs the continuous-time limit of Mamba. In Section 4, we characterize the
dynamical properties of tokens based on model parameters and determine the divergence rate in the
divergence scenario. Based on the findings in Section 4, we propose two refinements for the model
in Section 5: excluding unfavorable scenarios and reordering tokens before training. We conclude
the paper with a discussion of conclusions and limitations in Section 6.

Notations. We use small bold letters (e.g., x,y,u) to denote sequences of tokens. Tokens can be
either vectors or scalars, depending on the context, and are denoted by small normal letters (e.g.,
xi, yj , uk), where the indices emphasize their position in the sequence. We use capital letters (e.g.,
X,Y, P,A,B,C) to represent matrices.

2 RELATED WORK

Several studies have analyzed the expressivity and generalization of Mamba from a theoretical per-
spective. For instance, the authors in (Ali et al., 2024) demonstrated that the S6 layer can be in-
terpreted as a variant of softmax-free attention with linear complexity, subsequently proving that
Mamba is more expressive than transformers. Conversely, (Cirone et al., 2024) employed tools from
Rough Path Theory to show that diagonal selective state space models (SSMs), such as Mamba,
possess less expressive power than their non-diagonal counterparts. Furthermore, (Merrill et al.,
2024) utilized circuit complexity theory to establish that both SSM variants and transformers share
the same expressive power, as they belong to the complexity class TC0, which can be decided by
polynomial-sized Boolean circuits. In contrast, the authors in (Jelassi et al., 2024) provided both
theoretical and empirical evidence that transformers surpass state space models in their copying
capabilities. All of these works aimed to provide a theoretical framework to understand the expres-
sivity and generalization of Mamba.

In this paper, we examine the dynamical properties of tokens in a pretrained Mamba model. Fol-
lowing the methodology outlined in (Geshkovski et al., 2023; 2024), we define an idealized model
of Mamba by interpreting the discrete layer indices as continuous time variables. This idealized
perspective was used in ResNets (Chen et al., 2018; Haber & Ruthotto, 2017) and neural ODEs (Lin
& Jegelka, 2018; Zhang et al., 2020; Li et al., 2022a; Tabuada & Gharesifard, 2022; Ruiz-Balet &
Zuazua, 2023; Cheng et al., 2023). Our model focuses on the S6 layer, which is central to Mamba
and contributes to its success across various domains.

3 SELECTIVE STATE SPACE DYNAMICS

In this section, we introduce the dynamical system governing the continuous-time counterpart of
Mamba. This dynamical system will provide an effective tool to characterize the dynamical proper-
ties of tokens in Mamba as well as the impact of these properties on model performance in the next
section.

3.1 BACKGROUND: CONTINUOUS-TIME LIMIT OF A DEEP NEURAL NETWORK

To ensure a clear presentation of our results, we draw upon the literature concerning the dynamical
systems that govern the continuous-time limit of deep neural networks (DNNs). Generally speaking,
data in a DNN is processed sequentially, layer by layer, resulting in a discrete-time dynamical system
(LeCun et al., 2015). A notable example is residual neural networks (ResNets) and their continuous-
time counterparts known as neural ODEs (Chen et al., 2018; Haber & Ruthotto, 2017). Each layer
of ResNet is a residual block, transforms an input vector x ∈ RD to an output vector z ∈ RD via a
two-layer feed-forward neural network x 7! y(x, θ), parametrized by θ, and a skip-connection as:

z = x+ y(x, θ).

The continuous-time counterparts of ResNet is conceptualized as a flow map that inputs a vector
x(0) ∈ RD and outputs another vector x(T ) ∈ RD, which is processed via the corresponding
dynamical system

x′(t) = y(x(t), θ(t)), t ∈ (0, T ).

There exists a body of work investigating the interpolation, approximation, and controllability prop-
erties of these DNN architectures (Lin & Jegelka, 2018; Zhang et al., 2020; Li et al., 2022a; Tabuada
& Gharesifard, 2022; Ruiz-Balet & Zuazua, 2023; Cheng et al., 2023).
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3.2 CONTINUOUS-TIME LIMIT OF MAMBA

Unlike ResNets and neural ODEs, Mamba represents a function on a sequence of D-dimensional
tokens rather than solely on an individual input, as discussed in Section 1.1. In order to derive the
dynamical system governing the continuous-time counterpart of Mamba, we eliminate the hidden
states hdl in system (1) to obtain the following form (see (Ali et al., 2024)):

ydl =

l∑
j=1

Pdljxdj , (4)

or equivalently, ŷd = Pdx̂d, where

Pd =


Pd11 0 0 . . . 0
Pd21 Pd22 0 . . . 0
Pd31 Pd32 Pd33 . . . 0

...
...

...
. . .

...
PdL1 PdL2 PdL3 . . . PdLL

 , (5)

and

Pdlj =


x⊤
l

(
S⊤
CSB

)
xl ·∆d(xl), if l = j,

x⊤
l

(
S⊤
CSB

)
xj ·∆d(xj) · exp

−ad

l∑
k=j+1

∆d(xk)

 , if l > j.
(6)

In the above formulation, the upper triangular matrices Pd (d = 1, . . . , D) represent the hidden
attention scores between the d-th channel input and output. Following the setting of (Ali et al.,
2024), we call P = [P1, . . . , PD] the hidden attention tensor of the S6 layer.

Following the common approaches used in studying the continuous-time counterparts of ResNets
(Chen et al., 2018; Haber & Ruthotto, 2017) and Transformers (Geshkovski et al., 2023; 2024), we
consider the layer index of a deep selective state space model as a time variable and interpret the
selective state space model as the discrete-time version of a parametrized dynamical system of the
form

d

dt
xdl(t) =

l∑
j=1

Pdlj(t)xdj(t), t ∈ [0,+∞), (7)

xdl(0) = xdl0 ∈ R,
for l = 1, . . . , L and d = 1, . . . , D, where

Pdlj(t) =


xl(t)

⊤ (S⊤
CSB

)
xl(t) ·∆d(xl(t)), if l = j,

xl(t)
⊤ (S⊤

CSB

)
xj(t) ·∆d(xj(t)) · exp

−ad

l∑
k=j+1

∆d(xk(t))

 , if l > j,
(8)

and ∆d(u) = softplus(S∆,du). It is important to mention that the time t in this dynamical system
represents the depth direction of Mamba model.

Similar to (Geshkovski et al., 2023; 2024), we have focused exclusively on S6 layer, which is the
key component of Mamba, and the skip-connection in the above dynamical system. We have ig-
nored other token-wise operators such as layer normalization, convolution, and linear functions. In
addition, we assume the parameters Ad, S∆,d, SB , SC are time-independent. These assumptions are
primarily motivated by mathematical convenience. Nevertheless, such a weight-sharing mechanism
is used in practice to reduce the number of trainable parameters, as seen, for example, in ALBERT
(Lan et al., 2020), a transformer-based large language model. The dynamical properties of tokens in
deep selective state space models with these additional layers will be discussed in future works.

4 DYNAMICAL PROPERTIES OF TOKENS IN MAMBA

In this section, we study the asymptotic behavior of the solution x(t) of the dynamical system (7),
as well as its corresponding attention score P (t) = (Pdlj(t))dlj defined in equation (8). This
information encodes the dynamical properties of tokens and hidden attention scores in deep selective
state space models.

