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ABSTRACT

Neural networks implicitly learn class-specific functional modules. In this work,
we ask: Can such modules be isolated and recombined? We introduce a method
for training sparse networks that accurately classify only a designated subset of
classes while remaining deliberately uncertain on all others, functioning as class-
specific subnetworks. A novel KL-divergence-based loss trains only the func-
tional module for the assigned set, and an iterative magnitude pruning procedure
removes irrelevant weights. Across multiple datasets (MNIST, FMNIST, tabu-
lar data, CIFAR-10) and architectures (MLPs, CNNs, ResNet, VGG), we show
that these subnetworks achieve high accuracy on their target classes with mini-
mal leakage to others. When combined via weight summation or logit averaging,
these specialized subnetworks act as functional modules of a composite model
that often recovers generalist performance. For simpler models and datasets, we
experimentally confirm that the resulting modules are mode-connected, which jus-
tifies summing their weights. Our approach offers a new pathway toward building
modular, composable deep networks with interpretable functional structure.

1 INTRODUCTION

Modern neural networks (NNs) implicitly develop internal subgraphs of neurons and connections
tuned to respond to specific classes. These structures, sometimes referred to as circuits (Olah et al.,
2020; O’ Neill and Buil [2024)), emerge during training but are difficult to isolate, reuse, or compose.
Representations for different classes are often entangled, resulting in shared neurons or features—a
phenomenon known as superposition (Mu and Andreas|, 20205 Saphra and Wiegretfe, 2024)—which
makes clean modularity elusive.

This lack of class-level modularity limits our ability to understand, edit, or compose networks. If
we could reliably extract a functional module—a subnetwork that specializes in recognizing one
class (or a small subset) while ignoring others—we could provide new tools both for modular neural
networks and for mechanistic interpretability. Crucially, such modules must not only function in
isolation, but also be designed to compose smoothly, without fine-tuning or alignment (Ilharco et al.,
2023 Hazimeh et al.,|2024). In this work, we want to answer the following question:

Can we train sparse, class-specialized subnetworks that remain ignorant outside
their domain, and compose into accurate, generalist models?

We answer affirmatively, proposing a methodology that leverages two key concepts: the Maximum-
Entropy (MaxEnt) principle and sparse training. The MaxEnt principle (Jaynes, |1957) advocates
choosing the most uninformative distribution consistent with known constraints. Originally applied
in statistical mechanics, it has become central to inference theory (Kuic, 2016; [De Martino and
De Martinol, [2018)).

We claim that MaxEnt can guide functional isolation: modules are trained to make confident pre-
dictions only for their class, and uniform predictions otherwise. This differs from standard entropy
regularization used in calibration or selective prediction (Marczak et al., 2024; Pereyra et al., 2017).

On the other hand, sparsity plays a crucial role in this context. Through pruning, the network
discards weights that are irrelevant to the task, possibly mitigating interference during weight-space
merging. We demonstrate its practical benefits by leveraging the Lottery Ticket Hypothesis (LTH).
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In general, LTH claims that sparse subnetworks can match dense models if trained with the right
initialization (Frankle and Carbin, 2018;|Zhou et al.,|2019; Liu et al.,2024). In our scenario, pruning
is essential for exposing the circuit and sparse subnetworks show improved modular compatibility.

In light of this, we propose a framework based on two main components: a novel Max-Entropy loss
(ME) coupled with an Iterative Magnitude Pruning (IMP) strategy (Frankle and Carbin, 2018)),
and a model merging step to achieve generalist models. The goal of the MaxEnt loss is to enforce
confident predictions on a subnetwork’s rewarded class set and uniform predictions otherwise, while
the IMP removes spurious capacity and reinforces specialization through sparsity (Burkholzl 2022;
Girish et al) 2021)). We call the resulting components subnetwork modules: sparse networks that
specialize in a class or class subset, and can be combined to form more generalist models.

To the best of our knowledge, this is the first work that trains a NN by isolation and merging. Our
results suggest a new approach to NN construction: rather than learning entangled solutions end-to-
end, we can build systems from independently trained, entropy-regularized modules. To summarize,
our contribution is threefold: (i) we introduce a novel MaxEnt loss able to train specialized modules;
(ii) we propose a new training pipeline to achieve better isolation and model merging to get generalist
models; (iii) we validate our findings through extensive experiments on several architectures and
datasets.

2 RELATED WORK

In this section, due to lack of space, we put only the most relevant related work. An extended ver-
sion of related work involving model merging, pruning methods, modular training and MaxEntropy
principle is available in Appendix

Modular Neural Networks. Several works have explored modular neural architectures that de-
compose computation across tasks (Kirsch et al., 2018; [Han et al.l 2021} |Salem et al., 2023). No-
tably, [Kirsch et al.|(2018)) introduced end-to-end learning of both modules and their composition via
a controller. They rely on subsequent modules for learning broader tasks, while using Expectation-
Maximisation (EM) for learning a specific module. While sharing a similar motivation to our work,
we build class-specific functional modules, trained to focus on a single class while producing high-
entropy on different classes. This specific goal is hindered by their structure of subsequent modules,
that are chosen by a controller and reused across tasks, making it difficult to isolate class-specific
functionality. Additionally, our approach relies on model merging, rather than leveraging subsequent
modules. Interestingly, Malakarjun Patil et al.| (2023)) highlight the importance of pruning methods
in unveiling the hierarchical structure of NNs. In particular, they propose an iterative approach for
hierarchy detection, where the hierarchy is the underlying hierarchy of sub-functions in a specific
task, delivering interesting network analysis. Our work partially shares the goal, but focuses more on
a complete training pipeline and on submodules isolation without seeking a hierarchical structure,
rather than network analysis about submodules.

Interpretability. Our work inevitably aligns with the goal of producing interpretable net-
works. Among the methods that tackle this challenge, we can distinguish between post-hoc and
interpretable-by-design methods. While post-hoc interpretability methods (Ribeiro et al., 2016
Lundberg and Lee, [2017) are constrained to work with trained models, our methodology is ap-
plied during training, yielding units with clear semantics and compositional behavior. In particular,
our approach aligns with mechanistic interpretability methods (Saphra and Wiegreffel [2024; |Olah
et al., 2020), where subnetworks (or circuits) are studied as functional entities. Interestingly, Liu
et al.| (2023)) propose a brain-inspired modular training procedure, relying on network embedding
into geometric spaces, and neurons swapping. Instead of leveraging pruning methodologies, they
rely mainly on regularization. However, they mainly use synthetic datasets and never scale to CNN,
ResNet, or VGG, while we show that our technique is applicable also to a broader range of tasks.
Finally, our work also complements neuron-level analyses like Mu and Andreas|(2020)), which seek
meaningful internal representations but suffer from polysemanticity. Instead, we encourage modu-
larity at the subnetwork level. This is conceptually related to [Marchetti et al.| (2024), where sym-
metry constraints shape functional structure—our modules may reflect class-wise symmetry com-
ponents in such a framework.
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3 LEARNING COMPOSABLE CLASS-SPECIFIC SUBNETWORK MODULES

We propose a method for constructing compos-

able subnetwork modules, each specialized in . ‘9 N ]
classifying a specific subset of classes while re- P Mp NN Algo. 1
maining unresponsive to others. These mod- IMESS % ME “ME | applied
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on their target classes and uniform predictions ! 2 ¢
otherwise, in line with the MaxEnt principle. " v "t
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loss function and an iterative magnitude prun- 0[1’2]6 | Complete
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ful model, built by simple merging. Figure [I}
provide an high level overview of our method
and its components.

Figure 1: Overview of our method. Starting from
3.1 MAX-ENTROPY LOSS common initialization 8y we find a specialized
subnetwork for each class in C, leveraging IMP
Let C be the full set of classes and R C C the and our ME loss (see Algorithm EI)
set of rewarded classes for a given subnetwork
module. For a training sample (z, y), where y € C, we define a target distribution § € RICI as:

(6, ifyeR
Yi = {él otherwise ° M

For example, if C = {0,1,2} and R = {0} we will use § = (1,0,0) for class 0, § =
(0.33,0.33,0.33) for classes 1 and 2. Let § = softmax(fp(x)) be the predicted class probability
distribution produced by the model. The MaxEnt loss is then defined as the Kullback-Leibler (KL)
divergence between the target distribution ¢ and the predicted distribution g:

IC|

Ly, y) = KL | §) = 3 dilog (z) . @
i=1 v

This formulation encourages the model to output peaked predictions (low entropy) for samples in
rewarded classes and uniform predictions (high entropy) for non-rewarded ones. In doing so, it
promotes functional isolation, ensuring that each subnetwork module specializes only in its intended
class subset and remains maximally uncertain elsewhere.

