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ABSTRACT

Event-based cameras are attracting significant interest as they provide event
streams that contain rich edge information with high dynamic range and high tem-
poral resolution. Many state-of-the-art event-based algorithms rely on splitting
the events into several fixed groups, which are then aggregated into 2D frames
by different event representations. However, the fixed slicing method can result
in the omission of crucial temporal information, particularly when dealing with
diverse motion scenarios (e.g., high-speed and low-speed). In this work, to build
a BridgE from converting Event streams to Frames, we propose BEEF, a novel-
designed event processing framework capable of splitting events stream to frames
in an adaptive manner. In particular, BEEF integrates a low-energy spiking neu-
ral network (SNN) as an event trigger to determine the slicing time based on the
spike generation. To guide the SNN in firing spikes at optimal time steps, we
introduce the Spiking Position-aware Loss (SPA-Loss) to modulate the neuron’s
spiking state. In addition, we develop a novel Feedback-Update training strat-
egy that supervises the SNN to make precise event slicing decisions based on the
feedback from the downstream artificial neural network (ANN). The newly sliced
dataset by SNN is then used to finetune the ANN to improve the overall perfor-
mance. Extensive experiments demonstrate that our BEEF achieves state-of-the-
art performance in event-based object tracking and recognition. Notably, BEEF
provides a brand-new SNN-ANN cooperation paradigm, where the SNN acts as an
efficient, low-energy data processor to assist the ANN in improving downstream
performance, injecting new perspectives and potential avenues of exploration.

1 INTRODUCTION

Event-based cameras (Gallego et al., 2020) are bio-inspired sensors that capture event streams in
an asynchronous and sparse way. Compared with conventional frame-based cameras, event-based
cameras offer numerous outstanding properties: high temporal resolution (with the order of µs),
high dynamic range (higher than 120 dB), low latency, and low power consumption. Over recent
years, rapid growth has been witnessed in dealing with event data due to the inherent advantages of
event-based cameras, such as object tracking (Zhang et al., 2022a; 2021) and detection (Cao et al.,
2023b), depth estimation (Zhang et al., 2022b; Nam et al., 2022), and recognition (Sironi et al.,
2018; Baldwin et al., 2022). Events are usually processed by using frame-based frameworks due to
a large number of state-of-the-art deep learning models available (Fang et al., 2021; Zheng et al.,
2021). Before applying to various downstream tasks, the event stream must be split by groups and
then transformed into a dense representation for frame-based architectures.

In details, the process of event-to-frame conversion is mainly divided into two steps: (1) slicing
the raw event stream into multiple sub-event stream groups, and (2) convert these sub-event
streams into frames using various event representation methods. Much of the current research
focuses on the second step, aiming to refine event representation (Wang et al., 2019; Sironi et al.,
2018) techniques such as time surface and event spike tensor (Gehrig et al., 2019). Yet, this fo-
cus often overlooks the crucial first step of slicing, where issues such as non-uniformity in event
distribution in varying motion speeds remain unaddressed.

To address the gap happened in the slicing process, we delve into the limitations of traditional slicing
techniques. Common methods typically cut the event stream into several fixed groups. For exam-
ple, slicing event stream with fixed event count (Maqueda et al., 2018) or fixed time intervals (Zhu
et al., 2022; 2019). However, these fixed-group slicing techniques often lead to problems: they may
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Figure 1: Overview of our BEEF framework. The input events are first passed through an SNN,
and the event is determined to be sliced when a spike occurs. To find the accurate slicing time, the
neighborhood search method explores other time steps and feeds event candidates to the downstream
ANN model (e.g., object tracker or recognizer). The ANN model then offers feedback, which guides
the SNN in firing spikes at the optimal slicing time by supervising the membrane potential. Subse-
quently, the updated SNN generates a new event dataset and fine-tunes the ANN parameters. This
process is iterated to improve the overall performance.

result in insufficient information capture in high-speed motion scenarios or excessive redundancy
in low-speed conditions, failing to accurately capture the dynamic changes in event distribution.
Additionally, some hyper-parameters, e.g., the length of time interval, are highly-sensitive to the
event-to-frame process (proved in Appendix B) and must be carefully pre-determined. Although
some latest slicing method (Peng et al., 2023; Li et al., 2022) proposes to adaptively sampling the
events, there still exists the problem of hyper-parameter tuning which can not achieve a fully learn-
able and adaptable slicing process.

In order to address the above issues, we propose BEEF, a novel-design event processing framework
that can slice the event streams in an adaptive manner. To achieve this, BEEF utilizes an SNN as an
event trigger to dynamically determine the optimal moment to split the event stream. Our objectives
include: (1) training the SNN to spike at a specific time step, and (2) developing a training strategy to
identify the best slicing time for a continuous event stream during training. In our paper, we achieve
(1) through our newly introduced Spiking Position-aware Loss (SPA-Loss) function, which effec-
tively guides the SNN to spike at the desired time by manipulating the membrane potential. For (2),
we implement a Feedback-Update training strategy, where the SNN receives real-time performance
feedback from the downstream ANN model for supervision. An overview of our proposed frame-
work is depicted in Fig. 1. We evaluate the effectiveness of our proposed BEEF in two downstream
tasks: (i) event-based object tracking, which is strongly sensitive to temporal information and mo-
tion dynamics, and (ii) event-based recognition, which is highly related to event density. Extensive
experiments validate the effectiveness of the proposed approach.

To sum up, our contributions are as follows:

• We propose BEEF, a novel-designed event processing framework capable of splitting event
streams for generating event frames in an adaptive manner.

• We design the SPA-Loss to guide the SNN to trigger spikes at the expected time steps.
We then propose a novel Feedback-Update strategy that optimizes the event slicing process
based on the ANN feedback.

• Extensive experiments demonstrate that BEEF significantly improves the model perfor-
mance in event-based tracking and recognition with high processing speed (111 FPS on
GPU) and ultra-low energy consumption (0.022mJ per image). Notably, BEEF provides
a brand-new SNN-ANN cooperation paradigm, where the SNN serves as an efficient, low-
energy data processor to assist the ANN in improving downstream performance.
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2 BACKGROUND AND RELATED WORK

Event-based Cameras. They are bio-inspired sensors, which capture the relative intensity changes
asynchronously. In contrast to standard cameras that output 2D images, event cameras output sparse
event streams. When brightness change exceeds a threshold C, an event ek is generated containing
position u = (x, y), time tk, and polarity pk:

∆L(u, tk) = L(u, tk)− L(u, tk −∆tk) = pkC. (1)

The polarity of an event reflects the direction of the changes (i.e., brightness increase (“ON”) or
decrease (“OFF”)). In general, the output of an event camera is a sequence of events, which can
be described as: E = {ek}Nk=1 = {[uk, tk, pk]}Nk=1. With the advantages of high temporal reso-
lution, high dynamic range, and low energy consumption, event cameras are gradually attracting
attention in the fields of tracking (Zhang et al., 2021; 2023), identification (Baldwin et al., 2022) and
estimation (Nam et al., 2022).

