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ABSTRACT

Multi-stage generative models have shown great promise in 3D content creation due to focused
generation of structure or texture in different stages, but their outputs often fail to align with
human preferences. The key bottleneck to apply alignment methods is the presence of non-
differentiable operations between generative stages. This disconnection stops preference signals
applied to the final output from being backpropagated to the crucial, early stages of generation,
while simple separated stage-wise alignment leads to texture-geometry inconsistency. To ad-
dress this challenge, we introduce Circular-DPO, which builds a preference feedback loop to
align multi-stage 3D generation models to human preference. Our method first applies Direct
Preference Optimization (DPO) to refine the final 3D asset. We then construct new preference
pairs by sampling and decoding the assets generated by the optimized model. These newly-
formed pairs are used to train the preceding generative stage, effectively creating a feedback
loop that bridges the non-differentiable gap. Furthermore, to enhance robustness against noisy
data, we introduce a quality-aware weighting mechanism that prioritizes reliable preference
pairs during training. Experiments demonstrate that our approach improves the alignment of
generated 3D content with human preferences by enabling holistic, multi-stage optimization.
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Figure 1: Overview of the Circular-DPO. Our method creates a ’preference feedback loop’ using a back-to-front
optimization strategy, ultimately generating 3D assets that are better aligned with human preferences.

1 INTRODUCTION

3D content generation technology benefits practical applications in various domains, including film (Wang et al.,
2025), animation (Jiang et al., 2024), game design (Hao et al., 2021), and architectural design (Li et al., 2024a). In
recent years, revolutionary advancements in Diffusion Models (Hunyuan3D Team, 2025; Rombach et al., 2022)
have significantly propelled the development of automated 3D content generation. Current mainstream techniques
primarily fall into two categories: methods based on 3D native data (Li et al., 2024b) and lift-off methods that
optimize 3D representations from 2D generative models (Poole et al., 2022). These technologies can generate
highly complex, high-quality, and view-consistent 3D content from text or image prompts. Despite these rapid
advancements, existing research indicates that the 3D content produced by these state-of-the-art models often fails
to align effectively with human aesthetic and functional preferences (Ye et al., 2024). This discrepancy between
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the generated results and human expectations limit their application potential in scenarios that demand high fidelity
to user intent.

To enhance the alignment of 3D generation with human preferences, a natural approach is to apply Direct Prefer-
ence Optimization (DPO) (Rafailov et al., 2023), which iteratively refines an initial 3D representation to obtain a
final asset that better conforms to preferences. However, the application of DPO encounters a limitation, a deeper
analysis of existing technical frameworks reveals that mainstream 3D generation pipelines commonly involve
multiple stages. Other advanced methods like MVDream (Shi et al., 2023), DreamFusion (Poole et al., 2022) and
Magic3D (Lin et al., 2023) also involve multiple stages. For instance, 3D native methods like Trellis (Xiang et al.,
2024) employ a two-stage generation pipeline to produce structured 3D latent features: the first stage generates a
sparse structure, and the second stage populates it with local details, with each stage corresponding to a distinct
flow model. This introduces a critical challenge: these multi-stage processes often contain non-differentiable oper-
ations between stages. Consequently, gradient information from later stages particularly from the final preference
optimization applied to the local details stage cannot be effectively back propagated to preceding stages, such as
the sparse 3D structure generation stage. As a result, existing methods can only perform preference optimization
on the final output, failing to guide the generation in crucial early-to-intermediate stages, which often determine
the geometry or structure of the generated content. At the same time, separate alignment of each stage leads to
geometry texture inconsistency. This fundamentally limits the potential for aligning the overall generation quality
with human preferences.

To address the issues of stage separation, we propose a new paradigm centered around a human preference-driven
closed-loop optimization framework. This framework extends the application of DPO from the final 3D asset to
the entire generation chain. Taking Trellis as an example, our method consists of three main steps: (1) Optimizing
the Final Stage. We leverage a human preference dataset to fine-tune the generative model of the second stage
via DPO. This directly optimizes the generated details of the final 3D asset, yielding a high-quality output aligned
with human preferences. (2) Constructing New Preference Pairs. We pair the optimized, high-quality 3D asset
with its un-optimized original counterpart to form a new set of preference pairs. (3) Guiding the Preceding Stage.
We then apply DPO using these new preference pairs to guide and optimize the model responsible for generating
the sparse 3D structure in the first stage. This process establishes a data loop, allowing final human preferences
to continuously feed back and enhance the earlier stages of the multi-stage generation pipeline, thereby achieving
joint optimization.

When applying DPO in these stages, we observed that both the original human preference data and our newly
constructed preference pairs suffer from two types of noise: inherent data noise and preference ranking noise,
which can significantly impair optimization performance. To enhance the robustness of the preference alignment,
we introduce a quality-aware preference pair weighting mechanism. This mechanism dynamically calculates
weights for each preference pair based on its quality and reliability, assigning higher importance to more credible,
high-quality pairs. A reward loss, computed based on these weighted preference pairs, is then used to guide the
updates of the 3D representations. This approach effectively suppresses noise interference, ensuring a more stable
and precise optimization process.