Unlike one-vs-all formulations, our approach enforces neuron-permutation invariance on non-
rewarded samples—a crucial property for composability. In a one-vs-all setup, training a module
for class 0 would implicitly push other output neurons (e.g., neuron 1) to represent “not class 0.”
However, if another module uses neuron 1 to represent “class 1,” summing the two leads to a seman-
tic collision: the same neuron would encode both “class 1”” and “not class 0”, which includes many
other classes.

3.2 ITERATIVE MAGNITUDE PRUNING

To enhance specialization and remove spurious capacity, we apply Iterative Magnitude Pruning
(IMP) (Frankle and Carbin, 2018) as in Algorithm[I} At each iteration, we train with the MaxEnt
loss, prune a fixed percentage of low-magnitude weights, and reinitialize the remaining ones. After
several rounds, a final training phase is applied to the resulting prune subnetwork. This process
encourages class-specific specialization.
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Algorithm 1 Iterative Magnitude Pruning with Max-Entropy Loss

Require: Initial weights 6, training data D, rewarded classes R, number of pruning iterations IV,
pruning percentage P, epochs per iteration

0+ 90

for: =1to N do

Train model fy on D using max-entropy loss with rewarded classes R for E epochs
1

Prune K % of weights in 6 with smallest absolute value, with K =1 — (1 — P)~
Reset remaining weights in € to their initial values from 6,
end for
Train the final pruned subnetwork on D using max-entropy loss with rewarded classes R for Ef
epochs

A A R S

3.3 MODEL MERGING

We investigate two strategies for composing a generalist model from class-specific submodules iden-
tified by MaxEnt training and eventually pruned through IMP. These strategies operate in weight-
space and logit-space, respectively, and reflect two distinct regimes revealed by our experiments.

3.3.1 ViAa WEIGHT SUMMATION

The first approach consists of composing a generalist model by summing submodules’ weights:
Omerged = Zi 0;. This operation is enabled by our design: submodules are trained to specialize
on disjoint subsets of classes and to behave identically—via uniform predictions—on all others,
minimizing interference.

We consider both pairwise merges (¢, +62) and complete merge (3, 0;), and evaluate composition-
ality using the same metrics used for individual modules. To understand when and why summation
preserves performance, we analyze the loss landscape through the lens of mode connectivity. Cru-
cially, unlike typical mode connectivity studies, where 6, and 65 solve the same task, our submodules
are specialized for different sets of classes. The merged model is intended to solve the union task,
and is evaluated using the MaxEnt loss over the combined rewarded classes. This distinction makes
it essential to assess whether the merged weights lie in a low-loss region for the composite task.

Following Frankle et al.|(2020) and [Lubana et al.|(2023)), we say that 6, and 65 are mode connected
along a path ~(¢) if:

vt € [0,1],  L(fy0)(DP)) < (1 =1)- L(fo,(D)) + 1 - L(f0,(D)) + €), 3)

where ¢ is a small margin, set to 2% of the first term on the r.h.s. following [Frankle et al.[(2020),
and L is our MaxEnt loss evaluated on a dataset D with labels restricted to R U R, the union of
the rewarded classes for the two modules.

To test this, we define the following piecewise-linear path, designed such that 6, + 65 appears as an
intermediate point:

0, + 2t -0, ift <0.5
Yo, -6, (t) {2(1 —1)-0,+0, ift>05 @

This path satisfies: ¥(0) = 61, v(1) = 02, and ¥(0.5) = 01 + 6. We evaluate the loss along ()
and interpret low-barrier profiles as evidence that the modules are composable by construction.

3.3.2 VIA LOGIT AVERAGING

In addition to weight summation, we consider a second compositional strategy, i.e., merging mod-
ules directly in logit-space. Let fg, be a submodule trained with MaxEnt on rewarded classes
R; C C. For an input z, define its logits as z() = fy.(v) € RI°l, and thus () = softmax(z(").
By construction, MaxEnt encourages each fp, to output a peaked distribution on samples in R; and
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a uniform distribution on C\ R;. Hence, each submodule behaves as a specialist expert, informative
only on its rewarded set. We merge IV such experts by averaging logits,

N
Zzz:wiz(i), w; > 0, Zwizl, 5
i=1 i

and predict § = softmax(z). This operation has a direct probabilistic interpretation: since softmax
is an exponential normalization, Eq.[3]is equivalent to a logarithmic opinion pool (Genest and Zidekl
1986)), i.e., a product-of-experts aggregation (Hinton, 2002),

N N N
U = softmax(z) o epowi z,(ﬁ = Hexp(z,(j))w" o Hsoftmax(z(i))z”. (6)
i=1 i=1 i=1

Under MaxEnt, any expert that is non-rewarded for x outputs nearly uniform §(*), which contributes
only a class-independent factor in EqJf| and thus cancels after normalization. Therefore, logit av-
eraging automatically ignores irrelevant experts and preserves only the specialists that match z,
explaining the strong union-task performance observed in our experimental evaluation.

4 EXPERIMENTS

We empirically evaluate our method on multiple image and tabular datasets, aiming to answer the
following questions: (i) Can MaxEnt training enforce meaningful class-specific specialization? (ii)
How well do merged submodules recover generalist performance? (iii) Does iterative pruning im-
prove the quality of submodules and composability? (iv) Does our training procedure induce mode
connectivity between independently trained modules and does it scale with the number of modules?

4.1 TRAINING AND EVALUATION PROTOCOL

We apply our MaxEnt loss and iterative pruning independently to each class or subset R C C. Each
submodule is trained as in Algorithmm and evaluated on: (i) rewarded accuracy, i.e., classification
accuracy on samples from R; (ii) non-rewarded entropy, i.e., the average predictive entropy on
inputs from C \ R; and (iii) the confusion matrix, used qualitatively to assess specialization and
leakage. In particular, it is worth mentioning that in our training procedure we simulate a scenario
in which only the classes in R are labeled, but we still have access to the other samples.

To evaluate composability, we used |R| € {1,2,5} to test pairwise merging. For a specific car-
dinality, the model is trained to recognize solely a selected set of classes, of the given cardinality
and sampled among the ones available for that specific dataset. We sample 10 pairs of class sets
{(Raoks Rak+1) oo With Rog () Rak+1 = 0 and Roy, Rox41 spanning in the set of combinations
for the dataset’s class set. For each pair, we perform 5 independent random seeds and merge a pair
into a single model. For example, with |R| = 1, the procedure consists of: training a NN using our
MaxEnt loss rewarding one specific class R, then a different NN is trained on a different single
class R, and then the two models are merged and tested. The resulting model should perform well
on the 2 classes. This procedure is repeated for 5 seeds to ensure statistical evidence, and for a total
of 10 paired sets. When |R| = n > 1, two NN are trained to specialize on two different sets of n
classes at the same time, and there is no overlap between the sets. Figure [2] depicts an example of
resulting confusion matrices for these pairwise-merging experiments.