Spiking Neural Network (SNN). SNNs are potential competitors to artificial neural networks
(ANNs) due to their distinguished properties: high biological plausibility, event-driven nature, and
low power consumption. In SNNs, all information is represented by binary time series data rather
than float representation, leading to significant energy efficiency gains. Also, SNNs possess power-
ful abilities to extract spatial-temporal features for various tasks, including recognition (Wang et al.,
2022; Zhou et al., 2022), tracking (Zhang et al., 2022a), detection (Kim et al., 2020) and image gen-
eration (Cao et al., 2023a). In this paper, we adopt the widely used SNN model based on the Leaky
Integrate-and-Fire (LIF, (Hunsberger & Eliasmith, 2015; Burkitt, 2006)) neuron, which effectively
characterizes the dynamic process of spike generation and can be defined as:

V [n] = βV [n− 1] + γI[n], (2)
S[n] = Θ(V [n]− ϑth), (3)

where n is the time step and β is the leaky factor that controls the information reserved from the
previous time step; V [n] is the membrane potential; S[n] denotes the output spike which equals 1
when there is a spike and 0 otherwise; Θ(x) is the Heaviside function. When the membrane potential
exceeds the threshold ϑth, the neuron will trigger a spike and resets its membrane potential to Vreset <
ϑth. Meanwhile, when β = γ = 1, LIF neuron evolves into Integrate-and-Fire (IF) neuron. We also
introduce a no-reset membrane potential U [n], meaning that the membrane potential does not reset,
but directly passes the original value to the next time step (i.e.U [n] = V [n] after Eq. 3).

3 MOTIVATION

Event cameras, which are bio-inspired sensors that exhibit remarkable advantages over RGB cam-
eras, have recently drawn great attention since they provide rich edge information with high dynamic
range (HDR) and high temporal resolution. However, existing event-based algorithms face several
challenges:

Challenge 1: Slicing the event stream in a fixed form neglects crucial spatio-temporal informa-
tion of events. Existing event-to-frame algorithms require slicing the event stream into N grids by
fixed method. However, due to the high temporal resolution and non-uniformity of event streams,
the information within each slice may be less informative or redundant. Meanwhile, the performance
of downstream tasks is highly sensitive and unstable to the number of N , as proven by Appendix B.

Challenge 2: Existing event-to-frame methods are completely unrelated to the downstream
tasks. The current event-to-frame method lacks a connection to downstream tasks, which constrains
the ability of downstream models to comprehend the raw data effectively.

In summary, converting event streams into frames remains intractable. Based on the aforementioned
analysis, we outline the motivations of our proposed approach:

Motivations:
1. Fixed-sliced event representation obscures crucial timing information.
— Dynamically slicing the event stream is an intuitive solution.

2. There is no connection between event-to-frame methods and downstream models.
— Establish a “downstream update, upstream feedback” strategy.
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4 OUR APPROACH: BEEF

In this section, we first introduce the process of event stream conversion to properly obtain the event
representation by introducing the concept of event cells (Sec. 4.1). Then, we introduce the adaptive
event slicing process by utilizing an SNN as the event trigger (Sec. 4.2). In Sec. 4.3, we introduce a
novel Spiking Position-aware Loss (SPA-Loss) to supervise the SNN to slice the event at the precise
time. Finally, we build a feedback-update (Sec. 4.4) strategy that allows the resulting events to be
correlated with the feedback from the downstream model, thereby improving overall performance.

4.1 CONVERTING EVENT STREAM TO EVENT CELL

Event streams are asynchronous data that can be represented as a set: E = {[xi, yi, ti, pi]}Ni=1 with
a time span of T (i.e., ti ∈ [t0, t0 + T ]). However, in software simulations, the event stream should
be converted into dense grid-like representations to comply with the input requirements of existing
deep learning frameworks. This means we must find a mappingM : E 7→ T between the set E and
a tensor T . Therefore, we first introduce the event cell:

Definition 1 (Event cell). Consider a small time interval δt, event cell is a single-grid event repre-
sentation in the form of: C±(x, y, t∗) = F(G±(x, y, t, {t ∈ [t∗, t∗ + δt]})), where F denotes an
aggregated method to stack the event representation G± (Appendix E) with t ∈ [t∗, t∗ + δt] into a
2D representation.

A whole event stream can be then represented by a list of N event cells, i.e.,
{C±(x, y, t0), C±(x, y, t0 + δt), ..., C±(x, y, t0 + (N − 1)δt)}, where N = T/δt and each cell
corresponds to a discrete time index n ∈ {0, 1, ..., N − 1}. In the following sections, we abbreviate
the event cell by C[n] for simplicity. It is important to note that: when δt is small enough, the num-
ber of event cells N tends to infinity. At this point, the entire cell sequence appropriately represents
the raw event stream, while simultaneously fulfilling the input requisites for the neural network.

4.2 ADAPTIVE EVENT SLICING PROCESS

Recalling the event camera principle (Eq. 1) and spiking neuron mechanism (Eq. 3), both are brain-
inspired processes that continuously respond to events/spikes upon reaching a threshold (C/Vth),
and are fundamentally consistent as well as brain-inspired. This motivates us to employ spiking
neural networks to efficiently process event streams.

Hence, we propose BEEF-Net, an SNN-based event processer, aiming for dynamically slicing the
event stream that can satisfy our pre-set expectations, e.g., recognition accuracy improvement. In-
corporating with BEEF-Net, we now describe the adaptive event slicing process:

Considering an event stream E , we first convert E into a list of time-continuous event cells. We
choose F as sum operation to aggregate cell into C[n] ∈ R2×H×W . Event cells are then continu-
ously entered into BEEF-Net through a loop operation. During forward propagation, the features of
the last hidden layers (hL−1) are finally mapped to a single spiking neuron to activate spikes:

Sout = LIF(SNNFC(h
L−1)). (4)

Once the spiking neuron generates a spike (i.e., Sout = 1) at time ns, we immediately accumulate
the event cells from the time following the last spike until the current spike to get a new dynamic
cell: D =

∑ns

n=0 C[n].
Event Slicing Rule: The slice of the event stream is determined by the state (excited/resting) of
the BEEF-Net’s spiking neuron. Serving as a dynamic event trigger, BEEF-Net promptly decides to
split events upon spike generation; conversely, it maintains continuous event input.

4.3 SPIKING POSITION-AWARE LOSS

In this section, we propose the Spiking Position-aware Loss (SPA-Loss), which contains two parts:
(1) membrane potential-driven loss (Mem-Loss) is used to directly guide the spiking state of the
spiking neuron at a specified timestamp , and (2) linear-assuming loss (La-Loss), which is designed
to resolve the dependence phenomenon between neighboring membrane potentials, allowing the
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Figure 2: (a) ‘Hill effect’ in adaptive slicing process; (b) Impact of hyperparameter α settings on
TransT tracker (Chen et al., 2021) and (c) DiMP tracker (Bhat et al., 2019).

neuron to fire spike at a more precise time. Moreover, we introduce a (3) dynamic hyperparameter
tuning method to avoid the experimental bias caused by the manual setting of hyperparameters.

4.3.1 MEMBRANE POTENTIAL-DRIVEN LOSS

As mentioned in the previous section, the slice position of event is determined upon the spike oc-
currence. The challenge now lies in directing the SNN to trigger a spike precisely at the optimal
position, once the label for this optimal slicing position is provided (in Sec. 4.4). Consider consec-
utive event cells as inputs starting from the previous spiking time, suppose we expect SNN to slice
the event at n∗, i.e., a spike Sout is triggered at n∗. This corresponds to the membrane potential of
the spiking neuron needing to reach the threshold Vth at n∗, which inspired us to guide the spike
time by directly giving the desired membrane potentials. However, membrane potential returns to
the resting state immediately after the occurrence of a spike, which may result in inaccurate guid-
ance at later moments (Appendix F). Thus, we choose to supervise the no-reset membrane potential
U [n] (Eq. 16). The membrane potential-driven loss is defined as:

LMem = ||U [n∗]− (1 + α)Vth||22, (5)

where α ≥ 0 is a hyper-parameter to control the desired membrane potential to exceed the threshold.
However, an excessively high α may directly induce a premature spike in the neuron, thereby influ-
encing the membrane potential state at the targeted time step. We provide a proposition to address
this problem:

Proposition 1. Suppose the input event cell sequence has length N , desired spiking time is n∗

(n∗ ∈ {0, 1, ..., N}), the membrane potential at time n∗ satisfying the constraints:

Vth ≤ U [n∗] ≤ max(βVth + γI[n∗], Vth), (6)

where I[n∗] is the input synaptic current from Eq.2. Then the spiking neuron fires a spike at time n∗
and does not excite spikes at neighboring moments.

