
Consistency Models for Scalable and Fast
Simulation-Based Inference

Marvin Schmitt∗
University of Stuttgart

Germany
mail.marvinschmitt@gmail.com

Valentin Pratz∗
Heidelberg University & ELIZA

Germany

Ullrich Köthe
Heidelberg University

Germany

Paul-Christian Bürkner
TU Dortmund University

Germany

Stefan T. Radev
Rensselaer Polytechnic Institute

United States

Abstract

Simulation-based inference (SBI) is constantly in search of more expressive and
efficient algorithms to accurately infer the parameters of complex simulation mod-
els. In line with this goal, we present consistency models for posterior estimation
(CMPE), a new conditional sampler for SBI that inherits the advantages of recent
unconstrained architectures and overcomes their sampling inefficiency at inference
time. CMPE essentially distills a continuous probability flow and enables rapid
few-shot inference with an unconstrained architecture that can be flexibly tailored
to the structure of the estimation problem. We provide hyperparameters and de-
fault architectures that support consistency training over a wide range of different
dimensions, including low-dimensional ones which are important in SBI work-
flows but were previously difficult to tackle even with unconditional consistency
models. Our empirical evaluation demonstrates that CMPE not only outperforms
current state-of-the-art algorithms on hard low-dimensional benchmarks, but also
achieves competitive performance with much faster sampling speed on two realistic
estimation problems with high data and/or parameter dimensions.

1 Introduction

Simulation-based inference (SBI) comprises a family of computational methods for modeling the
hidden properties of complex systems by means of simulation [1, 2]. In recent years, deep learning –
and generative models in particular – have proven indispensable for scaling up SBI to challenging
inverse problems [3–7]. Recently, multiple streams of neural SBI research have been capitalizing on
the rapid progress in generative modeling of unstructured data by re-purposing existing generative
architectures into general inverse problem solvers for applications in the sciences [8–11]. In line with
the above trend, we contribute a new contender to the growing suite of SBI methods for amortized
Bayesian inference.

Within the class of deep generative models, score-based diffusion models [12–15] and flow matching
algorithms [16, 17] have recently attracted significant attention due to their sublime performance as
realistic generators. Diffusion models and flow matching are strikingly flexible but require a relatively
expensive multi-step sampling phase to denoise samples [12]. To address this shortcoming, Song
et al. [18] proposed consistency models (CMs), which are trained to perform few-step generation by
design and have since emerged as a standalone generative model family. Thus, CMs appear attractive

∗equal contribution

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

GM
M

Reference

00000ms55ms

ACF

00000ms75ms

NSF

00000ms68ms

FMPE 10#

00000ms167ms

FMPE 30#

00000ms3658ms

FMPE 1000#

00000ms48ms

CMPE 10#

00000ms136ms

CMPE 30#

Tw
o

M
oo

ns

00000ms85ms 00000ms121ms 00000ms79ms 00000ms210ms 00000ms4895ms 00000ms62ms 00000ms182ms

Ki
ne

m
at

ics

00000ms96ms 00000ms139ms 00000ms84ms 00000ms216ms 00000ms6565ms 00000ms78ms 00000ms228ms

Figure 1: Experiments 1–3. 1000 posterior draws for one unseen test instance per task, as well
as sampling time in milliseconds. All amortized neural approximators were trained with a small
budget of M = 1024 simulations. The bottom row shows the posterior predictive distribution
in the kinematics task, and the pink cross-hair indicates the true end location x of the robot arm.
Across all benchmarks, CMPE (Ours) yields the best trade-off between fast sampling speed and
high accuracy. ACF: affine coupling flow, NSF: neural spline flow, FMPE: flow matching posterior
estimation, CMPE: consistency model posterior estimation (Ours), K# denotes K sampling steps
during inference.

as a backbone architecture for SBI workflows due to their unique combination of unconstrained
architectures and fast sampling speed – a conceptual advantage over the current state-of-the-art in
neural SBI.

However, paradoxically, CMs may struggle with low-dimensional estimation problems, which are
less important for image generation but crucial in typical SBI applications: These SBI applications
are often characterized by relatively low-dimensional parameter spaces, even though the conditioning
vectors (i.e., observables) might be high-dimensional [e.g., 3, 19–21]. Additionally, the quality of
conditional CMs as few-step Bayesian samplers has not yet been explored empirically (e.g., in terms
of probabilistic calibration and precision), even though this is crucial for their application in science
and engineering. Lastly, while CMs for image generation are trained on enormous amounts of data,
training data are typically scarce in SBI applications. In our empirical evaluations, we demonstrate
that CMs are competitive with state-of-the-art SBI algorithms in low-data regimes using our adjusted
settings (see Appendix A for details).

In this paper, we propose conditional CMs for SBI along with generalizable hyperparameter settings
that achieve competitive performance with much faster sampling speed on both challenging low-
dimensional benchmarks and high-dimensional applied problems. Our main contributions are:

1. We adapt consistency models to simulation-based Bayesian inference and propose consis-
tency model posterior estimation (CMPE);

2. We showcase the fundamental advantages of consistency models for amortized simulation-
based inference: expressive unconstrained architectures and fast inference;

3. We demonstrate that CMPE outperforms NPE (normalizing flows) on three benchmark
experiments (see Figure 1 above), is competitive with FMPE (flow matching) on Bayesian
image denoising, and surpasses both NPE and FMPE on a challenging scientific simulator
of tumor spheroid growth.

2 Preliminaries and related work

This section recaps simulation-based inference (SBI) via normalizing flows, flow matching, and
score-based diffusion models. Readers familiar with these topics can safely fast-forward to Section 3.

2

2.1 Notation

In the following, the neural network training relies on a synthetic training set {(θ(m),x(i))}Mm=1,
which consists of parameter-data tuples. Each superscript m marks one training example, namely, a
tuple of a latent parameter vector and an observable data set which was generated from the parameter
vector. The total simulation budget for training the neural networks follows as M . We summarize
the D-dimensional latent parameter vector of the simulator as θ ≡ (θ1, . . . , θD). Further, each data
set x ≡ {xn}Nn=1 is a matrix whose rows consist of N vector-valued observations. Accordingly, one
parameter vector θ(m) yields one data set x(m) from the simulator (see Section 2.2). In Bayesian
inference, we aim to infer the unknown parameters θ of the mechanistic simulator, which are not to
be confused with the trainable neural network weights ϕ.

2.2 Simulation-based inference (SBI)

Computer simulations play a fundamental role across countless scientific disciplines, ranging from
physics to biology, and from climate science to economics [2]. Simulators g(·, ·) generate observables
x ∈ X as a function of unknown parameters θ ∈ Θ and latent program states ξ ∈ Ξ [1]:

x = g(θ, ξ) with θ ∼ p(θ), ξ ∼ p(ξ |θ) (1)

The forward problem in Equation 1 is typically well-understood through scientific theories instantiated
as generative models. The inverse problem, however, is much harder, and forms the crux of Bayesian
inference: reduce uncertainty about the unknowns θ based on observables x through the posterior
distribution p(θ |x) ∝ p(θ) p(x |θ). The key property of neural SBI and early approximate Bayesian
computation [ABC; 22, 23] methods is that they approach the inverse problem by sampling (i.e.,
simulating) from the forward model. Thus, the forward model acts as an implicit statistical model [24]
that enables proper Bayesian inference in the limit of infinite simulations. In contrast, likelihood-based
methods (e.g., MCMC) depend on the explicit evaluation of the likelihood p(x |θ).
We can classify neural SBI methods into sequential [e.g., 10, 25–29] and amortized [e.g., 5, 9–11, 30–
35] methods. Sequential inference algorithms iteratively refine the prior p(θ) to generate simulations
in the vicinity of the target observation. Thus, they are not amortized, as each new observed data set
requires a potentially costly re-training of the neural approximator tailored to the particular target
observation. However, most sequential methods can be turned amortized by training the neural
approximator to generalize over the entire prior predictive space of the model. This allows us to query
the approximator with any new data set during inference. In fact, amortization can be performed
across any component of the model, including multiple data sets [5] and contextual factors, such
as the number of observations in a data set [31], heterogeneous data sources [36], or even different
probabilistic models [37, 38]. Our current work is situated in the amortized setting.

2.3 Normalizing flows for neural posterior estimation

Neural posterior estimation (NPE) methods for SBI have traditionally relied on conditional discrete
normalizing flows for learning a conditional neural density estimator pϕ(θ |x) from simulated pairs
(θ,x) of parameters and data [8, 39]. Normalizing flows can learn closed-form approximate densities
via maximum likelihood training:

LNPE = Ep(θ,x)[− log pϕ(θ |x)] (2)

Two prominent normalizing flow architectures in SBI are affine coupling flows [ACF; 40] and
neural spline flows [NSF; 41]. A major disadvantage of these architectures is their strict bijectivity
requirement: it restricts the design space of the neural networks to invertible functions with cheap
Jacobian calculations, hence the desire for more flexible architectures. In the following, we will
briefly recap recent works that have pioneered the use of multi-step, unconstrained architectures for
SBI, inspired by the success of such models in a variety of generative tasks [13, 15].

2.4 Flow matching for posterior estimation

Wildberger et al. [11] applied flow matching techniques [16, 17] in SBI, an approach abbreviated as
flow matching posterior estimation (FMPE). FMPE is based on optimal transport [42, 43], where
the mapping between base and target distribution is parameterized by a continuous process driven

3

by a vector field µ on the sample space for each time step t ∈ [0, 1]. Here, the distribution at t = 1
could be a unit Gaussian N (0, I) and the distribution at t = 0 is the target posterior. The FMPE loss
replaces the maximum likelihood term in the NPE objective (Eq. 2) with a conditional flow matching
objective,

LFMPE = Ep(x,θ)

[∫ 1

0

∥ut(θt |θ)− µϕ(θt, t;x)∥2 dt
]
, (3)

where µϕ denotes the conditional vector field parameterized by a unconstrained neural network with
trainable parameters ϕ, and ut denotes a marginal vector field, which can be as simple as ut(θt |θ) =
θ1 − θ for all t [17]. We obtain posterior draws θ0 ∼ p(θ |x) by solving dθt = −µ(θt, t;x) in
reverse on t ∈ [0, 1], starting with noise samples θ1 ∼ N (0, I). We can use any off-the-shelf ODE
solver for transforming noise θ1 into a draw θ0 from the approximate posterior. In principle, the
number of steps K in the ODE solver can be adjusted by setting the step size dt = 1/K. Decreasing
the number of steps increases the sampling speed, but FMPE is not designed to optimize few-step
sampling performance. We confirm this in our experiments with a rectified flow that encourages
straight-path solutions [17].