Building upon this framework, we conduct comprehensive experiments demonstrating that our Circular-DPO
approach successfully bridges the non-differentiable gap between generative stages through iterative preference
propagation. Our experimental validation encompasses both quantitative metrics (ImageReward, HPSv2, Re-
ward3D, CLIP-score) and qualitative human evaluations across 100 diverse prompts, showing competitive perfor-
mance against baseline methods including Trellis, MVDream, and DreamReward, with particular improvements
in multi-stage coordination. Furthermore, our ablation studies reveal that the quality-aware weighting mechanism
effectively mitigates noise interference from both human-annotated and constructed preference pairs, while the
circular feedback loop enables holistic optimization across all generation stages. These results demonstrate the
viability of preference-driven alignment in multi-stage 3D generation and provide a systematic framework for
bridging non-differentiable operations in complex generative pipelines.

The main contributions of this paper can be summarized as follows:

(1) A Closed-Loop Paradigm for Multi-Stage Joint Optimization.We are the first to propose a data loop constructed
via DPO that feeds back human preferences from the final asset to optimize preceding generation stages. This
approach alleviates the critical bottleneck of interrupted gradient flow in multi-stage 3D generation, enabling joint
optimization.

(2) A Robust Preference Weighting Mechanism. We designed a quality-aware weighting strategy for preference
pairs that effectively mitigates the impact of noise from both human-annotated and newly constructed preference
data. This method enhances the stability and effectiveness of DPO while preserving data diversity.

(3) Effective Improvement in Generation Quality.We successfully constructed a 3D preference dataset based on
human-ranked annotations. By applying our proposed closed-loop optimization paradigm and weighting mecha-
nism, we significantly improved the quality of generated 3D models and their alignment with human preferences.
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2 RELATED WORK

2.1 ADVANCES IN 3D CONTENT GENERATION

The field of 3D content generation has shifted from early methods using Generative Adversarial Networks
(GANs) (Goodfellow et al., 2014; Heusel et al., 2017) for representations like voxels and meshes (Wu et al.,
2016; Chan et al., 2022; Skorokhodov et al., 2024) to the now-dominant paradigm of diffusion models (Ho et al.,
2020; Sohl-Dickstein et al., 2015; Luo & Hu, 2021; Nichol et al., 2022). A key catalyst has been score distil-
lation sampling (SDS) (Rombach et al., 2022), which enables text-to-3D synthesis by distilling knowledge from
pre-trained 2D models without requiring large-scale 3D datasets (Poole et al., 2022; Lin et al., 2023; Chen et al.,
2023; Wang et al., 2023b).

To enhance efficiency and quality, recent works have focused on generation within a compact latent space. State-
of-the-art models like Hunyuan3D-DiT (Hunyuan3D Team, 2025) and Trellis (Xiang et al., 2024) employ two-
stage pipelines that first generate a latent shape and then synthesize texture. Trellis introduced a unified Structured
LATent (SLAT) representation, enabling decoding into diverse formats like Radiance Fields (Mildenhall et al.,
2020) and 3D Gaussians (Kerbl et al., 2023), and leverages large-scale flow-based transformers (Lipman et al.,
2022; Esser et al., 2024). Other modern approaches explore alternative representations such as vector sets (Zhang
et al., 2023; Li et al., 2024b; Zhao et al., 2024) and triplanes (Wang et al., 2023a; Lan et al., 2024). Our work aims
to refine these powerful generative models by aligning their outputs with human preferences.

2.2 PREFERENCE OPTIMIZATION FOR GENERATIVE MODELS

Aligning generative models with human preferences is a critical challenge, traditionally addressed in NLP by Re-
inforcement Learning from Human Feedback (RLHF) (Ouyang et al., 2022; Stiennon et al., 2020). This paradigm,
which involves training a reward model and fine-tuning with RL, was later adapted for text-to-image models (Xu
et al., 2023; Fan et al., 2023; Black et al., 2023) and 3D generation (Ye et al., 2024). However, RLHF pipelines
are often complex and unstable to train (Rafailov et al., 2023).

Direct Preference Optimization (DPO) (Rafailov et al., 2023) emerged as a more stable alternative, reframing
alignment as a simple classification task that bypasses explicit reward modeling. This approach and its variants,
like Kahneman-Tversky Optimization (KTO) (Ethayarajh et al., 2024), have proven effective for LLMs. The
application of DPO to visual synthesis is a nascent but promising area. Diffusion-DPO (Wallace et al., 2024)
adapted the objective for models like SDXL (Podell et al., 2023), while others have extended it to flow-based
models for scientific applications (Jiao et al., 2024) and to 3D generation with DreamDPO (Zhou et al., 2025),
which leverages Large Multimodal Models (LMMs) for preference data.

Our work builds on these advancements by applying a DPO-based framework to a versatile, multi-stage 3D model.