Formal definitions and implementation details are provided in Appendix [C]

4.2 EXPERIMENTAL SETUP

We evaluate our approach on four model classes: MLPs (denoted as shallow for 1 hidden layer and
as deep for 2 hidden layers), CNNs (LeNet-style), ResNet18, and VGG11 (with or without Batch-
Norm). For image data, we use MNIST (train/test 60K/10K ) (LeCun et al.,|{1998), Fashion MNIST
(FMNIST, 60K/10K) (Xiao et al.,|2017), and CIFAR-10 (60K/10K) (Krizhevsky et al.,|2009), with
10 classes for each dataset. These datasets are in line with similar works (Liu et al.| [2023; Malakar-
jun Patil et all [2023), but to get a broader impact we include two tabular classification datasets
from the UCI repository: Human Activity Recognition (HAR, 7K/3K) (Reyes-Ortiz et al.l |2012)) (6



Under review as a conference paper at ICLR 2026

onuu 000 000 020 000 520 000 000 0.00 o O 0s0 000 000 000 020 000 000 380 140 o BB 100 100 040 200 220 340 520 440 020

165,40 5200 2540 1160 7320 1474038320 24.40 85,60 17680 ~-o00 I 020 020 020 000 000 000 60 00 0w 240 140 100 280 100 460 040

~ 40160 41.00 22.20 23.20 91.80 46.40 266.20 18.80 62.20 58.60 ~-188.20262.00 7.60 5.40 14.20 8.20 20.40 21.80 325.00179.20 ~-7.80 Pl 940 600 080 360 1100 16.40 2.60

m 29220 73.60 31.20 34.80 122.80 69.00 171.80 39.20 82.60 92.80 m -98.00 226.00 13.00 8.40 20.00 9.80 17.00 10.40 244.40363.00 m-080 100 13.60 CHEN 0.80 1540 120 15.40 1220 8.80

< 233.20 48.20 58.40 33.20 78.40 62.40 268.00 29.40 104.80 66.00 < -66.00 165.60 15.80 6.00 17.40 9.40 5.00 10.40 146.40540.00 <- 140 540 3.00 860 29.20

Real
Real
Real

o 25040 22,60 2700 1340 47.80 5340 32600 1860 58,60 3320 o 1620010740 440 900 2000 500 620 1180 3202024500 o560 040 100 840 020 (1540 780 S0 560
-840 000 000 om0 000 0 2362019120 1160 1320 1560 440 1260 22.40 2606019020 - 660 400 080 040
N T o ia P s

o 1 2 3 78 9 o 1 2 3

4 s
Predicted

(a) Classes [0]+[6] (b) Classes [0,1]+[8,9] (c) Classes [0—4]+[5-9]

4 s 4 s
Predicted Predicted

Figure 2: Confusion matrices (total predicted counts per class) for three representative pairwise
merges in weight-space of shallow MLP submodules on MNIST. Even after merging, each rewarded
class remains highly separable, and predictions on non-rewarded classes remain nearly uniform.

Table 1: Single submodule behaviour when using MaxEnt Loss with and without IMP. Reported
metrics are mean and standard deviation over 5 runs of rewarded accuracy and non-rewarded entropy.
Number of classes for dataset: 10 for MNIST and FMNIST, 6 for HAR and a balanced subset of 4
for Yeast.

MNIST FMNIST HAR Yeast
Entropy Rewarded Acc Entropy Rewarded Acc Entropy Rewarded Acc Entropy Rewarded Acc

Shallow No 2.296 ©0.003)  0.998 ©o002) 2.296 ©.003)  0.998 0002y 1.762 ©.017)  0.997 0007y 1.298 0.062)  0.995 (0.009)
MLP Yes 2293 004y  0.999 0001y 2.293 ©o004) 0.999 ©001) 1.757 ©.023)  0.996 ©.008) 1.297 0.059)  0.998 (0.006)

Deep No 2298 ©002)  0.997 ©003) 2.285 ©o13)  0.995 ©o04) 1.772 ©o14  0.992 ©013) 1.302 0064  0.996 (0.009)
MLP Yes  2.300 ©o001) 0.998 0002y 2.291 ©008) 0.991 ©007) 1.762 ©.023) 0.999 ©.005) 1.302 0o0s6)  1.000 (0.000)

No 2.302 ©000)  0.998 004 2.302 00000 0.996 (0.004) - - - -
Yes 2302 00000  0.994 ©005) 2.302 00000  0.992 (0.005) - - - -

Model IMP

CNN

classes), and Yeast (1K/250) (Dua and Graff,|2017) (a balanced subset of 4 classes). For each model-
dataset pair we train the modules both with and without IMP and merge them both in weight-space
and logit-space.

We compare our MaxEntropy loss mainly with two baselines, showing that entropy maximization
plays a crucial role in isolation. In particular, we compare MaxEnt with: Quasi-MaxEnt loss, a loss
function that on non-rewarded classes ignores the rewarded classes and produces a uniform distri-
bution solely on non-rewarded classes; and CrossEntropy loss, the standard loss used in standard
classification tasks. We additionally consider CrossEntropy with label-smoothing (A = 0.1), which
replaces the one-hot target distribution with a smoothed version; and CrossEntropy with confidence-
penalty which adds an entropy-regularization term. For the formal definitions, we refer to Ap-
pendix [C] Due to lack of space and underperforming behavior, results related to label-smoothing
and confidence penalty are shown in Table [0} Appendix

Full dataset, preprocessing and experimental details are reported in Appendix [C] Extensive and
detailed experimental results are provided in Appendix [D} Next we describe the main outcomes.

4.3 SUBMODULE BEHAVIOR WITH MAXENT LOSS

We begin by evaluating submodules trained solely with the MaxEnt loss, without pruning. Each
subnetwork is tasked with recognizing one specific class from the original dataset, and to output
uniform predictions on all others. For each of 5 random seeds, we train a separate submodule per
class. The results in Table[T]are aggregated across both classes and seeds, providing average values
and standard deviations for overall trends.

Table [T] reports the accuracy on rewarded classes and the average entropy on non-rewarded sam-
ples. Accuracy is consistently high (close to 100%) across all classes, confirming that submodules
correctly specialize on their class. The entropy, meanwhile, approaches the theoretical value of
log(Nejasses) for a uniform distribution, e.g. log(10) ~ 2.30 for MNIST and FMNIST, suggesting
that predictions on excluded classes are nearly uniform. These results suggest that our proposed
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Table 2: Average performance of pairwise-merged sub-modules. For each group model-cardinality-
dataset, the best approach is highlighted in bold.

FMNIST MNIST HAR Yeast
Model R| Loss Logit Weight Logit Weight Logit Weight Logit Weight
XE  0.859 0.181) 0.813 (02099  0.798 (0.162) 0.679 0.188)  0.882 (0.164) 0.866 (0.181)  0.667 (0.100) 0.660 (0.094)
1 QME  0.962 (0.035) 0.868 (0.147)  0.984 (0.006) 0.973 0011y  0.955 (0.023) 0.954 0.041) 0.734 (0.127) 0.737 (0.132)
ME  0.983 ©0.029) 0.980 ©.031)  0.992 (0.004) 0.991 0.005) 0.982 (0.026) 0.983 0.026) 0.844 (0.115) 0.843 (0.116)
Shallow MLP XE  0.813 0.093) 0.777 0.111y  0.852 (0.070) 0.831 (0.067)  0.870 (0.068) 0.864 (0.059)  0.439 (0.056) 0.419 (0.039)
atlow 2 QME  0.953 0.021y 0.918 0.043)  0.982 (0.006) 0.963 0.015  0.937 (0.010) 0.919 0.0200  0.474 0.018) 0.475 (0.021)
ME  0.960 ©0.023) 0.952 ©.025) 0.983 (0.005) 0.980 0.006) 0.949 0.014) 0.945 (0.016) 0.565 (0.065) 0.549 (0.064)
XE  0.655 0.021) 0.434 (0.084) 0.855 (0.006) 0.831 (0.018) - - - -
5 QME  0.865 0.002) 0.752 0.036)  0.950 0.001) 0.909 (0.012) - - - -
ME  0.867 ©.002) 0.827 ©.014) 0.952 0.001) 0.945 (0.001) - - - -
XE  0.889 (0.150) 0.813 0.212)  0.834 (0.128) 0.668 (0.176)  0.887 (0.160) 0.840 0214y  0.689 (0.095) 0.674 (0.097)
1 QME 0.956 (0.039) 0.858 (0.152)  0.971 0.009) 0.960 0.029) 0.943 (0.026) 0.923 0.091)  0.800 (0.113) 0.807 (0.112)
ME  0.978 (0.034) 0.973 0.040) 0.992 0.004) 0.991 (0.005) 0.982 (0.029) 0.982 (0.030) 0.844 (0.117) 0.839 (0.119)
Deen MLP XE  0.790 ©.098) 0.748 ©.121)  0.841 (0.060) 0.724 0.085)  0.857 (0.068) 0.821 0.065) 0.400 (0.031) 0.372 (0.027)
cep 2 QME  0.947 0.023) 0.846 0.113)  0.979 0.007) 0.910 0.055)  0.926 (0.020) 0.868 (0.085)  0.485 (0.024) 0.486 (0.026)
ME  0.955 0.024) 0.930 (0.030) 0.983 (0.005) 0.975 0.010) 0.942 (0.014) 0.870 (0.098) 0.608 (0.013) 0.598 (0.015)
XE  0.624 ©0.014) 0.500 0.094) 0.799 0.017) 0.687 (0.069) - - - -
5 QME  0.850 (0.003) 0.649 0.068) 0.941 (0.003) 0.807 (0.040) - - - -
ME  0.852 ©.002) 0.800 0.018) 0.944 (0.003) 0.919 (0.008) - - - -
XE  0.633 0.182) 0.576 0.158)  0.539 (0.103) 0.520 (0.070) - - - -
1 QME  0.955 0.031) 0.896 0.131y  0.986 (0.007) 0.952 (0.081) - - - -
ME  0.983 ©.024) 0.966 0.037) 0.997 0.002) 0.984 (0.020) - - - -
CNN XE  0.568 0.110) 0.630 0.162)  0.675 (0.139) 0.638 (0.135) - - - -
2 QME  0.959 0.017) 0.898 0.065) 0.992 (0.003) 0.945 (0.054) - - - -
ME  0.972 ©.017) 0.926 ©.047)  0.994 0.003) 0.964 (0.040) - - - -
XE  0.625 0.052) 0.493 (0.144)  0.901 (0.025) 0.776 (0.061) - - - -
5 QME  0.912 ©.004) 0.790 0.046)  0.986 (0.000) 0.909 (0.034) - - - -
ME  0.915 ©.002) 0.791 ©.083) 0.988 0.001) 0.943 (0.034) - - - -