2.5 Neural posterior score estimation

Another approach to simulation-based inference with unconstrained networks lies in neural posterior
score estimation [NPSE; 10], which can either feature single-round inference (amortized) or multiple
sequential inference rounds on a particular data set (non-amortized). This stream of research uses
conditional score-based diffusion models [12, 44] to learn the posterior distribution. With a slightly
different focus, [9] factorize the posterior distribution and learn scores of the diffused posterior for
subsets (down to a single observation) of a larger data set. Subsequently, the information from the
subsets is aggregated by combining the learned scores to approximate the posterior distribution of
the entire data set. Crucially, both methods rely on the basic formulation of score-based diffusion
models: They gradually diffuse the target distribution according to the following diffusion process,

dθt = µ(θt, t; x)dt+ σ(t)dwt, (4)

with drift coefficient µ, diffusion coefficient σ, time t ∈ [0, T], and Brownian motion {wt}t∈[0,T].
At each time t, the current (diffused) distribution of θ conditional on x is denoted as pt(θ |x).
Crucially, the distribution at t = 0 equals the target posterior distribution, p0(θ |x) ≡ p(θ |x), and
the distribution at t = T is set to be Gaussian noise (see below). Song et al. [12] prove that there
exists an ordinary differential equation (“Probability Flow ODE”) whose solution trajectories at time
t are distributed according to pt(θ |x),

dθt =
[
µ(θt, t;x)−

1

2
σ(t)2∇ log pt(θt |x)

]
dt, (5)

where∇ log pt(θt |x) is the score function of pt(θ |x). This differential equation is usually designed
to yield a spherical Gaussian noise distribution pT (θ |x) ≈ N (0, T 2I) after the diffusion process.
Since we do not have access to the target posterior p(θ |x), score-based diffusion models train a
time-dependent score network sϕ(θt, t,x) ≈ ∇ log pt(θt |x) via score matching and insert it into
Eq. 5. Setting µ(θt, t; x) = 0 and σt =

√
2t, the estimate of the Probability Flow ODE becomes

dθt = −tsϕ(θt,x, t)dt [45]. Finally, we can generate a random draw from the noise distribution
θT ∼ N (0, T 2I) and solve the Probability Flow ODE backwards for a trajectory {θt}t∈[T,0]. The
end of the trajectory θ0 represents a draw from the approximate posterior p0(θ0 |x) ≈ p(θ |x).
Numerical stability. The solver is usually stopped at a fixed small positive number t = ε to prevent
numerical instabilities [18], so we use θε to denote the draw from the approximate posterior. For
simplicity, we will also refer to θε as the trajectory’s origin.

3 Consistency model posterior estimation

Diffusion models have one crucial drawback: At inference time, they require solving a differential
equation for each posterior draw which slows down their sampling speed. This is particularly
troublesome in SBI applications which may require thousands of samples for thousands of data sets
[e.g., >1M data sets in 7]. Consistency models [CMs; 18] address this problem with a new generative
model family that supports both single-step and multi-step sampling. In the following, we summarize
key ideas of CMs [18, 46] with a focus on conditional sampling for the purpose of SBI.

4

3.1 Conditional consistency models

The consistency function f : (θt, t; x) 7→ θε maps points across the solution trajectory {θt}t∈[T,ε] to
the trajectory’s origin θε given a fixed conditioning variable (i.e., observation) x and the probability
flow ODE in Eq. 5. To achieve this with established score-based diffusion model architectures, we
can use a unconstrained neural network Fϕ(θ, t; x) which is parameterized through skip connections
of the form

fϕ(θ, t; x) = cskip(t)θ + cout(t)Fϕ(θ, t; x), (6)
where cskip(t) and cout(t) are differentiable and fulfill the boundary conditions cskip(ε) = 1 and
cout(ε) = 0. Consistency models are originally motivated as a distillation technique for diffusion
models. However, Song et al. [18] show that training consistency models in isolation is possible, and
we base our method on their direct approach.

Sampling. Once the consistency model has been trained, generating draws from the approximate
posterior is straightforward by drawing samples from the noise distribution, θT ∼ N (0, T 2I), which
shall then be transformed into samples from the target distribution, like in a standard diffusion
model. In contrast to diffusion models, however, we do not need to solve a sequence of differential
equations for this transformation. Instead, we can use the learned consistency function fϕ to obtain
the one-step target sample θε = fϕ(θT , T ; x). What is more, inference with consistency models
is not actually limited to one-step sampling. In fact, multi-step generation is possible with an
iterative sampling procedure, which we will describe in the following. For a sequence of time points
ε = t1 < t2 < · · · < tK = T and initial noise θK ∼ N (0, T 2I), we calculate

θk ← fϕ(θk+1, tk+1; x) +
√

t2k − ε2zk (7)

for k = K − 1,K − 2, . . . , 1, where zk ∼ N (0, I) and K − 1 is the number of sampling steps
[18, 46]. The resulting sample is usually better than a one-step sample.

3.2 Consistency models for simulation-based inference

Originally developed for image generation, consistency models can be applied to learn arbitrary dis-
tributions. The unconstrained architecture enables the integration of specialized architectures for both
the data x and the parameters θ. Due to the low number of passes required for sampling (in contrast
to flow matching and diffusion models), more complex networks can be used while maintaining
low inference time. In theory, consistency models combine the best of both worlds: unconstrained
networks for optimal adaptation to parameter structure and data modalities, while enabling fast
inference speed with few network passes. Currently, this comes at the cost of explicit invertibility,
which limits the computation of posterior densities. More precisely, single-step consistency models
do not allow density evaluations at an arbitrary parameter value θ but only at a set S of approximate
posterior draws {θ(1)

ε , . . . ,θ(S)
ε }. However, this is sufficient for important downstream tasks like

marginal likelihood estimation, importance sampling, or self-consistency losses. In contrast, multi-
step consistency sampling defines a Markov chain which cannot be evaluated without an additional
density estimator (see Section 3.5 for details). In accordance with the taxonomy from Cranmer et al.
[1], we call our method consistency model posterior estimation (CMPE). While we focus on posterior
estimation, using consistency models for likelihood emulation is a natural extension of our work.

As a consequence of its fundamentally different training objective, CMPE is not just a faster version
of FMPE. Instead, it shows qualitative differences to FMPE beyond a much faster sampling speed. In
Experiment 4, we show that CMPE is less dependent on the neural network architecture than FMPE,
making it a promising alternative when the optimal architecture for a task is not known. Further,
we consistently observe good performance in the low-data regime, rendering CMPE an attractive
method when training data is scarce. In fact, data availability is a common limiting factor for complex
simulators in engineering [47] and science [e.g., molecular dynamics; 48].

3.3 Optimization objective

We formulate the consistency training objective for CMPE, which extends the unconditional training
objective from Song and Dhariwal [46] with a conditioning variable x to cater to the SBI setting,

LCMPE(ϕ,ϕ
−) = E

[
λ(ti) d(u(ϕ, ti+1;x),u(ϕ

−, ti;x))
]

(8)

5

where λ(t) is a weighting function, d(u,v) is a distance metric, z ∼ N (0, I) is unit Gaussian noise,
and the arguments for the distance metric amount to the outputs of the consistency function obtained
at two neighboring time indices ti and ti+1,

u(ϕ, ti+1;x) = fϕ(θ + ti+1z, ti+1; x), u(ϕ−, ti;x) = fϕ−(θ + tiz, ti; x). (9)

The teacher’s neural network weights ϕ− are a copy of the student’s weights which are held constant
during each step via a stopgrad operator, ϕ− ← stopgrad(ϕ). We follow Song and Dhariwal
[46] using λ(ti) = 1/(ti+1− ti) and d(u,v) =

√
∥u− v∥22 + c2− c from the Pseudo-Huber metric

family. Appendix A contains more details on discretization and noise schedules.

3.4 Hyperparameter tuning

Consistency training introduces several additional hyperparameters, but there is limited theoretical
guidance on how to select most of them. Within the scope of this paper, we rely on empirical search
to identify the hyperparameters that are the most relevant for tuning efforts. As stated above, the
maximum time T determines the standard deviation of the latent distribution. It should be larger
than the magnitude of the target distribution [18]. Values that are too low might lead to biased
sampling, while values that are too high can make the training process more difficult. The minimum
and maximum number of discretization steps s0, s1 during training also influence the final result
in our experiments. For s0, a sufficiently low value (e.g. 10) should be chosen. For s1, smaller
values around 50 seem beneficial for stable training, especially when the number of epochs is low.
When longer training is possible, increasing s1 might lead to improved accuracy. We summarize our
recommended hyperparameter choices for SBI applications in Appendix C.

3.5 Density estimation

Using the change-of-variable formula, we can express the posterior density of a single-step sample as

pε(θ |x) = pT (θT = f−1
ϕ (θε, T ; x))

∣∣∣∣det(∂θT

∂θε

)∣∣∣∣ , (10)

where f−1
ϕ (θ, T ;x) is the implicit inverse of the consistency function and ∂θT /∂θε is the result-

ing Jacobian. While we cannot explicitly evaluate f−1
ϕ (θε, T ; x), we can generate samples from

θT ∼ N (0, T 2I) and use autodiff for evaluating the Jacobian because the consistency surrogate fϕ is
differentiable. Thus, we cannot directly evaluate the posterior density at arbitrary θ. Yet, evaluating
the density at a set of S posterior draws {θε}Ss=1 suffices for crucial downstream tasks, such as
marginal likelihood estimation [49], neural importance sampling [21], or self-consistency losses [50].

