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ABSTRACT

Learning how to generalize training performance to unseen test distributions is
essential to building robust, practically useful models. To this end, many recent
studies focus on learning invariant features from multiple domains. However,
we observe that the performance of existing invariant learning methods can de-
grade under covariate shift. To address this problem, we focus on finding in-
variant predictors from multiple, potentially shifted invariant feature distributions.
We propose a novel optimization problem, Weighted Risk Invariance (WRI), and
we show that the solution to this problem provably achieves out-of-distribution
generalization. We also introduce an algorithm to practically solve the WRI prob-
lem that learns the density of invariant features and model parameters simultane-
ously, and we demonstrate our approach outperforms previous invariant learning
methods under covariate shift in the invariant features. Finally, we show that the
learned density over invariant features effectively detects when the features are
out-of-distribution.

1 INTRODUCTION

Although traditional machine learning methods can be incredibly effective, many are based on the
i.i.d. assumption that the training and test data are independent and identically distributed. As a
result, these methods are often brittle to distribution shift, failing to generalize training performance
to out-of-distribution (OOD) data (Torralba & Efros, 2011; Beery et al., 2018; Hendrycks & Diet-
terich, 2019; Geirhos et al., 2020). Distribution shifts abound in the real world: as general examples,
we encounter them when we collect test data under different conditions than we collect the training
data (Adini et al., 1997; Huang et al., 2006), or when we train on synthetic data and evaluate on real
data (Chen et al., 2020; Beery et al., 2020). Learning to generalize under distribution shift, then, is
a critical step toward practical deployment.

To achieve generalization, a typical setup is to use multiple training environments with the hope
that, if the model learns what is invariant across the training environments, it can leverage that
invariance on an unseen test environment as well. An extensive line of research therefore focuses
on learning statistical relationships that are invariant across training environments (Ganin et al.,
2016; Tzeng et al., 2017; Li et al., 2021). Of these, recent works focus on learning an invariant
relationship between the data X and label Y distributions, as such relationships are posited to result
from invariant causal mechanisms (Pearl, 1995; Schölkopf et al., 2012; Peters et al., 2016; Rojas-
Carulla et al., 2018). Indeed, several works have found that learning features Φ(X) such that the
label conditional distribution p(Y |Φ(X)) is invariant across environments is an effective method of
uncovering the coefficients of a data-generating causal model (Arjovsky et al., 2019; Krueger et al.,
2021; Wald et al., 2021; Eastwood et al., 2022).

Compared to predictors that have strict distribution shift assumptions (e.g. covariate shift (Muandet
et al., 2013; Robey et al., 2021), label shift (Lipton et al., 2018; Liu et al., 2021c), etc.), predictors
that rely on conditionally invariant features can be seen as more well-motivated and more generally
robust (Koyama & Yamaguchi, 2020). However, we demonstrate that existing methods for finding
these predictors can struggle or even fail when the conditionally invariant features undergo covariate
shift. We will see that covariate shift introduces two types of challenges: first, it could adversely
impact sample complexity Shimodaira (2000), and second, it could lead some invariance-enforcing
penalties to incorrectly identify the conditionally invariant features.
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Figure 1: Setup (top) and trained predictors (bottom) for our linear causal model, following Assumption 1,
when the marginal distributions of the invariant features differ. In this setup, the solution to WRI is a nearly
invariant predictor. Full parameters for this simulation can be found in Appendix C.

In this work, we argue that we can mitigate the effects of covariate shift by accounting for the
underlying structure of the data in our learning process. We therefore introduce a novel optimization
problem, Weighted Risk Invariance (WRI), that uses information from the feature distributions to
adjust for shifts. Figure 1 shows that solving for WRI recovers a nearly invariant predictor, even
in the difficult case of heteroskedasticity and covariate shift. We theoretically show that solutions
to WRI achieve OOD generalization by learning to reject spurious correlations, and we provide an
algorithm to solve WRI in practice. Finally, we show that under distribution shift in the invariant
features, the WRI solution outperforms state-of-the-art baselines.

In summary, our main contributions are:

• We introduce a novel invariant learning method that utilizes Weighted Risk Invariance (WRI) to
tackle covariate shift in the invariant features. We theoretically show that the solution of WRI
recovers an invariant predictor under a linear causal setting (Prop. 1, Thm. 2).

• We propose an algorithm to empirically solve WRI which involves learning the model parameters
and the density of the invariant feature distribution using alternating minimization (§3.2).

• We verify the efficacy of our approach with experiments on simulated and real-world data. We
find that, under covariate shift in the invariant features, our method outperforms state-of-the-art
baselines on benchmarks like ColoredMNIST and DomainBed. Moreover, our learned invariant
feature density reports when invariant features are outside of the training distribution, making it
useful for downstream tasks like OOD detection (§4).

2 PRELIMINARIES

2.1 DOMAIN GENERALIZATION

Domain generalization was first posed (Blanchard et al., 2011; Muandet et al., 2013) as the prob-
lem of learning some invariant relationship from multiple training domains/environments Etr =
{e1, . . . , ek} that we assume to hold across the set of all possible environments we may encounter
E . Each training environment E = e consists of a dataset De = {(xe

i , y
e
i )}ne

i=1, and we assume that
data pairs (xe

i , y
e
i ) are sampled i.i.d from distributions pe(Xe, Y e) with x ∈ X and y ∈ Y . (When

the context is clear, we write the data-generating random vector X , output random variable Y , and
their realizations without the environment superscript.)

For loss function ℓ, we define the statistical risk of a predictor f over an environment e as

Re(f) = Epe(Xe,Y e) [ℓ(f(x
e), ye)] , (1)
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Figure 2: Causal graph depicting our data-generating process. The environment E is dashed to emphasize it
takes on unobserved values at test time.

and its empirical realization as

1

|De|

|De|∑
i=1

ℓ(f(xe
i ), y

e
i ). (2)

Empirical Risk Minimization (ERM) (Vapnik, 1991) aims to minimize the average loss over all of
the training samples

RERM (f) =
1

|Etr|
∑
e∈Etr

Re(f). (3)

Unfortunately, ERM fails to capture distribution shifts across training environments (Arjovsky et al.,
2019; Krueger et al., 2021), and so can fail catastrophically depending on how those distribution
shifts extend to the test data. (Previous works point to cases where ERM successfully generalizes,
but the reason is not well understood (Vedantam et al., 2021; Gulrajani & Lopez-Paz, 2020), and its
success does not hold across all types of distribution shifts (Ye et al., 2022; Wiles et al., 2021).) In our
work, we therefore aim to learn a predictor that captures the underlying causal mechanisms instead,
under the assumption that such mechanisms are invariant across the training and test environments.

2.2 OUR CAUSAL MODEL

We assume that input X contains both causal/invariant and spurious components such that there
exists a deterministic mechanism to predict the label Y from invariant components Xinv , while the
relationship between spurious components Xspu and label Y depends on the environment. More
explicitly, we say that Y ⊥̸⊥ E | Xspu. The observed features X are a function of the invariant and
spurious components, or X = g(Xinv, Xspu), which we assume is injective so that there exists g†(·)
that recovers Xspu, Xinv almost surely. We represent this data-generating process with the causal
graph in Figure 2. From the graph, we observe that pe(Y | Xinv) = pẽ(Y | Xinv) for any e, ẽ ∈ E ,
i.e. it is fixed across environments. On the other hand, the distribution pe(Y | Xspu) is not fixed
across various e ∈ E and we assume it may change arbitrarily. We summarize these assumptions
below.

Assumption 1 (Our problem setting). Following Figure 2, observed data for environment E = e is
generated from random vectors Xe ∈ Rd that are composed of invariant components Xe

inv ∈ Rdinv

and spurious components Xe
spu ∈ Rdspu . The conditional distribution pe(Y

e|Xe
inv) is equal for all

environments in our training set e ∈ Etr, while the distributions pe(Xe
spu|Y e) are not equal for all

training environments e ∈ Etr.

In order to learn a predictor that depends on causal mechanisms, we aim to search among predictors
on Xinv with output conditional distributions that are equal for all training environments. We would
like this equality to extend beyond the training environments as well, so we define an invariant
predictor to formalize the qualities we are looking for.

Definition 1. We say that a predictor f : X → Y is spurious-free over a set of environments E ′ if
f(X) = f(Xinv) for all environments e ∈ E ′. The spurious-free predictor that performs best on all
environments is the optimally invariant predictor, which we call an invariant predictor for short.

Invariant predictors, or representations, are usually defined as models that satisfy pe(Y | f(X)) =
pe′(Y | f(X)) for any e, e′ ∈ E ′ (Arjovsky et al., 2019). For the settings we study in this paper, the
optimal invariant predictor as defined in Definition 1 satisfies this property.
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2.3 INVARIANT LEARNING UNDER COVARIATE SHIFT

Causal predictors assume there exist features Xinv = Φ(X) such that the mechanism that generates
the target variables Y from Φ(X) is invariant under distribution shift; this leads to the conditional
distribution p(Y |Φ(X)) being invariant across environments (Schölkopf et al., 2012; Peters et al.,
2016). Conditionally invariant features induce other forms of invariance, and recent works search for
these proxy forms of invariance in an attempt to recover conditionally invariant features from com-
plex, high-dimensional data. Popular methods along this line include Invariant Risk Minimization
(IRM) (Arjovsky et al., 2019) and Risk Extrapolation (REx) (Krueger et al., 2021). For simplic-
ity, we call conditionally invariant features invariant when the context is clear, using terminology
consistent with previous works (Liu et al., 2021a; Ahuja et al., 2021).

