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ABSTRACT

A core component of modern large language models is the attention mechanism,
but its immense parameter count necessitates structured sparsity for resource-
efficient optimization and inference. Traditional sparsity penalties, such as the
group lasso, are non-smooth and thus incompatible with standard stochastic gra-
dient descent methods. To address this, we propose a deep gating mechanism that
reformulates the structured sparsity penalty into a fully differentiable optimiza-
tion problem, allowing effective and principled norm-based group sparsification
without requiring specialized non-smooth optimizers. Our theoretical analysis
and empirical results demonstrate that this approach enables structured sparsity
with simple stochastic gradient descent or variants while maintaining predictive
performance.

1 INTRODUCTION

Modern large language model (LLM) applications typically include some form of attention layer
(Vaswani et al., 2017). These architectures comprise up to hundreds of billions of weights (Baktash
& Dawodi, 2023), posing the question of whether there exist sparser architectures with similar per-
formance. One common strategy in deep learning is to define networks that are likely much more
expressive than necessary and subsequently regularize or prune the network (Han et al., 2015; Hoe-
fler et al., 2021). To effectively reduce the computation in attention-based architectures and LLMs,
structured sparsity approaches are necessary. In contrast to pruning methods (He & Xiao, 2023),
employing structured sparsity penalties during training or model adaptation typically requires spe-
cialized non-smooth optimization routines to make them effective. While frequently used in smaller
applications, the non-smoothness of these methods will cause stochastic gradient descent (SGD)
optimization routines to oscillate and usually fail to provide exact sparse solutions. This raises the
question of whether structured sparsity penalties can be effectively used in modern LLMs.

Differentiable sparsity regularization To circumvent the non-differentiability of sparsity penal-
ties while sticking to prominent and successful optimization techniques based on SGD, recent work
(Ziyin & Wang, 2023; Kolb et al., 2025) therefore focuses on a differentiable reparametrization to
obtain smooth surrogate penalties for L2/D-norm penalties for D ≥ 2, D ∈ N. Approaches such as
Kolb et al. (2025), however, only provide unstructured sparsity, i.e., not directly allowing for reduc-
ing the computational overhead. While some ideas for differentiable structured sparsity have been
discussed in the literature (Ziyin & Wang, 2023; Kolb et al., 2023), neither their practical nor theo-
retical effectiveness in attention-based models have been explicitly addressed in previous literature.
In this work, we show both theoretically and empirically that a product of gating parameters with
appropriate differentiable L2 regularization can induce effective non-smooth group penalization in
attention-based network architectures and thus offer a viable solution for sparse learning in LLMs.

2 METHODOLOGY

In this work, we assume data {(xi, yi)}ni=1 from n ∈ N independent samples (xi, yi) ∈ X ×Rc, c ∈
N. We denote [p] := {1, . . . , p} and P([p]) the power set of [p]. We further define f(w,x) : X →
Rc as the neural network of interest and stack all of its weights into one vector w ∈ Rp with elements
wj , j ∈ [p]. The goal is to minimize a loss function ℓ(·, ·) : Rc × Rc → R+

0 . We denote the total
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loss including potential penalties as Lw(w) and its minimizer ŵ := argminw Lw(w). We further
define D̃ := D − 1.

2.1 PROBLEM DEFINITION

In the following, without loss of generality, we assume that the weights are decomposed into w =
(w¬A,wA), where w¬A are weights that correspond to unpenalized (non-attention) structures in f .
In order to regularize groups or certain structures in f , we focus on structured penalties Ω(w) of the
form

ΩA(w) = ||wA||2/D2,2/D :=

H∑
h=1

||wAh
||2/D2 , H ∈ N , (1)

where D ≥ 2 is an integer and A ∈ P([p]) is a subset of the attention-weight indices in f to be
penalized. This subset is further partitioned into H arbitrary groups A = {A1, . . . , AH}, e.g., the
attention heads. Note that other naturally or otherwise arising structures such as rows or columns
in the weight matrices of attention layers can be arbitrarily designated as groups. For D > 2, the
L2,2/D penalty in Equation (1) is a non-convex extension of the L2,1 group lasso penalty (Yuan
& Lin, 2006) and known to achieve superior sparsity tradeoffs (Hu et al., 2017). The resulting
optimization problem we investigate is

min
w∈Rp

n∑
i=1

ℓ(yi, f((w¬A,wA),xi)) + λ||wA||2/D2,2/D , (2)

where λ > 0 is the tuning parameter controlling the structured sparsity.