For the purpose of multi-step sampling, the latent variables θK ,θK−1, . . . ,θ1 form a Markov chain
with a change-of-variables (CoV) given by Köthe [51]:

p(θ1 |x) = p(θK)

K∏
k=2

p(θk−1 |θk,x)

p(θk |θk−1,x)
. (11)

Due to Eq. 7, the backward conditionals are given by p(θk−1 |θk,x) = N (fϕ(θk, tk;x) , (t
2
k−ε2)I).

Unfortunately, the forward conditionals p(θk |θk−1,x) are not available in closed form, but we could
learn an amortized surrogate model q(θk |θk−1) capable of single-shot density estimation based on
a data set of execution paths {θ1:K}. This method would work well for relatively low-dimensional
θ, which are common throughout scientific applications, but may diminish the efficiency gains of
CMPE in higher dimensions. We leave an extensive evaluation of different surrogate density models
to future work.

3.6 Choosing the number of sampling steps

The design of consistency models enables one-step sampling (see Eq. 7). In practice, however, using
two steps significantly increases the quality in image generation tasks [46]. We observe that few-step
sampling with approximately K = 5−15 steps provides the best trade-off between sample quality
and compute for SBI, particularly in low-dimensional problems. This is roughly comparable to the
speed of neural one-step estimators like affine coupling flows or neural spline flows in Experiments

6

1–3 (see Figure 2a). The number of steps can be chosen at inference time, so practitioners can
easily adjust this for a given situation. We noticed that approaching the maximum trained number of
discretization steps can lead to overconfident posterior distributions. See Section C.5 for an empirical
evaluation of the relation between sampling quality and number of sampling steps.

4 Empirical evaluation

Our experiments cover three fundamental aspects of SBI. First, we perform an extensive evaluation
on three low-dimensional experiments with bimodal posterior distributions from benchmarking suites
for inverse problems [52, 53]. The simulation-based training phase is based on a fixed training set
{(x(m),θ(m)

∗)}Mm=1 of M tuples of data sets x(m) and corresponding ground-truth parameters θ(m)
∗ .

Second, we focus on an image denoising example which serves as a sufficiently high-dimensional
case study in the context of SBI [32, 54]. Third, we apply our CMPE method to a computationally
challenging scientific model of tumor spheroid growth and showcase its superior performance for a
complex simulator from cell biology [19]. We implement all experiments using the BayesFlow Python
library for amortized Bayesian workflows [55]. We provide reproducible code for all experiments in
the Supplementary Material or an anonymized online repository (Link).

Evaluation metrics. We evaluate the experiments based on well-established metrics to gauge the
accuracy and calibration of the results. All metrics are computed on a test set of J unseen instances
{(x(j),θ(j)

∗)}Jj=1. In the following, S denotes the number of (approximate) posterior samples that
we draw for each instance J . First, the easy-to-understand root mean squared error (RMSE) metric
quantifies both the bias and variance of the approximate posterior samples across the test set as
1
J

∑J
j=1

√
1
S

∑S
s=1

(
θ(j)
s − θ(j)

∗
)2

. Second, we estimate the squared maximum mean discrepancy
[MMD; 56] between samples from the approximate vs. reference posterior, which is a kernel-based
distance between distributions. Third, as a widely applied metric in SBI, the C2ST score uses an
MLP classifier to distinguish samples from the approximate and reference posteriors. The resulting
test accuracy of the classifier is the C2ST score, which ranges from 1 (samples are perfectly separable
→ bad posterior) to 0.5 (samples are indistinguishable → perfect posterior). Finally, we assess
uncertainty calibration through simulation-based calibration (SBC; [57]): All uncertainty intervals
Uq(θ | x) of the true posterior p(θ | x) are well calibrated for every quantile q ∈ (0, 1),

q =

∫∫
I[θ∗ ∈ Uq(θ | x)] p(x | θ∗) p(θ∗)dθ∗dx, (12)

where I[·] is the indicator function. Discrepancies from Eq. 12 indicate deficient calibration of an
approximate posterior. The expected calibration error (ECE) aggregates the median SBC error of
central credible intervals of 20 linearly spaced quantiles q, averaged across the test set.

Contender methods. We compare affine coupling flows [ACF; 40], neural spline flows [NSF; 41],
flow matching posterior estimation [FMPE; 11], and consistency model posterior estimation (CMPE;
ours). We use identical unconstrained neural networks for FMPE and CMPE to ensure comparability.
Appendix C lists the hyperparameters of all models in the experiments.

4.1 Experiment 1: Gaussian mixture model

We illustrate CMPE on a 2-dimensional Gaussian mixture model with two symmetrical components
[9, 50]. The symmetrical components are equally weighted and have equal variance,

θ ∼ N (θ |0, I), x ∼ 1
2 N (x |θ, I

2) +
1
2 N (x | −θ, I

2), (13)

where N (· |µ,Σ) is a Gaussian distribution with location µ and covariance matrix Σ. The resulting
posterior distribution is bimodal and point-symmetric around the origin (see Figure 1 top-left). Each
simulated data set x consists of ten exchangeable observations {x1, . . . ,x10}, and we train all
architectures on M = 1024 training simulations. We use a DeepSet [58] to learn 6 summary statistics
for each data set jointly with the inference task.

Results. As displayed in Figure 1, both ACF and NSF fail to fit the bimodal posterior with separated
modes. FMPE successfully forms disconnected posterior modes, but shows visible overconfidence
through overly narrow posteriors. The visual sampling performance of CMPE is superior to all
other methods. In this task, we observe that CMPE does not force us to choose between speed or

7

https://anonymous.4open.science/r/cmpe-neurips/

0.00 0.05 0.10 0.15 0.20
Sampling speed [seconds]

0.6

0.7

0.8

0.9

1.0

C2
ST

1.15

CMPE (Ours) FMPE NSF ACF

(a) Experiment 1 (Gaussian Mixture Model)

4895 ms

85 ms

62 ms

121 ms

182 ms

210 ms

(b) Experiment 2 (Two Moons)

Figure 2: C2ST score of 4000 approximate posterior draws vs. reference posterior (lower is better)
for J = 100 unseen test examples. (a) CMPE (Ours) outperforms all other methods through both
faster and more accurate inference on the GMM benchmark (mean±SD). (b) CMPE (Ours) with 10
sampling steps shows superior performance up to a training budget of 4096 instances on the Two
Moons benchmark (mean±SE).

performance relative to the other approximators. Instead, CMPE can outperform all other methods
simultaneously with respect to both speed and performance, as quantified by lower C2ST to the
reference posterior across J = 100 test instances (see Figure 2a). If we tolerate slower sampling,
CMPE achieves peak performance at K = 10 inference steps. Most notably, CMPE outperforms
1000-step FMPE by a large margin, even though the latter is approximately 75× slower.

4.2 Experiment 2: Two moons

This experiment studies the two moons benchmark [27, 49, 52, 59]. The model is characterized
by a bimodal posterior with two separated crescent moons for the observed point xobs = (0, 0)⊤

which an approximator needs to recover. We repeat the experiment for different training budgets
M ∈ {512, 1024, 2048, 4096, 8192} to probe each method under varying data availability. While
M = 512 is a very small budget for the two moons benchmark, M = 8192 is considered sufficient.

Results. Trained on a simulation budget of M = 1024 examples, CMPE consistently explores both
crescent moons and successfully captures the local patterns of the posterior (see Figure 1, middle
row). Both the affine coupling flow and the neural spline flow fail to fully separate the modes. Most
notably, if we aim to achieve fast sampling speed with FMPE by reducing the number of sampling
steps during inference, FMPE shows visible overconfidence with 30 sampling steps and markedly
deficient approximate posteriors with 10 sampling steps. In stark contrast, CMPE excels in the
few-step regime. Figure 2b illustrates that all architectures benefit from a larger training budget.
CMPE with 10 steps emerges as the superior architecture in the low- and medium-data regime up
to M = 4096 training instances. FMPE with 1000 steps outperforms the other approximators by a
small margin for the largest training budget of M = 8192 instances. Keep in mind, however, that
1000-step FMPE is approximately 30–70× slower than ACF, NSF, and CMPE in this task.

4.3 Experiment 3: Inverse kinematics

Proposed as a benchmark task for inverse problems by Kruse et al. [53], the inverse kinematics model
aims to reconstruct the configuration (θ1, θ2, θ3, θ4) = θ ∈ R4 of a multi-jointed 2D robot arm for a
given end position x ∈ R2 (see Figure 1, bottom left). The input to the forward process g : θ 7→ x are
the initial height θ1 of the arm’s base, as well as the angles θ2, θ3, θ4 at its three joints. The inverse
problem aims to determine the posterior distribution p(θ |x), which represents all arm configurations
θ that end at the observed 2D position x of the arm’s end effector.

Results. On the challenging small training budget of M = 1024 training examples, CMPE with
K = 30 sampling steps visually outperforms all other methods with respect to posterior predictive
performance while maintaining fast inference (see Figure 1). On the C2ST metric, CMPE outperforms
normalizing flows (ACF, NSF), but is in turn surpassed by 1000-step FMPE (see Figure 4b), which is
however 85× slower (FMPE: 6565ms, CMPE: 78ms). In contrast to the other empirical evaluations,

8

the simulator in this benchmark lacks aleatoric uncertainty [60] and the plausible parameter values
are tightly bounded through the geometry of the problem, which might explain this pattern.