3 PRELIMINARIES

3.1 A BRIEF INTRODUCTION OF FLOW MATCHING DPO

Flow Matching (Jiao et al., 2024) is a powerful generative modeling framework that learns a vector field to map
a simple prior distribution, p0(x), to a complex data distribution, p1(x). The core idea is to define a time-varying
probability path, ψt, that transports a sample x0 ∼ p0(x) from the prior to a data point x1 ∼ p1(x). This transport
is governed by a vector field vt according to the ordinary differential equation:

dψt(x0)

dt
= vt(ψt(x0)) (1)

In Conditional Flow Matching (CFM), a specific type of flow model, a simple linear interpolation is used to
define the path between a prior sample x0 and a data sample x1: x(t) = (1− t)x0 + tx1. The generative process
is then learned as a time-varying vector field, approximated by a neural network vθ(x, t). The network is trained
to predict the direction toward the data sample by minimizing the CFM objective:

LCFM(θ) = Et,x0∼p0,x1∼p1∥vθ(x(t), t)− (x1 − x0)∥22 (2)

For conditional tasks, such as generating a 3D structure x1 given a condition c, this principle holds. We can
explicitly define the time-dependent Mean Squared Error (MSE) at a specific time t as the squared L2 norm of the
difference between the predicted and target vector fields:

MSEt(x0, x1; θ) = ∥vθ((1− t)x0 + tx1, t)− (x1 − x0)∥22 (3)

The overall training objective is then the expectation of this quantity over all possible samples and time steps:

L = Et,x0∼p0,x1∼p1
[MSEt(x0, x1; θ)] (4)

Flow-DPO adapts the Direct Preference Optimization (DPO) framework to flow models, particularly for tasks
like text-to-3D generation. Given a preference pair where a sample xw is preferred over a sample xl (denoted as
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xw ≻ xl), the DPO objective is formulated to increase the likelihood of the preferred sample while decreasing
that of the dispreferred one. The general form of the objective is:

LDPO = −Exw,xl,i log σ

(
βTE

[
log

popt(x
w
i−1|xwi )

pref(xwi−1|xwi )
− log

popt(x
l
i−1|xli)

pref(xli−1|xli)

])
= −Exw,xl,i log σ

(
βT
[
J (xwi ; p, pref)− J (xwi ; p, popt)− J (xli; p, pref) + J (xli; p, popt)

]) (5)

As demonstrated by Jiao et al. (2024), the abstract log-probability ratios in the DPO objective can be effectively
approximated using the MSE from the Flow Matching framework. This insight simplifies the final training objec-
tive for Flow-DPO into the following practical form:

LDPO = −Exw
0,1,x

l
0,1,t

log σ

(
βT
[
(MSEt(x

w
0 , x

w
1 ; θref)−MSEt(x

w
0 , x

w
1 ; θopt))

−
(
MSEt(x

l
0, x

l
1; θref)−MSEt(x

l
0, x

l
1; θopt)

) ]) (6)

3.2 A BRIEF INTRODUCTION OF TRELLIS

Trellis architecture (Xiang et al., 2024) exemplifies a multi-stage approach by explicitly decoupling the generation
of heterogeneous 3D representations into two distinct stages. In the first stage, a Rectified Flow Transformer
θsparse generates a sparse voxel structure, xsparse, to outline the object’s active surface. For efficiency, these voxels
are then compressed by a 3D convolutional VAE into a low-dimensional feature grid. Conditioned on this sparse
structure, the second stage employs a sparse convolutional Transformer θslat to generate local latent variables,
xslat, which encode fine-grained geometric details and texture information. The framework’s core innovation lies
in its Structured LATents (SLAT), which couple the sparse topology from the first stage with the dense visual
features from the second. This hybrid representation enables the generation of diverse outputs—such as radiance
fields, 3D Gaussian splats, and meshes—through independent, specialized decoders.

3.3 GRADIENTS FAIL TO PROPAGATE FROM A LATER STAGE BACK TO AN EARLIER ONE

Texture-geometry inconsistency in Trellis multi-stage training pipelines, which manifests as non-manifold geom-
etry or lost texture detail, arises from a divergence in training gradients. This issue stems from two problems: 1)
a non-differentiable gap prevents gradients related to texture detail from propagating back from the second stage
to the first, and 2) gradients from the flow-matched sparse structure do not effectively contribute to the training
objective. Consequently, the optimization of geometric structure and texture detail becomes decoupled.

To resolve this, we adopt a back-to-front optimization strategy. We first optimize the second-stage (detail) model
and then use its outputs to construct new preference pairs. These pairs implicitly carry the preference gradients
from the detail stage. Since this process preserves the initial geometric structure, it creates a ”data loop” that
bridges the optimization gap, allowing human preferences to guide both stages of the pipeline holistically.

In complex multi-stage generative pipelines, preference feedback loops and preference-driven alignment provide
a systematic framework for bridging non-differentiable operations.

Texture-Geometry Inconsistency in Normal Training After Our Training

Lack of texture details Non-manifold Geometry Non-manifold Geometry

Figure 2: Demonstration of texture and geometry inconsistency.