3 DENSITY-AWARE GENERALIZATION

3.1 DENSITY-WEIGHTED RISK INVARIANCE

Risk invariance is a widely used signature of prediction on invariant features. Unfortunately, het-
eroskedasticity can obscure the relationship between the invariant features and the label so that under
invariant feature covariate shift, risk invariance no longer holds. In order to compare risks across en-
vironments, we need a reweighting that respects the underlying invariant feature distribution. To this
end, we introduce the idea of weighted risk, an asymmetric measure of risk over one environment
where we weigh by the invariant feature density of another environment. We define this concept
formally below.
Definition 2. We define the weighted risk between two environments ei and ej as

Rei,ej (f) = Epei
(Xei ,Y ei )

[
ℓ(f(x), y) · pej (xinv)

]
. (4)

Weighted risk invariance between two environments means that Rei,ej (f) = Rej ,ei(f), and
weighted risk invariance over a set of more than two environments means that weighted risk in-
variance holds for all pairwise combinations of environments in the set.

We now present our first result, that a spurious-free predictor leads to weighted risk invariance in a
general causal setting.
Proposition 1. Let Assumption 1 hold over a set of environments E ′. If a predictor f is spurious-free
over E ′, then weighted risk invariance holds over E ′.
This result shows that weighted risk invariance is a signature of spurious-free prediction, and it is
easy to verify that the optimal invariant predictor also satisfies weighted risk invariance. However, to
properly demonstrate how weighted risk invariance could be used to train a generalizable predictor,
we need to show that the result holds in the opposite direction, over a larger set of environments.
Thus, as in previous work on principled methods for learning invariant models (Arjovsky et al.,
2019; Krueger et al., 2021; Wald et al., 2021), we also prove that predictors with weighted risk
invariance discard spurious features Xspu for OOD generalization under general position conditions
(see Appendix A). We show this for the case of linear regression, where we have the following
data-generating process for training environment i ∈ [k]:

Y = w∗
inv xinv +ε, ε ∼ N (0, σ2

y)

Xspu = µiy + η, η ∼ N (0,Σi).
(5)

Theorem 2. Consider a regression problem following the data generating process of equation 5. Let
E ′ be a set of environments that satisfy general position. A linear regression model f(x) = wT x
with w = [winv,wspu] that satisfies weighted risk invariance w.r.t the squared loss must satisfy
wspu = 0.

Our result shows that solving for weighted risk invariance allows us to learn a predictor that dis-
cards spurious correlations, letting performance generalize across environments. In order to learn an
invariant predictor, we therefore propose to learn a predictor fWRI that combines generalizability
with good average performance:

fWRI = argmin
f

∑
e∈Etr

Re(f) + λ
∑

ei ̸=ej ,
ei,ej∈Etr

(Rei,ej (f)−Rej ,ei(f))2. (6)
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Figure 3: (a) We demonstrate the finite sample behavior of ERM, IRM, VREx, and WRI methods in the case
where the distribution shift is large. We sample data from the distributions shown in (b). Even as the number of
samples increases, ERM, IRM and VREx methods continue to select spurious classifiers while the WRI method
quickly converges to an invariant classifier.

The first term enforces ERM and the second term enforces weighted risk invariance, and hyperpa-
rameter λ controls the weight of the WRI regularization.

Comparison to REx Risk invariance across environments is a popular and practically effective
method for achieving invariant prediction (Xie et al., 2020; Krueger et al., 2021; Liu et al., 2021b;
Eastwood et al., 2022) that was formalized by REx Krueger et al. (2021). Specifically, the VREx
objective is a widely used approach of achieving risk invariance, where the variance between risks
is penalized in order to enforce equality of risks:

RV REx(f) = RERM (f) + λV RExVar({Re1(f), . . . ,Rek(f)}) (7)

We observe that under covariate shift, REx is often misaligned with the goal of learning a classifier
that only depends on Xinv . To illustrate this, consider a problem where some instances are more
difficult to classify than others (also known as heteroskedastic label noise (Krueger et al., 2021)) and
covariate shift results in a case where one training environment has more difficult examples than the
other. Then an optimal invariant model would obtain different losses on both environments, meaning
it will not satisfy risk invariance. Figure 1 demonstrates this case, and shows that VREx does not
learn the invariant classifier.

WRI simplifies to the same problem as VREx when the distribution of invariant features is the same
across environments. Yet, while risk invariance only holds in a homoskedastic setting or when
there is no invariant feature distribution shift, weighted risk invariance holds in a heteroskedastic
setting, regardless of invariant feature distribution shift. Weighted risk invariance can be seen as
a reweighting that adjusts samples so environments with different distributions can be compared.
Naive reweighting would not account for spurious correlations, but we avoid issues with both co-
variate shift and spurious correlations by weighting only with the invariant densities.

Comparison to IRM IRM searches for the optimal predictor on latent space that is invariant across
environments. This work generated many follow-up extensions (Ahuja et al., 2021; Lu et al., 2021),
as well as some critical exploration of its failure cases (Rosenfeld et al., 2020; Ahuja et al., 2020;
Kamath et al., 2021; Guo et al., 2021). The original objective is a bi-level optimization problem that
is non-convex and challenging to solve, so its relaxation IRMv1 is more often used in practice:

RIRM (f) = RERM (f) + λIRM

∑
e∈Etr

∥∇w|w=1.0Re(w · f)∥22 (8)

Note that IRM uses the average gradient across the dataset to enforce invariance. This approach
inherently introduces a sample complexity issue: when invariance violations are sparse or localized
within a large dataset, the average gradient only indirectly accounts for these anomalies, requiring
more samples to recognize the violations. Figure 3 shows that for a case of covariate shift in the
invariant features, the sample complexity of IRM goes to at least 10000 samples, whereas the WRI
method converges to an invariant predictor much earlier. (Note that REx does not converge either—
but we do not expect it to converge, regardless of the amount of training data.)

A classical approach to counteract the effects of covariate shift is importance weighting (Shimodaira,
2000). However, a naive application of this method, where the covariates of one environment are
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Figure 4: (a) We start with two data distributions (p1 and p2) and increase the distance between their means
from 0 to 2 in the invariant direction, essentially creating a covariate shift in the invariant features ranging in
degree from the diagram in (b) to the diagram in (c). We then search through the set of challenging, slightly
spurious classifiers where the ERM loss is close to the loss of the ERM solution, so that we are relying on the
invariant penalty to reject these classifiers. We plot how the minimum IRM and WRI penalties in these regions
change as covariate shift increases.

reweighted to match the distribution of the other, will not provide the desired result in the scenario
of invariant learning.1

To better compare WRI and IRM, we revisit the discussion on how the gradient penalty of IRM
affects its sample complexity. Suppose there is an area in the feature space where there is no en-
vironment overlap at all; that is, suppose there exists a value c where p1(xinv = c) is large while
p2(xinv = c) = 0. A flexible classifier can take advantage of this to use the spurious feature
whenever the invariant feature has value c without breaking the invariance constraint (Ahuja et al.,
2021). Now, if p2(xinv = c) = ε for some small number instead of strictly 0, then a classifier
using the spurious feature in that space will violate invariance constraints. In IRM, the violation
will correspond to sub-optimality of the learned classifier on top of the representation. However,
because sub-optimality is measured using the average gradient over the dataset, the violation will
only indirectly contribute to that average, and the sub-optimality will be difficult to detect from a
small sample. WRI more directly measures these violations within the average loss, thus it is more
sensitive to such violations.

We demonstrate how WRI is more sensitive to such violations in Figure 4. To create this figure, we
start with a model that uses spurious features and observe how the IRM and WRI penalties for the
model change as we introduce covariate shift to the invariant features. The IRM penalty changes
quite significantly as covariate shift increases, while the change for WRI is less pronounced.

3.2 IMPLEMENTATION

To evaluate and optimize the weighted risk requires the densities of the invariant feature distribu-
tions. However, we do not have access to these—otherwise the invariant learning problem would
already be solved. In this section, we propose a method that aims to achieve weighted risk invariance
while simultaneously predicting a scaled estimate of the invariant feature densities. We approach
this through alternating minimization between a prediction model and environment-specific density
models. On one step, we keep the prediction model fixed and update a density model for each envi-
ronment; on the alternating step, we keep all density models fixed and train the prediction model.

Practical objective Minimizing weighted risk invariance recovers a spurious-free predictor, but a
WRI term alone is not sufficient to enforce learning true densities (that integrate to 1) over scaled
densities (where each pairwise combination is scaled by the same constant), which include the trivial
solution where all densities are zero. To regularize the density and prevent the trivial solution, we
introduce an additional negative log penalty term that disincentivizes very small density estimates.