submodules can effectively recognize individual classes and exhibit the theoretical behavior they

were designed to emulate, across different architectures.

4.4 PAIRWISE MERGING

We further evaluate the effectiveness of our method
through pairwise merging experiments across different
configurations. In Figure [3] we show the effectiveness
of IMP on MNIST and FMNIST on three architectures
(Shallow MLP, Deep MLP, and CNN) and all cardinali-
ties, while merging in weight-space. We can see in partic-
ular that IMP improves the performances consistently for
a Deep MLP, while benefiting more modestly the Shallow
MLP and the CNN.

For what it concerns IMP itself, for each model we have
tried different level of pruning. Interestingly, Shallow
MLP and Deep MLP did not show specific harm with
pruning, enabling us to use a percentage of 99%. For the
Convolutional Networks (CNN, ResNet18, VGG11), the
optimal pruning ratio was 60%. More details about this
are provided in the Appendix. Notice that each model is
pruned over two iterations, followed by a final training
phase.

Table [2] reports the aggregated metrics over seeds and
merged pairs when using IMP. The full results are in Ta-
ble [ and Table [5]of Appendix [D] Rewarded accuracy re-
mains high (often > 0.90), indicating that each merged
module retains its classification ability. The mean en-
tropy on non-rewarded classes stays close to the theoreti-
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Figure 3: Impact of IMP on pairwise
merging in weight-space for different
architectures and cardinalities, consid-
ering the MNIST and FMNIST datasets,

and using the ME loss.
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Figure 4: Left (3x3 grid): Rewarded accuracy of ResNet18 on FMNIST, MNIST and CIFAR-10
(mean and standard deviation over 5 runs). Right (vertical stack of 3 plots): VGG w/ vs. w/o BN on
FMNIST (A = VGG11-BN — VGGI11).

cal maximum of log(Nejusses)» €-g. it is around 2.28 for MNIST and FMNIST, confirming minimal
interference (see Table ] and Table [5in the Appendix D).

Moreover, we can see that MaxEnt outperforms the Quasi-MaxEnt in all cases. Besides being such a
small change in the learning phase (MaxEnt enforces uniformity over all neurons for non-rewarded
inputs, while Quasi-MaxEnt enforces uniformity over all but the rewarded ones), this loss function
loses in performance with respect to ours. This surprising result is probably due to the leakage
of information on non-rewarded classes. In particular, the QME incentivizes changes in the flow
of information even for non-rewarded classes, which violates the MaxEnt principle. In contrast,
ME encourages only information from the rewarded classes, improving the specialization and better
avoiding spurious activations. Our method also outperforms standard CrossEntropy. This was ex-
pected, since the CrossEntropy is intended to train with all the labels at once, while in this case its
effectiveness is hindered by the reduced number of classes on which it is optimized.

Additionally, in Table 2] we report both the results of merging in weight-space and in logit-space.
We can clearly see that logit merge outperforms the weight merge in almost every case (the only
exception is CNN with |R| = 2 with XE). Moreover, logit merge is mostly unaffected by the IMP
methodology, as there is no need of pruning when the submodules are not going to be merged in
weight-space, where otherwise there could be interferences.

Focusing on larger models, Figure [4] (left) shows the results on ResNet18 trained within our frame-
work on FMNIST, MNIST and CIFAR-10 (full numerical results are in Table[6] Appendix [D). This
experiments demonstrate that our technique is extendible to larger architectures and suggest differ-
ent analysis for simple and complex datasets. On one hand, for FMNIST and MNIST, results are
similar for both logit- and weight-space merging: our ME loss consistently outperforms XE and
QME, especially at cardinality 1, while IMP provides limited benefits in this setting, yielding per-
formances roughly on par with training without IMP. These results suggest that pruning removes
irrelevant weights, thus reinforcing the functional isolation induced by the loss. On the other hand,
for more complex datasets like CIFAR-10, logit-space merging is much more effective, suggesting
that in this setting it is not trivial to avoid potential interference between weights.

Investigating the applicability of our technique to larger networks, we have also considered the role
of BatchNorm (BN). When merging in weight-space models with BN, it suffices to re-estimate
the running statistics on data from the union of the rewarded classes, keeping all learned affine
parameters frozen. This simple step is enough to enable weight-space merges for ResNet18 and
VGGI11 with BN, with a clear impact on the performance. In particular, in Figure [] (right) we
show the difference in accuracy between VGG11 with and without BN on FMNIST (full numerical
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results are in Table[7]and[8]in the Appendix[D). Clearly, no issues arise when performing logits-space
merging of models with BN.

4.5 MERGING ANALYSIS

In this section, we further evaluate our method in the more challenging scenario of a complete merge
and provide additional analysis based on mode connectivity.

Complete Merge. We perform a complete merge |, Tl oo | mesemenen 7 oo e

experiment. For each dataset, we randomly generate ¢, \;i ™ | \\, — ST

10 permutations of the class labels. For each of 5 s A\, ™ el

random seeds, we train one submodule per class us- £ oz N e

ing either MaxEnt loss alone or in combination with 000 6 e o 2 4 e s i

IMP. We then merge the submodules incrementally, Incrementa Step Incrementa Step

following the order dictated by the permutation: at (a) Shallow MLP

step k, the merged model contains submodules for merge_method = Weights  merge_method = Logits

the first k classes in the permuted list. ; 100 *iisg:"\'\’\ _ patmer
<0.75 L TN N,

Figure [5] reports the average rewarded accuracy at £ oso N 1 i

each merge step, aggregated across permutations and & oz s e

seeds. We can see that submodules trained with IMP o000~ =TT

(solid lines) consistently outperform or match those ncremental Step Incremental Step

trained without pruning (dashed lines) when merg- (b) Deep MLP

ing in weight-space. On Yeast, performance de- merge_method = Welghts merge_method = Logits

grades more rapidly as modules accumulate. Shal- " " B e e _—

low MLPs show good composability on MNIST  3°” AN — st

even in weight-space, where accuracy stays above ;Zz: 7\»\ o

90% up to the full merge. Deep MLPs do not out- i oy

perform shallower ones overall. CNNs also face a 7 emenatster . moemenatstep

performance degradation, but IMP importantly ben-

efits their performance for weight merge. (c) CNN

The specific comparison between Shallow and Deep 5 Joo/= """ T 2o

MLP suggests that additional depth and narrower %o \:\ BT == NN

layers do not benefit composability in weight-space, 3 050 N ey

augmenting the possibility of intereference. This Zozs Sl o

suggests that width has a crucial role in enabling 000 e 2 4 6 s WM™

composability in weight-space. Moreover, CNNs neremental step ncremental step

face a significant degradation while ResNetl8 (a (d) ResNet

much deeper model) degrades only on CIFAR-10.