4 METHOD

4.1 OVERVIEW

Our aim is to post-train a multi-stage generation pipeline (such as Trellis) with a predefined preference dataset.
The gradient of DPO over the second stage of Trellis cannot backpropagate to the first stage. We propose to embed
the supervision signal as preference pairs and forward them to the first stage, forming a preference feedback loop.
As illustrated in the overview Figure 3, our method achieves direct preference optimization for each stage within
a two-stage 3D generation framework. The process unfolds in three main steps.

4
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Figure 3: The overall framework of our Circular-DPO.In the first line, we review the 3D generation process of
Trellis. Our method is shown in the dashed box.

Step 1: Optimizing the Final Stage. We first fine-tune the generative flow model of the final 3D asset with the
DPO objective to directly embed human preferences.

Step 2: Constructing New Preference Pairs. We then form new preference pairs using the optimized asset from
Step 1 as the positive sample (xop) and the original as the negative sample (xun-op). This process is guided by a
quality weight w1 and a preference weight w2 to supervise the optimization.

Step 3: Guiding the Preceding Stage. Finally, these new preference pairs are used to fine-tune the sparse
structure model from the initial generation stage, propagating the preference signal frontward.

4.2 INITIAL CONSTRUCTION OF HUMAN PREFERENCES

We construct our initial preference dataset from DreamReward (Xu et al., 2023), a human-labeled collection
designed for evaluating preference alignment. The public dataset, D, contains 1,000 prompts, each associated
with nine ranked 3D assets. To form a preference pair (xw, xl), we sample two assets generated from the same
prompt, designating the higher-ranked asset as the positive sample xw and the lower-ranked asset as the negative
sample xl. Further details of the dataset are provided in the appendix.

4.3 DPO AS A BRIDGE BETWEEN GENERATIVE STAGES

As detailed in Section 3.2, the Trellis 3D generation pipeline consists of two distinct stages. The transition between
these stages is non-differentiable, which prevents gradient-based optimization from propagating from the second
stage back to the first. We overcome this limitation by employing DPO as a bridge between the stages. This
strategy enables a unified preference optimization framework across the entire pipeline, ensuring that preferences
applied to the final asset can effectively guide the initial, sparse-structure generation.

Our objective is to post-train a multi-stage generative pipeline using a predefined preference dataset, D. The core
of our method is a multi-step application of a general Direct Preference Optimization (DPO) objective for flow
models. After initial data preprocessing (detailed in the appendix), we define this general loss function for a given
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dataset D′ and preference weights w2 as:

LDPO(D′; θ) = −E(xw
0 ,xw

1 ),(xl
0,x

l
1)∼D′,t log σ

(
βTw2

[
(MSEt(x

w
0 , x

w
1 ; θref)−MSEt(x

w
0 , x

w
1 ; θopt))

−
(
MSEt(x

l
0, x

l
1; θref)−MSEt(x

l
0, x

l
1; θopt)

) ]) (7)

Step 1: Optimizing the Final Stage. First, we optimize the final stage of the pipeline, which generates the
structured latent (xslat) representation. Using the preprocessed human preference dataset Dslat, we fine-tune the
policy model θslat

opt against a reference model θslat
ref . This is achieved by minimizing our general DPO objective:

min
θslat

opt

LDPO(Dslat, θ
slat) (8)

Step 2: Constructing New Preference Pairs. Next, we construct a new preference dataset to bridge the stages.
We generate two assets for each prompt: an optimized asset xop from the fine-tuned model in Step 1, and an un-
optimized asset xun-op from the original reference model. These form new preference pairs (xop, xun-op). This step
also defines a quality weight w1 and a preference alignment weight w2, which are used to guide the optimization.

Step 3: Preceding Stage Guidance. Finally, we propagate the preference signal to the preceding stage, which
generates the sparse structure (xsparse). The newly constructed asset pairs (xop, xun-op) are passed through an
encoder E to create a new dataset Dsparse. We then fine-tune the sparse model’s parameters θsparse

opt by minimizing
the DPO objective again:

min
θsparse

opt

LDPO(Dsparse, θ
sparse) (9)

4.4 DATA SELECTION

When using DPO to construct preference pairs between generative stages, a supervised data selection method is
necessary to filter the pairs, ensuring they contribute to an overall improvement in model quality.

4.4.1 QUALITY-BASED FILTERING WITH w1

Inspired by prior work Karthik et al. (2024), we first devise a quality score to filter out low-quality or mislabeled
preference pairs. For a given prompt c, we sample k assets {Iop

1 , . . . , I
op
k } from the optimized policy θslat

opt and
N − k assets {Iun-op

k+1 , . . . , I
un-op
N } from the reference policy θslat

ref . We then score every asset Ii in this collection of
N candidates using a pre-trained reward model, Rϕ(Ii, c).