1This occurs because an invariant model on the original distribution may become not-invariant under the
reweighted data, where distributions of covariates are matched across environments. It is easy to see this with
simple examples.
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Table 1: Accuracy on HCMNIST without covari-
ate shift and with covariate shift

Algorithm HCMNIST HCMNIST-CS Avg
ERM 53.8 ± 2.3 51.1 ± 0.9 52.4
IRM 67.2 ± 2.7 61.3 ± 4.7 64.3
VREx 67.4 ± 2.3 58.2 ± 2.3 62.8

WRI 75.1 ± 2.9 74.7 ± 3.8 74.9

Table 2: Ideal HCMNIST penalty comparison

Penalty (1e-3) Min-penalty
classifierAlgorithm Dataset Digit Color

WRI HCMNIST 0.0 4.7 Digit ✓
HCMNIST-CS 0.0 0.8 Digit ✓

VREx HCMNIST 0.0 5.4 Digit ✓
HCMNIST-CS 1.1 0.4 Color ✗

Table 3: CMNIST OOD detection

Algorithm tpr@fpr=20% tpr@fpr=40% tpr@fpr=60% tpr@fpr=80% AUROC
ERM 25.4 ± 3.6 45.6 ± 2.8 64.7 ±1.7 82.2±1.2 0.539±0.018
IRM 29.8 ± 3.2 46.8 ± 2.8 66.4 ±1.9 84.8±0.9 0.565±0.017
VREx 25.3 ± 2.5 43.5 ± 2.3 61.6 ±1.5 80.8±1.1 0.525±0.014

WRI 36.7 ± 6.7 54.1 ± 5.8 68.1 ±4.5 85.0±1.5 0.595±0.039

To make the dependence of the weighted risk on the invariant feature densities explicit, we write the
associated densities dej as a parameter of the weighted risk Rei,ej (f ; dej ). The full loss function is

L(f, {dei}ki=1) =
∑
e∈Etr

Re(f)+λ
∑

ei ̸=ej ,
ei,ej∈Etr

(Rei,ej (f ; dej )−Rej ,ei(f ; dei))2+β
∑
e∈Etr

Epe(X) [− log de(x)]

(9)
where β is a hyperparameter. Note that this is comprised of the ERM and WRI penalties (as in
equation 6), with an additional log penalty term to regularize the learnable density.

Our experiments demonstrate that the densities learned by our implementation are indeed useful
for detecting whether an input is part of the training invariant feature distributions or OOD (§4.1).
Learning these densities is a key contribution of our method over other domain generalization meth-
ods, and the fact that we can learn useful approximations of these validates our alternating mini-
mization approach. For full implementation details, refer to Appendix B.

4 EXPERIMENTS

We evaluate our WRI implementation on synthetic and real-world datasets with distribution shifts,
particularly focusing on cases of covariate shift in the invariant features. In all of the datasets, we
select our model based on a validation set from the test environment, and we report the test set
accuracy averaged over 5 random seeds with standard errors. Training validation selection assumes
that the training and test data are drawn from similar distributions, which is not the case we aim to be
robust to (Gulrajani & Lopez-Paz, 2020); test validation selection is more useful for demonstrating
OOD capabilities (Ruan et al., 2021).

Our major baselines are ERM (Vapnik, 1991), IRM (Arjovsky et al., 2019), and VREx (Krueger
et al., 2021). IRM and VREx are two other causally-motivated works that also search for conditional
invariance as a signature of an underlying causal structure. Because WRI shares a similar theoretical
grounding, we find it particularly important to compare our empirical performance with these works.
Appendix C includes comparisons with other non-causal baselines, as well as additional experiments
and details.

4.1 COLOREDMNIST

ColoredMNIST (CMNIST) is a dataset proposed by Arjovsky et al. (2019) as a binary classification
extension of MNIST designed to explore the impact of invariant and spurious features on classifica-
tion. To test the performance of our baselines under the more difficult heteroskedastic setting, we
construct a heteroskedastic variant HCMNIST where we vary the label flip probability with the digit.
Additionally, we create covariate shift in HCMNIST by creating different distributions of digits in
each environment, and we call this dataset HCMNIST-CS (More details on how these datasets were
generated can be found in Appendix C.3). Empirical results from these datasets are presented in
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Table 4: DomainBed results on feature data

Algorithm VLCS PACS OfficeHome TerraIncognita DomainNet Avg
ERM 76.5 ± 0.2 84.7 ± 0.1 64.5 ± 0.1 51.2 ± 0.2 33.5 ± 0.1 62.0
IRM 76.7 ± 0.3 84.7 ± 0.3 63.8 ± 0.6 52.8 ± 0.3 22.7 ± 2.8 60.1
VREx 76.7 ± 0.2 84.8 ± 0.2 64.6 ± 0.2 52.2 ± 0.3 26.6 ± 2.1 61.0

WRI 77.0 ± 0.1 85.2 ± 0.1 64.5 ± 0.2 52.7 ± 0.3 32.8 ± 0.0 62.5

Table 1. They demonstrate that WRI consistently performs well in both settings, while VREx and
IRM show significant degradation with the introduction of covariate shift.

We also create ideal versions of these datasets where we simplify the image data to two-dimensional
features of digit value and color. We evaluate the WRI and VREx penalty terms with a predictor that
uses only the digit value (i.e. an invariant predictor) and a predictor that uses only the color (i.e. a
spurious predictor), and we report the results in Table 2. As anticipated, WRI registers zero penalty
for the invariant predictor in both the HCMNIST and HCMNIST-CS scenarios. In contrast, VREx
registers zero penalty for the invariant predictor on HCMNIST but a non-zero penalty on HCMNIST-
CS, favoring the spurious predictor under covariate shift. This suggests that the degradation in VREx
accuracy under shift in Table 1 can be attributed to a true failure of the VREx penalty to recover the
invariant classifier. Additional discussion and details can be found in Appendix C.

OOD detection performance of our learned densities To test the estimated invariant density from
WRI, we compare its utility as an OOD detector to the model confidences from ERM, IRM, and
VREx. The evaluation is conducted on a modified CMNIST test split with mirrored digits. Since
the estimated invariant density should be a function of the shape, we expect the invalid digits to have
lower density estimates. We compute AUROC values for each experiment and report the results
in Table 3. We observe that at all computed false positive rates, the true positive rate is higher for
our method; this means that our learned density values are better for detecting OOD digits than the
prediction confidences from other methods. For more details, see Appendix C.4

4.2 REAL-WORLD DATASETS FROM DOMAINBED

We evaluate on 5 real-world datasets that are part of the DomainBed suite, namely VLCS (Fang
et al., 2013), PACS (Li et al., 2017), OfficeHome (Venkateswara et al., 2017), TerraIncognita (Beery
et al., 2018), and DomainNet (Peng et al., 2019). We run on ERM-trained features for computational
efficiency, as these should still contain spurious information as well as the invariant information nec-
essary to generalize OOD (Rosenfeld et al., 2022). In order to achieve a fair comparison, we evaluate
all methods starting from the same set of pretrained features. We report the average performance
across environments on each dataset in Table 4.

While the WRI predictor achieves higher accuracy than the baselines, we find that the performances
are similar. Methods like VREx that rely on certain assumptions may still see high accuracy on
datasets that fulfill those assumptions. More information and results are provided in Appendix C.5.

5 RELATED WORKS

Invariant learning Outside of causal (and causal-adjacent) literature, much of the theoretical
motivation for invariant learning stems from the seminal work of Ben-David et al. (2010), who found
that the risk on a test environment is upper bounded by the error on the training environment(s), the
total variation between the marginal distributions of training and test, and the difference in labeling
functions between training and test. While the first term is minimized in ERM, the second term
motivates learning marginally invariant features Ψ(X) such that pe(Ψ(Xe)) is invariant across e
(Pan et al., 2010; Baktashmotlagh et al., 2013; Ganin et al., 2016; Tzeng et al., 2017; Long et al.,
2018; Zhao et al., 2018), and the third term motivates learning conditionally invariant features Φ(X)
such that pe(Y e|Φ(Xe)) is invariant across e (Muandet et al., 2013; Koyama & Yamaguchi, 2020).
Observing the importance of both approaches, several works (Zhang et al., 2013; Long et al., 2015;
Li et al., 2021) even attempt to learn features that are both marginally and conditionally invariant.

Density estimation as a measure of uncertainty Our density estimates serve as an intuitive mea-
sure of epistemic uncertainty (Hüllermeier & Waegeman, 2021), as they report how much reliable
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(spurious-free) evidence we have in the training data. In general, the uncertainty estimation problem
is ill-posed: measures of uncertainty differ between tasks, and even for a specific task there are no
ground truth uncertainty estimates (Gawlikowski et al., 2021). Still, providing informative uncer-
tainty estimates is essential to real-world, safety-critical environments such as healthcare (Kompa
et al., 2021; Kurz et al., 2022; Mehrtash et al., 2020; Wang et al., 2019) and autonomous driving
(Shafaei et al., 2018; Feng et al., 2018; Tang et al., 2022), as well as to the development of other
machine learning fields such as sampling in active learning (Yang & Loog, 2016; Shapeev et al.,
2020) or balancing exploration/exploitation in reinforcement learning (Kahn et al., 2017; Lütjens
et al., 2019). Signatures of good uncertainty estimation include good calibration and OOD detection
(Gawlikowski et al., 2021).