The difficulty of optimizing Equation (2) lies in the non-smoothness of Equation (1). While there
have been proposals to combine (simpler forms of) the structured sparsity penalty above and neu-
ral networks (see, e.g., Wen et al., 2016; Scardapane et al., 2017; Zhang et al., 2019; Wang et al.,
2020; Bui et al., 2021b), these approaches either naı̈vely use vanilla SGD on the non-smooth ob-
jective or resort to specific non-smooth optimization routines to adequately account for the non-
differentiability of the structure-inducing regularizer. In the following, we suggest an optimization
transfer that allows using SGD-type optimizers such as Adam without any modification while prov-
ably minimizing Equation (2).

2.2 REGULARIZED GATING FOR STRUCTURED SPARSITY

Definition 2.1 (D-Gating). Let Γ = {γd}D̃d=1 ∈ RH·D̃ be a collection of D̃ gating parameters
γd ∈ RH each with elements γd,h, and (vA1 , . . . ,vAH

) = vA ∈ R|A| be a vector of the same
size and grouping structure as wA. Further, define the elementwise Hadamard product of gating
parameters as γ⊙ :=

⊙
d∈[D̃]

γd. We then call

vA ▷ γ⊙ :=

(
vAh,j ·

D̃∏
d=1

γh,d

)
h∈[H],j∈Ah

(3)

a D-Gating Operation and call wA D-gated when replacing wA in f with vA ▷ γ⊙.

Simply put, D-gating wA means that we replace every weight group wAh
by a weight vAh

of the
same size, multiplied by D̃ scalar factors γh,d — the gating variables.

Equivalent differentiable formulation The reason we split the original weight wA = vA ▷ γ⊙

into D parts is that it allows the use of an optimization transfer trick by replacing the original penalty
on wA in Equation (1) with a smooth L2 or weight-decay penalty

ΦA(vA,Γ) = D−1

(
∥vA∥22 +

D̃∑
d=1

∥γd∥22

)
, (4)

and obtain the following result:

2
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Figure 1: Left: Test accuracy of different methods (colors) and λ values (line type) vs. epochs. Right: Quantiles
of the weight norms (log scale) across the attention heads for λ = 0.015 (“Max”, e.g., refers to the head with
the largest norm among all groups and “Q25” is the 0.25-quantile of the norms). “naı̈ve” refers to direct
optimization of the L2,1 penalty with SGD; “gated” refers to optimization of Equation (5) with D = 2.

Theorem 2.2. The optimization problems in Equation (2) and

min
w¬A,vA,Γ

n∑
i=1

ℓ
(
yi, f

(
(w¬A,vA ▷ γ⊙),xi

))
+ λΦA(vA,Γ) (5)

are equivalent in the sense of having the same minimum, despite (5) being fully differentiable.
Secondly, for every local minimizer (ŵ¬A, ŵA) of Equation (2), there is a local minimizer
(ŵ¬A, v̂A, Γ̂) of Equation (5) such that ŵA = v̂A ▷ γ̂⊙ and both minima coincide.

This means we can transfer our original sparsity-regularized problem into the smooth objective
in Equation (5), optimize the over the parameters (w¬A,vA,Γ) using conventional SGD-based
methods, and obtain the collapsed solution to the original non-smooth problem in Equation (2) as
ŵA = v̂A ▷ γ̂⊙. Since Theorem 2.2 does not impose any restrictions on the separation of penalized
(wA) and unpenalized groups (w¬A) or the specific loss function, our result implies that we can
arbitrarily impose group sparse L2,2/D regularization on any structure in an attention layer (or in
fact any other layer), and effectively optimize the objective with a standard SGD-routine.

3 NUMERICAL EXPERIMENTS

To demonstrate our findings in attention-based models, we compare our proposed approach (D-
gating with D = 2) against a naı̈ve optimization of the L2,1 group lasso penalty, a widely-used
regularizer for structured sparsity that is in practice often optimized using SGD without adapting
the optimization routine to its non-smoothness (see, e.g., Wen et al., 2016; Scardapane et al., 2017;
Liu et al., 2017). For comparisons, we use the IMDb Movie Reviews dataset (Lhoest et al., 2021)
with 50,000 movie reviews and binary sentiment outcomes. For this, each review is tokenized using
BERT’s subword tokenizer (bert-base-uncased; Devlin et al., 2019), truncated to a maximum length
of 128 tokens, and padded where necessary. The two regularization approaches (naı̈ve and ours) are
compared w.r.t. their prediction performance on a test data set as well as the induced sparsity.