Based on these scores, we calculate the win count Ci for each asset Ii in all-pairs comparisons. The preference
probability P (Ii) is then computed as:

P (Ii) =
2Ci

N(N − 1)
(10)

To amplify score differences, we apply a transformation Gi = 2P (Ii) − 1. The final quality gap score, w1, for a
given preference pair (Iop, Iun-op) is the difference in their transformed scores:

w1 = Gop −Gun-op (11)

A higher w1 indicates a larger and more reliable quality gap. We use this score to filter our dataset, discarding any
preference pair where w1 ≤ τ , with a threshold τ set to zero.

4.4.2 PREFERENCE RELIABILITY WEIGHTING WITH w2

Following Wu et al. (2024), we further introduce a dynamic weight, w2, to down-weight samples that are likely
noisy, even if they pass the w1 filter. This weight is based on the log-likelihood of a preference pair under a reward
model r:

h(c, xw, xl) = log σ(r(c, xw)− r(c, xl)) (12)

The weight w2 is the normalized exponentiated log-likelihood, which prioritizes pairs that the reward model
considers highly probable:

w2(c, x
w, xl) =

exp(h)

ED[exp(h)]
(13)

By integrating these two mechanisms, our final loss function, LCircular-DPO, applies the standard DPO loss only to
high-quality pairs, weighted by their reliability:

LCircular-DPO =

{
LDPO if w1 > τ

0 if w1 ≤ τ
(14)

6
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Tex Details：a 3d model of a futuristic esf gun with a blue and white design.

Figure 4: Qualitative Visual Results.

5 EXPERIMENT

We evaluated our proposed Circular-DPO against state-of-the-art 3D generation models. For this comparison,
we curated a new test set of 100 prompts designed to cover a wide range of creativity and complexity. This
set was constructed by first selecting 30 diverse prompts from the 3DRewardDB, and then using Gemini 1.5
Pro to generate 70 additional, novel prompts based on the full 3DRewardDB collection. To comprehensively
evaluate our method, we conduct both qualitative visual comparisons and rigorous quantitative analysis. Our
quantitative evaluation employs four distinct metrics to assess alignment with human preferences and text-image
consistency ImagerewardXu et al. (2023), HPSv2, Reward3DYe et al. (2024), and CLIP ScoreRadford et al.
(2021). In addition, we also conducted a detailed user study specifically to further demonstrate the consistency
between our method and human preferences.

5.1 QUALITATIVE COMPARISON

It shows 3D assets generated by our Dreamreward and Trellis baselines for multiple prompts, allowing for an intu-
itive visual comparison. As illustrated in the Figure 4, our method achieves significant enhancements in geometry,
texture, and overall visual quality after preference alignment. For instance, in the first example, the armchair’s
backrest geometry is optimized to better align with human aesthetic preferences. In the second example, given a
similar geometric base, our model generates markedly more detailed and refined textures on the gun. Finally, the
third example demonstrates a holistic improvement across multiple domains, where our method simultaneously
enhances the model’s texture, geometry, and text-to-3D consistency.
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5.2 QUANTITATIVE COMPARISON

In Tables 1 and 2, we compare our method with several benchmarks, namely LatentNeRFMildenhall et al. (2020),
MVDreamShi et al. (2023), DreamRewardYe et al. (2024), DreamDPOZhou et al. (2025), and TrellisXiang et al.
(2024). This shows that our results consistently outperform other baselines across multiple evaluation criteria.

The quantitative results, presented in the Table 1, demonstrate that our method achieves a comprehensive im-
provement over the Trellis baseline. Specifically, Circular-DPO surpasses the baseline across all 2D evaluation
metrics. On the 3DReward metric, our method also shows superior performance. Furthermore, the higher CLIP
Score indicates that our approach maintains high semantic consistency. While our method significantly advances
upon the baseline, we note that it does not yet outperform previous score distillation-based approaches. However,
the time we take to generate 3D assets is much shorter than that of the distillation method.

Table 1: Quantitative comparisons
Evaluation Time 3D representation Imagereward↑ Hpsv2 ↑ Reward3D ↑ CLIP-score ↑
Latent-NeRF 15min Nerf -0.7774 0.1722 -2.9517 0.3137
MVDream 2h Nerf -0.3948 0.2013 -0.4292 0.3431
DreamReward 40min Nerf 1.3014 0.2302 2.0158 0.3428
DreamDPO 1.5h Nerf -0.3774 0.2013 -0.1767 0.3474
Trellis 10s 3DGS -0.6684 0.1902 -0.6450 0.3227
OURS 14s 3DGS -0.3684 0.2010 -0.5969 0.3290

5.3 ABLATION STUDY

In Table 2, we present a series of eight ablation studies to analyze the contributions of our method’s key com-
ponents. To evaluate these ablations, we conduct both qualitative and quantitative comparisons. The quantitative
results, visualized in Figure 5, are measured using four metrics.