Domain generalization with interpretable signals Current invariant learning methods are effec-
tive at extracting invariant relationships from training environments, but there are still cases where
we cannot utilize these relationships to generalize. Notably for linear classification, Ahuja et al.
(2021) proves that generalization is only possible if the support of invariant features in the test en-
vironment is a subset of the union of the supports in the training environments. For this reason,
we find that learning the density of invariant features from training not only improves our gener-
alization result but also provides a useful signal to tell whether the model is extrapolating from its
invariant feature distribution. Quantile Risk Minimization (Eastwood et al., 2022) is another domain
generalization method that provides interpretable signals—in their case, with a model selection hy-
perparameter on the conservativeness of the learned predictor.

6 DISCUSSION

Limitations of our method Solving the traditional risk invariance problem does not recover an
invariant predictor under heteroskedastic distribution shift, but the addition of an invariant feature
density term to WRI allows its solutions to be robust to this case. However, we do not have access
to this density in practice, and can only recover an estimate of that density through alternating
minimization. Future work could focus on developing algorithms that recover the invariant density
with more guarantees, as we believe an accurate invariant density estimate is important for reporting
the limitations of domain generalization predictions during deployment.

Invariant prediction and other approaches Invariant prediction is inspired by methods in causal
discovery that provide formal guarantees for the identification of causal features (Peters et al., 2016)
but are difficult to scale up to complex, high-dimensional data. Methods in invariant prediction focus
on making predictions from invariant features rather than learning the invariant features directly.
Thus, they do not provide all the guarantees typically offered by methods in causal discovery, but
they are faster and simpler in comparison, and can still provide theoretical guarantees for certain
causal structures. If causal discovery is first used to extract the invariant features, then works on
generalization under covariate shift (Xu et al., 2022; Duchi et al., 2023) can be used to predict from
the features under the invariant mechanism assumption.

Limitations of invariant prediction Invariant prediction methods assume there exists some gen-
eralizable relationship across training environments, but there are cases where it is impossible to
extract the relationship. Notably for linear classification, Ahuja et al. (2021) proves that general-
ization is only possible if the support of invariant features in the test environment is a subset of
the union of the supports in the training environments. For this reason, we think it is important to
report when we are given points outside of the invariant feature distribution; then, users know when
a domain generalization model is extrapolating outside of training.

7 CONCLUSION

We demonstrated the utility of weighted risk invariance for achieving invariant learning, even in the
difficult case of heteroskedasticity and covariate shift, and we proved that the solution of WRI recov-
ers a spurious-free predictor under a linear causal setting. We also introduced an algorithm to solve
WRI in practice by simultaneously learning the model parameters and the density of the invariant
features. In our experiments, we demonstrated that the WRI predictor outperforms state-of-the-art
baselines in the case of covariate shift in the invariant features. Finally, we showed that our learned
invariant feature density reports when invariant features are outside of the training distribution, let-
ting us know when our predictor is trustworthy.

9
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8 REPRODUCIBILITY STATEMENT

We have made significant effort to ensure the figures and results in this paper can be repro-
duced. The (anonymized) code for generating the figures and empirical results can be found
at https://dl.dropboxusercontent.com/scl/fi/ispvalwz3y196d7b97kke/
WRI_code.zip?rlkey=8u5edlx4fgo1okttmqzsoifiw&dl=0.
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Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization.
arXiv preprint arXiv:1907.02893, 2019.

Mahsa Baktashmotlagh, Mehrtash T Harandi, Brian C Lovell, and Mathieu Salzmann. Unsupervised
domain adaptation by domain invariant projection. In Proceedings of the IEEE international
conference on computer vision, pp. 769–776, 2013.

Sara Beery, Grant Van Horn, and Pietro Perona. Recognition in terra incognita. In Proceedings of
the European conference on computer vision (ECCV), pp. 456–473, 2018.

Sara Beery, Yang Liu, Dan Morris, Jim Piavis, Ashish Kapoor, Neel Joshi, Markus Meister, and
Pietro Perona. Synthetic examples improve generalization for rare classes. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 863–873, 2020.

Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jennifer Wort-
man Vaughan. A theory of learning from different domains. Machine learning, 79:151–175,
2010.

Gilles Blanchard, Gyemin Lee, and Clayton Scott. Generalizing from several related classification
tasks to a new unlabeled sample. Advances in neural information processing systems, 24, 2011.

Junbum Cha, Kyungjae Lee, Sungrae Park, and Sanghyuk Chun. Domain generalization by mutual-
information regularization with pre-trained models. In European Conference on Computer Vision,
pp. 440–457. Springer, 2022.

Wuyang Chen, Zhiding Yu, Zhangyang Wang, and Animashree Anandkumar. Automated synthetic-
to-real generalization. In International Conference on Machine Learning, pp. 1746–1756. PMLR,
2020.

John Duchi, Tatsunori Hashimoto, and Hongseok Namkoong. Distributionally robust losses for
latent covariate mixtures. Operations Research, 71(2):649–664, 2023.

Cian Eastwood, Alexander Robey, Shashank Singh, Julius Von Kügelgen, Hamed Hassani, George J
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A PROOFS

Proposition 1. Let Assumption 1 hold over a set of environments E ′. If a predictor f is spurious-free
over E ′, then weighted risk invariance holds over E ′.

Proof. Weighted risk between environments 1 and 2 is given by∫
Y

∫
Xinv

∫
Xspu

p1(xinv,xspu, y) · ℓ(f(xinv,xspu), y) · p2(xinv) · dxspu dxinv dy.

If f is invariant, then we can transform this integral as follows.∫
Y

∫
Xinv

∫
Xspu

p1(xinv,xspu, y) · ℓ(f(xinv,xspu), y) · p2(xinv) · dxspu dxinv dy

=

∫
Y

∫
Xinv

ℓ(f(xinv), y) · p2(xinv)

∫
Xspu

p1(xinv,xspu, y) · dxspu dxinv dy

=

∫
Y

∫
Xinv

ℓ(f(xinv), y) · p2(xinv) · p1(xinv, y) dxinv dy

=

∫
Y

∫
Xinv

ℓ(f(xinv), y) · p2(xinv) · p1(y|xinv) · p1(xinv) dxinv dy. (A.1)

Similarly, the weighted risk between environments 2 and 1 can be expressed as∫
Y

∫
Xinv

ℓ(f(xinv), y) · p1(xinv) · p2(y|xinv) · p2(xinv) · dxinv dy. (A.2)

Because pe(y|xinv) is the same for all e, then equation A.1 and equation A.2 are equal and weighted
risk invariance holds between the two environments. By the same argument, it holds for all pairwise
combinations of environments in the set.

To show that weighted risk invariance leads to OOD generalization, we must first make an assump-
tion on the diversity of our training environments. We give a definition for general position in a
similar style to previous works (Arjovsky et al., 2019; Wald et al., 2021).

Definition A.1. We are given a set of k environments such that
(
k
2

)
> 2dspu, where dspu is the

dimension of spurious features. Each environment i has a density-weighted covariance Σi,j and a
density-weighted correlation µi,j with another environment j. We define these as

Σi,j = Epi(Xi,Y i)

[
xxT pj(xinv)

]
µi,j = 2 · Epi(Xi,Y i) [x ypj(xinv)] .

We say that this set of environments is in general position if for any scalar α ∈ R and all nonzero
x ∈ Rdspu ,

dim(span({(Σi,j − Σj,i)x+α(µi,j − µj,i)}i,j∈[k])) = dspu. (A.3)

With this definition, we proceed to our main result.
Theorem 2. Consider a regression problem following the data generating process of equation 5. Let
E ′ be a set of environments that satisfy general position. A linear regression model f(x) = wT x
with w = [winv,wspu] that satisfies weighted risk invariance w.r.t the squared loss must satisfy
wspu = 0.

Proof. Assume we have weighted risk invariance between environments 1 and 2, so∫
Y

∫
Xinv

∫
Xspu

(wT[xinv,xspu]− y)2 · p1(xinv,xspu, y) · p2(xinv) · dxspu dxinv dy

=

∫
Y

∫
Xinv

∫
Xspu

(wT[xinv,xspu]− y)2 · p2(xinv,xspu, y) · p1(xinv) · dxspu dxinv dy. (A.4)
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When we expand the square, the left hand side becomes

wT

(∫
Y

∫
Xinv

∫
Xspu

[xinv,xspu][xinv,xspu]
T · p1(xinv,xspu, y) · p2(xinv) · dxspu dxinv dy

)
w

− 2wT

∫
Y

∫
Xinv

∫
Xspu

[xinv,xspu]y · p1(xinv,xspu, y) · p2(xinv) · dxspu dxinv dy

+

∫
Y

∫
Xinv

∫
Xspu

y2 · p1(xinv,xspu, y) · p2(xinv) · dxspu dxinv dy.

