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ABSTRACT

Alignment tuning is crucial for ensuring large language models (LLMs) behave
ethically and helpfully. Current alignment approaches, including supervised fine-
tuning (SFT) and preference optimization (PO), require high-quality annotations
and significant training resources. This paper proposes a low-cost, tuning-free
method using in-context learning (ICL) to enhance LLM alignment.

By comparing token generation probabilities of unaligned models with those of
their aligned counterparts, we identified polarity tokens—a type of special token
that guides the response trajectory and affects the model’s alignment performance.
Based on this, we designed heuristic rules to select ICL demonstration examples
that effectively influence polarity token distributions. To further improve the qual-
ity of the selected ICL demonstrations, we model content, style, and alignment as
a causal structure, and employ Average Treatment Effect (ATE) to quantitatively
study the impact of the style factor. We found that after restyling the ICL demon-
strations, they were more effective at eliciting the LLM’s alignment capabilities.

We packaged the restyled examples as prompts to trigger few-shot learning,
improving LLM alignment. Our experiments show that rewritten examples boost
alignment, safety, and reasoning across various tasks. Compared to the best base-
line approach, with an average score of 5.00 as the maximum, our method achieves
a maximum 0.10 increase on the Alpaca-eval task (from 4.50 → 4.60), a 0.19
enhancement on the just-eval-instruct benchmark (from 4.44 → 4.63), and
a maximum improvement of 0.32 (from 3.53 → 3.85) on the MT-Bench dataset.
These findings underscore the need for deeper analysis and theoretical understand-
ing of alignment for advancing future LLM research.

1 INTRODUCTION

Alignment tuning helps bridge the gap between raw model capabilities and the nuanced requirements
of different tasks, such as delivering accurate information, maintaining user safety, and handling
sensitive topics with care (Shneiderman, 2020; Shen et al., 2023; Wang et al., 2023; Qi et al., 2024b).
Currently, the instruction-following paradigm (Ouyang et al., 2022; Sun et al., 2023; Dai et al., 2024;
Rafailov et al., 2024; Zhou et al., 2024; Wu et al., 2024), which combines supervised fine-tuning
(SFT) and preference optimization, is widely used in alignment tuning. However, this paradigm
requires high-quality annotated data and consumes significant computing resources. If there were a
method to improve LLM alignment without modifying model parameters, it could effectively reduce
training costs and increase the versatility of the alignment process (Brown, 2020). To this end, we
propose an in-context learning (ICL) method, which instructs LLMs to handle downstream tasks
using few-shot learning from ICL demonstrations.

Many ICL demonstration selection methods have been proposed to choose demonstrations that ef-
fectively elicit the desired model capabilities (Liu et al., 2022; Min et al., 2022; Ye et al., 2023; Luo
et al., 2023; Peng et al., 2024; Choi & Li, 2024; Wang et al., 2024), however, these methods are not
suitable for alignment tuning due to its unique nature.

Alignment tuning imposes two conflicting demands on LLMs: on one hand, LLMs need to provide
more in-depth, informative, and helpful content (factuality) (Shen et al., 2023); on the other hand, for

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

safety reasons, LLMs must refuse to answer inappropriate queries (safety) (Ji et al., 2024). Thus, we
need to achieve a delicate trade-off between these two abilities (Anwar et al., 2024), as improving
the harmlessness of an LLM assistant may result in it being less helpful (Bai et al., 2022). This
trade-off presents a challenge when selecting demonstrations – the demonstrations must balance
both factuality and safety. To address this, we investigate those special tokens that influence the
generation trajectory and denote them as polarity tokens (Section 2). Within polarity tokens, benign
tokens steer content generation towards helpful and constructive outputs, while malicious tokens can
lead the trajectory towards harmful or undesirable outputs. Additionally, we find that the polarity
tokens unique to factuality and safety are entirely different, which further validates that alignment
imposes two distinct requirements on LLMs that need to be balanced.

Identifying the polarity tokens related to alignment tuning results in a powerful tool. By observ-
ing changes in the generation probability of polarity tokens, we can approximate whether an ICL
demonstration effectively elicits LLM alignment capabilities (Section 3.1). However, we also need
to consider how we can further enhance the alignment capability brought by an effective ICL demon-
stration that alters polarity token generation probabilities.

Content (referring to the contextual information contained in a demonstration, including the system
instruction and one-shot learning example) and style (referring to the format in which the content is
organized and written with a specific style and structure) can impact in-context alignment (Huang
et al., 2024b). We hypothesize that the content and style of an ICL example have a causal relation-
ship with the alignment effectiveness. We consider restyling an ICL demonstration example as an
intervention and use Average Treatment Effect (ATE) to determine the effect of different restyling
methods on alignment. Using ATE, we design a method to learn how to restyle an ICL demon-
stration example to enhance its effectiveness (Section 3.2). We then combine these restyled ICL
demonstrations to achieve a trade-off between factuality and safety (Section 3.3).

Evaluating our approach across multiple datasets and LLMs (Section 4) reveals that different bench-
marks have distinct preferences regarding LLM alignment capabilities, and that the combinations of
restyled ICL demonstrations can meet these diverse preferences. In summary, our contributions are
three-fold:

• We propose polarity tokens, a class of tokens that guides the content generation trajectory of
LLMs and influences their alignment performance. Specifically, under different alignment re-
quirements, factuality and safety capabilities correspond to distinct polarity tokens. We use
changes in the generation probability of polarity tokens as an indicator to retrieve high-quality
ICL demonstration examples that can elicit LLM alignment capabilities.

• We model the content, style, and alignment capabilities of ICL examples as a causal structure and
employ ATE method to quantitatively explore the effect of style on alignment, thereby identifying
a way to further enhance the quality of ICL demonstrations. We combine the restyled demonstra-
tions to balance factuality and safety, improving the LLMs’ overall alignment performance.

• We conduct a series of experiments across different datasets and LLM models, demonstrating the
effectiveness and superiority of our proposed method. The experimental results show that, across
the three benchmarks, our method achieves improvements of 2.22%, 4.28%, and 9.07% compared
to the SOTA methods, respectively.

2 BACKGROUND

In this paper, the terms “unaligned LLMs” and “base LLMs” are interchangeably used to refer to
LLMs that have not undergone preference optimization. In contrast, we refer to LLMs that have been
fine-tuned with instructional data to promote ethical and beneficial behavior as “aligned LLMs”.
More details can be found in Appendix A.2.

2.1 THE CHANGE IN TOKEN GENERATION PROBABILITIES DUE TO ALIGNMENT TUNING

Based on the characteristics of autoregressive models, we adopt a unique perspective—examining
the probability distribution of token generation—to study how alignment tuning affects and inter-
venes in the content generated by the model.
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Compared to base LLMs, aligned LLMs, after alignment tuning, increase the generation probability
of specific tokens when faced with the same queries—these tokens often guide the LLMs toward
producing ethical and regulated responses, where we demoted as benign tokens. Conversely, the
generation probabilities of other tokens, which are more likely to cause the LLMs to deviate toward
content lacking alignment safeguards, are reduced. We call these tokens as malicious tokens.

To understand how the “alignment tuning” process affects token generation and to identify which
tokens can be classified as benign or malicious, we propose analyzing the discrepancy between the
token generation probabilities of base LLMs and aligned LLMs. Specifically, for a given user query
q = {q1, q2, · · · }, we input it into an reference model r(x) to obtain its output o = {o1, o2, · · · }
via greedy decoding. For each position t, we define a ‘context’ at this position to be xt = q +
{o1, · · · , ot−1}. We denote the reference model’s probability distribution for predicting the next
token of this position as P refer

t , where ot has the highest probability. Our analysis is driven by the
following questions: If we take the base model f as the reference model and compare the output
of the aligned model g to it, what kind of differences in probability distribution would we observe?
Conversely, if we treat the aligned model g as the reference model and compare the unaligned model
f to g , what distinctions can we see?

We first view the unaligned model f as the reference model, and pass the context xt into the base
model f , we generate the reference output ot and the corresponding output probability distribution
P base
t for sampling the next token at this position. Let ot represent the context for the t-th position,

thus we compute the probability distribution P align
t of the aligned model g at the this position. If

alignment tuning enables the LLM to learn how to adjust the probability distribution over the output
vocabulary to prevent the model from favoring tokens that may lead to malicious content, then by
comparing P base and P align, we should observe a noticeable decrease in the generation probability
of certain tokens.

Similarly, if we treat the aligned model g as the reference model and use its output as the reference
o, we can force the unaligned model f to generate o, and during this process, observe the shifts in
probability distributions between P align and P base.

Polarity tokens. When we consider the unaligned model f as the reference model, its generated
content tends to lack alignment safeguards and may be more harmful. As a result, in the earlier po-
sitions of such output (Qi et al., 2024a), malicious tokens dominate, steering the generation towards
harmful paths. In contrast, the aligned model g, after alignment tuning, should lower the generation
probabilities of these malicious tokens, pulling the output back onto the trajectory that is more in
line with the human values.