Our ablation study comprises eight experimental groups to isolate the effects of our proposed components. Groups
(b), (c), and (d) evaluate different applications of Direct Preference Optimization (DPO): (b) trains both stages
independently without our data loop, while (c) and (d) apply DPO exclusively to the first-stage sparse model and
the second-stage detail model, respectively. Groups (e) and (f) serve as non-DPO baselines, which are directly
fine-tuned on the preference data to assess the impact of the DPO objective itself. Groups (g) and (h) analyze the
contribution of our proposed data selection weights by ablating the sample quality weight (w1) and the preference
pair reliability weight (w2), respectively. Finally, Group (i) represents the baseline performance of the original
Trellis model without any preference alignment fine-tuning.

Impact of DPO on Model Components Our ablations demonstrate that DPO significantly enhances both geo-
metric and textural generation. Observing groups (a), (c), and (i) in Figure 5, DPO training on the sparse structure
model corrects the geometric errors and poor structures common in the untrained baseline (i). Compared to stan-
dard post-training (e), our DPO approach (c) achieves superior geometric quality and text-alignment. Furthermore,
our full method with its data propagation strategy (a) improves fine-grained structures, reducing artifacts like holes
and broken faces compared to isolated DPO training (c).

Similarly, for the latent feature model, DPO training enriches texture generation. As seen in Figure 5, our method
overcomes the monotonous textures of the baseline (i) and handles complex details, such as facial features, more

bad geometry 
structure

lack of details bad texture and 
geometry structure

bad geometry 
structurea 3d model of a mossy stone 


wall featuring a face and a hole
(i) Original Model Generation

(a)   Circular-DPO
bad texture and 

geometry structure

(e) W/O  Slat Train

(b) W/O  Data Circulation

bad texture 
structure

 (c) W/O  Slat DPO

bad texture and 
geometry structure

(f)  W/O Sparse Structure Train

bad geometry 
structure

 (d) W/O Sparse Structure DPO

(h) W/O w2

(g) W/O w1

Figure 5: Visual results of the ablation study.

8



464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521

Under review as a conference paper at ICLR 2026

effectively than standard post-training (e). Again, our full method (a) shows superior detail and handling of
complex textures compared to isolated DPO on the second stage (d).

DPO vs. Standard Post-Training With an equivalent amount of data, DPO provides a more substantial quality
improvement than standard post-training. A comparison of DPO-trained models (c, d) against conventionally
trained models (e, f) in Figure 5 reveals this advantage. While standard training offers some enhancements, it
struggles with error correction. In contrast, DPO yields superior overall quality, greater texture richness.

Effect of Quality and Preference Weights The quality (w1) and preference (w2) weights are crucial for guiding
the model toward optimal results. As shown in groups (a), (g), and (h) in Figure 5, ablating either of these weights
leads to suboptimal outcomes. While some improvements over the baseline are still present, the final generation
quality is clearly diminished without the filtering and weighting mechanisms.

Table 2: Ablation Study

Evaluation label Imagereward↑ Hpsv2 ↑ Reward3D ↑ CLIP-score ↑
rank score rank score rank score rank score

Circular-DPO (a) 2 -0.3684 1 0.2010 1 -0.5969 1 0.3290
Trellis-w/o-bridge-dpo (b) 5 -0.5393 4 0.1952 9 -0.7674 5 0.3227
Trellis-dpo-only step1 (c) 8 -0.5880 8 0.1907 3 -0.6336 3 0.3264
Trellis-dpo-only step2 (d) 4 -0.5028 5 0.1931 8 -0.7112 9 0.3168
Trellis-normal-only step1 (e) 7 -0.5642 7 0.1915 4 -0.6427 8 0.3209
Trellis-normal-only step2 (f) 6 -0.5527 6 0.1927 5 -0.6442 2 0.3215
OURS-Trellis-w/o-w1 (g) 1 -0.3246 2 0.2009 2 -0.6199 2 0.3286
OURS-Trellis-w/o-w2 (h) 3 -0.4908 3 0.1969 7 -0.6661 4 0.3230
Trellis (i) 9 -0.6684 9 0.1902 6 -0.6450 5 0.3227

5.4 USER RESEARCH

We recruited 20 participants with 3D modeling experience to take part in the user study. During the experiment,
users were free to view the generated 3D models from various perspectives.Each participant evaluated six ran-
domly selected 3D assets, scoring them on a five-point scale across five criteria and making a preference selection
based on the overall appeal of the model.The results compellingly demonstrate the effectiveness of our method.
Nearly 70% of participants preferred the assets generated by our approach over the baseline. Furthermore, our
method achieved higher average scores across all evaluated dimensions compared to the original Trellis model,
confirming its ability to enhance model quality in a way that aligns with genuine human preferences.

69%

31%

0.18750.2362 0.3646 0.2884

0.3871

Trellis

Ours

S
c
o
re
s

Figure 6: Display of user study results. Left: The generation effect that users prefer more. Right: The five-point
scale score results for text consistency, 3D plausibility, texture details, geometric details, and texture-geometric
consistency.