4.4 Experiment 4: Bayesian denoising

Parameter

T-Shirt/Top Trouser Pullover Dress Coat Sandal Shirt Sneaker Bag Ankle Boot

Observation x

Mean

Std.Dev

Figure 3: Experiment 4. CMPE denoising
results on Fashion MNIST (U-Net backbone,
K = 2 sampling steps, 60 000 training im-
ages). First row: Original image (target param-
eters θ). Second row: Blurred image (obser-
vations x). Third and fourth row: Means and
standard deviations of the approximate posteri-
ors. Note: For standard deviations, darker re-
gions indicate larger variability in the outputs.
Adapted from [49]. More in Appendix C.6.

This experiment demonstrates the feasibility of
CMPE for a high-dimensional inverse problem,
namely, Bayesian denoising on the Fashion MNIST
data set [61]. The unknown parameter θ ∈ R784

is the flattened original image, and the observa-
tion x ∈ R784 is a blurred and flattened version
of the crisp image from a simulated noisy camera
[32, 49, 54]. We compare CMPE and FMPE in a
standard (60k training images) and a small data (2k
training images) regime. As both methods allow
for unconstrained architectures, we can assess the
effect of the architectural choices on the results by
evaluating both methods using a suboptimal naı̈ve
architecture vs. the established U-Net [62].

Neural architectures. The naı̈ve architecture con-
sists of a convolutional neural network [CNN; 63]
to convert the observation into a vector of latent
summary statistics. We concatenate input vector,
summary statistics, and a time embedding and feed
them into a multi-layer perceptron (MLP) with four
hidden layers consisting of 2048 units each. This
corresponds to a situation where the structure of the observation (i.e., image data) is known, but the
structure of the parameters is unknown or does not inform a bespoke network architecture. In this
example, however, we can leverage the prior knowledge that our parameters are images. Specifically,
we can incorporate inductive biases into our network architecture by choosing a U-Net architecture
which is optimized for image processing [i.e., an adapted version of 64]. Again, a CNN learns a
summary vector of the noisy observation, which is then concatenated with a time embedding into the
conditioning vector for the neural density estimator.

Table 1: Experiment 4: RMSE and MMD between the
ground-truth image vs. 100 draws from the approximators
trained on 2 000 and 60 000 training images, aggregated over
100 test images. For MMD, we draw one denoised sample
per test image and calculate the MMD between the denoised
samples and the original images. Time per draw.

Models RMSE ↓ MMD (± SD) [× 10−3] ↓ Time ↓
2 000 60 000 2 000 60 000

na
ı̈v

e FMPE 0.836 0.597 171.53 ±1.61 95.26 ± 1.21 15.4ms
CMPE (Ours) 0.388 0.293 102.09 ± 3.24 57.90 ± 1.59 0.3ms

U
-N

et FMPE 0.278 0.217 17.38 ± 0.10 14.50 ± 0.05 565.8ms
CMPE (Ours) 0.311 0.238 18.49 ± 0.12 16.08 ± 0.05 0.5ms

Results. We report the aggregated
RMSE, MMD, and the time per sam-
ple for both methods and architectures
(Table 1). FMPE is not able to gen-
erate good samples for the naı̈ve ar-
chitecture, whereas CMPE produces
acceptable samples even in this subop-
timal setup. This reduced susceptibil-
ity to suboptimal architectures might
become a valuable feature in high-
dimensional problems where the struc-
ture of the parameters cannot be ex-
ploited. The U-Net architecture en-
ables good sample quality for both
methods, highlighting the advantages of unconstrained architectures. The MMD values align well
with a visual assessment of the sample quality, therefore we deem it an informative metric to compare
the results (see Section C.6 for visual inspection). The U-Net architecture paired with a large training
set provides detailed and versatile samples of similar quality for CMPE and FMPE. CMPE enables
50−1000× faster inference than FMPE because it only requires two neural network passes for
sampling, while achieving better (naı̈ve) or competitive (U-Net) quality.

4.5 Experiment 5: Tumor spheroid growth

We conclude our empirical evaluation with a complex multi-scale model of 2D tumor spheroid growth
[19, 65]. The model has 7 unknown parameters which govern single-cell behavior (agent-based) as

9

well as the extracellular matrix description (PDE-based). Crucially, running simulations from this
model on consumer-grade hardware is rather expensive (≈ 1 minute for a single simulation), so there
is a desire for methods that can provide reasonable estimates for a limited offline training budget.
Here, we compare the performance of the four contender methods in this paper on a fixed training
set of M = 19 600 simulations with J = 400 simulations as a test set to compute performance
metrics. The contender methods are affine coupling flows (ACF), neural spline flows (NSF), and
flow-matching posterior estimation (FMPE), as these are among the most popular choices for neural
SBI to date. Our main contender is FMPE as a free-form architecture, and we use the exact same
inference network for both FMPE (µϕ – field network) and CM (fϕ – consistency network). Across
all methods, we use a hybrid LSTM-Transformer architecture to transform high-dimensional summary
statistics of variable length into fixed length embedding vectors h(x). Appendix C.7 provides more
details on the neural network architectures and training hyperparameters.

Table 2: Experiment 5. RMSE, ECE, and sam-
pling time are computed for 2000 posterior sam-
ples, aggregated over 400 unseen test instances.
Max ECE denotes the worst-case marginal cali-
bration error across all 7 model parameters.

Model RMSE ↓ Max ECE ↓ Time ↓

ACF 0.589 0.021 1.07s
NSF 0.590 0.027 1.95s
FMPE 30# 0.582 0.222 17.13s
FMPE 1000# 0.583 0.057 500.90s
CMPE 2# (Ours) 0.616 0.064 2.16s
CMPE 30# (Ours) 0.577 0.018 18.33s

Results. CMPE outperforms the alternative neu-
ral methods via better accuracy and calibration, as
indexed by lower RMSE and ECE on 400 unseen
test instances (see Table 2). The speed of the sim-
pler ACF is unmatched by the other methods. In
direct comparison to its unconstrained contender
FMPE, CMPE simultaneously exhibits (i) a slightly
higher accuracy; (ii) a drastically improved calibra-
tion; and (iii) much faster sampling (see Figure 6
in the Appendix). For this simulator, FMPE did not
achieve satisfactory calibration performance with
up to K = 100 inference steps, so Table 2 reports
the best FMPE results for K = 1000 steps.

5 Discussion

We presented consistency model posterior estimation (CMPE), a novel approach to perform accurate
simulation-based Bayesian inference on large-scale models while achieving fast inference speed.
CMPE enhances the capabilities of state-of-the-art neural posterior estimation by combining few-step
sampling with unconstrained neural architectures. To assess the effectiveness of CMPE, we applied
it to a set of 3 low-dimensional benchmark tasks that allow intuitive visual inspection, as well as a
high-dimensional Bayesian denoising experiment and a scientific tumor growth model. Across our
experiments, CMPE emerges as a competitive method for simulation-based Bayesian inference, as
evidenced by a holistic assessment of posterior accuracy, calibration, and inference speed.

Limitations. Our proposed CMPE method has two core limitations, which we specifically highlight
again in this paragraph. First, consistency models do not directly yield tractable densities for
arbitrary parameter values (see Section 3.5 for a remedy). Second, the relation between inference
time (number of sampling steps K) and performance (posterior accuracy) is not monotonic, as
elucidated in Experiment 1, (see Figure 2a). We provide more details and report the CMPE posterior
quality (quantified by C2ST) as a function of the number of sampling steps for all three benchmark
experiments in Section C.5. This phenomenon is not a drawback per se, but rather a counter-intuitive
attribute of consistency models. In practice, it can easily be addressed by performing a brief sweep
over the number of sampling steps (K = 1, . . . ,Kmax) during inference time and choosing an
optimal K based on user-defined metrics (e.g., calibration or MMD on a validation set). Given the
very fast inference speed of CMPE and the observed U-shaped relation between sampling steps and
performance, this approach does not generally come with a relevant computational burden.

Perspectives. Future work might aim to further reduce the number of sampling steps towards one-step
inference in SBI tasks to achieve even faster sampling speed in time-sensitive applications. This
might be achieved via extensive automated hyperparameter optimization, tailored training schemes,
or consistency model inference in a compressed latent space. Furthermore, consistency trajectory
models [CTMs; 66] are a closely related generative model family, whose conditional formulation
might prove useful for SBI as well. Overall, our results demonstrate the potential of CMPE as a novel
simulation-based inference tool. Its unique combination of highly expressive unconstrained neural
networks with fast sampling speed renders CMPE a new contender for SBI workflows in science and
engineering, where both time and performance are essential.

10

Acknowledgments

We thank Lasse Elsemüller for insightful feedback and Maximilian Dax for support with the imple-
mentation of the gravitational wave experiment in the Dingo library. MS acknowledges funding from
the Cyber Valley Research Fund (grant number: CyVy-RF-2021-16) and the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy EXC-2075
- 390740016 (the Stuttgart Cluster of Excellence SimTech). MS additionally thanks the Google
Cloud Research Credits program and the European Laboratory for Learning and Intelligent Systems
(ELLIS) PhD program for support. VP acknowledges funding by the German Academic Exchange
Service (DAAD) and the German Federal Ministry of Education and Research (BMBF) through
the funding programme “Konrad Zuse Schools of Excellence in Artificial Intelligence” (ELIZA)
and support by the state of Baden-Württemberg through bwHPC. VP acknowledges support by
the Bundesministerium fuer Wirtschaft und Klimaschutz (BMWK, German Federal Ministry for
Economic Affairs and Climate Action) as part of the German government’s 7th energy research
program “Innovations for the energy transition” under the 03ETE039I HiBRAIN project (Holistic
method of a combined data- and model-based Electrode design supported by artificial intelligence).

Code

The software code for the experiments is available in a public GitHub repository:
https://github.com/bayesflow-org/consistency-model-posterior-estimation

Additionally, we provide a backend-agnostic implementation of Consistency Model Posterior Estima-
tion (CMPE) in the open source BayesFlow library for amortized Bayesian workflows [55]. Users
can choose between a PyTorch, TensorFlow, or JAX backend. BayesFlow is available as open-source
software on GitHub (https://github.com/bayesflow-org/bayesflow/) and PyPI.