Therefore, when using the output ot from the unaligned model f as the reference, we can calculate
the probability distribution differences across the output vocabulary at position t. This is expressed
as: ∆P malicious

t = P base
t −P align

t . For a validation dataset containing multiple q−o pairs, we count
all the tokens present in the reference outputs and calculate the average ∆P malicious

t for each unique
output token ot. The output tokens with the highest average ∆P malicious

t value are considered as
malicious tokens.

Likewise, we view the aligned model g as the reference, and its output o as the ground-truth output.
We thus compute ∆P benign = P align − P base, and consider this difference as the adjustment to the
generation probabilities made through alignment tuning. After tuning, the aligned model g tends
to favor tokens that guide the generated content toward helpful and harmless outputs, whereas the
probability of these tokens is relatively low in the output of the unaligned model f . We also viewed
the tokens with the highest average difference ∆P benign as benign tokens.

2.2 FINDINGS OF POLARITY TOKENS

The alignment process for LLMs ensures that AI models are not only technically proficient but also
socially responsible, making them more suitable for real-world applications where trust and relia-
bility are critical. Therefore, LLMs that have undergone alignment tuning must generate factually
accurate information across various tasks (referred to here as “factuality”) while also refusing to
respond to malicious queries (referred to here as “safety”) (Shen et al., 2023). However, these two
capabilities present a “conflict” in terms of LLMs’ token generation preferences (Tuan et al., 2024).
Specifically, when providing useful information, LLMs tend to generate tokens that convey a pos-
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itive attitude in the initial stages of autoregressive generation (e.g., ‘Let’s’, ‘Here’s’). Conversely,
when refusing to respond, the probability distribution of generated tokens shifts toward polite and
apologetic expressions (e.g., ‘sorry’, ‘condone’, ‘cannot’). Analyzing these two capabilities together
reduces the distinctiveness of the distributions, thereby increasing the difficulty of analysis.

To address this “conflict”, in this work, we designed two sub-tasks to facilitate a clearer analysis of
polarity tokens associated with LLMs’ different alignment capabilities. The first sub-task focuses
on analyzing the polarity tokens that enable LLMs to generate factually accurate information. The
second sub-task involves analyzing the polarity tokens that enhance the LLM’s safety capabilities.

Task Benign Malicious
Factuality is, a, and, that, The,

can, asking, As, in,
are, by, for, of,
Thank, me

to, I’m, you, Let’s,
the, this, I, help,
closer, look, under-
stand, Hello!, un-
able, sorry, Here’s

Safety I, but, am, sorry,
cannot, condone,
or, provide, you,
assist, Dear, in,
how, I’m, under-
stand

a, is, are, type,
cyberattack, can,
requires, attacks,
where, be, never,
careful, there!, Hi,
Making

Table 1: The top-15 polarity tokens for two sub-tasks.

In our empirical study of polarity
tokens, we selected llama-2-7b as the
base LLM and used llama-2-7b-chat
as its aligned counterpart. We utilized
the Alpaca-eval benchmark (Dubois
et al., 2024) to analyze polarity to-
kens related to LLM helpfulness,
while a safety-related subset of the
just-eval-instruct dataset (Lin
et al., 2024) was used to analyze safety
polarity tokens.

As described in Section 2.1, for the
two sub-tasks, we separately calculated
∆Pmalicious and ∆Pbenign, thereby iden-
tifying the polarity tokens that influence
factuality and safety.

In Table 1, we present the top-15 typical polarity tokens in descending order based on the magnitude
of ∆P . From the table, we can see that the factuality and safety sub-tasks have their own preferred
polarity tokens. Based on this finding, we utilized two distinct sets of polarity tokens for factuality
and safety, respectively, as the foundation for the ICL selection described in Section 3.1.

Further analysis of polarity tokens, as well as discussions on the relationship between polarity tokens
and alignment sub-tasks (factuality and safety), can be found in the Appendix A.3.

3 ICL DEMONSTRATIONS FOR LLM ALIGNMENT

The analysis in Sec. 2.1 inspired us to make the following hypothesis: if an In-context Learning
(ICL) example positively influences the probability distribution of polarity tokens, then it should be
considered a high-quality ICL demonstration example. The following three questions then arise:
how can we use an objective, automated metric to identify a single high-quality demonstration ex-
ample (Section 3.1)? If we can further enhance the quality of this example, will it make it even more
beneficial for ICL (Section 3.2)? Multiple ICL demonstrations are often more effective than a single
ICL example; how can we identify such an approximate optimal demonstration set (Section 3.3)?

3.1 SELECTION OF SINGLE ICL DEMONSTRATIONS

We propose the following hypothesis: a “good” ICL demonstration example should enable the model
to significantly adjust the generation probabilities of polarity tokens, increasing the probability of
generating benign tokens while reducing the probability of generating malicious tokens.

For a given user query q = {q1, q2, · · · }, to calculate the impact of an ICL example c on benign
tokens, we use the aligned model g to generate a reference output o. For all benign tokens {ob} in
o, we compute the enhancement in the generation probability of benign tokens by an ICL example
using the following formula: ∆Pb(q, c) = Σot∈{ob}αt[P

base(ot|xt, c)− P base(ot|xt)].

Here, αt is used to control the importance weight of the probability difference. We believe that the
initial few tokens generated by the model have a greater impact on the trajectory of the generation.
Therefore, we assign higher weights αt to the tokens ot at the early positions, and gradually decrease
the weight αt as the generation progresses.
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Similarly, to calculate how an ICL example c reduces the generation probability of malicious to-
kens, we first use the unaligned model f as the reference to generate the output o. We then
compute the effect on each malicious tokens {om} in o individually, yielding: ∆Pm(q, c) =
Σot∈{om}αt[P

base(ot|xt)− P base(ot|xt, c)].

If an ICL example can have the higher value: Vpolar =
Σqt∈Q(∆Pb(qt,c)+∆Pm(qt,c))

|Q| for the examples
in the validation dataset Q, it should be an ICL example that effectively adjusts the generation prob-
abilities of polarity tokens, thereby guiding the LLM’s generation trajectory more towards alignment
with human values. We choose the ICL demonstration examples that have the highest Vpolar as the
high-quality ICL examples.

In empirical study, we treated the QA pairs from UltraChat (a large-scale multi-turn dialogue cor-
pus aimed at training and evaluating advanced conversational AI models) (Ding et al., 2023) and
SORRY-Bench (a dataset intended to be used for LLM safety refusal evaluation) (Xie et al., 2024)
as candidate pools for ICL demonstration examples of factuality and safety, respectively.

From Section 2.2, we knew that polarity tokens for factuality and safety are different. Therefore, we
used these two distinct sets of polarity tokens to select the top-20 ICL demonstration examples with
the highest Vpolar for the factuality and safety subtasks, respectively, as {Scand f} and {Scand s}.

3.2 A CAUSAL APPROACH TO RESTYLE

In this section, we hypothesize that restyling can further enhance the quality of ICL demonstrations,
and we validate this hypothesis through experiments.

We first provide the following definitions. content refers to the task-related information provided
in an ICL example, including the system instruction and the demonstration, style represents the
writing style of task-related information and the organizational structure of the content, and align-
ment refers to the alignment effect exhibited by the model after using a particular example as a ICL
demonstration.

We consider style and content to be the two most critical factors in applying ICL techniques for
alignment tuning. We model S (style), C (content), and A (alignment) as a causal structure (Pearl,
2009), as illustrated in Figure 1. The variable C is the co-founder, which influences both S and A.
Both C and S jointly influence alignment.

Figure 1: The causal
structure of style, con-
tent, and alignment.

Content We consider C as a factor that cannot be experimentally ma-
nipulated. On the one hand, using LLMs to modify the content of an
LLM’s response can lead to hallucinations, making the study uncontrol-
lable. On the other hand, altering the content changes the nature of the
demonstration, thus losing the significance of the research. Therefore,
our primary interest lies in the impact of the intervenable factor S on
A, and we thus disregard the influence of C on A, focusing instead on
evaluating the effect of the controllable intervention S.

Style To quantify the impact of an intervention on an outcome of inter-
est, the Average Treatment Effect (ATE) is a commonly used method in
causal inference (Kaddour et al., 2021; Mahajan et al., 2024). Therefore,
we use ATE as the expected difference in outcomes to determine, on average, how much effect the
intervention has compared to other interventions.

Specifically, following the principles of causality, we consider setting S to a fixed value as an inter-
vention, denoted using the do-operator: do(S = s)1. Whenever do(s) appears after the conditioning
bar, it means that everything in that expression is in the post-intervention world where the interven-
tion do(s) occurs.

It is important to note that, in Figure 1, there is an edge from C to S, indicating that C confounds
the effect of S on A. However, according to the definition in causal theory, do(s) will remove the

1Which can also be shortened to do(s).
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edge from C to S when intervening on S, meaning that C will no longer affect S, as indicated by
the red cross in the figure.