4
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4.1 CONVERGENCE AND DIVERGENCE SCENARIOS OF MAMBA’S DYNAMICS

In the standard form of S6, each d-th channel output is determined from the corresponding d-th
channel input using time-variant input-dependent parameters. Therefore, we will consider the single
channel dimension case, i.e. D = 1, in our setting to avoid overly complicated technicalities. In this
case, the input sequence x = (x1, . . . , xL) ∈ RL is a list of L real numbers. We drop the index d
from Eq. (7) and rewrite it as

d

dt
xl(t) =

l∑
j=1

Plj(t)xj(t), t ∈ [0,+∞), (9)

xl(0) = xl0 ∈ R,

for l = 1, . . . , L, where

∆(u) = softplus(S∆u) = ln
(
1 + eS∆u

)
, u ∈ R, (10)

and

Plj(t) =


(
S⊤
CSB

)
xl(t)

2 ·∆(xl(t)), if l = j,

(
S⊤
CSB

)
xl(t)xj(t) ·∆(xj(t)) · exp

−a

l∑
k=j+1

∆(xk(t))

 , if l > j.
(11)

In this case, SB , SC ∈ RN×1, thus S⊤
CSB ∈ R, and the scalar values S∆ and a ∈ R, with a > 0,

are learnable from input data.

To avoid triviality, we will always assume that the initial datum xl(0) = xl0 are nonzero for all
l. The main goal of this section is to investigate the asymptotic behavior of the solution x(t) =
(x1(t), . . . , xL(t)) of the dynamic (9) and the corresponding hidden attention matrix

P(t) =

P11(t) 0 . . . 0
P21(t) P22(t) . . . 0
. . . . . . . . . . . .

PL1(t) PL2(t) . . . PLL(t)

 ,

when t increases. The following three scenarios will be considered separately:

1. Convergence scenario: S⊤
CSB < 0;

2. Slow-divergence scenario: S⊤
CSB > 0 and S∆xl0 < 0 for all l;

3. Fast-divergence scenario: S⊤
CSB > 0 and S∆xl0 > 0 for some l.

We will see that, in the first scenario, all tokens and hidden attention scores quickly converge to zero
as t ! ∞, at rates of O(1/

√
t) and O(1/t), respectively (Theorem 4.1). In the second scenario, all

tokens diverge to infinity slowly at a logarithmic rate, while the hidden attention scores still approach
zero as t ! ∞. We refer to this as the slow-divergence scenario (Theorem 4.3). In the final scenario,
one token diverges to infinity very quickly in finite time, causing a blow-up in the corresponding
hidden attention scores. We refer to this as the fast-divergence scenario (Theorem 4.4). Table 1
summarizes the dynamical properties of tokens in this work.

Table 1: Summary of the dynamical properties of this work.

Parameters Scenario Impact on model Reference
S⊤
CSB < 0 Convergence Negative Theorem 4.1

S⊤
CSB > 0 ∀l, S∆xl0 < 0 Slow-divergence Positive Theorem 4.3

∃l, S∆xl0 > 0 Fast-divergence Theorem 4.4

Remark 1 (Convergence vs. divergence scenarios and their impact). We collectively refer to the
slow-divergence and fast-divergence scenarios as the divergence scenarios. By utilizing model pa-
rameters to test the signature of S⊤

CSB , we can distinguish between the convergence scenario and
the divergence scenarios. However, to distinguish between the slow-divergence and fast-divergence

5
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scenarios, additional information from the input data, specifically xl,0, is required. In addition,
our experiments suggest that the convergence scenario negatively impacts model performance in
practice, while the divergence scenario positively impacts model performance. Therefore, the con-
vergence scenario should be excluded before training (see Subsection 5.1).
Remark 2 (Unequal contribution of tokens during training). In the slow-divergence scenario, when
tokens diverge to infinity at infinity, we further prove that tokens with different initial positions
will have different rates of divergence. As a consequence, the contribution of tokens to the updates
during model training is unequal. Intuitively speaking, the tokens should be rearranged in such a
way that those carrying more important information diverge faster than those carrying less important
information. In Subsection 5.2, we suggest a method for reordering the tokens before training by
projecting them into a learnable line. Our experimental results show that this ordering method leads
to better model performance.

Remark 3 (Higher dimension). When the dimension of the input tokens is D ≥ 1, the input-output
projection matrix S⊤

CSB is a square matrix of size D × D, which may have complex eigenvalues.
We conjecture that the dynamic behavior of the tokens in system (7) can be determined by analyzing
the matrix

µ =
1

2

(
S⊤
CSB + (S⊤

CSB)
⊤) ,

which represents the symmetric part of the input-output projection matrix S⊤
CSB . It is worth noting

that in case D = 1, µ = S⊤
CSB as expected. The matrix µ has only real eigenvalues. We particularly

conjecture that all tokens will converge to zero if µ has only negative eigenvalues, whereas the tokens
will diverge to infinity if µ has at least one positive eigenvalue (see Appendix B for further detail).
We leave the study of the higher-dimensional case for future work.

Remark 4 (Compare with tokens’ dynamic in Transformer). As outlined in (Geshkovski et al.,
2024) (page 6, paragraph 2), tokens in a purely self-attention setting typically exhibit exponential
divergence to infinity. However, our theoretical analysis demonstrates that the token dynamics in the
purely Mamba setting are much more complicated. Specifically, tokens in the Mamba framework
may either converge to zero or diverge to infinity. In cases of divergence, the behavior can vary:
tokens may diverge rapidly to infinity within a finite time or diverge more gradually to infinity over
an infinite time horizon, with the divergence following a logarithmic rate.

In the subsequent subsections, we provide the statements of the main theorems. The proofs of these
theorems can be found in Appendix A.

4.2 CONVERGENCE SCENARIO: µ = S⊤
CSB < 0

In the following theorem, we prove that all tokens converge to zero at a rate of O(1/
√
t) as t

approaches infinity, regardless of the input data. Consequently, the hidden attention scores will
also tend toward zero.
Theorem 4.1 (Convergence scenario). Assume that µ = S⊤

CSB < 0. Let x(t) = (x1(t), . . . , xL(t))
be the unique solution of the dynamic (9).

1. For each l = 1, . . . , L, if xl0 > 0 (respectively, xl0 < 0), then xl(t) is positive and mono-
tonically decreasing (respectively, negative and monotonically increasing) on [0,+∞). In
addition, xl(t) = O( 1√

t
).

2. Plj(t) = O( 1t ) for all l, j = 1, . . . , L.

The proof of this theorem can be found in Appendix A.1. To intuitively see why all tokens converge
in this scenario, we can rewrite the dynamic (9) as

d

dt
xl(t) = µxl(t)

3∆(xl(t)) + gl(t)xl(t), (12)

where

gl(t) =


0, if l = 1,

l−1∑
j=1

µxj(t)
2∆(xj(t)) exp

−a

l∑
k=j+1

∆(xk(t))

 , if l > 1.