Architecture and regularization To not confound the sparsity effects with other training dynam-
ics, we use a simple transformer-style network architecture using an embedding layer with em-
bedding size 768, followed by a multi-head attention layer with 12 heads, a pooling layer, and a
fully-connected layer with sigmoid activation. The loss is chosen to be the binary cross-entropy and
optimization is done with SGD using a learning rate of 0.01. For the sparsity penalty, we define
the groups A as the parameters associated with the different model heads h ∈ [H]. Hence, for
increased regularization, we expect the regularization to remove whole heads of the attention layer.
For our gating approach, we initialize all gating parameters in Γ with ones while using a standard
initialization scheme for all other parameters. We run our experiment for different penalty strengths
λ ∈ {0.005, 0.01, 0.0125, 0.015} and evaluate sparsity and performance across these values.

Results Figure 1 visualizes the result for both performance and sparsity across training epochs.
While the naı̈ve L2,1-regularization shows better performance in the beginning, our approach even-
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tually overtakes the vanilla implementation and results in slightly better performance. The quite
astonishing finding, however, is how the model can achieve this performance. As becomes appar-
ent on the sparsity plots, the naı̈ve approach fails to shrink the regularized norms below a certain
large threshold and does not induce actual sparsity. This behavior can be expected due to the in-
compatibility of differentiable SGD and the non-smooth sparsity penalty. However, our equivalent
differentiable sparsity approach constantly shrinks weights until values become numerically zero.
This can be observed for at least the bottom 75% of heads, while the non-sparse head with max
norm maintains a large norm throughout training. Upon closer examination, it turns out that our
approach has reduced all heads except one.

In summary, the results clearly show that our model can achieve similar performance as naı̈ve regu-
larization while resulting in a structurally sparse model that requires only a fraction of the existing
weights.

4 RELATED LITERATURE

Structured sparsity in deep learning promises significant computational benefits by removing entire
components, such as neurons, filters, or here, attention heads. Although this generally produces infe-
rior sparsity–accuracy tradeoffs compared to unstructured sparsity, the resulting efficiency gains are
considerably higher. A widely adopted method for structured sparsity is magnitude-based pruning,
where group importance is approximated by L2 or Frobenius norm of weight components, proposed,
e.g., in Li et al. (2022). For a survey over different methods, see He & Xiao (2023); Zhu et al. (2024).
Many studies have applied SGD to naı̈vely optimize L1 or structured L2,1 penalized objectives (Wen
et al., 2016; Scardapane et al., 2017), or applied non-convex penalties using a specialized optimiza-
tion routine to handle the non-smooth and non-convex penalties (Bui et al., 2021b;a), complicating
a broader practical application.
Particularly related to our D-gating are works proposing masking or gating to promote sparsity.
One branch of methods implements binary stochastic gates or continuously approximated versions
thereof, including, e.g., ProbMask (Zhou et al., 2021), and the stochastic L0 type approach pro-
posed by Louizos et al. (2018). Additionally, L1 penalized gates have been proposed to induce
sparse learning (Liu et al., 2017; Yang et al., 2019). Other approaches close to our work are dif-
ferentiable pruning methods, where soft masks or gates are trained jointly with network weights to
simultaneously learn weights and importances. Variations of this idea are based on using the param-
eters or groups themselves as masks to approximate importance by applying simple transformations
of the original network parameters (Yasuda et al., 2024; Cho et al., 2024).
Pruning in large-scale models such as LLMs and other attention-based architectures additionally
poses a set of unique challenges due to their size and complexity (Zhu et al., 2024). In these set-
tings, compression is typically applied post-hoc (Ma et al., 2023; Frantar & Alistarh, 2023; He et al.,
2024), and employing alternative strategies, such as low-rank approximations (Hu et al., 2021), is
more attractive in many use cases.
Finally, sparsity-inducing parameterizations have been investigated in several works, starting with
Hoff (2017) and recently investigated by Schwarz et al. (2021); Ziyin & Wang (2023); Yasuda et al.
(2024); Kolb et al. (2025). None of these works, however, focused on differentiable structured spar-
sity with potentially non-convex penalizers in neural networks, and attention layers in particular.