References
[1] Kyle Cranmer, Johann Brehmer, and Gilles Louppe. The frontier of simulation-based inference.

Proceedings of the National Academy of Sciences, 2020.

[2] Alexander Lavin, Hector Zenil, Brooks Paige, et al. Simulation intelligence: Towards a new
generation of scientific methods. arXiv preprint, 2021.

[3] Stefan T Radev, Frederik Graw, Simiao Chen, Nico T Mutters, Vanessa M Eichel, Till
Bärnighausen, and Ullrich Köthe. Outbreakflow: Model-based bayesian inference of dis-
ease outbreak dynamics with invertible neural networks and its application to the covid-19
pandemics in germany. PLoS computational biology, 2021.

[4] Takashi Shiono. Estimation of agent-based models using Bayesian deep learning approach of
BayesFlow. Journal of Economic Dynamics and Control, 125:104082, 2021.

[5] Pedro J Gonçalves, Jan-Matthis Lueckmann, Michael Deistler, et al. Training deep neural
density estimators to identify mechanistic models of neural dynamics. Elife, 2020.

[6] Antoine Wehenkel, Jens Behrmann, Andrew C. Miller, Guillermo Sapiro, Ozan Sener, Marco
Cuturi, and Jörn-Henrik Jacobsen. Simulation-based inference for cardiovascular models, 2023.

[7] Mischa von Krause, Stefan T. Radev, and Andreas Voss. Mental speed is high until age 60 as
revealed by analysis of over a million participants. Nature Human Behaviour, 6(5):700–708,
May 2022. doi: 10.1038/s41562-021-01282-7.

[8] George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji
Lakshminarayanan. Normalizing flows for probabilistic modeling and inference. J. Mach.
Learn. Res., 22(1), jan 2021. ISSN 1532-4435.

[9] Tomas Geffner, George Papamakarios, and Andriy Mnih. Compositional score modeling for
simulation-based inference, 2022.

[10] Louis Sharrock, Jack Simons, Song Liu, and Mark Beaumont. Sequential neural score estima-
tion: Likelihood-free inference with conditional score based diffusion models, 2022.

11

https://github.com/bayesflow-org/bayesflow/

[11] Jonas Wildberger, Maximilian Dax, Simon Buchholz, Stephen Green, Jakob H Macke, and
Bernhard Schölkopf. Flow matching for scalable simulation-based inference. In A. Oh,
T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine, editors, Advances in Neural
Information Processing Systems, volume 36, pages 16837–16864, 2023.

[12] Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon,
and Ben Poole. Score-based generative modeling through stochastic differential equations. In
International Conference on Learning Representations, 2021.

[13] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages 10684–10695, 2022.

[14] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In
Advances in Neural Information Processing Systems, volume 33, pages 6840–6851, 2020.

[15] Georgios Batzolis, Jan Stanczuk, Carola-Bibiane Schönlieb, and Christian Etmann. Conditional
image generation with score-based diffusion models, 2021.

[16] Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le.
Flow matching for generative modeling. In The 11th International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=PqvMRDCJT9t.

[17] Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate
and transfer data with rectified flow, 2022.

[18] Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. In
International Conference on Machine Learning, 2023.

[19] Nick Jagiella, Dennis Rickert, Fabian J Theis, and Jan Hasenauer. Parallelization and high-
performance computing enables automated statistical inference of multi-scale models. Cell
systems, 4(2):194–206, 2017.

[20] Amin Ghaderi-Kangavari, Jamal Amani Rad, and Michael D. Nunez. A general integrative
neurocognitive modeling framework to jointly describe EEG and decision-making on single
trials. Computational Brain and Behavior, 2023. doi: 10.1007/s42113-023-00167-4.

[21] Maximilian Dax, Stephen R. Green, Jonathan Gair, Michael Pürrer, Jonas Wildberger, Jakob H.
Macke, Alessandra Buonanno, and Bernhard Schölkopf. Neural importance sampling for rapid
and reliable gravitational-wave inference. Physical Review Letters, 130(17), April 2023. ISSN
1079-7114. doi: 10.1103/physrevlett.130.171403. URL http://dx.doi.org/10.1103/
PhysRevLett.130.171403.

[22] Donald B Rubin. Bayesianly justifiable and relevant frequency calculations for the applied
statistician. The Annals of Statistics, pages 1151–1172, 1984.

[23] Simon Tavaré, David J Balding, Robert C Griffiths, and Peter Donnelly. Inferring coalescence
times from dna sequence data. Genetics, 145(2):505–518, 1997.

[24] Peter J Diggle and Richard J Gratton. Monte carlo methods of inference for implicit statistical
models. Journal of the Royal Statistical Society Series B: Statistical Methodology, 46(2):
193–212, 1984.

[25] George Papamakarios and Iain Murray. Fast ε-free inference of simulation models with bayesian
conditional density estimation. Advances in neural information processing systems, 29, 2016.

[26] Jan-Matthis Lueckmann, Pedro J Gonçalves, Giacomo Bassetto, Kaan Öcal, Marcel Nonnen-
macher, and Jakob H Macke. Flexible statistical inference for mechanistic models of neural
dynamics. In 31st NeurIPS Conference Proceedings, 2017.

[27] David Greenberg, Marcel Nonnenmacher, and Jakob Macke. Automatic posterior transformation
for likelihood-free inference. In International Conference on Machine Learning, 2019.

[28] Conor Durkan, Iain Murray, and George Papamakarios. On contrastive learning for likelihood-
free inference. In International Conference on Machine Learning. PMLR, 2020.

12

https://openreview.net/forum?id=PqvMRDCJT9t
http://dx.doi.org/10.1103/PhysRevLett.130.171403
http://dx.doi.org/10.1103/PhysRevLett.130.171403

[29] Michael Deistler, Pedro J Goncalves, and Jakob H Macke. Truncated proposals for scalable and
hassle-free simulation-based inference. arXiv preprint, 2022.

[30] Lynton Ardizzone, Jakob Kruse, Sebastian Wirkert, Daniel Rahner, Eric W Pellegrini, Ralf S
Klessen, Lena Maier-Hein, Carsten Rother, and Ullrich Köthe. Analyzing inverse problems
with invertible neural networks. In Intl. Conf. on Learning Representations, 2019.

[31] Stefan T Radev, Ulf K Mertens, Andreas Voss, Lynton Ardizzone, and Ullrich Köthe. Bayesflow:
Learning complex stochastic models with invertible neural networks. IEEE transactions on
neural networks and learning systems, 2020.

[32] Lorenzo Pacchiardi and Ritabrata Dutta. Score matched neural exponential families for
likelihood-free inference. J. Mach. Learn. Res., 23:38–1, 2022.

[33] Grace Avecilla, Julie N Chuong, Fangfei Li, Gavin Sherlock, David Gresham, and Yoav
Ram. Neural networks enable efficient and accurate simulation-based inference of evolutionary
parameters from adaptation dynamics. PLoS Biology, 20(5):e3001633, 2022.

[34] Stefan T Radev, Marco D’Alessandro, Ulf K Mertens, Andreas Voss, Ullrich Köthe, and Paul-
Christian Bürkner. Amortized bayesian model comparison with evidential deep learning. IEEE
Transactions on Neural Networks and Learning Systems, 2021.

[35] Lasse Elsemüller, Martin Schnuerch, Paul-Christian Bürkner, and Stefan T. Radev. A deep
learning method for comparing bayesian hierarchical models, 2023.

[36] Marvin Schmitt, Stefan T. Radev, and Paul-Christian Bürkner. Fuse it or lose it: Deep fusion
for multimodal simulation-based inference, 2023. arXiv:2311.10671.

[37] Lasse Elsemüller, Hans Olischläger, Marvin Schmitt, Paul-Christian Bürkner, Ullrich Köthe,
and Stefan T. Radev. Sensitivity-aware amortized Bayesian inference, 2023. arXiv:2310.11122.

[38] Cornelius Schröder and Jakob H. Macke. Simultaneous identification of models and parameters
of scientific simulators, 2023.

[39] Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normalizing flows.
In Proceedings of the 32nd International Conference on International Conference on Machine
Learning - Volume 37, ICML’15, page 1530–1538. JMLR.org, 2015.

[40] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp.
arXiv preprint arXiv:1605.08803, 2016.

[41] Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios. Neural spline flows.
Advances in neural information processing systems, 32, 2019.

[42] Cédric Villani. Optimal Transport, volume 338 of Grundlehren Der Mathematischen Wis-
senschaften. Springer, Berlin, Heidelberg, 2009. ISBN 978-3-540-71049-3 978-3-540-71050-9.
doi: 10.1007/978-3-540-71050-9.

[43] Gabriel Peyré and Marco Cuturi. Computational optimal transport, 2020. URL https:
//arxiv.org/abs/1803.00567.

[44] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data
distribution. In Proceedings of the 33rd International Conference on Neural Information
Processing Systems, 2019.

[45] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of
diffusion-based generative models. Advances in Neural Information Processing Systems, 35:
26565–26577, 2022.

[46] Yang Song and Prafulla Dhariwal. Improved techniques for training consistency models.
In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=WNzy9bRDvG.

13

https://arxiv.org/abs/1803.00567
https://arxiv.org/abs/1803.00567
https://openreview.net/forum?id=WNzy9bRDvG
https://openreview.net/forum?id=WNzy9bRDvG

[47] Monika E. Heringhaus, Yi Zhang, André Zimmermann, and Lars Mikelsons. Towards reliable
parameter extraction in mems final module testing using bayesian inference. Sensors, 22(14):
5408, July 2022. ISSN 1424-8220. doi: 10.3390/s22145408. URL http://dx.doi.org/
10.3390/s22145408.

[48] J.C.S Kadupitiya, Fanbo Sun, Geoffrey Fox, and Vikram Jadhao. Machine learning surrogates
for molecular dynamics simulations of soft materials. Journal of Computational Science, 42:
101107, 2020. doi: 10.1016/j.jocs.2020.101107.