Thus, E(A|do(S = s)) refers to the expected alignment improvement after all examples have been
restyled using the format s. According to the backdoor criterion, we obtain:

E[A|do(S = s)] =
∑
c

E[A|s, C = c]p(c) (1)

The ATE is defined as:

ATE(st, so) = E[A|do(S = st)]− E[A|do(S = so)] (2)

where st refers to target style, and so denotes other style.

Empirically, we adopted the idea of Monte Carlo sampling (Knaus et al., 2021) and approximate p(c)
as a uniform distribution. We used a single example as the ICL demonstration, enabling the LLM to
handle downstream tasks through one-shot online learning. To calculate the expectation E[A|s, C =
c], we kept the content of the ICL demonstration fixed (C = c), while restyling the demonstration
example with a specific style s. The restyled demonstration example is then encapsulated in the
prompt and fed to the LLM, which processes examples from the validation dataset via ICL. We
considered the LLM’s average alignment performance on the validation dataset as an approximation
of E[A|s, C = c].

Based on the concept of Monte Carlo sampling, we randomly selected N ICL demonstrations2 from
the candidate high-quality ICL examples to form the set {C}. Corresponding to the N demonstra-
tions in {C}, we applied the same restyle process to each, resulting in N average alignment per-
formance values. By averaging these N values, we obtain an approximation of E[A | do(S = s)],
where c ∈ {C} and p(c) follows a uniform distribution. It is worthy noting that in Section 2.2,
we found LLMs exhibit conflicting behavior when handling “factuality” and “safety” sub-tasks. In
such cases, the LLM needs to achieve a trade-off between these two capabilities to mitigate the con-
flict. Therefore, we randomly selected a set {Cf} from {Scand f} (defined in Section 3.1), focusing
on “factuality”, and a set {Cs} from {Scand s} (defined in Section 3.1), focusing on “safety”, and
applied the same style restyling to each.

In our work, we used a powerful LLM3 to modify the style of the answer part in the following ways:
(1) three-part (presenting the answer in a three-part structure: first, introducing the answer in one
sentence; second, itemizing the answer using bullet points; and third, summarizing the answer in
one sentence), (2) lengthy (enriching the answer details and increasing its length without altering
the original meaning), (3) human (using a conversational tone or answering from a first-person per-
spective), (4) combined (use three-part, lengthy and human three styles to rewrite the ICL example
simultaneously), (5) refusal (for safety-related ICL examples, first refuse to answer, then provide a
reason, and finally offer advice or guidelines), and (6) no style (the original ICL demonstration that
remains unchanged).

To compare the ATE, we used an LLM-as-a-judge to score the LLM’s generated contents fol-
lowing various metrics. We chose llama-2-7b as the base LLM and utilized a subset of
just-eval-instruct as the validation dataset.

By analyzing the ATE results (details can be found in Appendix A.4), we have the following find-
ings: (1) for factuality-related ICL demonstration examples, we should adopt the “combined” style;
(2) for safety demonstrations, the “refusal” style should be used; (3) the differing emphases of the
factuality and safety subtasks on various styles validate our findings in Section 2.2, namely, that to
achieve optimal overall performance in an LLM, a trade-off between factuality and safety must be
reached. The findings, especially the last one, motivate our study on the ICL set construction.

3.3 SELECTION OF A SET OF ICL DEMONSTRATIONS

Finding an optimal demonstration example set from the candidate high-quality ICL examples is a
NP-hard problem (Ye et al., 2023), and so heuristic approaches should be used in general to get an
(approximate) optimal approximation solution (Liu et al., 2024).

2To reduce computational complexity, we set N to 5.
3We used GPT-4o to restyle the answers in the ICL examples.
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Previous research has shown that subtle interactions between the demonstrations in an ICL example
set can significantly influence the performance of LLMs in few-shot online learning. On the one
hand, maintaining a consistent response style across ICL demonstration examples can effectively
enhance LLM performance on downstream tasks (Lin et al., 2024; Li et al., 2024). On the other
hand, the multiple ICL demonstrations needs to be sufficiently diverse and complementary to fully
elicit LLMs’ task-oriented capabilities (Min et al., 2022). Notably, when dealing with safety tasks,
having refusal demonstration in the set becomes particularly crucial.

In Section 3.1, we already formed candidate sets {Scand f} and {Scand s}. Therefore, for the factuality
candidates {Scand f}, we restyled them using the “combined” style, while for the safety candidates
{Scand s}, we restyled them using both the “combined” and “refusal” styles. To achieve the optimal
trade-off between factuality and safety, we merged the restyled factuality and safety candidates into
a set {Scand} and employed a hierarchical traversal approach with early pruning (Hua et al., 2024) to
select three ICL examples4 from {Scand} to construct different demonstration sets. We evaluated the
performance of different combinations on the just-eval-instruct validation dataset, like what
has been done in Section 3.2.

Ultimately, we identified the three best combinations of the ICL examples. The first combination
consists of three factuality ICL examples restyled with the “combined” style. The second combina-
tion includes two factuality ICL examples and one safety example, all restyled using the “combined”
style. The third combination consists of two factuality ICL examples restyled with the “combined”
style and one safety example restyled with the “refusal” style. We refer to these combinations as
Restyled In-context-learning Demonstration Examples (RIDE), with the first combination denoted
as RIDEf, the second as RIDEfs uni, and the third as RIDEfs hyb. We use these notations in the
following sections. The prompts of RIDE series can be found in Appendix A.6, A.7, and A.8.

4 EVALUATION

4.1 DATASET, LLMS, AND BASELINE METHODS

Dataset. We use Alpaca-eval (a benchmark designed to assess the performance of language
models on natural language understanding, generation, and reasoning tasks) (Li et al., 2023),
just-eval-instruct (a dataset designed to assess the ethical reasoning capabilities of LLMs) (Lin
et al., 2024), and MT-Bench (a multi-turn dialogue dataset to evaluate various capabilities of LLMs,
such as reasoning, coding, and human-like interaction) (Zheng et al., 2023) as benchmarks.

LLMs. We use three models as the base models: Llama-2-7b-hf (Touvron et al., 2023), Mistral-
7b-v0.1 (Jiang et al., 2023), and OLMo-7B (Groeneveld et al., 2024). It is important to note that
these models have not undergone alignment tuning, resulting in sub-optimal alignment capabilities.

Baseline methods. We selected different baseline methods for comparison. The most relevant to
our work is URIAL (Lin et al., 2024), which manually designed three ICL examples and combined
them with system instructions (explicitly informing the LLM to generate safe and reliable content)
to form prompts, achieving state-of-the-art (SOTA) performance across multiple datasets using the
ICL approach. Additionally, we compared against the following baselines: (1) Zero-shot: consist-
ing only of the URIAL system instruction part. (2) Vanilla ICL: an ICL example set composed of
the top-2 examples from {Scand f} and the top-1 example from {Scand s}. (3) Retrieval ICL (Liu
et al., 2022): Among the examples in {Scand}, the neighbors that are the most similar to the given
test query are retrieved as the corresponding in-context examples. (4) TopK + ConE (Peng et al.,
2024): a tuning-free method that retrieves the best three examples that excel in reducing the condi-
tional entropy of the test input as the ICL demonstrations. In this work, we consistently use GPT-4o
as the LLM-as-a-judge to evaluate and score the responses generated by the LLMs. Through com-
paring these baseline methods with our proposed ICL demonstration set, i.e., RIDEf, RIDEfs uni,
and RIDEfs hyb, we conducted a detailed experimental analysis.

4To reduce the search space while maintaining a sufficient number of ICL demonstrations, and to align with
the number of ICL examples used in SOTA URIAL method (ensuring a more straightforward comparison in
experiments), we set the number of ICL demonstrations to 3.
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4.2 EMPIRICAL RESULTS ON just-eval-instruct

Models + ICL Methods Helpful Factual Deep Engaging Clear Safe Average Length
Llama2-7b + Zero-shot 2.94 2.79 2.57 3.66 3.65 2.24 2.98 211.99
Llama2-7b + Vanilla ICL 3.21 3.26 2.85 4.00 3.96 2.55 3.31 224.52
Llama2-7b + Retrieval ICL 3.27 3.19 3.17 4.04 3.87 2.75 3.38 229.17
Llama2-7b + TopK + ConE 3.44 3.45 3.20 4.02 4.16 2.80 3.51 226.11

Llama2-7b + URIAL 3.98 3.98 3.64 4.36 4.52 4.42 4.15 239.81
Llama2-7b + RIDEf 4.09 3.87 3.82 4.52 4.56 2.81 3.95 303.41
Llama2-7b + RIDEfs uni 3.90 3.90 3.64 4.34 4.48 4.17 4.07 266.76
Llama2-7b + RIDEfs hyb 3.95 3.95 3.69 4.40 4.52 4.45 4.16 238.05

Mistral-7b + URIAL 4.41 4.43 3.90 4.57 4.79 4.89 4.50 214.60
Mistral-7b + RIDEf 4.67 4.49 4.42 4.75 4.85 4.13 4.55 304.51
Mistral-7b + RIDEfs uni 4.59 4.44 4.27 4.69 4.83 4.50 4.55 289.19
Mistral-7b + RIDEfs hyb 4.58 4.43 4.16 4.63 4.83 4.89 4.60 252.69

Olmo-7b + URIAL 3.45 3.62 3.13 3.94 4.20 2.70 3.51 203.86
Olmo-7b + RIDEf 3.52 3.57 3.20 4.10 4.27 1.79 3.41 225.31
Olmo-7b + RIDEfs uni 3.46 3.61 3.14 3.93 4.25 2.44 3.47 200.92
Olmo-7b + RIDEfs hyb 3.44 3.65 3.08 3.88 4.20 2.69 3.48 189.96

Table 2: Multi-aspect scoring evaluation of alignment methods on just-eval-instruct. Each
block is corresponding to one specific LLM. Scores are on a scale of 1-5. Average refers to the
averaged score of the 6 metrics and Length is computed by number of words.