5 DISCUSSION

In this paper, we derived a gating mechanism that induces a smooth variational form of the original
L2,2/D-penalty. This gating operator overcomes differentiability problems with the optimization of
sparsity-inducing regularization terms in neural networks and, in particular, attention layers. Our
approach thereby allows for the optimization of LLM architectures and for finding sparse structures
therein while not requiring adapting the optimizer for training.

While our experiments confirm the effectiveness of our approach, it remains to show how the incor-
poration of these gating operators affects LLMs and if, e.g., these can also be used for fine-tuning
such as Low-Rank Adaptation (Hu et al., 2021) with structured sparsification.

4
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A PROOF OF THEOREM 2.2

Proof. For clarity, we will denote the unregularized objective
∑n

i=1 ℓ(yi, f(·,xi)) as L0(·). Further,
since the presence of w¬A in w does not affect the proof, we can assume A = [p] without loss of
generality and omit w¬A. First note that the D-gating operation

O : R|A| ×
D̃∏

d=1

RH → R|A|, (vA,γ1, . . . ,γD̃) = (vA,Γ) 7→ vA ▷ γ⊙ (6)

is surjective and continuously differentiable. Due to the multiplicative nature of the gating operation,
for any wA ∈ R|A|, there exist infinitely many (vA,Γ) such that O(vA,Γ) = wA. Because L0(·)
only depends on the gated vA ▷γ⊙ = wA, every minimizer (v̂A, Γ̂) of the gated objective must also
minimize Φ(vA,Γ) over the feasible set FŵA

= {(vA,Γ) : vA▷γ⊙ = ŵA}, where ŵA := v̂A▷γ̂
⊙.

Otherwise, the objective can always be strictly decreased by choosing (v′A,Γ
′) ∈ FŵA

so that
Φ(v′A,Γ

′) < Φ(v̂A, Γ̂) while L0(v
′
A ▷ γ

′⊙) = L0(v̂A ▷ γ̂⊙). The following result provides
the necessary and sufficient conditions for this constrained minimization problem and the resulting
minimum value:

Lemma A.1. (Smooth Variational Form of ΩA) The minimum of Φ(vA,Γ) over the feasible set
FwA

of gating parameters that leave L0 unchanged is given by

min
(vA,Γ):vA▷γ⊙=wA

Φ(vA,Γ) = ΩA(vA ▷ γ⊙) = ΩA(wA) ∀wA ∈ R|A|.

Furthermore, the minimum is attained if and only if ∥vAh
∥2 = |γh,1| = . . . = |γh,D̃| ∀h ∈ [H].

Proof. Group-wise separating the penalty Φ and applying the inequality of arithmetic and geometric
means (AM-GM), we obtain:

ΦA(vA,Γ) =

H∑
h=1

D−1

∥vAh
∥22 +

D̃∑
d=1

γ2
h,d

 ≥
H∑

h=1

∥vAh
∥22 ·

D̃∏
d=1

γ2
h,d

1/D

(7)

=

H∑
h=1


∥vAh

∥2 ·
D̃∏

d=1

γh,d

2


1/D

(8)

=

H∑
h=1

(∣∣∣∥vAh
∥2 ·

∏D̃
d=1 γh,d

∣∣∣)2/D
=

H∑
h=1

(
∥vAh

∥2 ·
∣∣∣∏D̃

d=1 γh,d

∣∣∣)2/D
=

H∑
h=1

(
∥vAh

·
∏D̃

d=1 γh,d∥2
)2/D

=

H∑
h=1

(∥wAh
∥2)2/D =: ∥wA∥2/D2,2/D

= ΩA(wA)

Finally, the AM-GM inequality holds with equality if and only if ∥vAh
∥22 = γ2

h,1 = . . . = γ2
h,D̃

for
all h ∈ [H].