6
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Since µ < 0, gl(t) is a nonpositive function. Let us consider the case when xl0 > 0. Then,
xl(t) must remain positive for every t > 0; otherwise, xl(t) would reach zero at some point, and
consequently xl(t) would be identically zero for all t, according to the uniqueness of the given
initial value problem, which is impossible. As a result, the right-hand side of equation (12) is
always negative. This implies that xl(t) is decreasing. Figure 1 illustrates the graph of tokens and
the heat map of the corresponding hidden attention matrices in this scenario.
Remark 5 (Negative impact on model’s performance). In this scenario, both the tokens and the
hidden attention scores collapse to zero, leaving no room for diversity or randomness, which may
be harmful to the model’s performance. Our experiment in Section 5.1 verifies these effects in high
dimensions.
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Figure 1: The graphs of tokens (left) and the heat map of the hidden attention matrices (right) for the
convergence scenario with L = 10 tokens and parameters µ = −1.58, S∆ = −0.17, a = −1.08, as
well as initial data x(0) = (−1.79,−0.34, 0.46,−1.25, 0.83,−0.83, 1.81,−1.16, 0.13,−0.19). In
this case, all tokens and hidden attention scores tend to zero as t approaches infinity.

4.3 SLOW-DIVERGENCE SCENARIO: µ = S⊤
CSB > 0 AND S∆xl0 < 0 FOR ALL l

In this case, we first observe that all of the tokens will tend to infinity as we will see in the following
lemma.
Lemma 4.2 (Slow divergence scenario). Assume that µ = S⊤

CSB > 0 and S∆xl0 < 0 for all l.
Let x(t) = (x1(t), . . . , xL(t)) be the unique solution of the dynamic (15). For each l, if xl0 > 0
(respectively, xl0 < 0), then xl(t) is positive and monotonically increasing (respectively, negative
and monotonically decreasing) on [0,+∞) with

lim
t!+∞

xl(t) = +∞ (respectively, lim
t!+∞

xl(t) = −∞).

Lemma 4.2 shows that all tokens in the considered case will approach infinity as t approaches infin-
ity. However, it does not help to estimate the rate of divergence or the asymptotic behavior of the
hidden attention score Plj(t). In Theorem 4.3 below, we will provide both the rate of divergence for
the tokens and the asymptotic behavior of the hidden attention scores, but under a certain additional
assumption.
Theorem 4.3 (Slow divergence scenario and divergence rate). Assume that µ = S⊤

CSB > 0 and

S∆xL0 ≤ . . . ≤ S∆x10 ≤ −2.12, (13)

(see Theorem A.7 for a detailed upper bound). Let x(t) = (x1(t), . . . , xL(t)) be the unique solution
of the dynamic (9).

1. For each l, if xl0 > 0 (respectively, xl0 < 0), then xl(t) is a positive increasing (respec-
tively, negative decreasing) function on [0,+∞). In addition, xl(t) = O((ln t)l).

2. limt!+∞ Plj(t) = 0 for all l ≥ j.
Remark 6 (Unequally tokens’ contribution). Theorem 4.3 shows that, in the one-dimensional case
within this divergence scenario, tokens with higher absolute values will diverge to infinity faster
than those with smaller absolute values (while all hidden attention scores still converge to zero).
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Intuitively speaking, this means that different tokens will contribute differently to the updates during
training. Based on this observation, we conjecture that reordering tokens based on their importance
scores before training might be beneficial for model performance. Our experiment in Subsection 5.2
empirically confirms this conjecture.

The proof of this theorem can be found in Appendix A.2. We can intuitively see why the tokens
tend to infinity slowly by looking at the values of the right-hand side of equation (12). Indeed, let us
assume that S∆ < 0 and thus xl0 > 0. Then xl(t) must always be positive as t increases; otherwise,
xl(t) would reach zero at some point, and consequently xl(t) would be identically zero for all t,
according to the uniqueness of the given initial value problem, which is impossible. As a result,
the right-hand side of equation (12) is always not too large. This implies that xl(t) is decreasing.
However, since S∆ < 0, the term µxl(t)

3∆(xl(t)) converges to zero very quickly, which keeps the
right-hand side always not too large. Therefore, xl(t) goes to infinity slowly. Figure 2 illustrates the
graph of tokens and the heat map of the corresponding hidden attention matrices in this scenario.
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Figure 2: The graphs of tokens (left) and the heat map of the hidden attention matrices (right) for the
convergence scenario with L = 10 tokens and the model parameters µ = 1.79, S∆ = −0.71, a =
−1.80, as well as the initial data x(0) = (1.55, 2.84, 3.81, 4.57, 5.99, 6.94, 7.71, 8.96, 9.59, 10.75).
In this case, tokens tend to infinity at the log-rate, and the one which larger initial value diverges
faster. While the hidden attention scores still tend to zero as t approaches infinity. In addition,
the hidden attention scores from the second columns tend to zero must fater than those in the first
column.

4.4 FAST-DIVERGENCE SCENARIO: µ = S⊤
CSB > 0 AND S∆xl0 > 0 FOR SOME l

In the fast divergence scenario, we have the following theorem.

Theorem 4.4 (Fast divergence scenario). Assume that µ = S⊤
CSB > 0. Let x(t) =

(x1(t), . . . , xL(t)) be the unique solution of the dynamic (15). If there exists l = 1, . . . , L such
that S∆xl0 > 0, then xl(t) goes to infinity at finite time.

In addition, assume that xl0(t) tends to infinity first as t ! T− for some T > 0 while xl(t) is
defined on [0, T ] for all l ̸= l0. Then for every L ≥ l ≥ j ≥ 1, limt!T− Plj(t) = +∞ if and only if
l = l0 or j = l0.

Remark 7. The proof of this theorem can be found in Appendix A.3. Intuitively speaking, in this
scenario, if 1 ≤ l ≤ L is the index of the first token such that S∆xl0 > 0, then all tokens with
indices j ≥ l will diverge to infinity in finite time. Figure 3 illustrates the dynamical properties of
tokens and the hidden attention scores in this scenario.

5 EXPERIMENTS

In this section, we empirically validate two key observations derived from the theoretical analysis
presented in Section 4. We aim to (i) demonstrate the detrimental impact of negative eigenvalues
in the input-output matrix S⊤

CSB on the performance of auto-regressive language modeling tasks
and (ii) propose a reordering strategy and illustrate its effectiveness in vision tasks. We provide the
details on datasets, models, and training procedures in Appendix C.
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Figure 3: The graphs of tokens (left) and the heat map of the hidden attention matrices (right) for
the convergence scenario with L = 10 tokens and the model parameters µ = 0.76, S∆ = 0.59, a =
1.66, as well as the initial data x(0) = (0.83, 0.91, 0.64, 0.78, 0.66, 0.99, 0.68, 0.72, 0.61, 0.90). In
this case, tokens and the hidden attention scores tend to infinity very quickly at finite time.

5.1 EFFECTS OF NEGATIVE EIGENVALUES OF INPUT-OUTPUT MATRIX

We use Mamba (Gu & Dao, 2023) as the baseline and conduct evaluations on the WIKITEXT103
language modeling task (Merity et al., 2016). We consider three distinct scenarios, including cases
where the input-output matrix contains (i) only positive eigenvalues, (ii) only negative eigenvalues,
as discussed in Section 4 and Appendix B, and (iii) both positive and negative eigenvalues as an
intermediate case. The scenario where S⊤

CSB encompasses complex eigenvalues is deferred to
future work. We report the perplexity (PPL) for each scenario. Lower PPL values indicate better
model performance.

Table 2: Test perplexity on WIKITEXT103. A
model with fewer negative eigenvalues in S⊤

CSB

achieves lower Perplexity.

Scenario Perplexity (#)
Negative 17.26

Mix 16.84
Positive 16.71
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Figure 4: Test perplexity on WIKI-
TEXT103 during training procedure.
The positive case consistently demon-
strates superior performance compared
to the other two scenarios.