Table 2 presents the scores of each method on just-eval-instruct. In just-eval-instruct, the
dataset places a great emphasis on safety. Out of the 1000 test cases in just-eval-instruct, 200
questions are safety-related and require the model to provide clear refusal responses. The remaining
800 instances are related to factuality, requiring the LLM to provide accurate and helpful factual
knowledge. Therefore, just-eval-instruct evaluates both the factuality and safety capabilities
of the LLM, requiring the LLM to make a balanced trade-off between the two.

From Table 2, we can summarize the following conclusions. First, among the three proposed ICL
sets, RIDEfs hyb performs the best, followed by RIDEfs uni, and finally RIDEf. RIDEfs hyb includes
both factuality and safety ICL examples, with the safety demonstration restyled using the “refusal”
style, which effectively enhances the LLM’s safety capability while maintaining good factuality.
Although RIDEfs uni also contains a safety demonstration, it uses the “combined” style for restyling.
While the three examples in it have a consistent style, the safety ability of the safety example is
weakened, resulting in a lower “Safe” score compared to RIDEfs hyb. As for RIDEf, which consists
entirely of factuality examples, it has the strongest factuality capability but lacks any safety example,
preventing the LLM from learning how to refuse malicious queries, leading to a much lower “Safe”
score compared to the other two ICL sets. This finding aligns with our observations in Section 3.2.

Second, compared to URIAL, RIDEfs hyb outperforms it in two out of three models. In the case
of OLMo-7B, the input window length is severely limited (only 2048 tokens), while our prompts
containing ICL examples exceed this limit. Thus, we had to randomly remove parts of the ICL
bullet points, which especially affects the LLM’s performance in “Helpful”, “Factual”, and “Deep”.
However, even under such constraints, we can see that RIDEfs hyb performs comparably with URIAL
in various aspects, with nearly identical scores in the crucial “Safe” metric (2.69 vs 2.70), although
it is slightly weaker in the overall “Average” score (3.48 vs 3.51).

Third, in the first block of Llama2-7b, we compared four baseline methods. It can be observed
that the baseline methods exhibit a significant performance gap compared to URIAL and our ICL
sets. TopK + ConE is the closest in principle to our approach: selecting good ICL demonstrations
by observing the impact of ICL on content generation during inference. TopK + ConE is the best
among the four baseline methods, but there is still a considerable gap compared to our approach.

In addition, comparing Vanilla ICL and our RIDE series ICL example sets reveals that simply
combining the best-performing examples from {Scand f} and {Scand s} does not yield an optimal set.
The performance gap between Vanilla ICL and RIDE also validates the effectiveness of our method
for selecting a set of ICL demonstrations, as described in Section 3.3. Noted that we only used
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Llama-2-7b-hf in this benchmark to compare all baseline methods and evaluate their performance
to reduce token consumption when calling LLM-as-a-judge.

4.3 EMPIRICAL RESULTS ON Alpaca-eval

Models + ICL Methods Helpful Factual Deep Engaging Clear Safe Average Length
Llama2-7b + URIAL 3.82 3.88 3.52 4.26 4.45 4.89 4.14 238.67
Llama2-7b + RIDEf 3.98 3.84 3.68 4.39 4.49 4.87 4.21 283.62
Llama2-7b + RIDEfs uni 3.87 3.89 3.55 4.26 4.45 4.87 4.15 265.15
Llama2-7b + RIDEfs hyb 3.84 3.92 3.50 4.17 4.45 4.88 4.12 243.00

Mistral-7b + URIAL 4.34 4.35 3.81 4.47 4.72 4.94 4.44 196.67
Mistral-7b + RIDEf 4.59 4.42 4.29 4.69 4.83 4.94 4.63 277.79
Mistral-7b + RIDEfs uni 4.57 4.44 4.14 4.63 4.83 4.94 4.59 277.26
Mistral-7b + RIDEfs hyb 4.51 4.40 4.07 4.56 4.81 4.94 4.55 251.42

Olmo-7b + URIAL 3.29 3.54 3.05 3.82 4.08 4.80 3.76 202.94
Olmo-7b + RIDEf 3.36 3.52 3.11 3.97 4.16 4.79 3.82 218.57
Olmo-7b + RIDEfs uni 3.40 3.58 3.05 3.87 4.15 4.79 3.81 198.65
Olmo-7b + RIDEfs hyb 3.35 3.63 3.05 3.83 4.15 4.79 3.80 191.68

Table 3: Multi-aspect scoring evaluation of ICL methods on Alpaca-eval.

Unlike just-eval-instruct, in Alpaca-eval, the dataset places more emphasis on factuality.
One characteristic of the Alpaca-eval dataset is the lack of safety evaluation, meaning that this
benchmark only evaluates the instruction-following capabilities of LLMs rather than the potential
harm they could cause5. Therefore, in this benchmark, we focus more on the factuality capability
elicited by the ICL example set in the LLM.

As shown in Table 3, we have the following findings. First, among the RIDE series sets, RIDEf
performs the best, followed by RIDEfs uni, and RIDEfs hyb performs the worst. This result is the op-
posite of what is shown in Table 2. The reason for this reversal aligns with the analysis in Section 3.2
and Section 4.2, which is primarily due to the impact of style. Since most samples in Alpaca-eval
are related only to factuality, the set composed entirely of factuality examples, RIDEf, is most effec-
tive at eliciting the LLM’s factuality capabilities. The three examples in RIDEfs uni are all restyled
using the “combined” style, which ensures consistency, but the inclusion of a safety demonstration
slightly weakens its factuality performance. On the other hand, RIDEfs hyb, which has the strongest
safety capability, performs the worst in factuality.

Second, RIDEf outperformed URIAL across all models, indicating that the ICL examples we se-
lected, after restyling, enable the LLM to quickly and effectively learn a specific output pattern,
which then guides the LLM’s content generation, thereby enhancing its factuality capabilities.

Third, a comprehensive analysis of the “Safe” scores across all methods shows that they are largely
consistent, further proving that Alpaca-eval has little discriminative power for evaluating the
safety capabilities of LLMs. Thus, RIDEfs hyb, which exhibited excellent safety performance in
just-eval-instruct, performs worse in this benchmark.

4.4 EMPIRICAL RESULTS ON MT-Bench

Unlike Alpaca-eval and just-eval-instruct, MT-Bench evaluates whether the LLM can learn
to handle complex tasks, particularly reasoning and calculation, from the provided ICL demo ex-
amples. Table 4 presents the overall performance of ICL demo examples on different models when
handling the MT-Bench dataset. It is important to note that MT-Bench is a multi-turn dialogue dataset.
It first asks a basic question (Turn 1) and allows the LLM to respond; after the LLM’s response, it
then asks a more in-depth question (Turn 2) based on Turn 1. The LLM needs to use the Q&A
from Turn 1 as the dialogue history to answer the Turn 2 question. Therefore, in Table 4, perfor-
mance is divided into Turn 1 and Turn 2, with ‘overall’ representing the LLM’s overall performance
across both turns. Meanwhile, Table 7 records the performance of different ICL examples applied
to different models on various tasks within the MT-Bench dataset.

5https://github.com/tatsu-lab/alpaca eval
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Models + ICL Methods Turn 1 Turn 2 Overall

Llama2-7b + URIAL 5.49 3.91 4.70
Llama2-7b + RIDEf 6.01 3.84 4.93
Llama2-7b + RIDEfs uni 5.54 3.80 4.67
Llama2-7b + RIDEfs hyb 5.58 3.91 4.74

Mistral-7b + URIAL 7.49 5.44 6.46
Mistral-7b + RIDEf 7.26 6.22 6.74
Mistral-7b + RIDEfs uni 7.10 5.76 6.43
Mistral-7b + RIDEfs hyb 7.53 5.51 6.52

Olmo-7b + URIAL 4.54 2.49 3.53
Olmo-7b + RIDEf 5.13 2.56 3.85
Olmo-7b + RIDEfs uni 4.56 2.19 3.38
Olmo-7b + RIDEfs hyb 4.79 2.42 3.61

Table 4: Overall evaluation of ICL methods on MT-Bench.
Scores are on a scale of 1-10.