This further indicates the key role of BN in enabling Figure 5: Average rewarded accuracy across
a smooth merge even in weight-space. Additionally, incremental submodule merging.

we can see that logit merge significantly limits the

degradation, recovering almost always the best performances on each dataset. The difference is
particularly evident for CIFAR-10, for which weight merge fails dramatically, while logit merge
achieves good performances.

Overall, these results confirm that MaxEnt loss trains composable modules across a variety of archi-
tectures and datasets. For weight-space merging, while we have shown that it is possible to train in
our proposed way, the suboptimal results indicate that further study should be conducted on pruning
and merging techniques or the role of the width. Nevertheless, the strong performance of logit-space
merging demonstrates that MaxEnt is always able to train composable modules, regardless of the
complexity of the architectures or the dataset.

Mode connectivity. To better understand why merging submodules via weight summation is often
effective, we study the connectivity of models in weight-space. Specifically, we follow the formula-
tion of [Lubana et al.|(2023)), and evaluate whether the merged model lies on a low-loss path between
its components, using the MaxEnt loss as criterion. We analyze complete merges on the FMNIST
dataset using shallow MLPs. For each step k in the merge sequence—e.g., combining a submodule
obtained from the merge [0] + - - - 4 [k — 1] and one trained on class k—we evaluate the MaxEnt
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Figure 6: Values for g, 0, (t) considering multiple steps of the complete merge starting from 0 to
9 for the FMNIST dataset (train and test errors, in blue and orange respectively, mean and std across
5 runs). Loss values at each ¢ are relativized with respect to the corresponding interpolated errors of
f, and 6, and rescaled as percentages. Values close to or lower than 0 are the desired outcomes.

loss along a piecewise linear path between the previous model and the new submodule, with the
midpoint corresponding to their weight summation. Figure[6]shows the relative loss barrier for each
step, computed as the gap between the loss at the midpoint (merged model) and the linear interpo-
lation of the endpoint losses. Values near or below zero indicate mode connectivity. In the majority
of cases, merged models correspond to local minima or lie along smooth, low-loss trajectories, with
no significant barriers emerging along the merge path. This supports the hypothesis that the training
procedure induces functional composability in weight-space. However, small barriers (around 2%)
begin to emerge in the later steps of the complete merge—when many submodules have already
been added—suggesting mild interference.

5 DISCUSSION AND LIMITATIONS

Our proposed modular design might open new avenues, but also presents limitations and open chal-
lenges. IMP seems to help submodules isolation and thus weight-space merging, but the overlap
between submodules should be carefully demistified, in order to optimize the best IMP strategy to
isolte and merge subnetworks in this setting. While we rely on simple summation for the weight-
space merge, more sophisticated merging techniques—e.g., Git-Rebasin or PLeas (Hazimeh et al.,
2024; Zeng et al) [2025)—may further improve composability, particularly in challenging archi-
tectures. However, merge in logit-space already allows to compose our modules regardless of the
architecture.

Furthermore, we believe effective modular training can find application in machine unlearning (e.g.,
removing or re-training just the single module), neural network verification (where formally veri-
fying an entire network is often intractable), federated learning (where merging different networks
is a key step), mechanistic interpretability by design, and many other settings. Showing concrete
downstream uses is indeed valuable, and we plan to explore this in multiple future works.

6 CONCLUSIONS

We introduced a principled framework for training sparse neural submodules that specialize in recog-
nizing a designated subset of classes while deliberately remaining ignorant of others. This behavior
is encouraged via a novel KL-based MaxEnt loss. In addition, we propose to use an iterative magni-
tude pruning procedure to select only the relevant weights, i.e. the circuit. Together, they yield com-
pact, high-performing subnetworks that with simple datasets and architectures can be composed via
simple weight summation—a procedure supported by empirical evidence showing that such mod-
ules are mode connected. For complex datasets and architectures, we show that the modules are
composable in logit-space, producing product of experts, each one specialized on a specific class,
and thus highly interpretable.

Our approach strengthens the agenda of modular neural networks by providing submodules with
well-defined functional roles. At the same time, it creates a controlled testbed for mechanistic inter-
pretability, where circuits are available by design rather than discovered post-hoc. In the long run,
we envision functional submodules as a key abstraction for building interpretable neural systems.

10
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REPRODUCIBILITY STATEMENT

To ensure reproducibility of our results, all code necessary to reproduce the experiments presented
in this paper is available in the source code included in the supplementary materials. Additional
details are provided in Appendix [C} which thoroughly documents the experimental setting: training
configurations and pipeline, evaluation metrics, mode connectivity tests, datasets, pruning schedules,
and hyperparameter choices.
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COMPOSABLE SPARSE SUBNETWORKS VIA MAXIMUM-ENTROPY PRINCIPLE -
APPENDIX

A APPENDIX STRUCTURE

The appendix is structured as follows:

* Appendix |B|describes the extended related work;

* Appendix [C| focuses on detailing the experimental setting of our work. Specifically, we
further describe the training configurations and pipeline (Appendix [C.I), the metrics
employed to evaluate the proposed methods (Appendix[C.2)), the procedure we developed to
test for presence or absence of mode connectivity (Appendix [C.4), the datasets considered
for our experiments (Appendix [C.3)), the pruning ratio per iteration (Appendix [C.6), the
hyperparameters of our proposed procedure (Appendix [C.7);

» Appendix |D| focuses on providing additional experimental results to support the find-
ings in the main text. We report extended confusion matrices for individual submod-
ules without (Appendix and with pruning (Appendix [D.2)), as well as for pairwise
(Appendix and incremental merges (Appendix [D.4). We also include loss land-
scape plots from the mode connectivity analysis (Appendix [D.5), and a comprehensive
table comparing merging results with and without pruning across all loss functions (Ap-

pendix [D.6).

B EXTENDED RELATED WORK

Modular Neural Networks and Interpretability. Several works have explored modular neural
architectures that learn to decompose computation across tasks (Kirsch et al.L[2018;|Han et al., 2021}
Salem et al., |2023). In particular, Kirsch et al.| (2018) introduced a method to jointly learn both the
modules and their composition end-to-end, showing interpretable specialization through controller-
based selection. However, their approach does not isolate class-specific knowledge: modules are
reused across multiple tasks and selected based on input context, making it difficult to extract inde-
pendently meaningful functional units.

In contrast, our work explicitly aims to construct class-specific functional modules, where each
module is trained to specialize in a single class and produce maximum-entropy outputs for all oth-
ers. This sharp functional separation not only promotes compositionality via weight merging, but
also improves interpretability: submodules can be understood in terms of their response to a single
concept. Unlike these post-hoc analyses, we impose structure during training, yielding functional
units with clear class semantics and compositional behavior. This aligns with the goals of mecha-
nistic interpretability (Saphra and Wiegreffe| [2024), where subnetworks (or “circuits” (Olah et al.,
2020)) are analyzed as self-contained structures responsible for identifiable sub-tasks.

Our method can be seen as a complement to neuron-level analysis techniques such as those in Mu
and Andreas| (2020), which decompose single neuron activations into logical or perceptual compo-
nents. However, such analyses often suffer from polysemanticity—the same neuron responding to
unrelated stimuli—limiting their explanatory power. Instead, we enforce functional modularity at
the network level, allowing the identification of interpretable, composable subgraphs. This modular
decomposition is also conceptually connected to recent work on harmonics of learning (Marchetti
et al.| [2024), where symmetry structures constrain the function space; our class-specific modules
may correspond to symmetry-aligned components in this broader framework.

Maximum Entropy Principle. The principle of maximum entropy (MaxEnt), introduced by
Jaynes| (1957)), asserts that when making inferences under partial knowledge, one should prefer
the probability distribution that satisfies known constraints while remaining otherwise maximally
uninformative. Originally formulated to connect statistical mechanics and information theory, Max-
Ent has since become a foundational tool in probabilistic modeling and statistical inference (Kuic,
2016} [De Martino and De Martino, 2018]). Its generalization to complex-valued functions has also
been explored, for example in image reconstruction tasks (Bajkoval, [1992).
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In our setting, MaxEnt serves as a guiding principle for functional specialization: we train sub-
modules to be highly confident only on their assigned class and maximally uncertain (i.e., high-
entropy) elsewhere. This interpretation differs from standard entropy regularization, which is typi-
cally used to smooth predictions or calibrate confidence scores (Marczak et al.l [2024). Rather than
encouraging mild uncertainty, our max-entropy loss enforces uniformity outside the rewarded class
set—actualizing the MaxEnt principle to promote class exclusion and module isolation. To our
knowledge, this use of entropy as a strict compositional prior is novel within the context of modular
deep learning.