The proof is provided in the Appendix. Based on the proposition, we modify the loss function into:

LMem = ||U [n∗]−
(
(1− α)Ulower + αUupper

)
||22, (7)

where Ulower = Vth and Uupper = max(βVth + γI[n∗], Vth) denote the lower and upper bounds of
the U [n∗], respectively; α ∈ [0, 1] balances the desired membrane potential U [n∗] between Ulower

and Uupper (Appendix H). Experiments in Sec. 5.1 demonstrate that Mem-Loss is able to supervise
the BEEF-Net to determine the slicing of the event flow at a specified timestamp.

4.3.2 LINEAR-ASSUMING LOSS

However, only using Mem-Loss is unable to guarantee that the spiking neuron can trigger spikes at
any expected timestamp. We have the following observations.

Observation 1 (Hill effect). Suppose there exists a situation where S[n] = 1 and U [n] ≥ U [n+1]. If
the neuron is expected to activate a spike at time n+1, U [n+1] will be driven to reach the threshold
through the Mem-Loss. Nonetheless, the supervised neuron still exhibits U [n] ≥ U [n+ 1], causing
an early spike at time n.
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As illustrated in Fig. 2(a), if U [n] ≥ U [n + 1] exists, this membrane potential gap is still inher-
ited after the supervision. In this case, when the later membrane potential is guided to exceed the
threshold, the earlier membrane potential reaches the threshold sooner and turns the neuron into the
resting state. This poses challenges in obtaining a second spike at the later moment.

Therefore, we expect the later membrane potential to increase monotonically with the time step
to reverse the mountain range effect. Here we use the simplest linear monotonically increasing
assumption to construct the loss function:

LLa =

{
||U [ns]− Vth

ns

n∗
||22, if U [ns] ≥ U [n∗] and ns < n∗;

0, otherwise.
(8)

We expect the membrane potential at ns to reach ns

n∗Vth in order for the latter membrane potential at
the n∗ to reach Vth in a linearly increasing form. More explanations are provided in Appendix H.1.

Combined with Mem-Loss and La-Loss, we defined the SPA-Loss, which guides the adaptive event
slicing process in subsequent experiments:

LSPA = LMem + LLa. (9)

4.3.3 DYNAMIC HYPERPARAMETER TUNING

Although controlling the SNN to spike at a desired location can be achieved through the combination
of Mem-Loss and La-Loss, the utilization of varying α values (Eq. 7) may result in significant
fluctuations in experimental results. We have the following observation.

Observation 2. The larger the α, the earlier the BEEF-Net tends to fire spikes; and vice versa.

A larger α in Eq. 6 implies a higher pre-momentary membrane potential, which results in an earlier
spike. Taking the larger-α scenario in Fig. 2(b), if BEEF-Net is expected to activate a spike at a later
time, the larger α prevents the actual spike from being delayed. Consequently, we need to decrease
α, causing the expected spike time to shift earlier. This concludes that the update direction of α
should be consistent with the update direction of the desired spiking index.

Observation 3. A fixed α leads to significant variations in performance across different tasks.

As illustrated in Fig. 2(b) and (c), the same α varies significantly on different downstream models,
which makes it difficult to set the hyperparameter alpha in advance. Therefore, we should dynami-
cally tune the value of α based on different tasks.

To address the above issues, we design a dynamic hyper-parameter tuning method and update α by
Alg. 1. More details are provided in Appendix H.2.

4.4 FEEDBACK-UPDATE STRATEGY THROUGH SNN-ANN COOPERATION

Based on the methods proposed in the previous sections: if the desired trigger time n∗ is given,
BEEF-Net is able to accurately accomplish the event slicing under the guidance of the SPA-Loss
function. However, there still exists a problem that the conventional event-to-frame approach is
independent of downstream performance. Hence, we propose a feedback-update strategy that en-
ables the SNN to slice events when the downstream ANN model achieves optimal performance. By
receiving real-time feedback from the downstream model and updating n∗, this strategy ultimately
enhances task performance.

Particularly, when BEEF-Net triggers a spike at time ns, it generates a spike output sequence
S = [0, ...0, 1, 0, ...],where 1 is at ns-th. We first perform a neighborhood search to obtain
2d + 1 candidate event cells within range [ns − d, ns + d]: {C[ns − d], ..., C[ns + d]}, where
C[ns + i] =

∑ns+i
n=0 C[n]. We then choose a downstream modelM (e.g., object tracker or recog-

nizer) and input candidate event cells into it to obtain feedback yk:

yk =M(C[ns − d])⊕ ...⊕M(C[ns + d]), (10)

whereM(C[ns−i]) returns the model output loss and⊕ concatenates these losses into yk ∈ R2d+1.
We choose the model loss as the feedback since it directly reflects the quality of inputs. We can then
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Algorithm 1: Feedback-Update Training Strategy
Input: SNN model, pretrained ANN model, ANN training datasetDA, SNN training datasetDS , training epoch Etrain, epoch to

start ANN finetuning ef , α learning rate η.
for all e = 1, 2, ...Etrain epoch do

for all event batch di = d1, d2, ...dNs inDS do
Feed di along the time axis into SNN until it spikes at time step ns; // Eq. 4
Generate event candidates and feed into ANN to get feedback; // Eq. 11
Calculate loss function LSPA = LMem + LMono; // Eq. 9
Backpropagate and update SNN parameters;

end
α← α− 2 · η

∑Ns
i (n∗i − ni

s)/Ns; // Update α per epoch
if e > ef :

SplitDA intoD′
A by adaptive event slicing process based on SNN; // Sec. 4.2

Finetune ANN parameters onD′
A;

end

generate the desired spike index n∗ through:

n∗ = argmax
i

fnorm(yk[I]), (11)

where the feedback is normalized by max-min normalization fnorm; argmax extracts the index with
the best feedback, which in turn guides the dynamic slicing process using SPA-Loss. At the same
time, the ANN is being updated by feeding the new events after slicing, thus forming a continuous
SNN-ANN cooperation process. We summarize the feedback-update strategy as follows:

Feedback-Update Strategy. The ANN model provides real-time feedback to the adaptive event
slicing process, guiding BEEF-Net towards the optimal cutting point for the input events. Simulta-
neously, the ANN fine-tunes itself based on new events, creating a dynamic SNN-ANN update loop:
SNN slicing new events−−−−−→ ANN updating feedback−−−−→ SNN updating & slicing new events−−−−−→ .... This strategy
establishes a connection between raw data and the downstream model.

5 EXPERIMENTS

To evaluate the effectiveness of our proposed method, we set up two-level experiments. In the
beginner’s arena, we expect the SNN to find the exact slicing time with the simulated event inputs.
In the expert’s arena, we conduct experiments on event-based single object tracking (SOT) on the
FE108 dataset (Zhang et al., 2021) and image recognition on DVS-Gesture (Amir et al., 2017) and
N-Caltech101 (Orchard et al., 2015). Details of experiment settings are presented in the Appendix.