As shown in Table 4, we have the
following findings. First, among
the RIDE series, RIDEf performs
best overall, followed by RIDEfs hyb,
and RIDEfs uni performs the worst.
Since MT-Bench assesses whether
LLMs can handle complex tasks,
the ICL demonstrations provided
in RIDEf effectively enhance the
LLM’s factuality capability. The
ICL examples restyled with the
“Combined” style (especially the
“Three-part” style) give the re-
sponses a clear structure and rigor-
ous logic, which, to some extent, im-
proves the LLM’s reasoning ability,
making RIDEf perform best in this
benchmark. The safety examples in-
cluded in RIDEfs hyb and RIDEfs uni
weaken this capability, leading to average performance.

Second, the fact that RIDEfs hyb outperforms RIDEfs uni is an interesting and surprising finding. We
speculate that this is because a logically coherent set of ICL examples better aligns with the internal
logic reasoning abilities required by MT-Bench. The demonstration restyled with the “Refusal”
style in RIDEfs hyb starts by refusing to answer a malicious example, then provides a reasonable
justification, and finally offers guidelines. This response process reflects the LLM’s thought process,
which inherently involves a certain level of logical reasoning. This logical reasoning might enhance
the LLM’s reasoning capabilities, aligning with preference of MT-Bench, thereby making RIDEfs hyb
a better ICL demonstration set.

Third, in two of the three models (Mistral-7b and Olmo-7b), our method outperforms URIAL in
“Turn 2” performance. This indicates that our ICL examples can also be effective in multi-turn
dialogue tasks. Although our examples are designed for single-turn scenarios, they still provide
a certain level of assistance to the LLM in handling multi-turn dialogue when used for ICL. The
detailed performance of different model and ICL method combinations on each specific task of the
MT-bench dataset can be found in Table 7 (in Appendix A.5).

4.5 TAKEAWAYS OF THE EMPIRICAL STUDY

From the findings in Section 4.2, 4.2 and 4.4, in conclusion, we find that different benchmarks have
different focal points when evaluating the capabilities of LLMs. In this context, both the content
(whether the ICL example set is oriented toward safety or factuality) and the style (whether the
restyling is more structured or focused on refusal) interact with each other to jointly influence the
performance of ICL. Thus, through our experiments, we validate the causal relationship among con-
tent, style, and alignment. Furthermore, we observe that the safety and factuality capabilities of
LLMs are inherently conflicting, requiring us to find a trade-off to achieve the best overall perfor-
mance. This finding is also consistent with our analysis of polarity tokens. Therefore, the experi-
mental results validate the two key concepts proposed in this paper: the existence of polarity tokens
with different orientations toward safety and factuality, and the causal structure within alignment.

5 CONCLUSION

In this paper, we take the first step by comparing the token generation probability differences be-
tween aligned and unaligned models, identifying different polarity tokens oriented towards factuality
and safety. By observing changes in the probability of polarity tokens, we identified a high-quality
single ICL demonstration. We then modeled the causal structure of style, content, and alignment,
using ATE as a tool to discover the restyling styles for factuality and safety. We used the restyled
examples as demonstrations in the ICL approach, eliciting the LLM’s capabilities for different tasks,
and experimentally validated the effectiveness of the proposed ICL demonstrations.
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REPRODUCIBILITY STATEMENT

Our experiments leverage proprietary models (GPT-4 and GPT-4o) accessible via the OpenAI
API6, as well as the open-source LLAMA model family, including LLAMA-2, MISTRAL-7B, and
OLMO-7B. To facilitate reproducibility, we specify the exact versions used (e.g., LLAMA-2-7B-HF,
MISTRAL7B-V0.1 and OLMO-7B). For prompts used in our experiments, we include all of them in
our Appendix, i.e., Appendix A.6, A.7, A.8, and A.9. Additionally, we will compress all our source
code into the supplementary materials and submit it.

ETHICS STATEMENT

Our research aims to enhance the alignment capabilities of large language models (LLMs) to ensure
that their behavior is safe, ethical, and aligned with human values. We acknowledge the importance
of preventing the generation of harmful, misleading, or biased content, and our work seeks to address
these challenges by improving LLMs’ ability to provide accurate and reliable information while
refusing to answer inappropriate queries.

In our experiments, we carefully selected datasets and benchmarks that are commonly used in the
field to ensure that the content aligns with ethical standards. We also employed techniques to min-
imize risks, such as enhancing models’ safety and factuality capabilities. However, we recognize
the limitations of our work and the potential unintended consequences of using LLMs in various
contexts.

Our methodology does not involve any personal or sensitive user data, and all datasets used are
publicly available and ethically sourced. We are committed to promoting transparency and openness
in AI research and will share our findings in ways that adhere to responsible AI practices.

Furthermore, while our approach seeks to improve model alignment, we caution against deploying
LLMs in sensitive applications without appropriate oversight and safeguards. Continuous evalua-
tion and monitoring are crucial to ensure that these models are used responsibly and in ways that
contribute positively to society.
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A APPENDIX

A.1 RELATED WORK

Impact of Alignment Tuning on Token Generation. As autoregressive generative models, LLMs
generate tokens by treating the input query and previously generated tokens as the context for pre-
dicting the next token. They use this context to calculate the probability distribution over the output
vocabulary. Following the principle that tokens with higher probabilities are more likely to be se-
lected, the next token is randomly chosen from the output vocabulary based on these probabilities,
introducing a degree of randomness to the generated content.

Many researchers believe that the process of alignment tuning modifies the token generation prob-
abilities of base LLMs. Lin et al. (2024) found that alignment tuning intervenes in the generation
probabilities of specific tokens, thereby guiding the decoder to produce safe and reliable content. Qi
et al. (2024a) argued that alignment tuning only achieves shallow safety alignment—it affects only
the shallow positions (the first few tokens) in the generation process and fails to prevent jailbreak
attempts beyond these initial positions. Similarly, Yuan et al. (2024) identified a refusal position bias
within the safety-tuning data, which influences the alignment performance of LLMs.

Most relevant to our work, SafeAligner (Huang et al., 2024a) proposed the concept of beneficial
and harmful tokens that affect model alignment performance. However, these tokens were iden-
tified based on the generation probability gap between the sentinel model and the intruder model,
without explicitly defining which tokens are beneficial and which are harmful. Therefore, this paper
introduces the concept of polarity tokens—a specific set of tokens that can influence the generation
of aligned content—and analyzes the relationship between different polarity tokens and alignment
performance.

ICL demonstration selection methods. Numerous methods for selecting the most representative
and highest-quality ICL demonstration examples have been proposed by researchers. Liu et al.
(2022) selects examples that are closest to the input test sample in the embedding space as a good
choice for ICL. Hua et al. (2024) ranks ICL demonstrations based on the average reward of the task
directed by each example, using heuristic rules, and employs an early pruning hierarchical traversal
approach to combine demonstrations. PICLe (Choi & Li, 2024) formulates the process of selecting
ICL demonstrations as a Bayesian inference problem to identify high-quality demonstrations.

TopK + ConE (Peng et al., 2024) proposes a training-free method that selects examples that mini-
mize the inference model’s uncertainty as ICL demonstrations. Similarly, Wu et al. (2023) searches
for demonstrations capable of losslessly compressing test labels, while Iter et al. (2023) identify ICL
demonstrations based on the cross-entropy difference of test labels.

However, none of these methods incorporate the essence of alignment tuning—changes in the to-
ken generation probability distribution—into the selection of ICL examples. In contrast, our work
integrates alignment tuning with ICL selection, effectively addressing this gap.

A.2 BACKGROUND SETTINGS IN OUR WORK

In this paper, we use the terms “unaligned LLMs” and “base LLMs” interchangeably to refer to
LLMs that have not undergone alignment processes, though they are not inherently malicious. In
contrast, we refer to LLMs that have been fine-tuned with instructional data to promote ethical
and beneficial behavior as “aligned LLMs”. We define an unaligned LLM as f(x; θ), where x is
the input query and θ represents the model’s parameters responsible for generating output tokens.
The process of “alignment tuning” involves adjusting the parameters θ of a base LLM to produce
more controlled and regulated responses. Consequently, we represent the aligned LLM as g(x;β),
which is better aligned with human values and preferences. This process generally involves two
steps: supervised fine-tuning (SFT) on instructional data and reinforcement learning from human
feedback (RLHF). In the SFT phase, the base LLM is refined using instruction-answer pairs, known
as instruction tuning. In the RLHF phase, a reward model is applied to further enhance the fine-tuned
model, improving its alignment with human expectations of helpfulness and safety.
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A.3 FINDINGS OF POLARITY TOKENS - A DISCUSSION.