[49] Stefan T. Radev, Marvin Schmitt, Valentin Pratz, Umberto Picchini, Ullrich Köthe, and Paul-
Christian Bürkner. JANA: Jointly Amortized Neural Approximation of Complex Bayesian
Models. In Robin J. Evans and Ilya Shpitser, editors, Proceedings of the 39th Conference
on Uncertainty in Artificial Intelligence, volume 216 of Proceedings of Machine Learning
Research, pages 1695–1706. PMLR, 2023.

[50] Marvin Schmitt, Daniel Habermann, Paul-Christian Bürkner, Ullrich Koethe, and Stefan T.
Radev. Leveraging self-consistency for data-efficient amortized Bayesian inference. In NeurIPS
UniReps: the First Workshop on Unifying Representations in Neural Models, 2023.

[51] Ullrich Köthe. A review of change of variable formulas for generative modeling. arXiv preprint
arXiv:2308.02652, 2023.

[52] Jan-Matthis Lueckmann, Jan Boelts, David S. Greenberg, Pedro J. Gonçalves, and Jakob H.
Macke. Benchmarking simulation-based inference. arXiv preprint, 2021.

[53] Jakob Kruse, Lynton Ardizzone, Carsten Rother, and Ullrich Köthe. Benchmarking invertible
architectures on inverse problems. 2021. Workshop on Invertible Neural Networks and
Normalizing Flows (ICML 2019).

[54] Poornima Ramesh, Jan-Matthis Lueckmann, Jan Boelts, Álvaro Tejero-Cantero, David S
Greenberg, Pedro J Gonçalves, and Jakob H Macke. Gatsbi: Generative adversarial training for
simulation-based inference. arXiv preprint arXiv:2203.06481, 2022.

[55] Stefan T. Radev, Marvin Schmitt, Lukas Schumacher, Lasse Elsemüller, Valentin Pratz, Yannik
Schälte, Ullrich Köthe, and Paul-Christian Bürkner. Bayesflow: Amortized bayesian workflows
with neural networks. Journal of Open Source Software, 8(89):5702, 2023. doi: 10.21105/joss.
05702. URL https://doi.org/10.21105/joss.05702.

[56] A Gretton, K. Borgwardt, Malte Rasch, Bernhard Schölkopf, and AJ Smola. A Kernel Two-
Sample Test. The Journal of Machine Learning Research, 13:723–773, 2012.

[57] Sean Talts, Michael Betancourt, Daniel Simpson, Aki Vehtari, and Andrew Gelman. Validating
bayesian inference algorithms with simulation-based calibration. arXiv preprint, 2018.

[58] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan Salakhutdinov,
and Alexander Smola. Deep sets, 2017.

[59] Samuel Wiqvist, Jes Frellsen, and Umberto Picchini. Sequential neural posterior and likelihood
approximation. arXiv preprint, 2021.

[60] Eyke Hüllermeier and Willem Waegeman. Aleatoric and epistemic uncertainty in machine
learning: an introduction to concepts and methods. Machine Learning, 110(3):457–506, 2021.
ISSN 1573-0565.

[61] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms, 2017.

[62] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
biomedical image segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and
Alejandro F. Frangi, editors, Medical Image Computing and Computer-Assisted Intervention –
MICCAI 2015, pages 234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-
319-24574-4.

14

http://dx.doi.org/10.3390/s22145408
http://dx.doi.org/10.3390/s22145408
https://doi.org/10.21105/joss.05702

[63] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436–444,
2015. ISSN 1476-4687. doi: 10.1038/nature14539. URL http://dx.doi.org/10.
1038/nature14539.

[64] Aakash Kumar Nain. Keras documentation: Denoising diffusion probabilistic model. https:
//keras.io/examples/generative/ddpm/, 2022. Accessed: 2023-11-27.

[65] pyABC. pyABC documentation, multi-scale model: Tumor spheroid growth.
https://pyabc.readthedocs.io/en/latest/examples/
multiscale agent based.html, 2017. Accessed: 2023-12-07.

[66] Dongjun Kim, Chieh-Hsin Lai, Wei-Hsiang Liao, Naoki Murata, Yuhta Takida, Toshimitsu
Uesaka, Yutong He, Yuki Mitsufuji, and Stefano Ermon. Consistency trajectory models:
Learning probability flow ODE trajectory of diffusion. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
ymjI8feDTD.

[67] Maximilian Dax, Stephen R. Green, Jonathan Gair, Jakob H. Macke, Alessandra Buonanno,
and Bernhard Schölkopf. Real-time gravitational wave science with neural posterior estimation.
Physical Review Letters, 127(24), 2021. ISSN 1079-7114. doi: 10.1103/physrevlett.127.241103.
URL http://dx.doi.org/10.1103/PhysRevLett.127.241103.

15

http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1038/nature14539
https://keras.io/examples/generative/ddpm/
https://keras.io/examples/generative/ddpm/
https://openreview.net/forum?id=ymjI8feDTD
https://openreview.net/forum?id=ymjI8feDTD
http://dx.doi.org/10.1103/PhysRevLett.127.241103

A Consistency training details

Table 3 details all functions and parameters required for training. Except for the choice of parameters
s0, s1, ε, Tmax and σdata we exactly follow the design choices proposed by Song and Dhariwal [46],
which improved our results compared to the choices in Song et al. [18]. Song and Dhariwal [46]
showed that that the Exponential Moving Average of the teacher’s parameter ϕ− should not be used
in Consistency Training, therefore we omitted it in this paper.

Table 3: Design choices: Table and values adapted to our notation from Song and Dhariwal [46,
Table 1].

Loss metric d(x,y) =
√
∥x− y∥22 + c2 − c

Discretization scheme N(k) = min(s02
⌊k/K′⌋, s1) + 1 where K ′ = ⌊K/(log2⌊s1/s0⌋+ 1)⌋

Noise schedule ti, where i ∼ p(i) and p(i) ∼ erf
(

log(ti+1)−Pmean√
2Pstd

)
− erf

(
log(ti)−Pmean√

2Pstd

)
Weighting function λ(ti) = 1/(ti+1 − ti)

Skip connections cskip(t) = σ2
data/((t− ε)2 + σ2

data), cout(t) = σdata(t− ε)/
√
σ2

data + t2

Parameters

s0 = 10, s1 = 50 except where indicated otherwise
c = 0.00054

√
d, where d is the dimensionality of θ

Pmean = −1.1, Pstd = 2.0
k ∈ 0, . . . ,K − 1, where K is the total training iterations

ti =
(
ε1/ρ + i−1

N(k)−1

(
T

1/ρ
max − ε1/ρ

))ρ

, ρ = 7, ε = 0.001, Tmax = 200

B Evaluation metrics

Especially for multi-modal distributions, some of the standard metrics may behave in unexpected
ways. This impedes an interpretation of the results and can lead to misleading conclusions. In this
section, we want to highlight the peculiarities of some of the metrics, and highlight where caution is
necessary when they are applied to the presented benchmarks.

B.1 C2ST

As an expressive classifier, C2ST is most sensitive to regions without distribution overlap. In our
experiments, this results in a pronounced punishment of overconfident posteriors. For limited training
data and distributions without sharp edges (e.g., the Gaussian mixture model), some overconfidence
is usually given, as samples from the outer tails are simply not present in the training set. As the
accuracy is used as a measure, a smaller number of very improbable samples (e.g., samples in the
region between two modes) do not influence the results a lot.

In consequence, C2ST may deviate from the visual judgment in important ways. First, overconfident
posteriors look more ”precise“, but are punished by C2ST. Second, samples between modes are very
salient, but may not influence the results of C2ST a lot.

For distributions with sharp edges and more or less uniform density in a given mode, c2st is very
capable in judging the overlap of two distributions, which then is a good measure of quality. This
applies to the two-moons example, where we can observe the expected behavior of a larger training
budget leading to more accurate results (Figure 2b).

B.2 MMD

By capturing and comparing the moments of two distributions, MMD provides a more holistic view
than C2ST. It is also applicable to a wider range of cases, as it generalizes to high dimensions. The
exact behavior can be controlled by choosing the kernel function. In our experiments, we observe
MMD to be less sensitive for distributions with sharp edges (i.e., two moons), where C2ST seems
to provide more reasonable results. We also observe a low sensitivity to samples between modes,
leading to unexpected results compared to visual inspection.

16

B.3 Summary

Calculating meaningful metrics given only samples from two distributions is a challenging task.
Ideally, the metrics would reward similar density and punish samples in the low-density regions of the
reference distribution. Especially the latter seems to be hard to achieve. Even when metrics work fine
for small deviations from the ideal distribution, the behavior for different forms of larger deviations,
as they occur in challenging problems or cases with low training budget, might not be easily grasped
or interpreted. That makes it difficult to compare different methods producing qualitatively different
deviations (e.g., overconfidence vs. underconfidence) from the reference distribution.

C Additional details and results

For neural network training, we used a Mac M1 CPU for Experiments 1–3, an NVIDIA V100 GPU
for Experiment 4, an NVIDIA RTX 4090 GPU for Experiment 5, and an NVIDIA H100 GPU for
Experiment 6. The evaluation scripts were executed on a Mac M1 CPU for Experiments 1–2, on
an NVIDIA V100 GPU for Experiments 3–4, on an NVIDIA RTX 4090 GPU for Experiment 5,
and on an NVIDIA V100 GPU for Experiment 6. The computation time for Experiments 1–5 is
approximately one day, with the evaluations (e.g., reference posteriors, C2ST computations, MMD
computations taking up a considerable amount of time. However, our proposed CMPE method
is designed to be carried out on consumer-grade hardware for applied analyses on real data sets,
which usually requires minutes to hours of training and can be executed on CPUs depending on the
application. In contrast, the large-scale analysis in Experiment 6 requires 2–3 days of training time
on high-performance computing infrastructure [see 11, for details on this setting].