5.1 BEGINNER’S ARENA: LEARNING EVENT SLICING IN SIMPLE TASKS

We first conduct some entry-level tasks in order to validate the effectiveness of SPA-Loss. We set
up the task: Input N randomized event cells, expect BEEF-Net to slice at a specified time step n∗

and there exists a certain probability of interfering with BEEF-Net to slice at other time steps.

We compare our loss function with common mean square error (MSE-Loss) and cross-entropy loss
(CE-Loss). We set the time step within the range [1, 30] and the max number of iterations as 800. We
utilize a lightweight convolutional SNN (2.02M) with random initialization. As depicted in Fig 3(a),
our proposed SPA-Loss successfully supervises the SNN to activate spikes at the desired time steps.
In particular, SPA-Loss requires only a small number of iterations (<400) to supervise the SNN to
fire spikes at desired time steps. In contrast, MSE-Loss can only achieve supervision at a certain
time step, and CE-Loss cannot even accomplish the task. In addition, using both Mem-Loss and
La-Loss yields smoother results compared to using Mem-Loss alone. To summarize, the beginner’s
arena preliminarily tests the effectiveness of our proposed loss functions (including Mem-Loss and
La-Loss) and paves the way for subsequent experiments.

5.2 EXPERT’S ARENA: MASTERING ADAPTIVE EVENT SLICING WITH SNN-ANN
COLLABORATION

After a successful challenge in the beginner’s arena, we move on to the expert arena. Here we use
BEEF to adaptively process the event data on complex downstream tasks:
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Figure 3: (a) Experiments on comparing different loss functions on a simple event slicing task. Our
proposed Mem-Loss and La-Loss require only a small number of iterations to supervise the SNN to
activate spikes at the desired time steps; (b) Experiments on different hyperparameter settings. Our
dynamic tuning method can stably converge towards the optimal spiking time. In contrast, using a
fixed α results in unstable training and challenges in finding the optimal point.

Event-based Object Tracking. Since the tracking task is highly sensitive to temporal information,
dynamic event slicing is of great importance. Tab. 3 shows the quantitative comparisons of dif-
ferent state-of-the-art trackers. It can be observed that the tracking performances under the BEEF
method have a significant improvement in terms of representative success rate (RSR), representative
precision rate (RPR), and overlap precision (OP). For instance, TransT ’s performance on OP0.50

and OP0.75 improved by 4.7% and 8.4% compared to its original result under the low light scenario.
When compared to results on a fixed dataset (the number of fixed datasets is aligned with the number
of datasets dynamically cut using BEEF to ensure a fair comparison), our method achieves favorable
gains in the overall RSR, i.e., 62.4 vs. 51.0.

Table 1: Quantative comparison on DVS-Gesture
and N-Caltech101. random and fix denote that the
input event frames are randomly sliced and fixed
sliced, respectively. Instead, our BEEF adaptively
sliced the event stream into frames.

Method DVS-Gesture N-Caltech101
Input Type Random Fix Ours Random Fix Ours
ResNet-18 93.06 93.40 94.79 77.80 73.37 79.86
ResNet-34 95.14 93.40 96.18 78.77 76.08 82.54

Event-based Recognition. We also conduct
experiments in event-based recognition to eval-
uate the effectiveness of our proposed method.
As depicted in Tab. 1, our method has a signifi-
cant improvement over the fixed-sliced method,
with an accuracy improvement of 2.78% and
6.46% by using ResNet-34 in DVS-Gesture and
N-Caltech101, respectively. To verify that the
results of our adaptive slicing method are not
biased due to randomness, we add the random-slice baselines for comparison, in which the event
stream is randomly sliced into event frames and fed into the ANN for training. Our method also
yields better performance compared with the random-slice results.

Visualization of Adaptive Event Slicing. We visualize the tracking results to demonstrate that
the dynamic slicing method is able to adapt to various motion scenarios. As shown in Fig. 9, our
method obtains better tracking performance compared to fixed event inputs, i.e., the position of the
prediction box is more accurate. Additionally, our dynamic event slicing method can achieve (1)
edge enhancement and (2) redundancy removal to refine the event input under different tracking
scenarios. However, the fixed-slice approach adopts the same slicing strategy for each event stream,
leading to performance degradation.

Table 2: Comparison of Efficiency and Speed.
ACs represent accumulated spike operations,
while MACs indicate multiply-accumulate opera-
tions. FPS metrics are based on GPU processing.

Models ACs (G) MACs (G) Energy (mJ) FPS (Hz)
SNN 0.0059 0.0036 0.022 111

ANN Tracker 0 7.81 35.926 39

Analysis of Energy Consumption and Pro-
cessing Speed. We evaluated the energy con-
sumption and processing speed on GPU for
both the SNN and ANN Tracker models during
dynamic event slicing (detailed method in Ap-
pendix J). As illustrated in Tab. 2, compared to
the 35.926 mJ required by the ANN Tracker.
Moreover, the SNN model has a significantly
lower energy consumption at 0.022 mJ per image, and processes at a speed of 111 FPS on the
GPU, which is approximately 2.85 × faster than the ANN Tracker’s speed. Consequently, our
BEEF model can facilitate real-time dynamic event slicing with negligible energy consumption.
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Table 3: Quantitative comparison on FE108 in terms of representative success rate (RSR), repre-
sentative precision rate (RPR), and overlap precision (OP). There are four challenging scenarios,
including high dynamic range (HDR), low light (LL), fast motion with and without motion blur
(FWB & FNB) and all testing datasets (ALL). [method]+BEEF represents the results based on our
adaptive event to frame framework and the results of [method] are tested on the original fixed-sliced
event dataset from (Zhang et al., 2021). To ensure a fair comparison, fix event indicates that the
model is tested on a dataset of fixed-sliced event frames, where the number of fixed event frames is
the same as the number of dynamically sliced event frames by using BEEF.

Methods HDR LL FWB FNB ALL
RSR OP.50 OP.75 RPR RSR OP.50 OP.75 RPR RSR OP.50 OP.75 RPR RSR OP.50 OP.75 RPR RSR OP.50 OP.75 RPR