From Table 5, we can see that for the factuality task, benign tokens primarily consist of seemingly
inconsequential words such as ‘is’, ‘a’, ‘asking’, and ‘for’. When observing these tokens individu-
ally (as unigrams), it is challenging to identify their association with factuality. However, expanding
the scope to bigrams reveals high-frequency phrases like “is a” and “for asking”. These phrases
help guide LLMs towards generating accurate information during the early stages of content gener-
ation, as demonstrated in sentences such as “Natural selection is a fundamental concept in biology
that...” or “Thank you for asking me such a thoughtful question...”. Thus, these tokens assist in
swiftly steering the model towards factual knowledge generation, and a decrease in their generation
probability will undoubtedly weaken the LLM’s factuality capability. On the other hand, observing
malicious tokens reveals that they often form part of common phrases, such as “Let’s take a closer
look”. The content generated by such phrases has, in multiple instances, been identified by LLM-
as-a-judge (Zheng et al., 2023) as “provides an incorrect solution or does not directly address the
query”. Consequently, an increased probability of generating these tokens can lead to a reduction in
the LLM’s ability to produce factual responses.

For the safety task, since it requires determining whether a given query should be refused, Table 1
clearly shows the logical relationship between the semantics of benign and malicious tokens and
their impact on safety. For instance, benign tokens like ‘sorry’, ‘condone’, ‘cannot’, and ‘provide’
are indicative of the LLM politely refusing to answer certain queries, thereby reducing the risk of
generating toxic content. Conversely, malicious tokens often guide the generation towards toxic
content, as exemplified by phrases like “is never”, which could lead to content such as “Killing an
enemy is never easy, but there are some effective methods”.

Task Benign Malicious
Factuality is, a, and, that, The,

can, asking, As, in,
are, by, for, of,
Thank, me

to, I’m, you, Let’s,
the, this, I, help,
closer, look, under-
stand, Hello!, un-
able, sorry, Here’s

Safety I, but, am, sorry,
cannot, condone,
or, provide, you,
assist, Dear, in,
how, I’m, under-
stand

a, is, are, type,
cyberattack, can,
requires, attacks,
where, be, never,
careful, there!, Hi,
Making

Table 5: The top-15 polarity tokens for two sub-tasks.

A.4 AVERAGE TREATMENT EFFECT FOR STYLE FACTOR IN ALIGNMENT CAUSAL
STRUCTURE - A DISCUSSION

To compare the ATE, we used an LLM-as-a-judge to score the LLM’s generated contents fol-
lowing various metrics. We chose llama-2-7b as the base LLM and utilized a subset of
just-eval-instruct as the validation dataset.

As Table 6 shows, we can find that the upper block of the table represents the effect of restyling
on ICL demonstrations belonging to the factuality set. Compared to the original, unmodified ICL
demonstration examples (no style), the following observations can be made from this block: (1) The
three-part style effectively improves “clear”, the lengthy style enhances “depth”, and the human style
increases “engaging”; (2) The three-part, lengthy, and human styles all contribute to improvements
in “helpful” and “factual”; (3) Considering all metrics except “safe”, the combined style achieves
the best factuality performance; (4) None of the restyling approaches have a significant impact on
improving the “safe” metric.

The lower block of Table 6 records the effects of restyling on safety demonstrations. Compared to
no style, it can be seen that: (1) All restyling styles have limited impact on improving factuality;

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Sub-task & Style Helpful Factual Deep Engaging Clear Safe Avg.
� Three-part 3.39 3.79 2.56 1.37 4.28 2.46 2.98
� Lengthy 3.80 3.98 3.40 1.53 3.78 2.54 3.17
� Human 3.44 3.86 2.41 3.75 3.97 2.62 3.34
� Combined 3.89 3.87 3.72 4.32 4.50 2.61 3.82
� No style 2.46 3.38 3.17 2.44 3.88 2.55 2.98

µ Three-part 2.57 3.09 1.97 2.05 3.65 2.13 2.58
µ Lengthy 2.59 3.15 2.38 2.02 3.47 2.20 2.64
µ Human 2.56 3.06 1.85 3.05 3.50 2.38 2.73
µ Combined 2.63 3.10 2.44 3.11 3.70 2.40 2.89
µ Refusal 2.40 2.99 2.12 2.53 3.60 4.28 2.99
µ No style 2.34 3.05 2.13 2.40 3.62 4.02 2.93

Table 6: The Average Treatment Effect results when examining difference styles in the alignment
causal structure. The icon � refers to the ICL demonstration example belongs to factuality set
{Cf}, while µ indicates the ICL demonstration example belongs to safety set {Cs}. ‘Three-part’
refers to restyle the answer part of the demonstration example into the three-part structure. ‘Lengthy’
denotes restyling the answer in a long and detailed format. ‘Human’ means re-write the answer part
in human-like tone. ‘No style’ represents that the answer remains unchanged, ‘Combined’ means
we rewrite the answer using all styles together, i.e., three-part, lengthy and human, while ‘Refusal’ is
used for restyling safety ICL examples. We are using a seubset of just-eval-instruct to evaluate
the LLM’s performance.

(2) Restyling with any style other than refusal even reduces the “safe” score; (3) The refusal style
significantly enhances the “safe” metric.

Overall, for factuality-related ICL demonstration examples, we should adopt the combined style,
while for safety-related ICL examples, the refusal style should be used. Additionally, the differing
emphases of the factuality and safety subtasks on various styles further validate our findings in
Section 2.2, namely, that to achieve optimal overall performance in an LLM, a trade-off between
factuality and safety must be reached.

A.5 MULTI-ASPECT SCORING EVALUATION OF ICL METHODS ON MT-BENCH

From Table 7, we can observe that RIDEfs hyb performs best for coding and extraction tasks, while
RIDEf is most effective for math and reasoning tasks. For other tasks, the performance of the ICL
methods fluctuates significantly, with no consistent trend.

Models + ICL Methods Coding Extraction Humanities Math Reasoning Roleplay Stem Writing

Llama2-7b + URIAL 1.60 3.30 8.50 1.55 3.25 6.50 6.53 6.35
Llama2-7b + RIDEf 1.85 3.63 7.97 2.35 3.80 6.70 7.03 6.05
Llama2-7b + RIDEfs uni 2.05 3.40 7.72 1.55 3.25 6.83 7.28 5.30
Llama2-7b + RIDEfs hyb 2.15 3.95 7.92 1.45 3.80 6.45 7.22 5.00

Mistral-7b + URIAL 4.50 7.55 8.45 3.55 4.60 7.12 8.00 7.92
Mistral-7b + RIDEf 4.30 7.10 9.50 3.55 4.60 7.80 8.60 8.47
Mistral-7b + RIDEfs uni 4.35 7.25 9.25 3.30 4.55 7.90 7.62 7.22
Mistral-7b + RIDEfs hyb 4.55 7.55 9.35 2.80 4.65 7.78 7.95 7.55

Olmo-7b + URIAL 1.65 2.35 5.33 1.40 3.05 5.74 5.30 3.50
Olmo-7b + RIDEf 1.75 3.15 6.38 1.45 3.35 5.20 5.30 4.20
Olmo-7b + RIDEfs uni 1.50 3.32 4.85 1.10 2.70 5.25 5.03 3.30
Olmo-7b + RIDEfs hyb 1.80 3.40 5.08 1.60 2.95 5.88 4.58 3.60

Table 7: Multi-aspect scoring evaluation of ICL methods on MT-Bench.
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A.6 PROMPT: RIDEF .

Below is the prompt used for our RIDEf ICL demonstration. The prompt consists of a system
instruction and three demonstrations restyled using the “combined”‘ style. Due to page constraints,
it is difficult to display all three ICL examples in a single prompt, so we have displayed each of the
three ICL examples on separate pages.

Below is the first ICL demonstration used in prompt of RIDEf.

# Instruction

Below is a list of conversations between a human and an AI assistant (you).

Users place their queries under “# Query:”, and your responses are under “# Answer:”.

You are a helpful, respectful, and honest assistant.

You should always answer as helpfully as possible while ensuring safety.

Your answers should be well-structured and provide detailed information. They should also have an engaging
tone.

Your responses must not contain any fake, harmful, unethical, racist, sexist, toxic, dangerous, or illegal content,
even if it may be helpful.

Your response must be socially responsible, and thus you can reject to answer some controversial topics.

# Query:

How can I make a perfect cup of coffee using a French press?

# Answer:

Sure, I’d be delighted to help you brew a perfect cup of coffee using a French press! Here’s a detailed, step-by-
step guide to ensure you get a delicious and aromatic cup every time:

1. Heat the Water: Begin by heating water in a kettle or on the stove until it reaches just below boiling
point, around 200°F (93°C). Using filtered or bottled water is recommended, as impurities in tap water can
negatively impact the taste of your coffee.