C.1 Experiment 1

Neural network details. All architectures use a summary network to learn fixed-length representa-
tions of the i.i.d. data x = {x1, . . . ,x10}. We implement this via a DeepSet [58] with 6-dimensional
output. Both ACF and NSF use 4 coupling layers and train for 200 epochs with a batch size 32.
CMPE relies on an MLP with 2 hidden layers of 256 units each, L2 regularization with weight 10−4,
10% dropout and an initial learning rate of 10−4. The consistency model is instantiated with the
hyperparameters s0 = 10, s1 = 1280, Tmax = 1. Training is based on 2000 epochs with batch size
64. FMPE and CMPE use an identical MLP, and the only difference is the initial learning rate of
10−5 for FMPE to alleviate instable training dynamics.

C.2 Experiment 2

Neural network details. CMPE uses an MLP with 2 layers of 256 units each, L2 regularization
with weight 10−5, 5% dropout, and an initial learning rate of 5 · 10−4. The consistency model uses
s0 = 10, s1 = 50, Tmax = 10, and it is trained with a batch size of 64 for 5000 epochs. Both ACF
and NSF use 6 coupling layers of 128 units each, kernel regularization with weight γ = 10−4, and
train for 200 epochs with a batch size 32. FMPE uses the same settings and training configuration as
CMPE.

C.3 Experiment 3

The three robot arm segments have lengths 0.5, 0.5, 1.0. The parameters θ = (θ1, θ2, θ3, θ4) follow a
Gaussian prior θ ∼ N (0,σ2I) with σ2 = (1

16 ,
1
4 ,

1
4 ,

1
4). Neural network details. CMPE relies on

an MLP with 2 layers of 256 units each, L2 regularization with weight 10−5, 5% dropout, and an
initial learning rate of 5× 10−4. The consistency model uses s0 = 10, s1 = 50, and trains for 2000
epochs with a batch size of 32. FMPE uses the same MLP and training configuration as CMPE. Both
ACF and NSF use 6 coupling layers of 128 units each, kernel regularization with weight γ = 10−4,
and train for 200 epochs with a batch size 32. The reference posterior is obtained using approximate
Bayesian Computation (ABC), with ε = 0.002, which corresponds to 1/1000 of the arm length.

17

3658 ms

55 ms

48 ms

75 ms

136 ms

167 ms

(a) Experiment 1 (Gaussian Mixture Model)

6565 ms

96 ms

78 ms

139 ms

228 ms

216 ms

(b) Experiment 3 (Inverse Kinematics)

Figure 4: C2ST score of 4000 approximate posterior draws vs. reference posterior (lower is better),
we report mean±SE over J = 100 unseen test examples. (a) For the GMM benchmark, we observe
an unexpected pattern for the dependency on the training budget. The C2ST score increases or
stays approximately constant across all methods, indicating that in this regime a higher training
budget leads to inferior performance, for example due to a tendency to overfit with more training
data. It could also be a sign that the C2ST is not a good quality metric for this benchmark, but the
monotonically decreasing curve for higher-quality samples (i.e., more sampling steps) for FMPE in
Figure 2a indicates that the behavior can probably be attributed to the training budget and not to the
metric. See Appendix B for a more detailed discussion. (b) In this task, it is more challenging to
achieve excellent C2ST scores because there is no aleatoric uncertainty in the data-generating process.
CMPE outperforms ACF and NSF. FMPE performs best and can benefit most from the increased
training budget.

18

C.4 Unstandardized wall-clock times

Table 4 gives an overview of the observed wall-clock training times for the benchmark tasks in
Experiments 1–3. These results have been measured on a consumer-grade CPU (Apple Silicon
M1 processor). We emphasize that these do not constitute a principled timing benchmark under
standardized conditions, and the training times between algorithms are not directly comparable.
We train each algorithm for a fixed number of epochs, rather than training until some pre-defined
accuracy metric has been achieved. This is because no single reported metric holistically quantifies
the accuracy in the investigated benchmark tasks, as explained in more detail in Appendix B. Further,
we observed degrading performance of both normalizing flow implementations for larger numbers of
epochs despite dropout and regularization. Instead of a comprehensive benchmark timing test, the
results shall show that CMPE does in fact require slightly longer training times compared to FMPE
given the same neural network backbone. We attribute this to the student-teacher training scheme
which necessitates more neural network evaluations (not gradient updates) during training. However,
the much faster inference speed of CMPE constitutes a significant advantage for real-time amortized
Bayesian inference, which is why the drawback of longer neural network training is acceptable.

M = 512 M = 1024 M = 2048 M = 4096 M = 8192

Gaussian Mixture

ACF 105 189 352 565 1056
NSF 118 203 359 646 1327

FMPE 715 1278 2008 3973 7508
CMPE 867 1471 2401 4390 10102

Two Moons

ACF 42 66 118 225 453
NSF 60 86 146 257 515

FMPE 175 289 498 890 1805
CMPE 195 323 571 1064 2173

Inverse Kinematics

ACF 43 70 124 234 439
NSF 63 99 169 297 552

FMPE 97 166 311 551 1095
CMPE 107 194 358 719 1397

Table 4: Wall-clock training times on the benchmark tasks. M denotes the available simulation
budget for the neural network training stage.

19

0 5 10 15 20 25 30 35 40 45 50
#Sampling steps

0.5
0.6
0.7
0.8
0.9
1.0

C2
ST

 ±
 S

E
Two Moons GMM Inverse Kinematics

Figure 5: Experiment 1-3. C2ST score of 4000 approximate posterior draws vs. reference posterior
(lower is better), we report mean±SE over J = 100 unseen test examples at different numbers
of inference steps. The minimum C2ST value is achieved around 10-20 inference steps for every
benchmark, after which the value increases again.

C.5 Empirical evaluation of optimal number of inference steps

For Experiments 1–3, we evaluate the performance of CMPE (as indexed by C2ST) as a function
of the number of sampling steps K during inference. Figure 5 shows that there is no monotonic
relationship where more compute leads to better results. Instead, we observe a U-shaped relationship
with a performance maximum at K = 10−20 sampling steps. This seemingly counter-intuitive
phenomenon is a consequence of the consistency training, which aims to achieve few-step sampling
and thus has no incentive to optimize the consistency function for a large number K of sampling
steps.

C.6 Experiment 4

The Fashion MNIST data set is released under MIT license [61]. We compare samples from a
2× 2× 2 design: Two methods, CMPE and FMPE, are trained on two network architectures, a naı̈ve
architecture and a U-Net architecture, using 2 000 and 60 000 training images. Except for the batch
size, which is 32 for 2 000 training images and 256 for 60 000 training images, all hyperparameters
are held constant between all runs. We use an AdamW optimizer with a learning rate of 5 · 10−4 and
cosine decay for 20 000 iterations, rounded up to the next full epoch. As both methods use the same
network sizes, this results in an approximately equal training time between methods (approximately
1-2 hours on a Tesla V100 GPU), with a significantly lower training time for the naı̈ve architecture.
Neural network details. For CMPE, we use s0 = 10, s1 = 50, σ2

data = 0.25 and two-step sampling.
For FMPE, we follow Wildberger et al. [11] and use 248 network passes. Note that this is directly
correlated with inference time: Choosing a lower value will make FMPE sampling faster, a larger
value will slow down FMPE sampling. We show samples for each method (CMPE, FMPE), backbone
architecture (MLP, U-Net), and simulation budget (2 000, 6 000) at the end of the appendix.

20

3.0 2.5 2.0 1.5 1.0
Log Division Depth (1)

1.0

1.5

2.0

2.5

3.0

Lo
g

Di
vi

sio
n

Ra
te

 (
2)

(a) CMPE (Ours) 2 steps

3.0 2.5 2.0 1.5 1.0
Log Division Depth (1)

1.0

1.5

2.0

2.5

3.0

Lo
g

Di
vi

sio
n

Ra
te

 (
2)

(b) CMPE (Ours) 30 steps

3.0 2.5 2.0 1.5 1.0
Log Division Depth (1)

1.0

1.5

2.0

2.5

3.0

Lo
g

Di
vi

sio
n

Ra
te

 (
2)

(c) FMPE 30 steps

3.0 2.5 2.0 1.5 1.0
Log Division Depth (1)

1.0

1.5

2.0

2.5

3.0

Lo
g

Di
vi

sio
n

Ra
te

 (
2)

(d) FMPE 1000 steps

Figure 6: Experiment 5. Posterior draws for two parameters of the tumor growth model. Cross-hair
and pink star indicate the ground-truth parameter that we aim to recover for one fixed data set x.
The gray region depicts the prior distribution. CMPE (Ours) shows no visible bias even for two-step
inference, but an improved sharpness when we increase the number of sampling steps to 30. In
contrast, FMPE with 30 sampling steps (comparable speed to CMPE) yields a biased posterior. The
posterior of FMPE with 1000 inference steps visibly improves but is orders of magnitude slower than
CMPE with 30 steps.

C.7 Experiment 5

Neural network details. Both CMPE and FMPE use an MLP with 4 hidden layers of 512 units each
and 20% dropout. CMPE and FMPE train for 1000 epochs with a batch size of 64. The consistency
model uses s0 = 10, s1 = 50, Tmax = 50. ACF and NSF employ a coupling architecture with
learnable permutations, 6 coupling layers of 128 units each, 20% dropout, and 300 epochs of training
with a batch size of 64.

The input data consists of multiple time series of different lengths. As proposed by Schmitt et al. [36]
for SBI with heterogeneous data sources, we employ a late fusion scheme where the input modalities
are first processed by individual embedding networks, and then fused. First, the data on tumor size
growth curves enters an LSTM which produces a 16-dimensional representation of this modality.
Second, the information about radial features is processed by a temporal fusion transformer with 4
attention heads, 64-dimensional keys, 128 units per fully-connected layer, and 10−4 L2 regularization
on both weights and biases. These latent representations are then concatenated and further fed through
a fully-connected two-layer perceptron of 256 units each, 10−4 L2 regularization on weights and
biases, and 32 output dimensions.