SiamRPN (Li et al., 2018) 15.3 16.9 6.1 21.6 10.1 8.3 1.4 14.5 26.2 32.1 6.1 44.1 33.2 42.9 11.5 51.9 21.8 26.1 7.0 33.5
ATOM (Danelljan et al., 2019) 36.6 41.8 14.4 56.0 28.6 29.1 5.8 45.0 66.8 89.6 32.6 96.7 57.1 71.0 28.0 88.6 46.5 56.4 20.1 71.3
SiamFC++ (Xu et al., 2020) 15.3 15.0 1.3 25.2 13.4 8.7 0.8 15.3 28.6 36.3 6.0 48.2 36.8 42.7 7.4 63.1 23.8 26.0 3.9 39.1
SiamBAN (Chen et al., 2020) 16.3 16.4 3.9 26.6 15.5 14.8 2.3 26.5 25.2 26.3 5.8 46.7 32.0 39.6 9.1 51.4 22.5 25.0 5.6 37.4
KYS (Bhat et al., 2020) 15.7 14.5 5.2 23.0 12.0 8.0 1.1 18.0 47.0 63.9 14.8 73.3 36.9 44.5 15.2 57.9 26.6 30.6 9.2 41.0
CLNet (Dong et al., 2020) 30.0 33.5 9.6 48.3 13.7 6.0 0.9 23.6 52.9 71.2 23.3 80.3 40.8 46.3 14.2 67.7 34.4 39.1 11.8 55.5
DiMP (Bhat et al., 2019) 41.8 50.0 17.9 62.7 45.6 52.8 11.2 69.5 69.4 94.7 37.1 99.7 60.5 75.6 29.3 93.2 52.6 65.4 23.4 79.1
DiMP (fixed event) 53.3 68.2 21.4 81.6 67.6 86.3 43.1 95.0 49.7 45.4 5.88 80.5 49.6 59.4 23.7 75.3 53.8 64.3 19.5 82.4
DiMP+BEEF 52.3 65.5 21.4 78.7 69.4 92.4 43.2 97.5 52.4 64.8 26.6 78.8 62.2 81.0 21.8 97.2 56.0 71.4 23.3 85.1
PrDiMP (Danelljan et al., 2020) 44.3 52.8 19.6 66.3 44.6 48.2 8.9 69.5 67.0 89.9 33.6 99.7 60.6 75.8 29.7 93.3 53.0 65.0 23.3 80.5
PrDiMP (fixed event) 41.2 49.8 18.4 66.1 42.7 45.2 12.5 87.1 62.4 85.8 21.3 90.4 47.6 58.3 18.5 77.0 48.0 61.2 19.2 78.6
PrDiMP+BEEF 49.1 59.0 15.6 76.0 69.7 94.0 41.8 94.7 63.2 86.0 22.4 91.7 51.7 60.4 19.7 81.6 54.9 68.4 19.8 83.9
TransT (Chen et al., 2021) 55.9 71.0 24.6 84.5 66.8 88.9 34.3 96.5 74.1 98.6 54.0 99.9 55.8 69.2 24.9 85.4 59.6 76.4 29.0 88.8
TransT (fixed event) 51.4 67.8 11.1 81.2 63.2 80.2 28.3 89.3 41.5 28.0 2.50 57.7 50.6 57.9 12.7 78.9 51.0 59.0 12.0 78.8
TransT+BEEF 57.7 75.2 28.1 82.6 70.7 93.6 42.7 99.0 74.9 97.7 61.1 98.6 58.7 75.6 29.6 84.6 62.4 81.2 34.1 88.9

Edge Enhancement Redundancy Removal

BEEF(Ours)Baseline GT

Figure 4: Visualization on FE108 dataset. The white box denotes the zoom-in area. Our adaptive
event slicing method provides better tracking performance than fixed counterparts while enabling
edge enhancement and redundancy removal.

5.3 EVALUATION OF THE DYNAMIC HYPERPARAMETER TUNING

As described in Sec. 4.3.3, the dynamic hyperparameter tuning method can solve the problems of
spiking moment offset and maintain experimental stability. Here we use different α settings in
tracking experiments to study the effect of hyperparameters. Fig. 3 shows that the fixed α setting
does not allow the spiking time step to reach the desired time step accurately, while our dynamic α
tuning allows BEEF-Net to spike at the desired time step, leading to a better event-slicing process.

6 CONCLUSION AND FUTURE WORK

In this work, we proposed BEEF, a novel event processing framework that adaptively splits event
streams into frames. BEEF utilized a spiking neural network (SNN) as an event trigger, which
determines the appropriate slicing time according to the generated spikes. To achieve accurate slic-
ing, we designed the Spiking Position-aware Loss (SPA-Loss) function which guided the SNN to
trigger spikes at the desired time step by controlling the membrane potential value. In addition,
we proposed a Feedback-Update training strategy that allows the SNN to make accurate event slic-
ing decisions based on the ANN feedback. Extensive experiments have shown the effectiveness of
BEEF in achieving top-tier performance in event-based object tracking and recognition tasks. In
the future, we will assess BEEF’s suitability for other event-based tasks, and devise more efficient
training strategies for the SNN-ANN cooperative framework to optimize real-time processing.
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Appendix
A DETAILS OF OUR MOTIVATIONS

To clarify the motivation behind our dynamic event stream slicing algorithm, this section tells the
details.

A.1 MOTIVATION FOR PROPOSING A DYNAMIC EVENT STREAM SLICING ALGORITHM

The process of event-to-frame conversion is mainly divided into two steps: Step 1. Slice the raw
event stream into multiple sub-event stream, and Step 2. convert these sub-event streams into
frames using various event representation methods. While much work has focused on optimizing
event representation (Step 2) to extract better event information, including time surface and EST,
they do not address the issues arised with fixed slicing (e.g., resulting non-uniform event in scenarios
with changing motion speed). Despite event slicing being a small part of the overall pipeline, it
is a critical point. This is because the event stream is very sensitive to slicing, and the model
performance fluctuates very much for different slicing methods, as proved by extensive experiments
in Appendix B.

To better address this issue, we introduced the dynamic slicing framework BEEF. Meanwhile, BEEF
is guided by downstream task feedback to ensure that the new sub-streams could enhance down-
stream task performance.

A.2 MOTIVATION FOR FOR USING SNN AS A SLICING TRIGGER

The reason why we choose SNN as the event slicing trigger is twofold:

• Utilizing SNNs on neuromorphic hardware for processing event streams is low-energy and
low-latency (Davies et al., 2018; Akopyan et al., 2015).

• Deployed on neuromorphic hardware, SNNs can process event streams asyn-
chronously (Roy et al., 2023; Viale et al., 2021; Yu et al., 2023), conserving energy when
there is no data input—a capability that GPUs, operating synchronously, lack.

Due to the aforementioned reasons, there is a considerable amount of research (Hagenaars et al.,
2021; Yao et al., 2021; Zhu et al., 2022) employing Spiking Neural Networks (SNNs) for event data.
Although these SNNs are simulated on GPU platforms, the models resulting from such simulations
could be deployed on neuromorphic hardware.

A.3 CONTRIBUTION FOR USING SNN AS A SLICING TRIGGER

We propose a new cooperative paradigm where SNN acts as an efficient, low-energy data processor
to assist the ANN in improving downstream performance. This is a brand-new SNN-ANN cooper-
ation way, paving the way for future event-related implementation on neuromorphic chips.

B SENSITIVITY ANALYSIS OF FIXED EVENT SLICING METHOD

To demonstrate that events are sensitive to slicing by fixed methods, and to emphasize the importance
of proposing a dynamic event slicing approach, we have conducted a total of 60 experiments with
different models to investigate the impact of different slicing techniques and different numbers of
slices on the performance in downstream tasks.

In our experiment, we employed two fixed slicing methods: (1). Slicing with a fixed number of
events, and (2). Slicing with a fixed duration. N denotes the number of resulting event slices.
Experimental results are detailed as follows in Tab. 4 and Fig. 5.

The results indicate significant fluctuations (large variance) in downstream performance based on
the slicing method and the number of slices used. We believe this addition effectively demonstrates
the sensitivity of event streams to slicing techniques, confirming the need for our motivation to
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N-Caltech101 N 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 Mean Var
ResNet18 Fixed Count 70.96 75.26 75.39 75.30 76.09 73.95 74.09 73.80 76.40 75.39 75.45 73.60 71.94 71.01 71.17 73.98 3.33
ResNet18 Fixed Time 62.90 72.64 76.38 74.48 74.91 73.70 74.30 74.69 76.95 74.75 74.46 74.42 71.61 71.52 69.69 73.16 10.80
ResNet34 Fixed Count 72.19 75.55 76.98 78.22 77.14 77.40 76.78 76.90 78.14 77.06 76.91 74.85 74.76 76.91 73.07 76.19 2.90
ResNet34 Fixed Time 65.42 75.92 78.29 78.20 78.48 76.22 77.76 76.57 75.94 76.80 76.61 75.91 75.11 74.76 74.19 75.74 9.15

Table 4: The sensitivity analysis of fixed event slicing on N-Caltech101. The results demonstrate
that the event is sensitive to the fixed slicing method (slicing by fixed time or event count), thereby
affirming the need for proposing a dynamic slicing method.
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Figure 5: Visualization of sensitivity analysis on N-Caltech101 dataset. The fluctuations in accuracy
for different numbers of sliced event with different fixed slicing methods are significant, demonstrat-
ing that events are very sensitive to fixed slicing methods.

propose dynamic slicing of event streams. Additionally, the accuracy achieved using the dynamic
slicing method (82.54% by ResNet34) surpasses that of any fixed slicing approach (with the highest
being 78.48%), further substantiating the efficacy of the dynamic method in our study.