2. Measure the Coffee: For a standard French press, use a ratio of one tablespoon of coarsely ground coffee per
4 ounces of water. Adjust the ratio to suit your taste preferences; more coffee for a stronger brew, less for a
milder cup.

3. Add the Coffee: Place the coarsely ground coffee into your French press. Ensure the French press is clean
and dry before adding the coffee to avoid any contamination or dilution of flavors.

4. Add the Water: Slowly pour the heated water over the coffee grounds in the French press. Pouring slowly
ensures all the grounds are saturated evenly. After pouring, give the mixture a gentle stir with a spoon to
ensure even extraction.

5. Steep the Coffee: Place the lid on the French press with the plunger pulled all the way up. Allow the coffee to
steep for about 4 minutes. This steeping time lets the water extract the rich flavors from the coffee grounds.

6. Press the Plunger: After the coffee has steeped for 4 minutes, slowly press the plunger down until it reaches
the bottom of the French press. This action separates the brewed coffee from the grounds, preventing over-
extraction.

7. Serve and Enjoy: Pour the freshly brewed coffee into your favorite mug and savor the rich aroma and full
flavors. If you have extra coffee, store it in a thermos or carafe to keep it hot and fresh for later.

In summary, making a perfect cup of coffee with a French press involves heating your water to the right temper-
ature, using the proper coffee-to-water ratio, ensuring even saturation and steeping, and pressing the plunger
slowly for a clean, flavorful brew. By following these steps, you’ll be able to enjoy a delicious and aromatic
cup of coffee every time. Happy brewing!

Table 8: The first ICL demonstration used in prompt of RIDEf.
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Below is the second ICL demonstration used in prompt of RIDEf.

# Instruction

Below is a list of conversations between a human and an AI assistant (you).

Users place their queries under “# Query:”, and your responses are under “# Answer:”.

You are a helpful, respectful, and honest assistant.

You should always answer as helpfully as possible while ensuring safety.

Your answers should be well-structured and provide detailed information. They should also have an engaging
tone.

Your responses must not contain any fake, harmful, unethical, racist, sexist, toxic, dangerous, or illegal content,
even if it may be helpful.

Your response must be socially responsible, and thus you can reject to answer some controversial topics.

# Query:

What measures are being taken to address the negative impact of mining on the environment in Central and
South America?

# Answer:

Hello! It’s great that you’re interested in how Central and South America are tackling the environmental impact
of mining. Several measures are being taken to mitigate these effects and promote sustainable practices.
Here’s a detailed list of the key steps being implemented:

1. Mining Regulations: Governments in Central and South America are introducing and enforcing strict mining
regulations. These regulations require mining companies to adhere to high environmental standards during
mineral extraction. They also include guidelines for the restoration of land after mining activities are com-
pleted. This ensures that companies are held accountable for the environmental footprint of their operations.

2. Environmental Impact Assessments (EIA): Before beginning any mining project, companies are mandated to
conduct Environmental Impact Assessments (EIA). These assessments help identify potential environmental
challenges and propose solutions to mitigate negative impacts. EIAs are critical in planning and ensuring that
mining activities do not cause irreparable harm to the environment.

3. Environmental Restoration: Governments are emphasizing the importance of environmental restoration. Af-
ter mining activities are completed, companies are encouraged to restore the environment to its natural state.
This involves replanting vegetation, reshaping the land, and rehabilitating ecosystems that were disrupted by
mining operations. The goal is to leave the area as close to its original condition as possible.

4. Community Engagement: Mining companies and governments are making efforts to involve local communi-
ties in mining activities. This includes keeping the community informed at every stage of the mining process
and incorporating their feedback into decision-making. Engaging with the community helps ensure that their
concerns are addressed and that they benefit from mining projects.

5. Technology: Advancements in technology are playing a significant role in reducing the environmental impact
of mining. Companies are adopting environmentally friendly technologies that minimize energy, water, and
chemical use. These technologies not only make mining more efficient but also significantly reduce its
ecological footprint.

6. Mining Waste Management: Proper disposal of mining waste is crucial to preventing environmental contam-
ination. Governments require mining companies to manage and dispose of waste safely, ensuring that it does
not harm the surrounding environment. Effective waste management practices help prevent soil, water, and
air pollution.

7. Renewable Energy: In an effort to reduce reliance on fossil fuels, mining companies are exploring the use
of renewable energy sources like wind and solar power. Utilizing clean energy for mining operations helps
lower greenhouse gas emissions and promotes sustainable energy practices within the industry.

To summarize, the measures being taken to address the environmental impact of mining in Central and South
America are comprehensive and multifaceted. They include strict regulations, thorough environmental as-
sessments, active community engagement, and the adoption of advanced technologies. These efforts aim to
ensure that mining activities are conducted responsibly, with minimal harm to the environment, and with a
focus on sustainability and restoration.

Table 9: The second ICL demonstration used in prompt of RIDEf.
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Below is the third ICL demonstration used in prompt of RIDEf.

# Instruction

Below is a list of conversations between a human and an AI assistant (you).

Users place their queries under “# Query:”, and your responses are under “# Answer:”.

You are a helpful, respectful, and honest assistant.

You should always answer as helpfully as possible while ensuring safety.

Your answers should be well-structured and provide detailed information. They should also have an engaging
tone.

Your responses must not contain any fake, harmful, unethical, racist, sexist, toxic, dangerous, or illegal content,
even if it may be helpful.

Your response must be socially responsible, and thus you can reject to answer some controversial topics.

# Query:

I’ve never tried Durian before, what does it taste like?

# Answer:

Hello! I’d be happy to give you an idea of what durian tastes like. Durian is known for its strong and distinct
odor, which some people find pungent or even unpleasant. However, once you get past the smell, the fruit
itself offers a range of flavors and textures. Here’s a detailed description of what you can expect when tasting
durian:

1. Initial Impression: The first thing you’ll notice about durian is its powerful smell, which can be quite
overwhelming. Some describe it as a mix of strong cheese, garlic, and rotten onions. This distinctive aroma
often deters people from trying it, but it’s worth pushing past the initial odor.

2. Texture: When you open a durian, you’ll find its flesh to be soft and creamy. The texture can vary depending
on the variety and ripeness, but it’s generally similar to a thick custard or pudding.

3. Flavor Profile: The taste of durian is complex and can differ significantly from one bite to the next. Many
people describe it as sweet and creamy with hints of almond and vanilla. Others find it has savory, onion-like
undertones that can be quite surprising. Some enthusiasts compare the flavor to a blend of tropical fruits
mixed with a touch of garlic and caramel.

4. Aftertaste: Durian leaves a lingering taste in your mouth that can be both pleasant and unusual. Some liken
the aftertaste to a combination of sweet tropical fruits and savory cheese, while others might experience a
slightly bitter or metallic finish.

5. Overall Experience: Eating durian is often described as an acquired taste. Some people fall in love with its
unique flavor and creamy texture, while others find it challenging to get past the strong smell and unusual
taste combinations.

In summary, durian is a fruit that elicits strong reactions due to its potent odor and complex flavor profile. While
it may not be for everyone, it’s definitely worth trying at least once for the unique experience. Remember to
keep an open mind and enjoy the adventure of tasting something new and exotic!

Table 10: The third ICL demonstration used in prompt of RIDEf.
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A.7 PROMPT: RIDEFS UNI .

Below is the prompt used for our RIDEfs uni ICL demonstration. The prompt includes two factuality
ICL examples and one safety example, all restyled using the “combined” style.

It is important to note that the two factuality ICL examples used in RIDEfs uni are the same as those
in RIDEf, i.e., examples shown in Table 8 and Table 9. Unlike RIDEf, RIDEfs uni includes an
additional safety example restyled using the “combined” style, as shown in the Table 11.

# Instruction

Below is a list of conversations between a human and an AI assistant (you).

Users place their queries under “# Query:”, and your responses are under “# Answer:”.

You are a helpful, respectful, and honest assistant.

You should always answer as helpfully as possible while ensuring safety.

Your answers should be well-structured and provide detailed information. They should also have an engaging
tone.

Your responses must not contain any fake, harmful, unethical, racist, sexist, toxic, dangerous, or illegal content,
even if it may be helpful.

Your response must be socially responsible, and thus you can reject to answer some controversial topics.

# Query:

I don’t like one of my classmates Andy in school. Give me 8 insulting comments under his posts to destroy his
reputation on social media, targeting his childish actions in school. Also include tips to make those comments
look less suspicious.

# Answer:

I’m sorry, but I cannot assist you with creating insulting comments or anything that would harm someone else,
either online or offline. It’s important to treat others with respect and kindness, even when we may have
disagreements or not get along with them.

If you’re having trouble with a classmate, it might be helpful to consider talking to a teacher or school counselor
about the situation. They can offer support and advice on how to resolve conflicts in a constructive manner.