Table 2 and Figure 4 illustrate the impact of different eigenvalue configurations on the model’s
performance. Specifically, our findings demonstrate a correlation between the prevalence of positive
eigenvalues in the input-output matrix and model performance. Conversely, the presence of negative
eigenvalues is linked to a decrease in performance, suggesting that removing negative eigenvalues
could further optimize the model’s efficiency.

5.2 RE-ORDERING INPUT TOKENS

We now emphasize the significance of token ordering in vision tasks, where tokens naturally lack
an inherent structure due to each token representing a patch from a 2D or 3D image. As indicated
in Theorem 4.3, the contribution of each token to model updates is primarily influenced by the term
S∆xl0, which is a vector of dimension D in a scenario with D channels. To determine the optimal
order of tokens xl0, we define an importance score as follows:

sl = ⟨K,S∆xl0⟩ (14)

9
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where K ∈ RD is a learnable parameter. Prior to passing the tokens through the S6 layer, they
are reordered based on their importance scores in ascending order. To ensure that the reordering
process is differentiable, we utilize SoftSort (Prillo & Eisenschlos, 2020), which allows gradients to
propagate through the sorting operation during backpropagation. Specifically, SoftSort is employed
to generate a permutation matrix, which is then applied to sort the sl array and rearrange the tokens
xl0 accordingly. Details of the procedure and an analysis of the computational cost are provided in
Appendix D.2.

To assess the effectiveness of our proposed reordering technique, we benchmark our method on the
image classification task using the ImageNet-1K dataset (Deng et al., 2009). We employ Mam-
baVision (Hatamizadeh & Kautz, 2024) as the baseline and compare the top-1 and top-5 accuracy
metrics.

Table 3: Top-1 and Top-5 accuracy (") on the large-scale ImageNet-1K image classification task.
Our token reordering method leads to a slight improvement in MambaVision’s performance.

Model Top-1 (%) Top-5 (%)
MambaVision-T (baseline) 81.90 95.86
MambaVision-T + Token reordering 82.02 95.87
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Figure 5: Top-1 (left) and Top-5 (right) accuracy (") on ImageNet-1K during the training process.
Our token reordering method boosts the accuracy of the MambaVision baseline and achieves faster
convergence compared to the baseline

The results presented in Figure 5 and Table 3 demonstrate that our reordering method speeds up
the convergence of the training loss and improves the performance of the MambaVision baseline.
These findings confirm the effectiveness of our technique in vision tasks, highlighting its potential
for broader tasks.

6 CONCLUDING REMARKS

We characterize the dynamical properties of tokens in a pre-trained Mamba model. In the one-
dimensional case, we show that either all tokens converge to zero or all tokens diverge to infinity.
In addition, for the convergent scenario, we empirically verify that this scenario negatively impacts
the model’s performance; therefore, it should be excluded from model training. For the divergent
scenario, we prove that tokens at different locations will diverge to infinity at different rates, thereby
contributing unequally to the updates during model training. Based on these investigations, we
propose two refinements for the model: excluding the convergent scenario and reordering tokens
based on their importance scores, both aimed at improving practical performance. Our experimental
results suggest that these refinements do help improve model performance.

Regarding limitations, our theoretical analysis of the dynamical properties of tokens is restricted
to tokens with one feature channel. In addition, our token reordering refinement, based on impor-
tance scores, introduces additional computational overhead during training, although this increase
is relatively small. Furthermore, we are uncertain whether the method of reordering tokens based
on their orthogonal projection onto a learnable affine line, as used in practical implementation, is
optimal. We leave a systematic study of token reordering refinements as well as generalization of
our theoretical analysis of higher-dimensional cases for future work.
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A DYNAMICAL PROPERTIES TOKENS IN MAMBA

We will consider S6 dynamic in the single channel dimension case, i.e. D = 1, in our setting to
avoid overly complicated technicalities. In this case, the input sequence x = (x1, . . . , xL) ∈ RL is
a list of L real numbers. The dynamic of x is then governed by the dynamical system:

d

dt
xl(t) =

l∑
j=1

Plj(t)xj(t), t ∈ [0,+∞), (15)

xl(0) = xl0 ∈ R,

for l = 1, . . . , L, where

∆(u) = softplus(S∆u) = ln
(
1 + eS∆u

)
, u ∈ R, (16)

and

Plj(t) =


(
S⊤
CSB

)
xl(t)

2 ·∆(xl(t)), if l = j,

(
S⊤
CSB

)
xl(t)xj(t) ·∆(xj(t)) · exp

−a

l∑
k=j+1

∆(xk(t))

 , if l > j.
(17)

In this case, SB , SC ∈ RN×1, thus S⊤
CSB ∈ R, and the scalar values S∆ and a ∈ R, with a > 0,

are learnable from input data.

To avoid triviality, we will always assume that the initial datum xl(0) = xl0 are nonzero for all
l. The main goal of this section is to investigate the asymptotic behavior of the solution x(t) =

15
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(x1(t), . . . , xL(t)) of the dynamic (15) and the corresponding hidden attention matrix

P(t) =

P11(t) 0 . . . 0
P21(t) P22(t) . . . 0
. . . . . . . . . . . .

PL1(t) PL2(t) . . . PLL(t)

 ,

when t increases. The following three scenarios will be considered separately in the subsequent
subsections:

1. Convergence scenario: µ = S⊤
CSB < 0;

2. Slow-divergence scenario: µ = S⊤
CSB > 0 and S∆xl0 < 0 for all l; and

3. Fast-divergence scenario: µ = S⊤
CSB > 0 and S∆xl0 > 0 for some l.

A.1 CONVERGENCE SCENARIO: µ = S⊤
CSB < 0

We will start with the following auxiliary lemmas.

Lemma A.1. Let t0 ∈ R and let f(u, t) be a differentiable continuous function on R × [t0,+∞).
Assume that u(t) is the unique solution of the initial value problem

d

dt
u(t) = f(u(t), t)u(t), t ∈ [t0,+∞),

u(t0) = u0 ∈ R.

If u0 > 0 (respectively, u0 < 0), then u(t) is a positive (respectively, negative) function on its
maximal interval of the existence. In addition,

1. if f is a positive function, then u(t) is monotonically increasing (respectively, monotoni-
cally decreasing),

2. if f is a negative function, then u(t) is monotonically decreasing (respectively, monotoni-
cally increasing).

Proof. We assume that u0 > 0. The case when u0 < 0 is obtained by replacing u(t) by −u(t).
The function u(t) cannot be equal to zero on its maximal interval, since otherwise, u(t) = 0 is the
unique solution of the given differential equaion, which contradicts to the fact that u(0) = u0 > 0.
Therefore, u(t) is positive on its maximal interval of the existence.

Next, assume that f is positive on R× [t0,+∞). Then we always have u′(t) = f(u(t), t)u(t) > 0
for all t ∈ [t0,+∞). This shows that u(t) is increasing on its maximal interval of the existence. The
case when f is negative is similar.

Lemma A.2. Let t0 ∈ R. If a function u(t) is bounded on [t0,+∞), then there exists positive
numbers c1, c2 such that

c1 ≤ ∆(u(t)) ≤ c2,

for all t ∈ [t0,+∞).