C ILLUSTRATION OF BEEF VS. FIXED SLICING METHOD

In order to more intuitively show the difference between our dynamic event slicing method and the
traditional fixed slicing method, we specifically illustrates these methods through Fig. 6.

Fig. 6 (a) denotes that each resulting sliced event has the same duration, and Fig. 6 (b) denotes that
the number of event points contained in each resulting sliced event is the same. Since event stream
are usually unevenly distributed, a fixed cutting method often leads to non-uniform event information
(e.g., in scenarios with changing motion speed). In contrast, our approach decides the optimal slice
position through feedback from downstream ANN by using an SNN as the event slicing trigger.

D DIFFERENCE BETWEEN EVENT SLICING AND EVENT REPRESENTATION

It is worth noting that our work focuses on the slicing of the event stream rather than focusing
on event representation. Event representation refers to the process of event information extraction
that is performed after the event stream has been sliced into sub-event stream, and the resulting event
representation meets the neural network input requirements. Thus, our dynamic slicing process and
event representation can be used at the same time, either better slicing or representation method
benefits the feature extraction with neural network, thus improving performance.

To validate the effectiveness of our slicing approach, we supplement the event-based recognition task
below. We compare the downstream performance of three different event representation methods
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Figure 6: Illustration of our adaptive slicing method BEEf compared with traditional fixed slicing
methods. Both (a) slicing by fixed duration and (b) slicing by fixed event count are traditional event
slicing methods. Our BEEF (c) can adaptively decides the optimal slicing position through ANN-
SNN cooperation.

(including Event Frame (Maqueda et al., 2018), Event Spike Tensor (EST (Gehrig et al., 2019)) and
Voxel Grid (Zhu et al., 2019)) on the DVSGesture dataset under fixed slicing and dynamic slicing
method in Tab. 5.

DVSGesture Event Frame Event Spike Tensor Voxel Grid
Fix Duration 93.75% 93.75% 88.54%
Fix Event Count 93.06% 94.79% 88.19%
BEEF(ours) 94.79% 95.49% 89.24%

Table 5: Experiments on different event representations with fixed/dynamic slicing methods. Our
BEEF yields significant improvement when using different event representation methods.
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E DEFINITION OF GENERAL EVENT REPRESENTATION

Based on the definition of event field from (Gehrig et al., 2019), we here define a general version of
event representation as a mappingM : E 7→ T between the set E and a tensor T :

Definition 1 (General event representation). Based on a measurement 1condition, general event
representations are grid-like tensors defined in continuous space and time:

G±(x, y, t, condition) =
∑

ek∈E±

1condition(x, y, t)δ(x− xk, y − yk)δ(t− tk), (12)

where ± denotes the event polarity; 1condition sets the specific approach of representation to each
event, e.g., condition = {

∑
ek

= M} denotes the number of event points in each grid-like tensor is
fixed to M , i.e., slicing event stream E by event count. G± are grid tensors with x ∈ {0, 1, ...,W −
1}, y ∈ {0, 1, ...,H − 1}, and t ∈ {t0, t0 + ∆t, ..., t0 + B∆t}, where t0 is the first time stamp,
∆t is the bin size determined by the representation condition, and B is the number of temporal
bins. Eq. (12) converts raw event into grid-like representations by a Dirac pulse in the space-time
manifold.

However, such event representation is imprecise due to the fact that the process of 1condition is fixed,
leading to both spatial and temporal information loss. The main objective of this study is to solve
the problem of fixed slicing of the event stream and to provide a dynamic segmentation scheme.
To closely simulate the asynchronous input process of the event stream, we hence introduce the
definition of event cell in Sec. 4.1.

F REASON FOR USING NO-RESET MEMBRANE POTENTIAL

We first recall the definition of original membrane potential V [n]:

V [n] = βV [n− 1] + γI[n], (13)
S[n] = Θ(V [n]− ϑth), (14)
V [n] = V [n](1− S[n]) + Vreset, (15)

where the the neuron will reset its membrane potential to Vreset < ϑth at time n once it trigger a
spike S[n]. As described in Sec. 4.3, we choose to guide the membrane potential without reset stage
(Eq. 15) U [n] (or named no-reset membrane potential), instead of the normal membrane potential
V [n]. The no-reset membrane potential is defined similarly as V [n]:

U [n] = βU [n− 1] + γI[n], (16)
S[n] = Θ(U [n]− ϑth), (17)

but the neuron does not reset its membrane potential in this condition. The reason behind this choice
is that the reset process will affect the guidance of the V [n]. Specifically, suppose we expect the
neuron to fire a spike at n + 1, but if a spike just occurs at time n, the membrane potential V [n]
will reset to Vreset, consequently leading to a small value for V [n + 1]. Based on the SPA-Loss
function, V [n + 1] would then be guided by a large expected membrane potential value (above
the threshold). However, this would incorrectly guide the membrane potential after resetting to the
desired membrane potential, rather than guiding the true membrane potential as intended. Therefore,
we choose to use the no-reset membrane potential U [n] to effectively guide the spiking neuron to
fire spike at the specified location.

G PROOF OF PROPOSITION

Proposition 1. Suppose the input event cell sequence has length N , desired spiking time is n∗

(n∗ ∈ {0, 1, ..., N}), the membrane potential at time n∗ satisfying the constraints:

Vth ≤ U [n∗] ≤ max(βVth + γI[n∗], Vth), (18)

where I[n∗] is the input synaptic current from Eq.2. Then the spiking neuron fires a spike at time n∗
and does not excite spikes at neighboring moments.

Proof. Here we consider two conditions that affect the spiking state at moment n∗:
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(1) Membrane potential at time n∗ is too small to emit a spike.
(2) Membrane potential at time n∗ is too large, affecting neighboring moment spiking states.

To satisfy the condition (1), we only need to guide the membrane potential U [n∗] to reach the
threshold Vth at time n∗, thus the upper bound of U [n∗] = Vth. In condition (2), we need to
consider the state of the membrane potential at n∗− 1 and n∗+1. We first exhibit the accumulation
rules of membrane potential:

U [n∗] = βU [n∗ − 1] + γI[n∗] (19)
However, if U [n∗] is too large, this may cause the membrane potential U [n∗ − 1] to exceed the
threshold and occur spike generation prematurely, and then the membrane potential will immediately
drop to a reset value (Eq. 15). This will leave the membrane potential U [n∗] at a very low value,
making it difficult to trigger a spike. Hence, we should control the membrane potential not to exceed
the threshold value at moment n∗ − 1:

U [n∗ − 1] =
(U [n∗]− γI[n∗])

β
≤ Vth (20)

⇒ U [n∗] ≤ βVth + γI[n∗] (21)
Thus, the upper bound of U [n∗] = βVth + γI[n∗]. However, if the leaky factor β is small, there
exists a possibility that βVth + γI[n∗] ≤ Vth, thus we set the upper bound of U [n∗] as max(βVth +
γI[n∗], Vth).