Lottery Ticket Hypothesis and Sparse Training. Our approach builds on the Lottery Ticket Hy-
pothesis (LTH), which states that sparse subnetworks in randomly initialized networks can be trained
to match the performance of the full dense model (Frankle and Carbin, 2018; Zhou et al.l2019; Liu
et al., 2024). This idea has been extended theoretically to show that such subnetworks exist with
high probability even in convolutional architectures with ReLLU activations (Burkholz, [2022)). Em-
pirical studies also demonstrate that global unstructured pruning outperforms structured pruning in
high-sparsity regimes (Girish et al., |2021). We adopt global pruning in our setting to retain the
most functionally relevant connections across the entire network. LTH has been further explored
in transfer learning (Van Soelen and Sheppard, 2019; Burkholz et al., 2022) and federated learning
(Itahara et al., 2020). In contrast to prior work that uses pruning primarily for compression or trans-
fer, we leverage it to enforce functional isolation: pruning removes spurious capacity, encouraging
submodules to specialize only on their rewarded classes.

Mode Connectivity and Model Merging. Recent work on model merging has explored how in-
dependently trained networks can be combined through linear or non-linear paths in weight-space,
a property known as mode connectivity (Ilharco et al.| [2023)). This has inspired techniques for task
arithmetic (Ortiz-Jimenez et al.} 2023} [Yang et al., 2024} [Wang et al., 2024), which define task vec-
tors as differences between fine-tuned and base models, enabling operations like unlearning and
multi-task interpolation. These methods typically assume large pre-trained models and alignment in
parameter space, and focus on editing rather than modular design.

Other approaches, such as Git-Rebasin or PLeas (Hazimeh et al.| 2024} |Zeng et al.| [2025)), address
the challenge of merging models with different initializations via weight alignment. While these
techniques focus on how to combine models after training, our method focuses on how to construct
modules that are composable by design. Specifically, we show that submodules trained with max-
entropy loss and pruning often exhibit linear mode connectivity—allowing for effective merging via
weight summation—while also identifying cases where destructive interference occurs.

Our results suggest that mode connectivity may emerge naturally when modules are trained under
entropy-based functional isolation, without requiring explicit alignment. This positions our work as
complementary to task arithmetic and merging strategies: we do not assume pre-trained baselines,
but instead provide a procedure to build sparse, specialized components that are compatible by
construction.

C EXTENDED EXPERIMENTAL SETTING

C.1 TRAINING CONFIGURATIONS AND PIPELINE

We report here the key training configurations used in our experiments. All models were trained
using the max-entropy loss and iterative magnitude pruning (IMP), with two pruning iterations and
a final sparsity of 99% for MLPs and 60% for CNNs, unless stated otherwise. The optimizer used
was Adam. We use the highest accuracy achieved on the validation set as our checkpointing strategy.
All experiments are conducted on a workstation equipped with an Intel Core 19-10940X (14-core
CPU running at 3.3GHz), 256GB of RAM, and a single Nvidia RTX A6000 GPU with 48GB of
VRAM.

Temperature scaling for the softmax was fixed to ¢. Inputs were normalized when appropriate, and
all datasets were used with standard training/validation splits. Each experiment was run with 5
random seeds.
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All YAML configuration files are released alongside the code repository for full reproducibility.
Model Architectures and Hyperparameters

Common Settings. All models use Rel.U activations, are trained with a batch size of 64, and are
evaluated using the same training and pruning pipeline.

Table 3: Configurations.

Model Hidden Layers Dropout ¢

Shallow MLP [512] 0.5 5.0
Deep MLP [512,256] 0.5 5.0
CNN (LeNet-style) Conv + [120, 64] 0. 1.0

The learning rate was set to 10~3 for MNIST and FMNIST across all architectures, and to 10~ for
Yeast and Human Activity Recognition, where only Shallow and Deep MLPs were evaluated.

Dataset-specific Input Dimensions and Classes

* MNIST / FMNIST: 784 input features (flattened 28 x 28 images), 10 classes.
* Human Activity Recognition (HAR): 561 input features, 5 classes.
* Yeast: 8 input features, 4 classes.

Training Pipeline. Here we present an overview of a generic experiment. For each experiment:

 Given the set of classes C in the dataset, choose a subset of classes C’ C C.

¢ Train one subnetwork module per class or per subset R C C’, using the max-entropy loss
and IMP.

 Evaluate each subnetwork using:

— Accuracy on rewarded classes.
— Mean entropy on non-rewarded classes.
— Confusion matrix on the validation set.

C.2 FORMAL DEFINITION OF METRICS

Accuracy on Rewarded Classes. Let R C C be the set of rewarded classes, and let DR denote the
subset of validation data whose labels belong to R. The accuracy over rewarded classes is defined

as:

1 .
Accuracyrewa.rded - W Z ]l[y(x) = y] (7)
val (w,y)ED\l}al

where 1[-] is the indicator function. This measures how well the subnetwork performs on the class
subset it is trained to recognize.

Mean Entropy on Non-Rewarded Classes. Let D""R be the validation subset containing sam-
ples from non-rewarded classes, and let Vo, be its cardinality. We define the average entropy of

the model’s predictions over this set as:

1

EntrOPYHon-rewarded = N R
non-

> H(j() (8)

non-R
€Dy

where §(z) is the predicted probability distribution for input 2, and H (p) denotes the entropy of a
distribution p, defined as:
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[C]
H(p) = — Zpi log p; 9)
im1

This metric quantifies the uncertainty the model exhibits on inputs it is not supposed to classify, with
higher values indicating closer adherence to the maximum entropy principle.

Confusion Matrix. Given a validation dataset D, and a trained model fy, we define the confusion
matrix M € NICIXICl such that each entry M; ; counts the number of samples with true label 4 that
are predicted as class j:

Mij= Y 1ly=i-1[j(z) =] (10)
(z,y) €Dval

where j(x) = arg maxy, fp(x), is the predicted class. This matrix allows us to qualitatively inspect
specialization and interference across class predictions.

C.3 FORMAL DEFINITION OF BASELINES

* Quasi-MaxEnt loss: a loss function that on non-rewarded classes ignores the rewarded
classes and produces a uniform distribution solely on non-rewarded classes. Formally re-
ferring to equation

(1)

Yi = 1 ;
! JitjjerTezy Otherwise

{5i_y ify e R

* CrossEntropy loss: the standard loss used in standard classification tasks. In this case, we
do not modify the labels, which remain standard, but the model is exposed only to the
classes in R, rather than all available classes.

* CrossEntropy loss, the standard loss used in classification tasks;

* CrossEntropy with Label-Smoothing (A = 0.1), which replaces the one-hot target distribu-
tion with a smoothed version

LS_{lA, if k =y,

Y = .
ﬁ, otherwise;

* CrossEntropy with Confidence-Penalty, which adds an entropy-regularization term

L = CE(p,y) — BH(p).
C.4 ADDITIONAL EXPLANATIONS ON MODE CONNECTIVITY

To further shed light on why merging via summation works (as demonstrated in the main paper), we
study also the loss landscape through the lens of mode connectivity.

Mode connectivity refers to a phenomenon observed in the loss landscape of neural networks. When
a neural network is trained, the optimization process (like SGD) typically finds a set of weights that
minimizes the loss function. This set of weights is called a mode or a local minimum in the high-
dimensional loss landscape. Several contributions (Frankle et al.,[2020;|Lubana et al., 2023)) pointed
out that these different modes (solutions found by, for example, training the same model architecture
multiple times with different initializations or training procedures) are often not isolated; rather, they
can frequently be connected by paths along which the loss value remains consistently low.