Proof. Recall that ∆(u(t)) = ln(1 + eS∆u(t)). Since u(t) is bounded, there are a1, a2 ∈ R such
that a1 ≤ S∆u(t) ≤ a2 for all t ∈ [t0,+∞). Then we can choose ci = ln(1+ eai) for i = 1, 2.

Theorem A.3 (Convergence scenario). Assume that µ = S⊤
CSB < 0. Let x(t) = (x1(t), . . . , xL(t))

be the unique solution of the dynamic (15).

1. For each l = 1, . . . , L, if xl0 > 0 (respectively, xl0 < 0), then xl(t) is positive and mono-
tonically decreasing (respectively, negative and monotonically increasing) on [0,+∞). In
addition, xl(t) = O( 1√

t
).

2. Plj(t) = O( 1t ) for all l, j = 1, . . . , L.

16
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Proof. Assume without loss of generality that xl0 > 0. The case when xl0 < 0 is proved similarly
by replacing xl(t) by −xl(t). We rewrite the dynamic (15) as

d

dt
xl(t) = µxl(t)

3∆(xl(t)) + gl(t)xl(t), (18)

where

gl(t) =


0, if l = 1,

l−1∑
j=1

µxj(t)
2∆(xj(t)) exp

−a

l∑
k=j+1

∆(xk(t))

 , if l > 1.

Since µ < 0, gl(t) is a nonpositive function. According to Lemma A.1, xl(t) is positive and
monotonically decreasing on its right maximal interval of the existence [0, T ) with T ∈ (0,+∞].
Thus, xl(t) is bounded and T = +∞. As a consequence, it follows from Lemma A.2 that there is
a positive constant c > 0 such that ∆(xl(t)) ≥ c for all t ∈ [0,+∞). Therefore, from Eq. (18), we
have

d

dt
xl(t) ≤ µcxl(t)

3,

which imply that xl(t) ≤ (−2µct + x−2
l0 )−

1
2 for all t ∈ [0,+∞). Hence, xl(t) = O( 1√

t
) as

expected.

For the hidden attention score Plj(t) with L ≥ l ≥ j ≥ 1, we have

|Plj(t)| = µ|xl(t)xj(t)|∆(xj(t)) exp

−a

l∑
k=j+1

∆(xk(t))

 ≤ µc|xl(t)xj(t)| = O

(
1

t

)
,

as expected.

A.2 SLOW-DIVERGENCE SCENARIO: µ = S⊤
CSB > 0 AND S∆xl0 < 0 FOR ALL l

In this case, we first observe that all of the tokens will tend to infinity as we will see in the following
lemma.
Lemma A.4 (Slow-divergence scenario). Assume that µ = S⊤

CSB > 0 and S∆xl0 < 0 for all l.
Let x(t) = (x1(t), . . . , xL(t)) be the unique solution of the dynamic (15). For each l, if xl0 > 0
(respectively, xl0 < 0), then xl(t) is positive and monotonically increasing (respectively, negative
and monotonically decreasing) on [0,+∞) with

lim
t!+∞

xl(t) = +∞ (respectively, lim
t!+∞

xl(t) = −∞).

Proof. Without loss of generality, we assume that S∆ < 0. The case when S∆ > 0 is then obtained
by replacing x(t) by −x(t). Similar to the proof of Theorem A.3, we rewrite dynamic (15) as

d

dt
xl(t) = µxl(t)

3∆(xl(t)) + gl(t)xl(t), (19)

where

gl(t) =


0, if l = 1,

l−1∑
j=1

µxj(t)
2∆(xj(t)) exp

−a

l∑
k=j+1

∆(xk(t))

 , if l > 1.
(20)

Since µ > 0, gl(t) is a nonnegative function on [0,+∞).

According to Lemma A.1, xl(t) must be a positive increasing function on its maximal interval of
the existence [0, T ) for some T ∈ (0,+∞].

First, we claim that xl(t) is unbounded on [0, T ). Indeed, if this is not the case, then xl(t) is bounded
and T = +∞. According to Lemma A.2, there exists a positive constant c such that ∆(xl(t)) ≥ c
for all t ∈ [0,+∞). Therefore, Eq. (19) yields

d

dt
xl(t) ≥ µcxl(t)

3, t ∈ [0,+∞),

17
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which implies that xl(t) ≥ (−2µct+x−2
l0 )−

1
2 , which is unbounded at t = 1

cµx2
l0

> 0, a contradiction.
The claim is then proved, and limt!T− xl(t) = +∞.

It remains to prove that T = +∞. Observe that, since S∆ < 0, we have

lim
r!+∞

r3∆(r) = lim
r!+∞

r3

e−S∆r

ln(1 + eS∆r)

eS∆r
= 0.

Furthermore, since xl(t) is positive and monotonically increasing to infinity at infinity, we also have

lim
t!+∞

xl(t)
3∆(xl(t)) = 0.

In particular, in case l = 1, we have d
dtx1(t) ≤ 1, which implies that x1(t) ≤ t, for all t large

enough. Therefore, T = +∞ in this case.

Assume that l > 1 and we already have T = +∞ for all cases j < l. Then it folows from Eq (20)
that

gl(t) ≤
l−1∑
j=1

µxj(t)
2∆(xj(t)) ≤

l−1∑
j=1

d
dtxj(t)

xj(t)
=

d

dt

l−1∑
j=1

ln(xj(t)). (21)

Therefore, we can bound d
dtxl(t) from Eq. (19) as

d

dt
xl(t) ≤ 1 +

 d

dt

l−1∑
j=1

ln(xj(t))

xl(t),

and this inequality hold for all t ≥ t1 for some t1 large enough. As a consequence, we have

xl(t) ≤ exp

 l−1∑
j=1

ln(xj(t))− ln(xj(t1))

∫ t

t1

exp

−
l−1∑
j=1

ln(xj(s))− ln(xj(t1))

 ds+ xl(t1)

 .

The right hand side is a function defined for all t ≥ t1. Thus T = +∞.

Remark 8. Lemma A.4 shows that all tokens in the considered case will approach infinity as t
approaches infinity. However, it does not help to estimate the rate of divergence or the asymptotic
behavior of the hidden attention score Plj(t). In Theorem A.7 below, we will provide both the rate
of divergence for the tokens and the asymptotic behavior of the hidden attention scores, but under a
certain additional assumption.

We provide the divergence rate of the first token in the following lemma.
Lemma A.5. Assume that µ = S⊤

CSB > 0 and S∆x10 < 0. Let x1(t) be the unique solution of the
dynamic (15). Then x1(t) is defined on [0,+∞) and x1(t) = O(ln(t)).

Proof. Without loss of generality, let us assume that S∆ < 0, thus x10 > 0. The case when S∆ > 0
can be obtained by replacing x1(t) by −x1(t). Then it follows from Lemma A.4 that x1(t) is a
positive and monotonically increasing function on [0,+∞). Let us fix a small enough ϵ > 0 such
that S∆ + ϵ < 0. Then, there exist c1, t1 > 0 such that:

µx1(t)
3∆(x1(t)) = e(S∆+ϵ)x1(t) · µx1(t)

3

eϵx1(t)
· ln(1 + eS∆x1(t))

eS∆x1(t)
≤ c1e

(S∆+ϵ)x1(t), (22)

for all t ∈ [t1,+∞). Therefore, we have

d

dt
x1(t) ≤ c1e

(S∆+ϵ)x1(t), t ≥ t1,

which yields

x1(t) ≤ − 2

S∆
ln

(
−1

2
S∆c1(t− t1) + e−

1
2S∆x1(t1)

)
, for all t ≥ t1.