We define

Σ1,2 =

∫
Y

∫
Xinv

∫
Xspu

[xinv,xspu][xinv,xspu]
T · p1(xinv,xspu, y) · p2(xinv) · dxspu dxinv dy

=

∫
Xinv

∫
Xspu

[xinv,xspu][xinv,xspu]
T · p1(xinv,xspu) · p2(xinv) · dxspu dxinv

µ1,2 =2

∫
Y

∫
Xinv

∫
Xspu

[xinv,xspu]y · p1(xinv,xspu, y) · p2(xinv) · dxspu dxinv dy

c1,2 =

∫
Y

∫
Xinv

∫
Xspu

y2 · p1(xinv,xspu, y) · p2(xinv) · dxspu dxinv dy

=

∫
Y

∫
Xinv

y2 · p1(xinv, y) · p2(xinv) · dxinv dy,

with analogous definitions for Σ2,1, µ2,1, and c2,1. Then equation A.4 can be written more succinctly
as

wT Σ1,2 w−wT µ1,2 + c1,2 = wT Σ2,1 w−wT µ2,1 + c2,1. (A.5)

We decompose the quadratic term Σ1,2 into invariant, spurious, and mixed components:

Σ1,2 =

∫
Xinv

∫
Xspu

[xinv,xspu][xinv,xspu]
T · p1(xinv,xspu) · p2(xinv) · dxspu dxinv

=

∫
Xinv

∫
Xspu

[
xinv x

T
inv xinv x

T
spu

xspu x
T
inv xspu x

T
spu

]
· p1(xinv,xspu) · p2(xinv) · dxspu dxinv

=

∫
Xinv

[
xinv x

T
inv 0

0 0

]
· p1(xinv) · p2(xinv) · dxinv

+

∫
Xinv

∫
Xspu

[
0 0
0 xspu x

T
spu

]
· p1(xinv,xspu) · p2(xinv) · dxspu dxinv .

+

∫
Xinv

∫
Xspu

[
0 xinv x

T
spu

xspu x
T
inv 0

]
· p1(xinv,xspu) · p2(xinv) · dxspu dxinv .

=

[
Σ1,2

inv 0
0 0

]
+

[
0 0
0 Σ1,2

spu

]
+Σ1,2

mix.
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We break down the third term Σ1,2
mix in more detail, following the data-generating process for xspu.

Σ1,2
mix =

∫
Xinv

∫
Xspu

[
0 xinv x

T
spu

xspu x
T
inv 0

]
· p1(xinv,xspu) · p2(xinv) · dxspu dxinv

=

∫
Xinv

∫
ε

∫
η

[
0 xinv µ

T
i xT

inv w
∗
inv +xinv µ

T
i ε

T + xinv η
T

(w∗
inv)

T xinv µi x
T
inv +εµi x

T
inv +η xT

inv 0

]
. . .

. . . p1(ε) · p1(η) · p1(xinv) · p2(xinv) · dη dε dxinv

=

∫
Xinv

[
0 xinv µ

T
i xT

inv w
∗
inv

(w∗
inv)

T xinv µi x
T
inv 0

]
· p1(xinv) · p2(xinv) · dxinv

+

∫
Xinv

∫
ε

[
0 xinv µ

T
i

µi x
T
inv 0

]
· ε · p1(ε) · p1(xinv) · p2(xinv) · dε dxinv

+

∫
Xinv

∫
η

[
0 xinv η

T

η xT
inv 0

]
· p1(η) · p1(xinv) · p2(xinv) · dη dxinv .

Both ε and η are mean-zero random variables that are independent of xinv . This means the second
and third terms go to zero, leaving us with only the first term. We further decompose the first term,
now explicitly labeling the dimensions of the 0 submatrices for clarity.

Σ1,2
mix =

[
Idinv

0dinv×1

0dspu×dinv
µi

]
Σ1,2

w−inv

[
Idinv 0dinv×dspu

01×dinv
µT
i

]
,

where

Σ1,2
w−inv =

∫
Xinv

[
0dinv×dinv

xinv(w
∗
inv)

T xinv

xT
inv w

∗
inv x

T
inv 01×1

]
· p1(xinv) · p2(xinv) · dxinv

=

[
0dinv×dinv

a1,2

(a1,2)T 01×1

]
,

with a1,2 = xinv(w
∗
inv)

T xinv being a dinv-dimensional column vector.

We also separate the linear term µ1,2 into invariant and spurious components:

µ1,2 =2

∫
Y

∫
Xinv

∫
Xspu

[xinv,xspu]y · p1(xinv,xspu, y) · p2(xinv) · dxspu dxinv dy

=2

∫
Y

∫
Xinv

[xinv,0]y

∫
Xspu

p1(xinv,xspu, y) · p2(xinv) · dxspu dxinv dy

+ 2

∫
Y

∫
Xspu

[0,xspu]y

∫
Xinv

p1(xinv,xspu, y) · p2(xinv) · dxinv dxspu dy

=2

∫
Y

∫
Xinv

[xinv,0]y · p1(y|xinv) · p1(xinv) · p2(xinv) · dxinv dy

+ 2

∫
Y

∫
Xspu

[0,xspu]y

∫
Xinv

p1(xinv,xspu, y) · p2(xinv) · dxinv dxspu dy

=[µ1,2
inv,0] + [0, µ1,2

spu].

Finally, we break down the constant term c1,2.

c1,2 =

∫
Y

∫
Xinv

y2 · p1(xinv, y) · p2(xinv) · dxinv dy

=

∫
Y

∫
X
y2 · p1(y|xinv) · p1(xinv) · p2(xinv) · dxinv dy.

It is clear that Σ1,2
inv = Σ2,1

inv , a1,2 = a2,1, µ1,2
inv = µ2,1

inv , and c1,2 = c2,1. With this information, we
define α := 2wT

inv a
1,2 − 1 and simplify equation A.5 to
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wT
spu Σ

1,2
spu wspu +α(µ1,2

spu)
T wspu = wT

spu Σ
2,1
spu wspu +α(µ2,1

spu)
T wspu . (A.6)

Weighted risk invariance equation A.4 holds across a set of environments if and only if equation A.6
holds for each pairwise combination of environments. Further, if equation A.6 holds for each pair-
wise combination of environments, then

wT
spu(Σ

i,j
spu − Σj,i

spu)wspu +α(µi,j
spu − µj,i

spu)
T wspu = 0 ∀i, j ∈ [k]. (A.7)

We define the
(
k
2

)
× dspu matrix

M =


wT

spu(Σ
1,2
spu − Σ2,1

spu) + α(µ1,2
spu − µ2,1

spu)
T

wT
spu(Σ

1,3
spu − Σ3,1

spu) + α(µ1,3
spu − µ3,1

spu)
T

...
wT

spu(Σ
k,k−1
spu − Σk−1,k

spu ) + α(µk,k−1
spu − µk−1,k

spu )T

 .

Since the environments are in general position, then matrix M is full rank for any nonzero wspu.
That means that there is no nonzero vector x that solves

M x = 0. (A.8)

If there is no nonzero solution to equation A.8, then there is no nonzero wspu that solves equa-
tion A.7. Thus, weighted risk invariance equation A.5 implies that wspu = 0.

18



Under review as a conference paper at ICLR 2024

Algorithm B.1: WRI with model-based density
Parameters:
n: total number of optimization steps
ω: density update frequency
nd: number of density update steps

initialize random model weights for f and de for all e ∈ Etr
initialize Adam (Kingma & Ba, 2017) optimizer for f
initialize Adam optimizer for de
for i = 1 . . . n do

sample featurized minibatch from all environments
compute L equation 9 on minibatch and step f optimizer
if i− 1 is a multiple of ω then

repeat nd times
sample featurized minibatch from all environments
compute L on minibatch and step de optimizer

B IMPLEMENTATION DETAILS

When the optimal invariant predictor was first introduced with IRM, it was first motivated as a con-
strained optimization problem that searched over all spurious-free predictors for the predictor with
the lowest training loss. The practical objective IRMv1 was then introduced, where the constraint
was approximated by a gradient penalty. Many follow-up works took a similar path, where a penalty
is used as some form of invariance constraint. Our penalty is weighted risk invariance; according to
our theory, models with zero weights on spurious features will satisfy the WRI constraint. Therefore,
a learning rule that finds the most accurate classifier satisfying WRI will learn an optimal hypothesis
that relies on the invariant features alone.

We implement this learning rule with alternating minimization. This is a complex optimization
procedure, and we do not derive guarantees on its convergence to invariant representations in this
work. We simply motivate this implementation with the knowledge that a spurious-free predictor
would minimize the WRI penalty (which we optimize for when the penalty coefficient in equation 9
is sufficiently large). We test that this objective is effective at recovering a generalizable predictor
(as well as meaningful OOD invariance density estimates) empirically. Our specific algorithm is
described in Algorithm B.1.

Classifier

𝑓
Density Models

𝑑𝑒1 …𝑑𝑒𝑘

Feature

Network
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Images

Figure B.1: Graphic overview of our network architecture. The red dashed line indicates the components that
impact f when taking an optimization step. The blue dotted line indicates the components that affect the density
models when they are updated.
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We observe that the magnitude of the WRI regularization term from equation 9 varies significantly
in practice, making it difficult to choose a good value for λ. This is true even when the true invariant
density is known. We employ two strategies to deal with this. First, we constrain the density model
to predict values within a pre-defined range by applying a sigmoid activation on the final prediction
with constant scale and shift factor. Additionally, we divide the WRI term by the average negative
log-likelihood, which also helps to decouple the empirical risk from the WRI regularization term.