6 CONCLUSION
The proposed method creates a “preference feedback loop” using a back-to-front optimization strategy. First, it
fine-tunes the final (slat) generative stage using human preferences. Then, it constructs new preference pairs by
contrasting the outputs of the optimized and original models. These new pairs are used to train the preceding
(sparse structure) stage, effectively propagating preference signals across the non-differentiable gap. Experiments
show the method significantly improves the geometry, texture, and overall alignment with human preferences
compared to the baseline.

However, our method still has limitation. Its performance on quantitative metrics has not yet surpassed previous
score distillation-based methods, but this is compensated by its training time and efficiency.For future work, we
will also apply this feedback loop mechanism to optimize 3D generation tasks based on score distillation, in order
to explore the generalizability of our method.
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A THE USE OF LARGE LANGUAGE MODELS

We conducted two tasks using large language models (LLMs). First, as mentioned in the main text, we leveraged
an LLM to generate abundant text prompts serving as the test dataset. Specifically, the LLM first processed all
prompt data in our training set, and then generated a set of prompts based on this learning process to form the test
dataset. Second, we utilized the same LLM to translate, polish, and refine the textual content throughout the entire
manuscript. The LLM employed in this study is Gemini 2.5 Pro.

B REPRODUCIBILITY STATEMENT

The training process has been clearly and detailedly described in the main text, and the data processing process is
elaborated in Appendix C.3.

C ADDITIONAL IMPLEMENTATION

C.1 TRAINING DETAILS

C.1.1 TRAINING IMPLEMENTATION DETAILS

Our Circular-DPO takes approximately 24 hours to train on 1000 samples. After training, the model can quickly
generate 3D assets within tens of seconds based on given conditions. The generated 3D assets will display finer
texture details, more realistic geometric structures, and content that is more consistent with text descriptions.

C.1.2 PSEUDOCODE

The Circular-DPO algorithm addresses preference alignment in multi-stage 3D generative models through a sys-
tematic three-stage approach that overcomes the fundamental challenge of non-differentiable operations between
generation stages.
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Algorithm 1 Circular-DPO: Aligning Multi-Stage 3D Generative Models
Require: Preference dataset Dslat = {(c, xwslat, xlslat)}
Require: Policy models θslatopt , θsparseopt

Require: Reference models θslatref , θsparseref

Require: Encoder E
Require: Quality weight function w1, Preference weight function w2

1: Step 1: Optimizing the Final Stage
2: for each batch in Dslat do
3: Compute Lslat

DPO using preference pairs
4: Update θslatopt using gradient descent
5: end for
6: Step 2: Constructing New Preference Pairs
7: for each condition c in dataset do
8: Sample xopslat from optimized model θslatopt

9: Sample xun−op
slat from reference model θslatref

10: Decode: xopsampled = Decode(xopslat), x
un−op
sampled = Decode(xun−op

slat )

11: Encode: xopsparse = E(xopsampled), x
un−op
sparse = E(xun−op

sampled)
12: Compute quality weights: w1,(op,un−op) = Gop −Gun−op

13: Compute preference weights: w2(c, x
op, xun−op) = exp(h)

E[exp(h)]
14: if w1 > τ then
15: Add (c, xopsparse, x

un−op
sparse) to Dsparse with weights w2

16: else
17: Skip this preference pair
18: end if
19: end for
20: Step 3: Guiding the Preceding Stage
21: for each weighted batch in Dsparse do
22: Compute weighted Lsparse

DPO = w2 × LDPO using new preference pairs
23: Update θsparseopt using gradient descent
24: end for
25: return Optimized models θslatopt , θsparseopt

The algorithm operates as follows:

(1) The algorithm first applies DPO training to the SLAT flow model using human-annotated preference data to
optimize final asset generation quality.

(2) It then constructs new preference pairs by sampling optimized examples from the trained model and unopti-
mized examples from the reference model, applying quality-aware filtering to retain only high-quality pairs for
subsequent training.

(3) Finally, the filtered preference pairs are used to train the sparse structure flow model with weighted DPO
loss, enabling preference signals to propagate from the final output back to the initial generation stage. This
circular feedback mechanism achieves joint optimization across the entire multi-stage pipeline while maintaining
the architectural benefits of stage separation.

C.2 TRAINING PROCESS

We show the change in training loss of Circular-DPO as the number of training steps increases. The blue curve
represents the retraining data we conducted. For the preference data provided by the external dataset, our method
starts to converge when approaching 3000 steps and stops training at around 5000 steps after the training stabilizes.

C.3 DATA PROCESS

The generation process of the data structure required for training is as follows. First, obtain the original 3D assets
and their corresponding text conditions c. Render the 3D assets to obtain images from multiple perspectives.
Perform voxelization processing on the obtained 3D assets, and at the same time, use DINOv2 to extract the
features of the 3D assets through the rendered images. Input the obtained voxelized data and features into the
Sparse VAE Encoder, and obtain the sparse structure xsparse of the 3D assets through encoding. Using the sparse
structure xsparse of the 3D assets, the extracted image features, and the corresponding text conditions c, xslat is
obtained through encoding by the encoder, which is the initial data for the first step of training, i.e., the process
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Figure 7: Training loss over steps.

from steps 1 to 5 in the Figure 8. After obtaining new sample pairs, use the trained sparse flow model to sample

1 2 3 4 5 6

Figure 8: Training data processing process and intermediate process data.

and obtain structure−slat, which is step 6. Decode it to get new 3D asset preference pairs. Continue performing
steps 1 to 5 on the new 3D asset preference pairs to obtain xsparse, which will be used as the training data for the
third step to directly optimize the preferences of the flow model.