Since x1(t) is positive, we finally obtain x1(t) = O(ln(t)) as expected.
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To determine the divergence rate of the other tokens, we will need the following lemma.
Lemma A.6. Let r0(≈ 2.1160) be the unique positive root of the function h(r) = 2 ln(1 + e−r)−
re−r

1+e−r . Then for λ > 0, the function f(r) = r2 ln
(
1 + e−λr

)
is positive and monotonically de-

creasing on [ r0λ ,+∞).

Proof. The lemma follows from the negativity of the function h(r) on [r0,+∞) and the equality
d
dtf(r) = rh(λr).

Theorem A.7 (Slow divergence scenario and divergent rate). Assume that µ = S⊤
CSB > 0 and

S∆xL0 ≤ . . . ≤ S∆x10 ≤ −r0, (23)

where r0(≈ 2.1160) is defined in Lemma A.6. Let x(t) = (x1(t), . . . , xL(t)) be the unique solution
of the dynamic (15).

1. For each l, if xl0 > 0 (respectively, xl0 < 0), then xl(t) is a positive increasing (respec-
tively, negative decreasing) function on [0,+∞). In addition, xl(t) = O((ln t)l).

2. limt!+∞ Plj(t) = 0 for all l ≥ j.

Proof. Without loss of generality, we will assume that S∆ = −λ for some λ > 0. The case when
S∆ > 0 is then obtained by changing all xl to −xl. Then the condition (23) becomes

xL0 ≥ . . . ≥ x10 ≥ r0
λ
. (24)

According to Proposition A.4, xl(t) is a positive and monotonically increasing function on [0,+∞)
with limt!+∞ xl(t) = +∞.

Before estimating the asymptotic behavior of xl(t) and Plj(t), we first claim that that xl(t) ≥
xl−1(t) for all t ∈ [0,+∞) and l ≥ 2. We will prove this claim by induction on l. Indeed, in case
l = 2, we observe that

d

dt
x2(t) = µx2(t)

3∆(x2(t)) + g2(t)x2(t) ≥ µx2(t)
3∆(x2(t)).

Since x20 ≥ x10, it follows that x2(t) ≥ x1(t) for all t ∈ [0,+∞). Let us assume that l > 2
and xl−1(t) ≥ . . . ≥ x1(t) for all t ∈ [0,+∞). It is noted that x1(t) ≥ x10 ≥ r

λ . According to
Lemma A.6, we have

xj(t)
2∆(xj(t)) ≥ xj−1(t)

2∆(xj−1(t)), j = 2, . . . , l − 1. (25)

Recall that
d

dt
xl(t) = µxl(t)

3∆(xl(t)) + gl(t)xl(t) (26)

= µxl(t)
3∆(xl(t)) + µxl(t)

l−1∑
j=1

xj(t)
2∆(xj(t)) exp

−a

l−1∑
k=j+1

∆(xk(t))

 . (27)

By removing the term with the index j = 1 inside the sum and using inequality (25), we obtain

d

dt
xl(t) ≥ µxl(t)

3∆(xl(t)) + µxl(t)

l−1∑
j=2

xj−1(t)
2∆(xj−1(t)) exp

−a

l−1∑
k=j+1

∆(xk(t))


= µxl(t)

3∆(xl(t)) + µxl(t)

l−2∑
j=1

xj(t)
2∆(xj(t)) exp

−a

l−1∑
k=j+2

∆(xk(t))

 .

Since ∆(xk(t)) ≤ ∆(xk−1(t)) for all k = 2, . . . , l − 1, we can proceed the last expression as

d

dt
xl(t) ≥ µxl(t)

3∆(xl(t)) + µxl(t)

l−2∑
j=1

xj(t)
2∆(xj(t)) exp

−a

l−2∑
k=j+1

∆(xk(t))− a∆(xl(t))

 .
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Therefore, if we set

f(u) = µu3∆(u) + µu

l−2∑
j=1

xj(t)
2∆(xj(t)) exp

−a

l−2∑
k=j+1

∆(xk(t))− a∆(u)

 ,

then xl−1(t) is a solution of the differential equation d
dtu(t) = f(u(t)), while d

dtxl(t) ≥ f(xl(t)
for all t ∈ [0,+∞). It follows from the initial conditions xl0 ≥ xl−1,0 that xl(t) ≥ xl−1(t) for all
t ∈ [0,+∞). The claim is then proved.

Next, let us go back to the analysis of the asymptotic behaviour of tokens and hidden attention
scores.

1. For l = 1, it is already known from Lemma A.5 that x1(t) = O(ln(t)). In case l ≥ 2,
according to equation (27), we have

d
dtxl(t)

xl(t)
= µxl(t)

2∆(xl(t)) +

l−1∑
j=1

µxj(t)
2∆(xj(t)) exp

−a

l−1∑
k=j+1

∆(xk(t))

 (28)

For each j = 1, . . . , l, since xj(t) ≥ x1(t) and the function r 7! r2∆(r) is monotonically
decreasing over [ r0λ ,+∞), we have xj(t)

2∆(xj(t)) ≤ x1(t)
2∆(x1(t)) for all t > 0 large

enough. In addition, we also have and exp

(
−a

l−1∑
k=j+1

∆(xk(t))

)
≤ 1 for all t ∈ [0,+∞).

Therefore, we can upper bound the right hand side of equation (28) as

d
dtxl(t)

xl(t)
≤ lµx1(t)

2∆(x1(t)) = l
d
dtx1(t)

x1(t)
. (29)

Thus, lnxl(t) ≤ l lnx1(t), which implies that

xl(t) ≤ x1(t)
l = O((ln t)l).

2. For the hidden attention score, it follows from its definition in equation (17) that

Plj(t) ≤ µxl(t)xj(t)∆(xj(t))

for all t ≥ 0. Since S∆ < 0, the function r 7! r∆(r) = r ln(1 + eS∆r) is monotonically
decreasing from a large enough t. Therefore, it follows from the claim above that

Plj(t) ≤ µxl(t)
2∆(xl(t))

for all t large enough. Hence, limt!+∞ Plj(t) = limr!+∞ µr2∆(r) = 0.

The theorem is then proved.

A.3 FAST-DIVERGENCE SCENARIO: µ = S⊤
CSB > 0 AND S∆xl0 > 0 FOR SOME l

Theorem A.8 (Fast-divergence scenario). Assume that µ = S⊤
CSB > 0. Let x(t) =

(x1(t), . . . , xL(t)) be the unique solution of the dynamic (15). If there exists l = 1, . . . , L such
that S∆xl0 > 0, then xl(t) goes to infinity at finite time.

In addition, assume that xl0(t) tends to infinity first as t ! T− for some T > 0 while xl(t) is
defined on [0, T ] for all l ̸= l0. Then for every L ≥ l ≥ j ≥ 1, limt!T− Plj(t) = +∞ if and only if
l = l0 or j = l0.

Proof. Without loss of generality, we assume that S∆ > 0. The case when S∆ < 0 is then obtained
by replacing x(t) by −x(t). Then xl0 > 0. Recall that

d

dt
xl(t) = µxl(t)

3∆(xl(t)) + gl(t)xl(t), (30)
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where gl(t) defined in equation (20). Since µ > 0, gl(t) is a nonnegative function on [0,+∞). It
follows from Lemma A.1 that xl(t) is a positive increasing function on its right maximal interval of
the existence [0, T ) for some T ∈ (0,+∞]. By equation (30), we have

d

dt
xl(t) ≥ µxl(t)

3∆(xl(t)).