Next, we consider whether the spike at time n∗ affects the pulse state at time n∗ + 1 Since the
neuron at the n∗ moment has already completed the spike generation before accumulating U [n∗+1].
Therefore the membrane potential at n∗ does not affect the neuronal state at n∗ + 1. In sum, if the
membrane potential satisfies: Vth ≤ U [n∗] ≤ max(βVth + γI[n∗], Vth), the spiking neuron fires a
spike at moment n∗ and does not excite spikes at neighboring moments.

H MORE EXPLANATIONS IN MEMBRANE POTENTIAL-DRIVEN LOSS

In Sec. 4.3.1, we explore the range of the expected membrane potential U [n∗] and ensure its rational-
ity by proposition 1 (proved in Appendix. G). To understand the setting of the membrane potential
more easily, we visualize the boundary cases below:

Vth

n*…ns0

Time Step

Raw Mem.

Supervised Mem.

n*
ns Vth

Vth

Linear Increasing 
Assumption

…..Vth

n n+1n-1n-20

Time Step

Raw Mem.

Supervised Mem.

Ulower

Uupper

Desired U[n*]
= (𝟏 − 𝜶)Ulower +𝜶Uupper

Figure 7: Visualization of the boundary cases when controlling the desired membrane potential,
where the ‘heart-like’ point denotes the lower bound case and the ‘moon-like’ point denotes the
upper bound case.

The lower bound case means that the membrane potential at the desired index should be at least Vth

to activate a spike, and the upper bound case guides the membrane potential to exceed the threshold
but prevents generating spikes in the previous time step. Hence, the desired membrane potential
should be bounded in [Vth,max(βVth + γI[n∗], Vth)] and α ∈ [0, 1] (Eq. 7) balances the desired
membrane potential U [n∗] between Ulower and Uupper.

H.1 DETAILS IN LINEAR-ASSUMING LOSS

As described in Sec. 4.3.2, suppose we expect the SNN to trigger a spike at a later time, if there
exists a hill effect, the earlier membrane potential always reaches the excited state sooner and turns
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the neuron into the resting state to suppress the spiking generation at later moments. To address this
challenge, we expect the later membrane potential to satisfy: (1) the later membrane potential should
be larger than the current membrane potential to reverse the hill effect, and (2) the later membrane
potential should exceed the threshold to fire a spike. Hence, we assume that the membrane potential
in this condition should increase monotonically with the time step, as illustrated in Fig. 8.

Vth
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n*
ns Vth

Vth

Linear Increasing 
Assumption

Figure 8: Visualization of our expected linearly increasing membrane potential.

Then we use the La-Loss to supervise the membrane potential at ns to reach ns

n∗Vth in order for the
latter membrane potential at the n∗ to reach Vth, satisfying both (1) and (2).

H.2 DETAILS OF DYNAMIC HYPERPARAMETER TUNING

To deeply explore the control of the hyperparameter α, we first analyze the effect of α in Eq. 7.
When α reaches its maximum value (i.e.α = 1), the desired membrane potential evolves to Uupper,
which corresponds to a situation where the membrane potential just reaches the threshold at the
previous moment (in Fig. 7). That is, as α increases, the previous moment is more likely to generate
a spike, driving the spiking time earlier. Recalling observation 2, taking a large-α scenario as an
example, the SNN fails to spike at a later time step due to the alpha being too large, limiting the
neuron’s ability to spike later. Hence, we expect the α to decrease to allow the desired index to
decrease as well; similarly for small α scenarios. To summarize, we hope the α is updated in the
same direction as the desired index, we update α by setting:

α.grad = ||
Ns∑
i

(n∗i − ni
s)/Ns||2

′

2 , (22)

α← α− 2 · η
Ns∑
i

(n∗i − ni
s)/Ns, (23)

where grad denotes the gradient of α and ′ denotes derivative operation. The explanations of other
math symbols can be found in the main text and Alg. 1.

I IMPLEMENTATION DETAILS

We adopt a spiking neural network with structure: {16C3-IF-AP2-32C3-IF-AP2-64C3-IF-AP2-LN-
IF-LN-IF}, which consists of three convolutional layers and 2 linear layers, no residual block or
attention are used. We choose the IF neuron as the activation function. We adopt the SGD optimizer
and set the initial learning rate as 1e-4, along with the cosine learning rate scheduler. SNN models
are trained for 50 epochs with batch size 32.

I.1 EVENT-BASED OBJECT TRACKING

Datasets. The FE108 dataset is an extensive event-based dataset for single object tracking, including
21 different object classes and several challenging scenes, e.g., low-light (LL) and high dynamic
range (HDR). The event streams are captured by a DAVIS346 event-based camera, which equips
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a 346x260 pixels dynamic vision sensor (DVS). We choose 54 sequences for training ANNs, 22
sequences for training SNNs and the rest 32 sequences for testing.

Evaluation Metrics. To show the quantitative performance of each tracker, we utilize three widely
used metrics: success rate (Suc.), precision rate (Prec), normed precision rate (N-Prec), and overlap
precision (OP). These metrics represent the percentage of three particular types of frames. Success
rate is the frame of that overlap between the ground truth and the predicted bounding box is larger
than a threshold; Precision rate focuses on the frame of the center distance between ground truth
and predicted bounding box within a given threshold; OPthres represents SR with thres as the
threshold. We employ the area under curve (AUC) to represent the success rate. The precision score
is associated with a 20-pixel threshold.

I.2 EVENT-BASED RECOGNITION

DVS-Gesture. The DVS-Gesture (Amir et al., 2017) dataset contains 11 hand gestures from 29
subjects under 3 illumination conditions, recorded by a DVS128.

N-Caltech101. The N-Caltech101 dataset (Orchard et al., 2015) incorporates 8,831 event-based
images, with a 180×240 resolution and 101 classes, generated from the original Caltech101 dataset
through an event-based sensor.

J THEORETICAL ENERGY CONSUMPTION CALCULATION

To calculate the theoretical energy consumption, we begin by determining the synaptic operations
(SOPs). The SOPs for each block in the BEEF can be calculated using the following equation:

SOPs(l) = fr × T × FLOPs(l) (24)

where l denotes the block number in the BEEF, fr is the firing rate of the input spike train of the
block and T is the time step of the spike neuron. FLOPs(l) refers to floating point operations of
l block, which is the number of multiply-and-accumulate (MAC) operations. And SOPs are the
number of spike-based accumulate (AC) operations.

To estimate the theoretical energy consumption of BEEF, we assume that the MAC and AC
operations are implemented on a 45nm hardware, with energy costs of EMAC = 4.6pJ and
EAC = 0.9pJ , respectively. According to (Panda et al., 2020; Yao et al., 2023), the calculation
for the theoretical energy consumption of BEEF is given by:

EDiffusion = EMAC × FLOP1
SNNConv

+ EAC ×

(
N∑

n=2

SOPn
SNNConv

+

M∑
m=1

SOPm
SNNFC

)
(25)

where N and M represent the total number of layers of Conv and FC, EMAC and EAC represent the
energy cost of MAC and AC operation, FLOPSNNConv denotes the FLOPs of the first Conv layer,
SOPSNNConv and SOPSNNFC are the SOPs of nth Conv and mth FC layer, respectively.

K MORE EXPERIMENTS ON BEGINNER’S ARENA

Problem Setup. To verify the accuracy of our proposed slicing method, we expect BEEF-Net can
slice events at the specified time step. We set up two scenarios and only show the difficult task (II)
in the main text:

• Task (I): Input T identical event cells, expect BEEF-Net to slice at a specified time step T ∗.
• Task (II): Input T randomized event cells, expect BEEF-Net to slice at a specified time step
T ∗, but there exists a certain probability of interfering with BEEF-Net to slice at other
locations.