Figure 7 shows calibration plots for all methods. We observe that our CMPE method with 30 inference
steps leads to the best calibration, with affine coupling flows and neural spline flows performing
similarly with respect to the expected calibration error (ECE).

21

Affine Coupling Flow (ACF)
RMSE 0.589, max ECE 0.021, inference time 1.07s

Fractional Rank Statistic

Neural Spline Flow (NSF)
RMSE 0.590, max ECE 0.027, inference time 1.95s

Fractional Rank Statistic

Flow Matching (FMPE), 30 steps
RMSE 0.582, max ECE 0.222, inference time 17.13s

Fractional Rank Statistic

Flow Matching (FMPE), 1000 steps
RMSE 0.583, max ECE 0.057, inference time 500.90s

Fractional Rank Statistic

Consistency Model (CMPE; Ours), 2 steps
RMSE 0.616, max ECE 0.064, inference time 2.16s

Fractional Rank Statistic

Consistency Model (CMPE; Ours), 30 steps
RMSE 0.577, max ECE 0.018, inference time 18.33s

Fractional Rank Statistic

Figure 7: Calibration plots for Experiment 5. The gray envelopes represent the 95% confidence bands
for sufficient calibration. Inference times refers to the wall-clock time (in seconds) required to draw
2000 posterior samples. We emphasize the best performance for each metric in green, and the worst
performance for each metric in darkred.

22

−50

0

t c
[m

s]

0

5
α

0 1000

dL [Mpc]

−2

0

δ

−50 0

tc [ms]
0 5

α
−2 0

δ

Method

CMPE

FMPE

Figure 8: Pairplot of univariate and bivariate posterior draws obtained from CMPE (ours) and
FMPE. FMPE clearly outperforms CMPE in this application, where the latter shows pathologically
underexpressive posteriors that do not capture the nuances with acceptable detail (see text for details
and hypotheses).

C.8 Experiment 6

In this additional experiment, we apply CMPE to gravitational wave inference of the binary black hole
merger GW150914. Our analysis parallels the study of Wildberger et al. [11] who apply FMPE to
this challenging scientific task. To this end, we implement our CMPE algorithm in the Dingo library
for analyzing gravitational wave data using neural posterior estimation [67]. Dingo implements a
sophisticated analysis pipeline that is carefully tailored to gravitational wave inference. As in previous
experiments, we compare FMPE and CMPE based on identical neural network backbones with a
total of ≈ 190 Million neural network weights, and we refer to Wildberger et al. [11] for a detailed
description of the experimental setup. The consistency model uses s0 = 10, s1 = 1280, Tmax =
50, σdata = 1.

Similar to Wildberger et al. [11], we show the bivariate posterior marginals for a subset of all
14 inference parameters in Figure 8. FMPE successfully captures the posterior geometry [which
matches a ground-truth posterior from a slow reference method; see 11]. In contrast, CMPE yields
a pathologically underexpressive posterior which mostly resembles a multivariate Gaussian (with
some minor mixture contributions for α). Yet, the maximum a posteriori (MAP) estimates of CMPE
and FMPE mostly align (up to CMPE covering both posterior modes for α), which indicates that
CMPE does distill information from the model. We suspect that the pathologically poor performance
of CMPE is related to (i) issues in our re-implementation of CMPE interfacing the Dingo library; or
(ii) misaligned hyperparameters for this specific application. We will continue troubleshooting and
invite the interested reader to watch the accompanying GitHub repository for updates.

23

T-
Sh

ir
t/

To
p

Param. Obs. x Sample Sample Sample Sample Sample

Tr
ou

se
r

Pu
llo

ve
r

D
re

ss
C

oa
t

Sa
nd

al
Sh

ir
t

Sn
ea

ke
r

B
ag

An
kl

e
B

oo
t

Figure 9: CMPE - U-Net architecture - 2 000 training images. CMPE denoising results from each
class of Fashion MNIST obtained using a U-Net architecture and two-step sampling. A small training
set of 2 000 images was used.

24

T-
Sh

ir
t/

To
p

Param. Obs. x Sample Sample Sample Sample Sample
Tr

ou
se

r
Pu

llo
ve

r
D

re
ss

C
oa

t
Sa

nd
al

Sh
ir

t
Sn

ea
ke

r
B

ag
An

kl
e

B
oo

t

Figure 10: CMPE - U-Net architecture - 60 000 training images. CMPE denoising results from
each class of Fashion MNIST obtained using a U-Net architecture and two-step sampling. A large
training set of 60 000 images was used.

25

T-
Sh

ir
t/

To
p

Param. Obs. x Sample Sample Sample Sample Sample
Tr

ou
se

r
Pu

llo
ve

r
D

re
ss

C
oa

t
Sa

nd
al

Sh
ir

t
Sn

ea
ke

r
B

ag
An

kl
e

B
oo

t

Figure 11: FMPE - U-Net architecture - 2 000 training images. FMPE denoising results from each
class of Fashion MNIST obtained using a U-Net architecture. A small training set of 2 000 images
was used.

26

T-
Sh

ir
t/

To
p

Param. Obs. x Sample Sample Sample Sample Sample
Tr

ou
se

r
Pu

llo
ve

r
D

re
ss

C
oa

t
Sa

nd
al

Sh
ir

t
Sn

ea
ke

r
B

ag
An

kl
e

B
oo

t

Figure 12: FMPE - U-Net architecture - 60 000 training images. FMPE denoising results from
each class of Fashion MNIST obtained using a U-Net architecture. A large training set of 60 000
images was used.

27

T-
Sh

ir
t/

To
p

Param. Obs. x Sample Sample Sample Sample Sample
Tr

ou
se

r
Pu

llo
ve

r
D

re
ss

C
oa

t
Sa

nd
al

Sh
ir

t
Sn

ea
ke

r
B

ag
An

kl
e

B
oo

t

Figure 13: CMPE - Naı̈ve architecture - 2 000 training images. CMPE denoising results from
each class of Fashion MNIST obtained using the naı̈ve architecture described above and two-step
sampling. A small training set of 2 000 images was used.

28

T-
Sh

ir
t/

To
p

Param. Obs. x Sample Sample Sample Sample Sample
Tr

ou
se

r
Pu

llo
ve

r
D

re
ss

C
oa

t
Sa

nd
al

Sh
ir

t
Sn

ea
ke

r
B

ag
An

kl
e

B
oo

t

Figure 14: CMPE - Naı̈ve architecture - 60 000 training images. CMPE denoising results from
each class of Fashion MNIST obtained using the naı̈ve architecture described above and two-step
sampling. A large training set of 60 000 images was used.

29

T-
Sh

ir
t/

To
p

Param. Obs. x Sample Sample Sample Sample Sample
Tr

ou
se

r
Pu

llo
ve

r
D

re
ss

C
oa

t
Sa

nd
al

Sh
ir

t
Sn

ea
ke

r
B

ag
An

kl
e

B
oo

t

Figure 15: FMPE - Naı̈ve architecture - 2 000 training images. FMPE denoising results from each
class of Fashion MNIST obtained using the naı̈ve architecture described above. A small training set
of 2 000 images was used.

30

T-
Sh

ir
t/

To
p

Param. Obs. x Sample Sample Sample Sample Sample
Tr

ou
se

r
Pu

llo
ve

r
D

re
ss

C
oa

t
Sa

nd
al

Sh
ir

t
Sn

ea
ke

r
B

ag
An

kl
e

B
oo

t

Figure 16: FMPE - Naı̈ve architecture - 60 000 training images. CMPE denoising results from
each class of Fashion MNIST obtained using the naı̈ve architecture described above. A large training
set of 60 000 images was used.

31

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We claim that consistency models combine the expressiveness of unconstrained
neural network architectures with fast sampling speed. We demonstrate this combination of
desirable properties across all five experiments.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss two potential drawbacks of consistency models for simulation-
based inference: (i) The relation between inference time (number of sampling steps) and
performance (posterior accuracy) is not monotonic; and (ii) consistency models do not
directly yield tractable densities for arbitrary parameter values. We mention these drawbacks
throughout the main text and also included a dedicated Limitations section. Further, we
propose solutions to these issues in Section 3.6, Section 5, and Section 3.5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

32

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We disclose all details of the neural network architectures, neural network
training, data (synthetic simulators or fixed data sets), and evaluation metrics.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

33

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide open access to the code to reproduce all results.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We specify all training and test details in the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We quantify and report uncertainty in all experiments, which is fundamentally
important for our application in probabilistic (Bayesian) inference.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

34

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We report the compute resources and approximate execution time to reproduce
the experiments in Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research in this paper confirms with NeurIPS Code of Ethics in every
respect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the positive impact on scientific progress in the Introduction. As
this paper is generally concerned with foundational research, the specific benefit or harm
largely depends on the underlying application.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

35

https://neurips.cc/public/EthicsGuidelines

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risk as we do not release any large-scale models,
generators, or data sets.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite all original papers of used benchmarks, evaluation tasks, data sets, and
metrics.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

36

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

37

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

38

	Introduction
	Preliminaries and related work
	Notation
	Simulation-based inference (SBI)
	Normalizing flows for neural posterior estimation
	Flow matching for posterior estimation
	Neural posterior score estimation

	Consistency model posterior estimation
	Conditional consistency models
	Consistency models for simulation-based inference
	Optimization objective
	Hyperparameter tuning
	Density estimation
	Choosing the number of sampling steps

	Empirical evaluation
	Experiment 1: Gaussian mixture model
	Experiment 2: Two moons
	Experiment 3: Inverse kinematics
	Experiment 4: Bayesian denoising
	Experiment 5: Tumor spheroid growth

	Discussion
	Consistency training details
	Evaluation metrics
	C2ST
	MMD
	Summary

	Additional details and results
	Experiment 1
	Experiment 2
	Experiment 3
	Unstandardized wall-clock times
	Empirical evaluation of optimal number of inference steps
	Experiment 4
	Experiment 5
	Experiment 6