Furthermore, since S∆ > 0, the function ∆(r) = ln(1 + eS∆r) is monotonically increasing on
[0,+∞). Therefore, ∆(xl(t)) ≥ ∆(xl(0)) = ln(1+eS∆xl0) for all t ∈ [0,+∞). As a consequence,
we can proceed the above inequality further as

d

dt
xl(t) ≥ µ ln(1 + eS∆xl0)xl(t)

3.

Thus,
xl(t) ≥

(
2µ ln(1 + eS∆xl0)t− x−2

l0

)− 1
2 ,

which goes to +∞ at finite time.

Next, let us assume that xl0(t) goes to infinity at finite time faster than the other tokens, i.e, there
exists T > 0 such that limt!T− xl0(t) = +∞, while xl(t) defined over [0, T ] for all l ̸= l0. Then
limt!T− x2

l0
(t)∆(xl(t)) = +∞. Then for every L ≥ l ≥ j ≥ 1, limt!T− Plj(t) = ∞ if and only

if l = l0 or j = l0.

B HIGHER DIMENSION WITH/WITHOUT ADDITIONAL COMPONENTS

When the dimension of the input tokens is D ≥ 1, the input-output projection matrix S⊤
CSB is a

square matrix of size D×D, which may have complex eigenvalues. We conjecture that the dynamic
behavior of the tokens in system (7) can be determined by analyzing the matrix

µ =
1

2

(
S⊤
CSB + (S⊤

CSB)
⊤) ,

which represents the symmetric part of the input-output projection matrix S⊤
CSB . This conjecture is

motivated by the observation that the term x⊤
l · (S⊤

CSB) · xl in the considered dynamical system (7)
is a scalar, and it can be expressed as:

x⊤
l · (S⊤

CSB) · xl =
1

2

(
x⊤
l · (S⊤

CSB) · xl +
(
x⊤
l · (S⊤

CSB) · xl

)⊤)
= x⊤

l · µ · xl.

The matrix µ has only real eigenvalues. We particularly conjecture that all tokens will converge to
zero if µ has only negative eigenvalues, whereas the tokens will diverge to infinity if µ has at least
one positive eigenvalue.

Figures 6 illustrate this conjecture by visualizing the trajectories of four tokens in the two-
dimensional case under different scenarios. In these figures, the parameters and initial values used
on each case given as follows:

• Figure 6A (µ has two negative eigenvalues):

– S⊤
CSB =

[
−0.552679 −0.843293
0.869146 −0.967042

]
, thus the eigenvalues of µ are −0.967445 and

−0.552276,

– S∆ =

[
0.287585 0.99662
−0.201208 −0.964587

]
,

– A = −0.370332I2,
– initial values x1 = (−1.47982,−0.228103), x2 = (−0.406453, 1.24415), x3 =
(1.8491,−0.625385), x4 = (1.26989,−1.91216).

• Figure 6B (µ has one positive eigenvalue and one negative eigenvalue):

– S⊤
CSB =

[
−0.155283 0.542694
0.989821 0.260748

]
, thus the eigenvalues of µ are 0.846723 and

−0.741258,
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Figure 6: Tokens dynamic behaviors in two-dimensional case where the input/output projection
matrix S⊤

CSB has two positive eigenvalues (A), or one positive eigenvalue (B), or two negative
eigenvalues (C). We observe that, in cases (A) and (B), all tokens will diverge to infinity, and in case
(C), all tokens will converge to the origin.

– S∆ =

[
0.430263 0.555071
−0.654555 0.422737

]
,

– A = −0.573698I2,
– initial values x1 = (1.39902, 1.60628), x2 = (−0.342366,−0.845203), x3 =

(0.616744, 1.63846), x4 = (−0.185335,−1.34566).
• Figure 6C (µ has two positive eigenvalues):

– S⊤
CSB =

[
0.981721 −0.803219
−0.342524 0.605171

]
, thus the eigenvalues of µ are 1.39646 and

0.190429,

– S∆ =

[
0.653732 −0.228578
−0.960714 −0.495344

]
,

– A = −0.997408I2,
– initial values x1 = (1.1932,−0.702409), x2 = (−1.49159,−0.735305), x3 =
(1.21287,−0.816296), x4 = (−0.462258, 1.44549).

We observe from Figures 6C that all tokens converge to zero when µ has only negative eigenvalues.
While all tokens diverge to infinity when µ has at least one positive eigenvalue.

C EXPERIMENT DETAILS

In this section, we outline the experimental setup in detail. All experiments are conducted using a
server with four A100 GPUs.

C.1 AUTO-REGRESSIVE LANGUAGE MODELING

Dataset We utilize the WIKITEXT103 (Merity et al., 2016), created from Wikipedia articles. It
includes a training set of approximately 28,000 articles, amounting to 103 million words in total.
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Table 4: Hyperparameters configuration for Language Modeling task on WIKITEXT103.

Sequence Length 1024
Peak Learning Rate 0.0015

Momentum β1 = 0.9;β2 = 0.999
Weight Decay 0.25

Batch size 128
Learning rate warmup Linear

Learning rate scheduler Cosine decay
Dropout 0.25

Table 5: Hyperparameters configuration for Image Classification task on ImageNet-1K.

Optimizer AdamW
Peak Learning Rate 0.0008

Momentum β1 = 0.9;β2 = 0.999
Weight Decay 0.05

Batch size 512
Learning rate warmup Linear

Learning rate scheduler Cosine decay
Dropout 0.0

Each article is split into sections of about 3,600 words. The validation and test sets contain 60
articles each, with word counts of 218,000 and 246,000 respectively, combining for a total of roughly
268,000 words.

Parameterization for three scenarios: We outline the parameterization used to ensure the S6 layer
operates within the three scenarios described in Section 5.1. For the first two scenarios, we lever-
age the LDLT decomposition (Golub & Loan, 2013) to ensure the positive or negative definite
property of input-output matrix. Specifically, we parameterize SC = LT and SB = DLT , where
D is a diagonal matrix and L is a lower triangular matrix with diagonal values fixed at 1. In the
first scenario, the diagonal values of D are constrained to be positive and are parameterized as
D = diag(softplus(d′)). In the second scenario, this constraint is reversed by parameterizing
D = −diag(softplus(d′)), ensuring that the diagonal values are negative.

In the third scenario, both positive and negative eigenvalues are required, meaning that only complex
eigenvalues are excluded. To achieve this, we set SC = SB , which guarantees that S⊤

CSB is a
symmetric matrix, thus ensuring that the eigenvalues are real.

Training details We train a 130M parameters version of Mamba model (Gu & Dao, 2023) on
WIKITEXT103 for 25 epochs with GPT-2 tokenizer (Radford et al., 2019) and AdamW optimizer
(Loshchilov & Hutter, 2019). Other hyperparameters are set identically across three scenarios and
listed in Table 4.

C.2 IMAGE CLASSIFICATION

Dataset The ImageNet-1K dataset (Deng et al., 2009) is a widely recognized benchmark in the field
of computer vision, commonly used for training and evaluating models on the task of large-scale
image classification. It contains a collection of 1.28 million labeled training images and 50,000
validation images. Each image is labeled with one of 1,000 distinct classes, representing a broad
variety of objects, animals, scenes, and more, allowing the model to learn a rich and diverse range
of visual concepts.