We allow different optimization parameters for the prediction model and density estimation models.
Both optimizers have a different learning rate, weight decay, batch size, and λ penalty (for the WRI
penalty). The range of hyperparameter values we use are provided with the DomainBed details in
Appendix C.5.
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1Figure C.2: Our simulated classification setting from §C.2 where we measure the test accuracy under different
shifts in the invariant features. (a) We vary the average distance between invariant distributions. (b) We vary
the covariance matrices between invariant distributions. (c) With σinv = 0.15, ∆inv = 0.5, we vary the
correlation of spurious features between the training environments with test having the opposite correlation. In
all cases, the WRI predictor outperforms other methods on average.

C EXTENSIONS ON EXPERIMENTS AND ADDITIONAL EXPERIMENTAL
DETAILS

C.1 TOY DATASET HYPERPARAMETERS (FIGURE 1 DETAILS)

To produce Figure 1, we define a toy dataset consisting of the three environments described here.
Environments 1 and 2 are used for training and environment 3 is used as test. We let Y = 1[Xinv +
ε > 0], where ε is a standard normal random variable and 1 is the indicator function. The following
data distributions are used:

X1
inv ∼ N(0, 22), X2

inv ∼ N(0,
(
1
2

)2
), X3

inv ∼ N(0, 32),

X1
spu|Y = 0 ∼ N(1,

(
1
2

)2
), X2

spu|Y = 0 ∼ N(1, 22), X3
spu|Y = 0 ∼ N(−1, 12),

X1
spu|Y = 1 ∼ N(−1,

(
1
2

)2
), X2

spu|Y = 1 ∼ N(−1, 22), and X3
spu|Y = 1 ∼ N(1, 12).

We sample 104 points from each environment. The predictor is a simple linear model. The ERM,
IRM, VREx, and WRI objectives are optimized using scikit-learn (Pedregosa et al., 2011). We use
a penalty weight of 105 for IRM, a penalty weight of 1 for VREx, and a penalty weight of 1500
for WRI. We note that VREx converges to an absurd solution when using a larger weight, despite
generally using a much larger weight in the DomainBed implementation. The penalty weights were
roughly optimized by eye to achieve the best qualitative results (regarding invariance).

C.2 EXPERIMENTS ON MULTI-DIMENSIONAL SYNTHETIC DATASET

Data generated following structural equation model We construct a multi-class classification
simulation based on the linear causal model shown in Figure 2. The spurious and invariant distri-
butions are drawn from normal distributions Xinv ∼ N(µe,Σe) and Xe

spu|Y = y ∼ N(µe,y,Σe,y)
and X is the concatenation of Xinv and Xspu. To simulate the classification scenario, we define the
class label to be Y = argmaxy w

T
y xinv +εy where εy ∼ N(0, σy).

Rather than specifying all of the distribution parameters manually, we sample them randomly ac-
cording to

µe ∼ N(0, Iσ2
inv), Σe = RandCov(1−∆inv, 1 + ∆inv), wy ∼ U(Sdinv

),

µe,y ∼ N(0, Iσ2
spu), Σe,y = RandCov( 12 ,

3
2 ), σy = σy

(C.9)

where Sdinv
is the dinv-dimensional hypersphere, and RandCov(a, b) is a covariance matrix-

generating random variable that selects the square root of the eigenvalues i.i.d. from U(a, b).

This formulation allows us to specify the data simulation using four scalar values: σinv , σspu, ∆inv ,
and σy . The σinv and σspu terms define the variability of the means between different invariant and
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spurious distributions respectively. For example, when σinv is zero, Xinv will have the same mean
value across all environments. ∆inv is a value between 0 and 1 that defines how much the invariant
covariance matrices vary between environments, and σy specifies the noise in the label generation
process.

Figure C.2 shows how we compare to other baselines when we run on data with 20 dimensions
(dinv = 10), with 4 training environments and 1 test. We see that (a) with isotropic covariance,
we outperform other baselines when the invariant distribution means overlap and when we increase
the distance between the means. Further, (b) with identical means, we outperform other baselines
when the invariant distributions all have isotropic covariance and when the covariance matrices vary
between distributions. Both cases represent the covariate shift in the invariant features, which our
predictor is designed to be more robust to. On average, our improvement over the baselines is
more significant when we have isotropic covariance for all environments and increase the distance
between the environment means; we believe this is because the isotropic covariance allows for a
clearer (more controlled) case of covariate shift.

Testing dependence on controlled spurious correlation We run a modified version of our simula-
tion that tests the misleading nature of the spurious features. Similar to the ColoredMNIST approach
of defining the train and test environments to have opposite color-label correlation, we randomly se-
lect a vector for each class and ensure that its correlation with the mean of the spurious distributions
is positive for each training environment and negative for the test environment. This is accomplished
by first sampling the data as in equation C.9, flipping correlation if necessary, then applying a trans-
form to ensure that the means are in a hypercone with opening angle θparity. As θparity decreases
from 90◦, the spurious data increasingly predicts Y consistently across training environments, mak-
ing it more challenging to disentangle the spurious and invariant features. In Figure C.2(c), we see
that although decreasing θparity degrades the performance of all methods, WRI still performs better
than the other baselines.

Additional discussion of simulation hyperparameters Here, we further discuss the hyperparam-
eters σinv , ∆inv , σy , and σspu, and how they impact the data generation.

σinv is a non-negative scalar that encapsulates the distance between invariant data for each environ-
ment. When this value is zero, the invariant distributions are all centered on the origin; when this
value is large enough, the average distance between invariant distributions increases.

∆inv is a scalar in [0, 1] that encapsulates how much the covariance matrices of the invariant dis-
tributions differ between environments. When this value is zero, all environments have identity
covariance. Intuitively, this value is similar to σinv in the sense that larger values will produce
invariant distributions that overlap less between environments.

σy is the only directly specified parameter of the data model and it controls the amount of label
noise present. When set to zero, the label is a deterministic function of Xinv; when set very high, Y
becomes more difficult to predict from the invariant data.

σspu is a non-negative scalar that encapsulates the distance between spurious data distributions.
As this value gets larger, the spurious distributions are less likely to overlap both between classes
and between environments. This has two primary effects. First, within a single environment, less
overlap will make spurious data more predictive of the label. However, because the locations of the
distributions change between environments, this also means that the spurious nature of Xspu should
be more apparent during training.

One caveat to our method of data generation is that controlling for a uniform number of classes is
difficult since the class label is a function of Xinv . For this reason, we sample a new set of data
model parameters when one class is overrepresented in any environment by a factor of 1.5 times the
expected uniform representation (e.g. for 5 classes, we resample when more than 30% of data from
any environment have the same label). This also ensures that any models with accuracy above 1.5
times uniform are making non-trivial predictions.

Controlling the spurious correlation For the experiment reported in Figure C.2 (c), we explicitly
manipulate the data model to ensure a higher level of spurious correlation via the θparity hyper-
parameter. This produces a scenario similar to ColoredMNIST, where the correlation between the
label and spurious data (color) is relatively consistent between training environments (+90% and
+80%) but has the opposite relationship in test (−90%). This means that an algorithm that learns
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Table C.1: Sweep σinv (∆inv = 0, σy = 0.5, σspu = 1). Plotted in Figure C.2 (a)

σinv

Algorithm 0.0 0.05 0.1 0.15 0.2 0.25 0.3
ERM 51.3 ± 1.6 52.5 ± 1.1 53.3 ± 0.9 51.5 ± 2.0 50.3 ± 1.3 53.7 ± 1.4 54.8 ± 2.1
IRM 52.4 ± 2.7 51.9 ± 2.3 52.2 ± 2.7 51.2 ± 3.2 49.2 ± 1.8 51.5 ± 3.2 54.3 ± 3.3
VREx 52.5 ± 1.0 51.1 ± 1.5 54.0 ± 1.0 52.4 ± 1.4 50.5 ± 1.3 53.6 ± 1.3 56.8 ± 1.1

WRI 55.9 ± 2.5 55.0 ± 1.3 55.9 ± 2.3 54.4 ± 2.3 52.1 ± 3.1 54.1 ± 1.8 56.1 ± 2.6

Table C.2: Sweep ∆inv (σinv = 0, σy = 0.5, σspu = 1). Plotted in Figure C.2 (b)

∆inv

Algorithm 0.0 0.2 0.4 0.6 0.8
ERM 51.3 ± 1.6 51.4 ± 1.5 51.1 ± 1.2 51.1 ± 1.3 51.7 ± 1.2
IRM 52.4 ± 2.7 51.3 ± 2.4 51.5 ± 2.1 50.6 ± 1.7 51.3 ± 1.8
VREx 52.5 ± 1.0 51.6 ± 0.3 51.2 ± 0.9 52.0 ± 1.5 52.5 ± 1.3

WRI 55.9 ± 2.5 52.3 ± 1.4 52.9 ± 1.6 53.3 ± 0.7 53.8 ± 2.5

Table C.3: Sweep θparity (σinv = 0.15,∆inv = 0.5, σy = 0.5, σspu = 1). Plotted in Figure C.2 (c)

θparity
Algorithm 90◦ 87◦ 85◦ 80◦ 70◦

ERM 44.8 ± 1.2 43.0 ± 1.4 40.5 ± 1.1 37.5 ± 0.7 30.5 ± 0.9
IRM 43.8 ± 3.6 41.9 ± 3.9 40.9 ± 4.2 37.0 ± 4.0 29.9 ± 3.0
VREx 45.2 ± 2.0 42.9 ± 1.9 41.4 ± 1.6 37.2 ± 2.7 30.5 ± 1.3

WRI 46.9 ± 1.5 45.4 ± 1.9 43.9 ± 2.6 39.5 ± 3.2 30.9 ± 2.2

to rely on color will be heavily penalized at test time. In this section, we describe the mechanism
behind θparity in more detail.