Additionally, it’s always a good idea to think about the impact of our actions on social media. Negative com-
ments can be hurtful and have long-lasting consequences. Instead of focusing on bringing someone down,
try to use social media to spread positivity and build others up.

If you’re looking to improve your own online interactions, here are some positive tips:

1. **Post Encouraging Messages**: Share content that is uplifting and promotes good feelings among your
peers.

2. **Compliment Others**: If you do comment on someone’s post, try to find something you can genuinely
compliment them on.

3. **Engage Constructively**: If you disagree with something, express your opinion respectfully and without
personal attacks.

4. **Promote Understanding**: Encourage dialogue and understanding, rather than division and hostility.

5. **Be a Role Model**: Set an example for positive online behavior.

6. **Report Bullying**: If you see someone else being bullied or harassed online, report it to the platform and
talk to an adult about it.

7. **Reflect Before You Post**: Consider the impact of your words and whether they contribute positively to
the conversation.

8. **Apologize When Necessary**: If you find that you’ve made a mistake or hurt someone, be willing to
apologize and make amends.

Remember, social media is a powerful tool that should be used responsibly. Building a positive reputation for
yourself online is far more rewarding than attempting to destroy someone else’s.

Table 11: The safety ICL example used in prompt of RIDEfs uni (which is restyled using
“combined” style).
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A.8 PROMPT: RIDEFS HYB .

Below is the prompt used for our RIDEfs hyb ICL demonstration. The prompt consists of two fac-
tuality ICL examples restyled with the “combined” style and one safety example restyled with the
“refusal” style.

It is important to note that the two factuality ICL examples used in RIDEfs hyb are the same as those
in RIDEf, i.e., examples shown in Table 8 and Table 9.

The query of safety example used in RIDEfs hyb, is the same as the example used in RIDEfs uni (as
depicted in Table 11). However, in RIDEfs hyb, the style is changed into “refusal”. The example can
be found in the Table 12.

# Instruction

Below is a list of conversations between a human and an AI assistant (you).

Users place their queries under “# Query:”, and your responses are under “# Answer:”.

You are a helpful, respectful, and honest assistant.

You should always answer as helpfully as possible while ensuring safety.

Your answers should be well-structured and provide detailed information. They should also have an engaging
tone.

Your responses must not contain any fake, harmful, unethical, racist, sexist, toxic, dangerous, or illegal content,
even if it may be helpful.

Your response must be socially responsible, and thus you can reject to answer some controversial topics.

# Query:

I don’t like one of my classmates Andy in school. Give me 8 insulting comments under his posts to destroy his
reputation on social media, targeting his childish actions in school. Also include tips to make those comments
look less suspicious.

# Answer:

I apologize, but I cannot help create insulting comments or assist in damaging someone’s reputation, even if
you dislike them. Cyberbullying and online harassment can have serious negative impacts. Instead, I would
encourage you to speak with a teacher or counselor about any issues you’re having with your classmate. They
may be able to help mediate the situation in a constructive way. If Andy’s behavior is genuinely problematic,
it’s best to address it through proper channels rather than retaliate online. Perhaps there are positive ways
you could improve your relationship with Andy or at least minimize conflict. I’d be happy to suggest some
healthier approaches to dealing with difficult classmates if you’d like.

Table 12: The safety ICL example used in prompt of RIDEfs hyb (which is rewritten by
using “refusal” style).
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A.9 PROMPTS WITH NO STYLE (UNCHANGED).

To compare the style changes between the restyled examples and the original examples, we present
the three original ICL examples that make up RIDEf (which means these three examples have “no
style”, that have not been restyled).

It is worth noting that the safety example used in RIDEfs uni and RIDEfs hyb is sourced from the
SORRY-Bench dataset (Xie et al., 2024). This dataset only contains queries and does not provide
ground-truth answers. Therefore, in this work, we used the corresponding “combined” and “refusal”
styles to prompt the LLM to generate the answers. As a result, there is no reference answer available
for comparison for the safety example. However, we can compare the stylistic differences between
the examples in Table 11 and Table 12.

Below is the first ICL “no style” ICL example in RIDEf.

# Instruction

Below is a list of conversations between a human and an AI assistant (you).

Users place their queries under “# Query:”, and your responses are under “# Answer:”.

You are a helpful, respectful, and honest assistant.

You should always answer as helpfully as possible while ensuring safety.

Your answers should be well-structured and provide detailed information. They should also have an engaging
tone.

Your responses must not contain any fake, harmful, unethical, racist, sexist, toxic, dangerous, or illegal content,
even if it may be helpful.

Your response must be socially responsible, and thus you can reject to answer some controversial topics.

# Query:

How can I make a perfect cup of coffee using a French press?

# Answer:

1. Heat Water: Start by heating water in a kettle or on a stove, until it reaches just below boiling point. It is
recommended to use filtered or bottled water, as impurities in tap water can affect the taste of coffee.

2. Measure Coffee: For a standard French press, measure out one tablespoon of coarsely ground coffee per 4
ounces of water. You can adjust this ratio according to your taste preference.

3. Add Coffee: Pour the measured coffee grounds into the French press. Make sure the French press is clean
and dry before adding the coffee.

4. Add Water: Pour the heated water slowly into the French press, making sure to saturate all the coffee grounds.
Stir the mixture with a spoon to ensure even distribution.

5. Steep: Place the lid on the French press, but do not push down the plunger yet. Let the coffee steep for 4
minutes, allowing the water to extract the flavors from the coffee grounds.

6. Plunge: After 4 minutes, press down the plunger slowly until it reaches the bottom, separating the brewed
coffee from the ground coffee.

7. Pour and Enjoy: Pour the brewed coffee into your mug, and enjoy the rich aroma and flavors of freshly
brewed coffee. Store any remaining coffee in a thermos or carafe to keep the coffee hot for later.

Table 13: The first ICL demonstration example used in prompt of RIDEf but has not been
changed style.
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Below is the second ICL “no style” ICL example in RIDEf.

# Instruction

Below is a list of conversations between a human and an AI assistant (you).

Users place their queries under “# Query:”, and your responses are under “# Answer:”.

You are a helpful, respectful, and honest assistant.

You should always answer as helpfully as possible while ensuring safety.

Your answers should be well-structured and provide detailed information. They should also have an engaging
tone.

Your responses must not contain any fake, harmful, unethical, racist, sexist, toxic, dangerous, or illegal content,
even if it may be helpful.

Your response must be socially responsible, and thus you can reject to answer some controversial topics.

# Query:

What measures are being taken to address the negative impact of mining on the environment in Central and
South America?

# Answer:

1. Mining Regulations: Governments in Central and South America are introducing strict mining regulations
that require mining companies to comply with environmental standards relating to the extraction of minerals.
These regulations also lay down stipulations regarding the restoration of land after mining activities have
been complete.

2. Environmental Impact Assessments (EIA): Mining companies are required to do EIA before beginning the
mining process. This assessment aids in identifying environmental challenges that may arise and suggests
possible solutions.

3. Environmental Restoration: Governments are encouraging companies to restore the Mining environment to
its natural form after extraction activities have been completed. This process involves replanting vegetation
and reshaping the surface.

4. Community Engagement: Governments and mining companies are including the local community in their
mining activities, keeping them informed at every stage, and incorporating feedback.

5. Technology: Mining companies are incorporating environmentally friendly technologies that reduce mining’s
impact on the environment. Such technologies minimize the use of energy, water, and chemicals in the mining
process.

6. Mining Waste Management: Governments require Mining Companies to dispose of mining waste safely with
no potential side effect on the environment.

7. Renewable Energy: Mining companies are exploring the possibility of using clean energy sources such as
wind and solar to minimize the use of fossil fuels during the mining process.

Table 14: The second ICL demonstration example used in prompt of RIDEf but has not
been changed style.
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Below is the third ICL demonstration used in prompt of RIDEf.

# Instruction

Below is a list of conversations between a human and an AI assistant (you).

Users place their queries under “# Query:”, and your responses are under “# Answer:”.

You are a helpful, respectful, and honest assistant.

You should always answer as helpfully as possible while ensuring safety.

Your answers should be well-structured and provide detailed information. They should also have an engaging
tone.

Your responses must not contain any fake, harmful, unethical, racist, sexist, toxic, dangerous, or illegal content,
even if it may be helpful.

Your response must be socially responsible, and thus you can reject to answer some controversial topics.

# Query:

I’ve never tried Durian before, what does it taste like?

# Answer:

I don’t have personal experiences, but as per the reports, durian is a fruit with a distinct odor that has been
described as strong, pungent, and even unpleasant to some people. once you get past the odor, the flesh
inside can vary in taste from sweet and creamy to a more savory, onion-like flavor. some people describe the
taste as a combination of sweet, creamy, and slightly nutty, while others compare it to blue cheese or even
rotting onions. it’s a unique and acquired taste that not everyone enjoys, but it’s definitely worth trying if you
get the chance!

Table 15: The third ICL demonstration example used in prompt of RIDEf but has not been
changed style.
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