Training details We train the tiny version (31.8M parameters) of MambaVision model
(Hatamizadeh & Kautz, 2024) with and without our token reordering technique. We follow the
training procedure in (Yang et al., 2021; Hatamizadeh et al., 2023; Hatamizadeh & Kautz, 2024)
and set the hyperparameters for two cases identical, which is listed in Table 5.
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D ADDITIONAL EXPERIMENTAL RESULTS

D.1 RE-ORDERING INPUT TOKENS

In this section, we conduct an additional experiment to assess the performance of our re-ordering
technique across tasks beyond the vision task reported in Section 5.2.

D.1.1 LANGUAGE MODELING

We first evaluate our method on the language modeling task using the WIKITEXT103 dataset, with
Mamba (Gu & Dao (2023)) as the baseline. The results in Table 6 show that our method effectively
enhances Mamba’s performance, achieving a 1.49 perplexity reduction.

Table 6: Test Perplexity on WIKITEXT103 (#)

Model Perplexity
Mamba (baseline) 16.46

Mamba + Token reordering 14.97

D.1.2 TEXT CLASSIFICATION

We now evaluate our method on text classification tasks using the IMDB (Maas et al. (2011)) and
AGNews (Zhang et al. (2015)) datasets, using Mamba (Gu & Dao (2023)) as baseline model. The
results in Table 7 indicate that our re-ordering technique further improves the baseline model’s
performance on these tasks.

Table 7: Test accuracy (") on IMDB and AGNews datasets

Model IMDB AGNews
Mamba (baseline) 88.46 92.08

Mamba + Token reordering 88.66 92.37

D.2 IMPLEMENTATION DETAIL AND COMPUTATIONAL COST

To provide a clearer understanding of our re-ordering technique, we include the pseudo-code for
calculating token importance scores and forwarding through a single SSM layer in Algorithm 1.
The computational overhead of our technique lies in steps 1, 2, 3, and 4, which require O(D2×L+
D × L+ L× L+D × L2) operations per input sequence.

Algorithm 1 Forwarding through a SSM layer with reordering

Require: Input sequence x ∈ RD×L, hidden matrix A ∈ RN×N , input matrix SB ∈ RN×D,
output matrix SC ∈ RN×D, step size matrix S∆ ∈ RD×D, learnable vector K ∈ RD×1,
hyperparameters τ and p of Softsort .

Ensure: Output sequence y ∈ RD×L

1: Calculate importance score for each token in sequencce, combined into a vector s =
(S∆x)

⊤K ∈ RL×1

2: Sort the score vector in decreasing order: ssorted = Sort(s) ∈ RL×1

3: Calculate the reordering matrix P = Softmax(− (ssorted1
⊤
L−1Ls⊤)p

τ ) {The power function is
applied element-wise and Softmax is applied row-wise}

4: Reorder the input xreordered = xPT ∈ RD×L

5: Calculate the output sequence with selective scan
y = SSM(A,SBxreordered, SCxreordered)(xreordered)

6: return y

Additionally, we present the empirical computational costs of our experiment in Section 5.2, bench-
marked on the ImageNet classification task using MambaVision-T (Hatamizadeh & Kautz (2024))
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as the baseline. Table 8 summarizes key metrics, including memory usage, training time per epoch,
parameter count, and FLOPS. The results show that our reordering technique introduces minimal
overhead, with only slight increases across all metrics.

Table 8: Comparision of computational cost on model training with MambaVision-T (Hatamizadeh
& Kautz (2024)) as Baseline.

Model #params Training time / epoch Memory / GPU FLOPS
Baseline 31.79M 308s 7232MB 8.93GFLOPs

+ reordering 31.79M 322s 7334MB 8.94GFLOPs

D.3 ROBUSTNESS ON WIKITEXT103 EXPERIMENT

To assess the robustness of our findings across three scenarios of input-output matrices on the WIKI-
TEXT103 (Merity et al. (2016)) language modeling task, we conduct the same experiment described
in Section 5.1 with three different random seeds for each scenario and report the mean and standard
deviation. The results in Table 9 suggest that our findings are robust to different random seeds.

Table 9: Test perplexity on WIKITEXT103 (#). Mean and standard deviation are computed over
three runs with different random seeds. Models with fewer negative eigenvalues in S⊤

CSB consis-
tently achieve lower perplexity.

Scenario Perplexity (#)
Negative eigenvalues 17.28± 0.02
Mixed eigenvalues 16.82± 0.02

Positive eigenvalues 16.66± 0.05

D.4 DYNAMIC OF STANDARD MAMBA ARCHITECTURE
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Figure 7: Token norm evolution in standard Mamba architecture without LayerNorm.
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Figure 8: Token norm evolution in standard Mamba architecture with LayerNorm.

In this section, we present an experiment to analyze the token dynamics in the standard Mamba
architecture in a practical setting. We evaluate three cases:

(a) There is no constraint on the input-output projection matrix.
(b) The input-output projection matrix is symmetric and has at least one positive eigenvalue.
(c) The input-output projection matrix is symmetric and has only negative eigenvalues.
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We first conduct simulations using a pretrained standard Mamba architecture without LayerNorm on
WIKITEXT103. In Figure 7, we visualize the evolution of token norms across the blocks. Figure 7
shows that tokens converge toward zero when the input-output projection matrix has only negative
eigenvalues, while tokens diverge when the input-output projection matrix has at least one positive
eigenvalue. Moreover, when there is no constraint on the input-output projection matrix, i.e., when
we do not force it to always belong to the class of positive definite or negative definite matrices,
the tokens’ dynamic behaviors become quite complicated. This figure suggests that our theoretical
analysis of the tokens’ dynamic behaviors in the standard Mamba model without LayerNorm might
still be valid.

In addition, we also conduct simulations using a pretrained standard Mamba architecture with
LayerNorm in a practical setting on WIKITEXT103. In Figure 8, we visualize the evolution of
token norms across the blocks. Figure 8 shows that the tokens’ dynamics in a full Mamba setting
can be quite complicated. When the input-output projection matrix has only negative eigenvalues,
the tokens do not necessarily tend toward zero. In particular, with LayerNorm in the Mamba archi-
tecture, our theoretical results on the tokens’ dynamics might no longer hold.

D.5 ABLATION STUDY

We perform an ablation study to analyze the effects of various components of Mamba in the token re-
ordering technique. We examine the following configurations, both with and without the reordering
technique:

(1) The full Mamba setting,
(2) Mamba setting with weight sharing across layers,
(3) Mamba setting without layer normalization,
(4) Mamba setting without the short convolution layer.

To ensure fairness, all configurations are standardized to approximately 129M parameters. The re-
sults, shown in Table 10, highlight the significant contributions of each component and the reorder-
ing technique to the model’s performance, emphasizing their collective importance in achieving
optimal results. Our reordering method consistently yields at least 1.49 PPL improvement in all
settings, which is significant for language modeling task with WikiText103.

Table 10: Ablation study on language modeling task with WikiText103.

Model With reordering Without reordering ∆
Mamba 14.97 16.46 1.49

Mamba + weight sharing 17.77 20.51 2.74
Mamba without LayerNorm 17.82 19.31 1.49
Mamba without Convolution 21.81 23.38 1.57
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