The new preferences are sampled by the trained sparse flow model, conditioned on the xsparse of the positive
samples provided in the original dataset, the extracted image features, and the corresponding text conditions c. To
unify the input data, the negative samples are sampled by the untrained sparse flow model. In the Figure 10, we
show a comparison between the initial data and the newly sampled data. Through sampling, we can obtain the 3D
assets generated after training. By pairing these generated 3D assets with the original 3D assets, we can create
new preference pairs.

C.4 RATIONALE FOR THE PREFERENCE FEEDBACK LOOP

When we apply Direct Preference Optimization (DPO) to the second stage (the slat model), which is primarily
responsible for local details and texture, the optimization process not only refines the texture but also inevitably
generates more detailed geometric information, as shown in the Figure 9. The geometric details of textures such as
those of houses and bread have been improved. However, due to non-differentiable operations between the stages,
this valuable geometric information learned in the later stage cannot be backpropagated via gradients to the first
stage, which generates the sparse structure.

If the two stages were fully disentangled, applying DPO independently to each would suffice for the alignment
process. In fact, this entanglement is an inherent consequence of the model’s architecture: the output of the first
stage is a compact latent representation compressed by an encoder (e.g., a VAE), which implies that the structural
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Original model sampling Model sampling after optimizing Original model sampling Model sampling after optimizing

Figure 9: Differences in data before and after optimizing.

Original Preference Pair New Preference Pair

Figure 10: Differences in preference pairs before and after optimizing.

information of the original 3D asset is down-sampled. Consequently, to successfully decode the complete 3D
model, the features in the second stage must contain and elaborate upon this specific structural information.

It is this unavoidable entanglement that underscores the necessity of our proposed Circular-DPO framework. The
framework establishes a preference feedback loop, which, in essence, does not merely pass gradients. Instead, it
propagates the preference signal—to fit the winning sample while diverging from the losing one—along with the
associated optimized geometry and texture information. This is achieved by constructing new preference pairs,
which effectively guide the preceding generation stage and lead to a global, consistent optimization.

D THE INEFFICIENCY OF FRONT-TO-BACK OPTIMIZATION

Optimizing the pipeline from back to front is significantly more efficient than a front-to-back approach. The core
inefficiency of a front-to-back strategy lies in the data selection process required for constructing preference pairs.

Specifically, a front-to-back method would first require fine-tuning the initial-stage (sparse) model. To create
preference pairs for the second stage, one would then need to generate full 3D assets by sampling from both the
newly optimized initial-stage model and the original, unoptimized one. As illustrated in Figure 2, this process
involves generating a large number of complete 3D assets simply for the purpose of ranking and selection.

In contrast, our back-to-front approach bypasses this redundant generation step. By first optimizing the final
stage, we can construct preference pairs for the initial stage without needing to generate assets from an un-trained
or intermediate model, thereby substantially improving training efficiency.
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Figure 11: Front-to-back VS Back-to-front.

E HUMAN PREFERENCE DATASET 3DREWARDDB

E.1 SHOW SEVERAL EXAMPLES IN THE 3DREWARDDB

The new publicly available data from 3DrewardDB involves re-annotating the large-scale 3D dataset Objverse,
and it releases 1000 candidate prompts, each accompanied by 4-10 sampled 3D assets.In the Figure 12, we show
several examples of human preference rankings.

1 2 3 4 5 6

A small green teapot with legs

1 2 3 4 5 6

A white 3D-printed ring featuring intricate designs of flowers, leaves, butterflies, and a dragon, with a diamond in the middle

Figure 12: Examples of 3DrewardDB.

E.2 THE FITTING SITUATION OF PREFERENCES AFTER TRAINING

After training, our generation will better fit the 3D models in human preferences in terms of texture and geometric
structure. For example, in the first example, the highest-ranked 3D pattern is a long chair back. Under the condition
of the same seed, we can generate geometric shapes that are more in line with preferences. Other dimensions such
as texture can also achieve this effect.
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Rank1 Rank2 Rank3 Rank9

View 1 View 2 View 3 View 4

Rank1 Rank2 Rank3 Rank9

View 1 View 2 View 3 View 4

Rank1 Rank2 Rank3 Rank9

View 1 View 2 View 3 View 4

3d model of a modern black leather chair with a metal base

3D model of a Star Wars Millennium Falcon X-Wing fighter aircraft

3d model of a brass ball valve with a blue cap and handle

Figure 13: The fitting situation of preferences.
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F MORE VISUAL RESULTS

Figure 14: More Visual Results.
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