Many paths of different shapes can connect two models, #; and 69, in weight-space. We are
specifically interested in testing for a path without significant loss barriers that includes the model
0[1,2) = 01 + 02, which results from merging the original models via summation. A key aspect of
our setup, diverging from typical mode connectivity studies, is that #; and 65 are initially specialized
for different sets of rewarded classes. The merged model 6|, 5; is intended to operate on the union
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of these class sets. Consequently, we evaluate for barriers using our max-entropy loss function.
This loss function is consistently applied across the path and for the endpoint models (61, 65), and it
considers the full union of rewarded classes relevant to 9[1,2].

Formally, in line with |Lubana et al.| (2023), let 7 and 65 be two sets of weights, D a dataset, fy a
neural network parametrized by weights 6, and £ our specific max-entropy loss function (evaluated
on D considering the union of rewarded classes as described above). We say that 6; and 65 are
mode connected along the path vg, ¢, (t) if Vt € [0, 1] L(f,, _,. 1)(D)) < (1—1t)-L(fo, (D)) +1-
L(fo,(D)) + €, where € is a small margin, set to 2% of the first term on the r.h.s. following [Frankle
et al.| (2020).

Each point along the path 7y, _,¢, (¢) represents a valid set of weights for the network f(-). Stan-
dard linear mode connectivity considers the path v;™S, (¢) = (1 —t) - 01 +t - 6. For our case,
we require a path ~y, g, (t) that satisfies: (i) for vg, —0,(0) = 61, (ii) for v, 9,(1) = 62, and
(iil) 3¢’ € [0, 1] s.t. Yo, -0, (t') = 01+ 02 . As a consequence, we define the mode connectivity with

respect to the following piecewise linear path:

)= {020 ift<0.5
P00\ T 91— )0, + 0, ift > 0.5

It is trivial to see that our definition fulfill our properties, especially (iii) for ¢ = 0.5.

(12)

C.5 DATASET DETAILS

MNIST and Fashion-MNIST. Both are standard 10-class image classification benchmarks with
grayscale 28 x 28 images. We normalize pixel values to [0, 1] and use the standard train/validation
splits (60,000 train, 10,000 test).

Human Activity Recognition (HAR). This dataset contains sensor data from smartphones, la-
beled with six different physical activities. Each example has 561 standardized features. We adopt
the original train/test split (7,352 train, 2,947 test) and reserve a validation portion from the training
set.

Yeast. A protein localization dataset with 10 classes and 8 features. We normalize each feature to
zero mean and unit variance, and split the dataset using a 65/15/20 ratio (on 1,299 samples). Since
the class distribution is highly imbalanced, we focused on the most represented 4 classes (i.e., CYT,
NUC, MIT, ME3).

Preprocessing. For all tabular datasets, we apply z-score normalization and encode labels as inte-
gers. We use early stopping on the validation set and batch sizes of 64 during training.

C.6 ITERATIVE PRUNING SCHEDULE DERIVATION

We follow the Iterative Magnitude Pruning (IMP) framework, in which a neural network is pruned
over multiple iterations. At each pruning step, a fraction K of the remaining weights (those with
the smallest absolute value) is removed. This process is repeated for IV iterations until a target
sparsity level P € (0, 1) is reached, corresponding to retaining only a 1 — P fraction of the original
parameters.

Pruning Rate Schedule. Let S; denote the fraction of weights remaining after the ¢-th pruning
iteration. The pruning process is multiplicative, meaning that:

S;=(1-K),

assuming Sy = 1 (i.e., all weights are initially present). After N pruning iterations, we desire a final
sparsity P, which implies a remaining fraction Sy = 1 — P. Therefore, we solve:

(1-K)N=1-P.
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Solving for K, we obtain the pruning rate per iteration:

K=1-(1-P)YN,

This schedule ensures that pruning a fixed fraction K of the remaining weights at each of the N
steps results in an overall sparsity of P at the end of the iterative process.

Pruning Algorithm. Algorithm [2|summarizes the full procedure used in our experiments.

Algorithm 2 Iterative Magnitude Pruning with Max-Entropy Loss

Require: Initial weights 6, dataset D, rewarded classes R, number of pruning iterations IV, target
sparsity P, epochs per iteration F
0« 90
K+« 1—(1-P)YN
for iteration i = 1 to N do
Train model fy on D using max-entropy loss with reward set R for E epochs
Prune the fraction K of weights in 6 with the smallest absolute value
Reset remaining weights in € to their initial values from 6
end for
: Train the final pruned subnetwork on D using max-entropy loss with R for E epochs

A S o

C.7 HYPERPARAMETER TUNING

We perform a small-scale hyperparameter study with respect to two key components of the training
pipeline: the softmax temperature used in the max-entropy loss, and the pruning ratio applied in
iterative magnitude pruning. The temperature analysis is conducted on MNIST using a shallow
MLP in the complete merge setting. For the pruning ratio, we provide two complementary studies:
one on the shallow MLP in the same complete merge scenario, and one on CNNs (LeNet-style) in
the pairwise merge setting, using both MNIST and FashionMNIST. All results are averaged over 5
random seeds.

Temperature. We study the effect of the temperature hyperparameter ¢ € {1,3,5,7}, which
scales the logits before the softmax activation and thus controls the sharpness of the output dis-
tribution. Lower temperatures produce more peaked distributions, while higher values encourage
uniformity.

Figure [7a] and [7b] show the average entropy on non-rewarded classes and the rewarded accuracy
across merge steps for different temperatures.

Entropy vs Step per Temperature Rewarded Accuracy vs Step per Temperature

2295

2290

Entropy

2280

22751 4 T=5000

I m
(a) Entropy on non-rewarded samples at each incre- (b) Rewarded accuracy at each incremental merge
mental merge step for different temperatures. step for different temperatures.

Figure 7: Effect of temperature scaling on specialization and composability. Temperature ¢ controls
the confidence of the softmax output; ¢ = 5 achieves a good trade-off between high entropy on
non-rewarded classes and accuracy on rewarded ones.
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Pruning Ratio. We evaluate the impact of pruning ratio on submodule performance and merge
behavior for two architectures: a shallow MLP and a CNN (LeNet-style). For the shallow MLP, we
focus on the complete merge setting, testing three final sparsity levels—90%, 99%, and 99.9%—ad-
justed across two IMP iterations. As shown in Figure [8] pruning to 99% yields the best trade-off
between specialization and compositionality: it maintains high entropy on non-rewarded inputs and
preserves rewarded accuracy throughout the merge process. Lower sparsity (90%) retains excessive
capacity, causing interference when modules are merged. Higher sparsity (99.9%) leads to underfit-
ting and degraded performance.

For CNNs, we instead study pruning in the pairwise merge setting, focusing on class subset sizes
|R| = 2 and 5, across MNIST and FashionMNIST. The results, summarized in Figure@ show that
a pruning ratio of 0.6 consistently yields the highest average rewarded accuracy across both datasets
and cardinalities. This indicates that, unlike MLPs, CNN’s benefit from less aggressive sparsification.

Entropy vs Step per Pruning Ratio Rewarded Accuracy vs Step per Pruning Ratio

Pruning Ratio
&~ PR =0.900

Pruning Ratio
% PR=0.900

#R - 0.990
5 PR =0.999 3 PR-0.990

1 2 3 4 5 6 7 8 H 2 a 6 8 10
Step Step

(a) Entropy on non-rewarded samples across merge (b) Rewarded accuracy across merge steps for differ-
steps for different pruning ratios. ent pruning ratios.

Figure 8: Effect of pruning ratio on submodule specialization and merge stability. A pruning ratio of
0.99 yields a good balance between maintaining accuracy and increasing entropy on non-rewarded
classes.
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Figure 9: Effect of pruning ratio on CNN accuracy after pairwise merging on MNIST and Fashion-
MNIST, with cardinality |R| = 2 and 5. The optimal pruning ratio is 0.6.
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D EXTENDED EXPERIMENTS

In this section, we present additional experimental results and qualitative insights.

First, we report representative examples for three settings:

¢ Shallow MLP on MNIST
* Deep MLP on Human Activity Recognition
* CNN (LeNet-style) on FashionMNIST

Then, we provide a comprehensive table reporting the full results for pairwise submodule merging
across all configurations—varying model architectures, pruning settings (with and without IMP),
cardinalities |R|, and loss functions. This extended comparison complements the main paper, where
only pruned results were shown, and helps quantify the impact of pruning across a wider set of
conditions.