Lemma A.1 shows that at every potential minimizer of the gated objective, the magnitudes of the
gating factors |γh,d| must equal ∥vAh

∥2 for all d ∈ [D̃] and h ∈ [H]. Given this balancedness
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condition, the smooth penalty ΦA(vA,Γ) reduces to its minimal value ΩA(vA ▷ γ⊙) = ΩA(wA).
To show that

min
vA,Γ

L0(vA ▷ γ⊙) + λΦA(vA,Γ) = min
wA∈R|A|

L0(wA) + λΩA(wA) ,

we use that L0 is constant over all possible gating parameters (vA,Γ) ∈ FwA
mapping to some wA:

min
vA,Γ

{
L0(vA ▷ γ⊙) + λΦA(vA,Γ)

}
= min

wA

{L0(wA) + λ min
vA▷γ⊙=wA

{ΦA(vA,Γ)}} . (9)

Inserting the result of Lemma A.1 for the constrained inner minimum, we finally obtain the result:

min
vA,Γ

L0(vA ▷ γ⊙) + λΦA(vA,Γ) = min
wA

L0(wA) + λΩA(wA) . (10)

This shows that both objectives have identical globally optimal values.

In the second step, we prove that for every local minimizer ŵA of Lw(wA) := L0(wA)+λΩA(wA),
there is a corresponding local minimizer (v̂A, Γ̂) of the gated objective L0(v̂A▷γ̂⊙)+λΦA(v̂A, Γ̂),
related as ŵA = v̂A ▷ γ̂⊙.
Assume ŵA is a local minimizer of the non-smooth penalized objective Lw(wA), then ∃ε0 >
0 : Lw(ŵA) ≤ Lw(w′

A)∀w′
A ∈ B(ŵA, ε0), where B is an ε0-ball around ŵA ∈ R|A|. Due

to the multiplicative nature of the gating operation O, we can pick balanced gating parameters
(v̂A, Γ̂) (sometimes abbreviated as ψ̂ from now on) so that O(v̂A, Γ̂) = v̂A ▷ Γ̂ = ŵA. As the
gating variables are balanced, applying to Lemma A.1 shows that Lψ(v̂A, Γ̂) := L0(v̂A ▷ γ̂⊙) +

λΦA(v̂A, Γ̂) reduces to

Lψ(ψ̂) = Lψ(v̂A, Γ̂) := L0(v̂A▷γ̂
⊙)+λΩA(v̂A▷γ̂

⊙) = L0(ŵA)+λΩA(ŵA) = Lw(ŵA) . (11)

Using again Lemma A.1, we can further relate Lw and Lψ as follows:

Lψ(vA,Γ) = Lw(vA ▷ γ⊙) + λ(Φ(vA,Γ)− ΩA(vA ▷ γ⊙︸ ︷︷ ︸
:=M(ψ)≥0

))

where M(ψ) quantifies the non-negative distance of Φ(vA,Γ) to its minimum value.

By the continuity of O, ∃δ0 : O(B(ψ̂, δ0)) ⊆ B(O(ψ̂), ε0) = B(ŵA, ε0), implying that all ψ′ ∈
B(ψ̂, δ0) map to some O(ψ′) = w′

A ∈ B(ŵA, ε0). Then it holds

∀ψ′ ∈ B(ψ̂, δ0) : Lψ(ψ̂) =︸︷︷︸
Eq.11

Lw(ŵA) ≤ Lw(O (ψ′)︸ ︷︷ ︸
w′

A

) ≤ Lw (O(ψ′)) + λM(ψ′)︸ ︷︷ ︸
≥0

= Lψ(ψ′),

where we have the first inequality because ŵA is a local minimizer of Lw. This chain of inequalities
shows that ψ̂ = (v̂A, Γ̂) ∈ argminψ Lψ(ψ). As ŵA was arbitrary, it is shown that for all local
minimizers ŵA of the non-smooth original objective Lw(ŵA) = L0(wA) + λΩA(wA), there are
corresponding local minimizers (v̂A, Γ̂) of Lψ(v̂A, Γ̂) = L0(v̂A ▷ γ̂⊙) + λΦA(v̂A, Γ̂), so that
v̂A ▷ γ̂⊙ = ŵA and Lψ(v̂A, Γ̂) = Lw(ŵA).

8
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B FURTHER RESULTS

The following figures Figures 2 to 4 show the resulting weight norms for the other tested λ values.

Figure 2: Quantiles of the weight norms (log scale) across attention heads for λ = 0.005.

Figure 3: Quantiles of the weight norms (log scale) across the attention heads for λ = 0.01.

Figure 4: Quantiles of the weight norms (log scale) across the attention heads for λ = 0.0125.
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