We begin by sampling distribution parameters for all the invariant and conditional spurious datasets
(the same as in prior experiments). Next, we select a random unit vector cy ∼ U(Sdspu

) for each
class label. Our goal is to ensure that the spurious mean µe,y correlates positively with cy for each
of the training environments and negatively with the test environment. In other words, the training
and test environments have opposite parity w.r.t. the hyperplane. We achieve this by negating µe,y

when necessary, i.e.

µe,y ←
{

sign(cTyµ
e,y)µe,y if e ∈ Etr

−sign(cTyµ
e,y)µe,y otherwise

. (C.10)

While this ensures the desired correlation, the relationship is not very strong due to the fact that
random vectors in high-dimensional space tend to be nearly orthogonal. Therefore, we introduce
θparity.

For each class, we transform µe,y again to ensure it is inside the hypercone with axis cy and opening
angle θparity. This is accomplished by rotating µe,y towards the axis so that the angle to the axis is
scaled by a factor of θparity/90◦. The identity transform is, therefore, synonymous with θparity =
90◦, and as θparity decreases towards 0◦ the spurious data becomes more consistently predictive of
the label.

Numerical Results For experiments on the synthetic datasets, we integrate the DomainBed imple-
mentations of IRM and VREx. All experiments use 20 dimensional data (10 invariant dimensions
and 10 spurious dimensions). They also all use 5 environments (1 test and 4 training) and 5 class
labels. The numerical values visualized in the Figure C.2 bar graphs are shown in Tables C.1, C.2,
and C.3.
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C.3 HETEROSKEDASTIC CMNIST

ColoredMNIST (CMNIST) is a dataset proposed by Arjovsky et al. (2019) as a binary classification
extension of MNIST where the shapes of the digits are invariant features and the colors of the
digits are spurious features that are more tightly correlated to the label than the shapes are, with the
correlation between the color and the label being reversed in the test environment. Specifically, digits
0–4 and 5–9 are classes 0 and 1 respectively; after injecting 25% label noise to all environments, the
red digits in the first two environments have an 80% and 90% chance of belonging to class 0, while
the red digits in the third environment have a 10% chance. The design of the dataset allows invariant
predictors (that only base their predictions on the shape of the digits) to outperform predictors that
use spurious color information, ideally achieving 75% accuracy on all environments.

Heteroskedastic CMNIST with Covariate Shift Variants of CMNIST have been proposed, with
the aim of incorporating additional forms of distribution shift (Ahuja et al., 2020; Wu et al., 2020;
Krueger et al., 2021). To demonstrate the efficacy of our method under heteroskedastic covariate
shift, we construct a heteroskedastic variant of CMNIST, which we call HCMNIST, where label
flips occur for digits 0, 1, 5, and 6 with probability 5% and label flips occur for other digits with
probability 25%. Additionally, we generate a variant of HCMNIST with covariate shift, HCMNIST-
CS, where we redistribute data among environments. We place 65% of the digits 0, 1, 5, and 6 into
the first training environment and 5% into the second environment (with the remaining 30% in test).
The remaining digits are distributed so that all environments have the same number of samples.

The empirical results on the HCMNIST with and without covariate shift are shown in Table 1.
These experiments use the practical version of the WRI algorithm and are computed using the same
evaluation strategy as DomainBed. The results demonstrate that the practical WRI implementation
performs well in both the heterogeneous case with and without covariate shift. Conversely, both
IRM and VREx have significant degradation when covariate shift is introduced.

We also create an idealized version of these datasets that simplifies the images into two-dimensional
features consisting of the digit value and the color. We evaluate the WRI penalty and VREx penalty
using three optimal predictors: one that operates on only the digit value (invariant), one that operates
on the color value (spurious), and one that operates on both. The results of this experiment are pre-
sented in Table 2. As expected, we find that both WRI and VREx have zero penalty on HCMNIST.
However, in the presence of covariate shift, the VREx penalty for the invariant predictor is greater
than both the penalty for the spurious classifier and the penalty for the mixed classifier. This demon-
strates a simple and concrete case where VREx does not select for an invariant classifier, suggesting
that the degradation in VREx performance under shift in Table 1 can be attributed to a true failure
of VREx to recover the invariant predictor.

C.4 OUT-OF-DISTRIBUTION DETECTION WITH CMNIST

To evaluate the out-of-distribution (OOD) detection performance on CMNIST, we first train a model
on the two training environments of (traditional) CMNIST, then assess the model’s ability to classify
sample digits as in-domain or out-of-domain on a modified version of the CMNIST test environment.
The modified test environment is a mix of unaltered digits for the “in-domain” samples and flipped
digits for the “out-of-domain” samples. Specifically, we horizontally flip digits 3, 4, 7, and 9, and
vertically flip digits 4, 6, 7, and 9. In this way, we create CMNIST samples that would not exist in
the training distribution but still appear plausible. Figure C.3 provides examples of these in-domain
and out-of-domain samples. Note that we only flip digits that are unlikely to be confused with real
digits after flipping.

In order to measure OOD performance, we require an OOD score for each sample that predicts
if the sample is in-distribution. Each OOD score is then compared against its in-distribution label
to compute a Receiver Operating Characteristic (ROC) curve. This curve captures the trade-off
between the true positive rate and false positive rate at various confidence thresholds. Lacking an
explicit density estimate for ERM, IRM, and VREx, we instead use the maximum class prediction
score for the OOD score. We then compare the effectiveness of WRI’s density estimate as an OOD
score against ERM, IRM, and VREx. Finally, we calculate the area under the ROC curve (AUROC)
as an aggregate metric. The results, presented in Table 3, indicate that the WRI density estimates
more accurately detect OOD digits than the prediction confidence scores from the other methods.
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Figure C.3: Examples of CMNIST in-distribution (top) and out-of-distribution (bottom) used for OOD detec-
tion. The out-of-distibution samples are generated by flipping a subset of digits horizontally or vertically.

C.5 DOMAINBED EXPERIMENTAL DETAILS AND RESULTS

C.5.1 FEATURIZER

We use a ResNet50 model to train featurizers using the default ERM DomainBed parameters for
each dataset. We train one featurizer corresponding to each test environment with both 32 and 64
dimensional features. Each featurizer is trained on the training environments for a fixed number of
steps. Once trained, the features are pre-computed and all experiments are then performed on these
features. The dimensionality of the features used is selected randomly as a hyperparameter. For
each experiment, we use a single hidden-layer MLP with ReLU activation which operates directly
on ResNet features.

C.5.2 HYPERPARAMETERS

Since we are training on pre-extracted features, running for 5000 steps is unnecessary. Instead, we
reduce the total number of steps per experiment to 500 and increase the default learning rate to
1e-2. Because we have fewer steps than the original (non-featurized) DomainBed implementation,
we reduce the annealing iterations on IRM and VREx by a factor of 10 and limit the maximum
annealing steps to 500. Otherwise, VREx and IRM would nearly always finish training before
annealing has finished.

We specified the following DomainBed hyperparameters and selected them according to the fol-
lowing distributions. Note that in DomainBed, the default hyperparameters are used during the
first hyperparameter seed, and random hyperparameters are selected for subsequent seeds. For any
hyperparameters not listed here, we use the defaults provided by DomainBed.

• Learning-rate - default: 1e-2, random: log-uniform over [5e-3, 1e-1].

• IRM-anneal iters - default 50, random: log-uniform over [1, 500]. Number of steps before
penalty weight is increased.

• VREx-anneal iters - default 50, random: log-uniform over [1, 500]. Number of steps before
penalty weight is increased.

• Featurizer dimensions - default: 64, random: discrete uniform from {32, 64}. The dimen-
sionality of the pretrained features used.

• WRI-λ - default: 1, random: log-uniform over [1e-1, 5e1]. The penalty weight used when
computing L in the predictor optimization step.

• WRI-annealing - default: 0, random: discrete uniform from {0, 10}. Number of steps
before WRI regularization term is included in loss function.

• WRI-density update freq (ω) - default: 1, random: discrete uniform from {1, 2, 4, 8}. Num-
ber of predictor optimization steps between density optimization steps.

• WRI-density learning rate - default: 2e-2, random: log-uniform over [1e-2, 5e-2]. Learning
rate used for the density estimate optimizer.

• WRI-density weight decay - default: 1e-5, random: log-uniform over [1e-6, 1e-2]. The
weight decay used for the density estimate optimizer.

• WRI-density batch size - default: 256, random: discrete uniform from {128, 256}. The
batch size used when optimizing for density estimates.
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• WRI-density λ - default: 5, random: log-uniform from [5, 50]. The penalty weight used
when computing L in the density optimization step.