Task (I) aims to verify whether our proposed slicing strategy can accurately locate the optimal point;
To test the robustness of our method, task (II) simulates complex event stream processing with
random inputs and adds random noise to affect BEEF-Net with wrong labels.
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Table 6: Results on simple event slicing tasks with SPA-Loss.
Input Size Time Steps Parameter Iterations to Convergence ↓

Task (I) 32× 32 30 0.52M 75
64× 64 30 2.02M 81

Task (II) 32× 32 100 0.52M 29
64× 64 100 2.02M 88

We adopt a lightweight BEEF-Net (0.25M/2.02M) for our experiments. T ∗ is randomly selected
within range [0, T ]. The experimental results presented are the average of the results obtained by
setting up three random seeds. As shown in Tab. 6 BEEF-Net requires only a small number of
iterations to converge to the specified slicing time based on the SPA-Loss. For the complex task
with random inputs and disturbances in task (II), BEEF-Net can still converge fast and even faster
to find the specified cut point compared with task(I). This simple experiment demonstrates that SPA-
Loss can effectively supervise the SNN pulsing at the specified location, which paves the way for
experiments on adaptive event slicing in real scenarios.

L STATISTICS OF DYNAMIC SLICING (BEEF) VS. FIXED SLICING

In this section, we compare the statistics results of the resulting events sliced by different slicing
methods.

Symbol Description: the total event stream E; the resulting sliced sub-event stream list by BEEF:
Ebeef = [Eb

1, ..E
b
N1

]; the resulting sliced sub-event stream list by fixed slicing method: Efixtime =

[Ef
1 , ..E

f
M1

].

In the tracking task, the average duration of each sub-event stream Eb
k(k ∈ [1, N1]) is 65ms (cor-

responding to 13 event cells, and the duration of the event stream contained in each event cell is
5ms). The maximum duration of each sub-event stream is 100ms, and the minimum duration is
30ms, while for our comparison of the slicing-by-fixed-time approach, the duration of each sub-
event stream Ef

j (j ∈ [1,M1]) is fixed at 75ms. The following are specific statistics:

Method Avg Cell Num Var Cell Num Avg Duration Min Duration 25th Duration 75th Duration Max Duration
BEEF 12.99 3.96 ∼ 65ms 25ms 50ms 80ms 100ms
Slice by fixed duration 15 0 75ms // // // //

Table 7: Statistic results of dynamic slicing method (our BEEF) and fixed slicing method.

M STATISTICS OF EVENT DENSITY

We also counted the average density of sub-event streams after fixed slicing and dynamic slicing for
comparison.

Symbol Description: For each sub-event stream Eb
k or Ef

j , it contains several event points ei =

[xi, yi, ti, pi]. We define a matrix C to represent the event count, where Cxy represents the number
of events at coordinates (x, y). Given a threshold T , we define the event density to be:

D =

∑
x,y 1{Cx,y ≥ T}∑
x,y 1{Cx,y > 0}

, (26)

where 1 denotes the indicator function. The threshold T is determined based on the percentile of
the event count Cxy .

Density Analysis: We define the density of events as a metric reflecting the amount of event infor-
mation within sub-event streams. The smaller the fluctuation in the density of each sub-stream (the
smaller the variance), the more stable the event information contained. The stability of the event
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Figure 9: Visualization of sliced event distribution. Our BEEF can return the sliced events with
different durations, while the fixed method can only generate sliced events with fixed durations.

density is crucial for scenarios where the distribution of events is not uniform (e.g., scenarios with
changing motion speed).

We chose T = 30% and 90% (lower T to observe overall event activity, including those less frequent
events; higher T for focusing on repetitive or frequent events) to validate the effectiveness of BEEF
to dynamically slice the event stream. Below are the statistics of event density, where the data (left
vs right) on the left are statistics of BEEF and on the right for statistics of fixed slicing. We select 4
classes in the FE108 tracking dataset.

T=30% airplane mul222 box hdr dog tank low
Mean 0.9196 vs. 0.9074 0.9850 vs. 0.9850 0.9208 vs. 0.8984 0.9584 vs. 0.9575
Var ↓ 0.0151 vs. 0.0164 0.0038 vs. 0.0039 0.0144 vs. 0.0168 0.0096 vs. 0.0100
Std ↓ 0.1231 vs. 0.1283 0.0622 vs. 0.0626 0.1200 vs. 0.1299 0.0984 vs. 0.1003

Table 8: Event density comparisons with T = 30%

T=90% airplane mul222 box hdr dog tank low
Mean 0.1256 vs. 0.1263 0.1338 vs. 0.1405 0.1120 vs. 0.1131 0.9584 vs. 0.9575
Var ↓ 0.0004 vs. 0.0004 0.0007 vs. 0.0053 0.0001 vs. 0.0001 0.0096 vs. 0.0100
Std ↓ 0.0215 vs. 0.0215 0.0267 vs. 0.0732 0.0073 vs. 0.0078 0.0984 vs. 0.1003

Table 9: Event density comparisons with T = 90%

The results in Tab. 8 and Tab. 9 show that the event stream after BEEF’s dynamic slicing has a more
stable event density (low variance), which verifies that BEEF has a certain ability to perceive the
event information, and ensures that BEEF is robust in different motion scenarios, as shown in Tab. 3.

N STATISTICS OF RESULTING SLICING DURATION

In order to further verify the stability and effectiveness of the dynamic slicing method, we explore
the results of BEEF by changing the number of event cells in the event recognition task. Ncell

indicates that an event stream is divided into Ncell event cells, and the larger the Ncell implies that
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the event stream is divided into more fine-grained event cell sequences that are capable of better
represent the raw event stream (as mentioned in Section 4.1.).

Calculation Process: Suppose the whole event stream (duration = T ) is divided into 15 event cells,
if the SNN is trained to sliced the event with 2.42 (average) event cells, which means that the sliced
sub-event stream Eb

k contains event data which lasts a duration of 1
15 ∗ 2.42 ∗ T = 16.13%T .

Ncell 15 20 25
Avg Cell Num 2.42 3.15 4.77
Percentage of Duration 16.13% 15.75% 19.08%

Table 10: More experiments with latest models in event-based recognition task.

The experimental results show that the percentage of the duration of each sub-event stream to the
total event stream duration after the adaptive slicing is relatively stable, i.e., the fineness of the
event cell does not affect the event information contained in each sub-event stream after the slicing
process, which proves the robustness and effectiveness of the dynamic slicing process of BEEF.

O MORE EXPERIMENTS WITH LATEST MODELS

To enhance the credibility and robustness of our results, we have incorporated state-of-the-art mod-
els: Swin Transformer (SwinT (Liu et al., 2021)) and Vision Transformer (ViT (Dosovitskiy et al.,
2020)), to further validate the efficacy of our BEEF algorithm in event-based recognition tasks:

Method Random Slice Fixed Slice Ours
SwinT (Liu et al., 2021) 88.19 89.93 91.67(+1.74%)
ViT (Dosovitskiy et al., 2020) 87.50 85.07 88.54(+3.47%)

Table 11: Your caption here

Experiment Settings: We choose SwinT-small and ViT-small for comparisons on DVSGesture
dataset. Other settings are consistent with the main experiments.

BEEF is designed as a plug-and-play algorithm for dynamic event stream slicing. It is benchmarked
against baselines that employ fixed event stream slicing methods. Our approach is versatile and can
be applied in any event recognition or single object tracking framework (including both classical
and latest).

P MORE EXPERIMENTS ON EXPERT’S ARENA

We put more tracking videos in our supplementary materials.
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