• WRI-density β - default: 2e2, random: log-uniform from [5e-2, 5]. The negative log
penalty weight used when computing L in the density optimization step.

• WRI-density steps (nd) - default: 4, random: discrete uniform from {4, 16, 32}. The num-
ber of optimization steps taken each time the density estimators are updated.

• WRI-min density - default: 0.05, random: uniform from [0.01, 0.2]. The minimum density
imposed via scaled shifted sigmoid activation on density estimator models.

• WRI-max density - default: 1, random: uniform from [0.4, 2]. The maxmimum density
imposed via scaled shifted sigmoid activation on density estimator models.

C.5.3 DOMAINBED WITH ADDITIONAL BASELINES

We run DomainBed experiments on additional baselines to place our work in larger context, ex-
panding Table 4 to Table C.4. Specifically, we also compare to GroupDRO (Sagawa et al., 2019),
Mixup (Zhang et al., 2017), MLDG (Li et al., 2018), and CORAL (Sun & Saenko, 2016). These
are the (current) top-performing methods that are implemented and tested in the DomainBed test
suite that can be used with an ERM-trained featurizer—as that is sufficient to learn the invariant
features necessary to train an OOD predictor (Rosenfeld et al., 2022), but also significantly speeds
up training. We did not include methods that are not implemented in DomainBed, but it is worth
mentioning examples like MIRO (Cha et al., 2022) that demonstrate state-of-the-art performance
on image data. Note that all of the aforementioned methods are different lines of work; they are
not causally motivated, but can sometimes have better generalization accuracy than methods with a
causal basis.

Table C.4: DomainBed results on feature data, with additional non-causal baselines

Algorithm VLCS PACS OfficeHome TerraIncognita DomainNet Avg
ERM 76.5 ± 0.2 84.7 ± 0.1 64.5 ± 0.1 51.2 ± 0.2 33.5 ± 0.1 62.0
IRM 76.7 ± 0.3 84.7 ± 0.3 63.8 ± 0.6 52.8 ± 0.3 22.7 ± 2.8 60.1
GroupDRO 77.0 ± 0.2 84.8 ± 0.1 65.1 ± 0.1 51.3 ± 0.2 30.9 ± 0.1 61.9
Mixup 76.6 ± 0.2 85.0 ± 0.1 66.1 ± 0.0 52.3 ± 0.7 33.1 ± 0.1 62.6
MLDG 75.8 ± 0.2 82.3 ± 0.2 64.8 ± 0.2 48.3 ± 0.2 33.0 ± 0.1 60.8
CORAL 76.5 ± 0.2 85.1 ± 0.2 65.0 ± 0.1 51.8 ± 0.4 33.5 ± 0.1 62.5
VREx 76.7 ± 0.2 84.8 ± 0.2 64.6 ± 0.2 52.2 ± 0.3 26.6 ± 2.1 61.0

WRI 77.0 ± 0.1 85.2 ± 0.1 64.5 ± 0.2 52.7 ± 0.3 32.8 ± 0.0 62.5

C.5.4 INDIVIDUAL DATASET RESULTS

This section contains the individual DomainBed results on VLCS, PACS, OfficeHome, TerraIncog-
nita, and DomainNet. The Average column from each dataset table is reported in Table C.4. For all
other dataset tables, the column labels indicates which environment was held out for test.

VLCS

Algorithm C L S V Avg
ERM 97.2 ± 0.1 66.0 ± 0.6 68.9 ± 0.5 73.8 ± 0.5 76.5
IRM 97.0 ± 0.0 66.3 ± 0.5 69.1 ± 0.5 74.2 ± 0.2 76.7
GroupDRO 96.9 ± 0.2 67.1 ± 0.4 69.3 ± 0.2 74.6 ± 0.3 77.0
Mixup 97.3 ± 0.1 66.7 ± 0.4 68.7 ± 0.5 73.7 ± 0.1 76.6
MLDG 97.2 ± 0.1 63.9 ± 0.6 68.6 ± 0.3 73.7 ± 0.3 75.8
CORAL 96.9 ± 0.2 66.3 ± 0.2 68.8 ± 0.5 73.9 ± 0.3 76.5
VREx 97.2 ± 0.1 66.9 ± 0.0 68.4 ± 0.5 74.2 ± 0.4 76.7
WRI 97.1 ± 0.2 67.0 ± 0.2 69.6 ± 0.6 74.3 ± 0.2 77.0
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PACS

Algorithm A C P S Avg
ERM 80.5 ± 0.3 81.5 ± 0.2 96.6 ± 0.1 80.2 ± 0.1 84.7
IRM 80.8 ± 0.9 82.0 ± 0.3 96.3 ± 0.2 79.9 ± 0.3 84.7
GroupDRO 81.4 ± 0.3 81.2 ± 0.3 96.4 ± 0.2 80.2 ± 0.1 84.8
Mixup 80.9 ± 0.3 81.7 ± 0.3 96.6 ± 0.2 80.8 ± 0.2 85.0
MLDG 80.0 ± 0.5 81.1 ± 0.4 95.7 ± 0.2 72.2 ± 0.4 82.3
CORAL 81.4 ± 0.2 81.8 ± 0.4 96.8 ± 0.1 80.5 ± 0.2 85.1
VREx 80.6 ± 0.5 81.8 ± 0.7 96.8 ± 0.1 80.0 ± 0.2 84.8
WRI 81.2 ± 0.3 82.3 ± 0.1 96.5 ± 0.2 80.7 ± 0.1 85.2

OfficeHome

Algorithm A C P R Avg
ERM 58.9 ± 0.5 50.2 ± 0.3 74.4 ± 0.2 74.5 ± 0.4 64.5
IRM 57.9 ± 0.6 49.8 ± 0.5 73.4 ± 0.8 74.1 ± 0.8 63.8
GroupDRO 59.7 ± 0.3 50.7 ± 0.2 74.8 ± 0.1 75.4 ± 0.2 65.1
Mixup 61.1 ± 0.2 52.2 ± 0.1 75.6 ± 0.1 75.7 ± 0.1 66.1
MLDG 59.1 ± 0.4 50.7 ± 0.2 74.8 ± 0.1 74.8 ± 0.3 64.8
CORAL 59.3 ± 0.2 50.6 ± 0.4 74.9 ± 0.2 75.2 ± 0.2 65.0
VREx 58.8 ± 0.5 50.4 ± 0.3 74.4 ± 0.2 74.8 ± 0.4 64.6
WRI 58.9 ± 0.6 49.8 ± 0.2 74.7 ± 0.1 74.7 ± 0.3 64.5

TerraIncognita

Algorithm L100 L38 L43 L46 Avg
ERM 50.3 ± 0.4 50.0 ± 0.6 57.8 ± 0.3 46.6 ± 0.4 51.2
IRM 53.6 ± 0.7 53.2 ± 0.8 57.7 ± 0.2 46.6 ± 0.8 52.8
GroupDRO 50.4 ± 0.5 50.1 ± 0.3 57.4 ± 0.3 47.3 ± 0.3 51.3
Mixup 53.1 ± 1.8 52.4 ± 0.9 57.1 ± 0.5 46.6 ± 0.3 52.3
MLDG 44.7 ± 0.6 49.3 ± 0.3 57.2 ± 0.2 41.8 ± 0.3 48.3
CORAL 51.0 ± 0.5 51.5 ± 1.0 57.8 ± 0.2 47.0 ± 0.5 51.8
VREx 52.5 ± 1.1 51.2 ± 0.6 57.9 ± 0.3 47.2 ± 0.4 52.2
WRI 51.7 ± 0.5 55.0 ± 0.6 57.2 ± 0.5 47.1 ± 0.3 52.7

DomainNet

Algorithm clip info paint quick real sketch Avg
ERM 47.9 ± 0.2 16.3 ± 0.1 40.6 ± 0.2 9.6 ± 0.2 46.7 ± 0.2 40.2 ± 0.1 33.5
IRM 31.9 ± 4.4 11.4 ± 1.3 28.9 ± 3.0 6.5 ± 0.7 30.8 ± 3.9 26.9 ± 3.7 22.7
GroupDRO 43.8 ± 0.3 15.8 ± 0.2 37.5 ± 0.3 8.8 ± 0.1 42.6 ± 0.2 37.1 ± 0.3 30.9
Mixup 47.2 ± 0.1 16.3 ± 0.2 40.2 ± 0.2 9.7 ± 0.1 45.5 ± 0.3 39.6 ± 0.2 33.1
MLDG 46.9 ± 0.2 16.2 ± 0.1 40.0 ± 0.2 9.2 ± 0.1 46.2 ± 0.1 39.4 ± 0.1 33.0
CORAL 47.9 ± 0.3 16.5 ± 0.1 40.5 ± 0.2 9.6 ± 0.1 46.6 ± 0.2 39.8 ± 0.2 33.5
VREx 37.1 ± 3.2 14.0 ± 0.9 31.9 ± 2.8 7.5 ± 0.7 37.2 ± 2.5 32.0 ± 2.5 26.6
WRI 46.7 ± 0.2 15.9 ± 0.1 39.8 ± 0.1 9.3 ± 0.1 46.0 ± 0.2 39.4 ± 0.1 32.8
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