D.1 CONFUSION MATRICES (NO PRUNING)

In this subsection, we show submodules trained using the max-entropy loss without applying iter-
ative magnitude pruning (IMP). For each model-dataset pair, we show the confusion matrix of a
submodule trained on a single rewarded class. These visualizations allow us to assess the degree of
specialization and the presence of residual structure in the predictions for non-rewarded classes.

In all cases, the models exhibit strong activation on the rewarded class, while showing varying
degrees of non-uniformity on the excluded classes—especially evident in the confusion matrix rows
corresponding to non-rewarded labels.
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Figure 10: Confusion matrices (total predicted counts per class) for submodules trained on classes
0-9 without pruning, using the max-entropy loss. Each model is trained to specialize on one class
and suppress predictions on others. Results refer to the Shallow MLP architecture applied to the
MNIST dataset.
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1 o "

Figure 11: Confusion matrices (total predicted counts per class) for submodules trained on classes
0—4 without pruning, using the max-entropy loss. Each model is trained to specialize on one class
and suppress predictions on others. Results refer to the Deep MLP architecture applied to the HAR
dataset.
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Figure 12: Confusion matrices (total predicted counts per class) for submodules trained on classes
0-9 without pruning, using the max-entropy loss. Each model is trained to specialize on one class
and suppress predictions on others. Results refer to the CNN architecture applied to the FMNIST
dataset. The CNN was pruned with a 99% pruning ratio.

D.2 CONFUSION MATRICES AFTER PRUNING

We report confusion matrices for submodules trained with both the max-entropy loss and iterative
magnitude pruning (IMP). These models are expected to exhibit stronger functional isolation, with
reduced leakage across non-rewarded classes. Comparisons with Section [D.1] highlight the impact
of pruning on output uniformity and specialization.

D.3 CONFUSION MATRICES FOR PAIRWISE MERGES

We show representative confusion matrices for pairwise merges of submodules, each specialized on
a distinct class. These examples illustrate that, even after weight summation, the merged model re-
tains high confidence on rewarded classes and preserves uniform predictions on others—confirming
compatibility and lack of interference.
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Figure 13: Confusion matrices (total predicted counts per class) for submodules trained on classes
0-9, using the max-entropy loss and pruning. Each model is trained to specialize on one class
and suppress predictions on others. Results refer to the Shallow MLP architecture applied to the
MNIST dataset.

Figure 14: Confusion matrices (total predicted counts per class) for submodules trained on classes
04, using the max-entropy loss and pruning. Each model is trained to specialize on one class and
suppress predictions on others. Results refer to the Deep MLP architecture applied to the HAR
dataset.

D.4 CONFUSION MATRICES FOR INCREMENTAL MERGES

This section presents confusion matrices from various stages of incremental merging, where multiple
submodules are combined one by one. The results demonstrate how compositional behavior is
maintained across merge steps, and how the model continues to correctly isolate rewarded class
behavior while suppressing predictions on excluded ones

D.5 MODE CONNECTIVITY

In this section, we present additional plots analyzing the loss landscape between merged submod-
ules. Following the framework described in Appendix we evaluate the relative difference in
loss along the piecewise linear path connecting two modules and their sum.

We show incremental merging results for a Deep MLP on the HAR dataset and for a CNN on
FMNIST, for both incremental and pairwise merging settings. In the majority of the cases, the
pictures describe the desired behaviour (no or limited increase above 0). As already mentioned in

23



Under review as a conference paper at ICLR 2026

w01 m @ 651

000 000 000 000 000 000 ~ B .00 19800 000 000 000 000 000 000 000 k80 140 020 000 2520 020 020 300 650

000 a0 om0 000 000 000 ~ R o0 20 000 0 00 010 00 030 000 60 00 mﬂm 060 0o om 0z o0z

740 000 000 000 18120 000 000

0 2620 000 000 000 9660 000 000

1700 000 000 000 16040 020 000 000 000 000 000 000 000 mmm 0 000 000 000 0o om < JB 000 om0 34028 000 950 000 000 000 amo
< 2
4120 000 000 000 15840 000 000 000 000 000 000 000 000 000 20060 000 000 000 000 000 000 000 . 000 17160 000 020 000 000 000 000
380 000 000 000 11360 000 000 o 000 000 000 000 om0 o0 Mu.‘,mmm 000 000 0o 000 000 000 o S 200 000 M0 020 7200 000 om0 140 g0
16 000 000 000 15620 000 000 o 000 000 000 000 000 000 I 0 10100 000 00 000 000 00 0o0 000 ~ I 000 000 10200 000 00 000 000 000 000
3500 000 000 000 18040 000 000 000 000 000 000 000 000 = 1988 000 26580 000 000 000 000 000 000 000 M8 1360 000 21600 000 3360 000 000 020 000
340 000 000 000 32680 000 000 000 000 000 0o0 000 000 o O 000 e100 000 000 000 000 00 om0 000 o JE 000 oo sma0 000 240 000 0o 000 000
@ 51 61 o

a0 13240 00 17980 040 000 00 00 6240 000 000 00 000 oome0 ;240 12 a0 uaunzsu 260 240 000 0o 000 0m 160 11a0 000 0o

280 16260 000 17600 020 180 000 000 000 000 000 020 420 000 0.0

o0 (R 000 6240 000 000 000

0 040 32020 000 14420 040 000 000

020 6080 000 19000 020 000 000

000 2200 000 19740 000 000 0.0

000 5900 000 000 000 000 <[ 0 720 00 000 020 15530 60 7780 120
000 8260 000 000 00 000 39088 000 5900 000 000 00 RN 200 sas0 50 000 000 000 am 0s0 1020 000 00

H
000 000 000 000 000 -

020 480 000 060 1042022920 000 0.00

160 5340 020 000 000 22680 760 6580 2420

000 oo 000 om mm ™

000 040 000 000 340 19340 000 0.00

o0 32968 000 000 00 000 rm 1040 000 000 000 2140 100 240 1140

020 16960 000 17160 000 000 000 000 16280 000 0.00 000 000 = 48580 1050 1240 000 100 000 100 2840 220

020 820 000 19840 000 000 000 000 000 21080 000 000 00 000 0 4540 000 000 0.00 22340 0.0 1820 180 000 020 000 000 220 38880 000 0.0

precezea predictes prcictea predcted

®

000 000 000 0.00 15480 000 000 000 000 000 000 000 000 700

0 000 000 000 000 17000 0.00 0 000 000 000 000 000 000 000 1180
0 000 000 000 000 15580 0.00 0 000 000 000 000 000 000 000 540
000 000 000 0.00 17860 000 000 000 000 000 000 000 000 2240
000 000 000 000 127.80 000 000 000 000 000 000 000 000 12040
000 000 000 000 8080 000

0 000 000 000 000 4100 000

000 000 000 000 000 000 000 26820

0 000 000 000 000 000 000 000 3980

Figure 15: Confusion matrices (total predicted counts per class) for submodules trained on classes
0-9, using the max-entropy loss and pruning. Each model is trained to specialize on one class
and suppress predictions on others. Results refer to the CNN architecture applied to the FMNIST
dataset. The CNN was pruned with a 99% pruning ratio.

the main paper, it can also be observed that for the CNN, after many incremental merges (e.g., steps
9 and 10), the difficulty in achieving an optimal merge is reflected in the presence of barriers in the
loss function landscape.

D.6  COMPLETE RESULTS FOR PAIRWISE SUBMODULE MERGING

In the main paper (Section[d), we report the results of pairwise submodule merging under the Iter-
ative Magnitude Pruning (IMP) regime, as this generally led to the best overall performance. For
completeness, here we provide the full set of results, including both pruned and non-pruned con-
figurations. Table 2] reports the average rewarded accuracy and average entropy on non-rewarded
classes for all model families (Shallow MLP, Deep MLP, CNN), across multiple datasets (MNIST,
FMNIST, HAR, Yeast), cardinalities |R| € 1,2, 5, and loss functions (CrossEntropy, Quasi-MaxEnt,
and MaxEnt).

‘We observe that:

* Models trained with IMP consistently outperform their non-pruned counterparts in most
settings, particularly when using the MaxEnt loss.

* The MaxEnt loss yields the most reliable and composable modules across all model types
and datasets, both with and without pruning.

* Non-pruned models trained with standard CrossEntropy struggle to maintain entropy on
non-rewarded classes, often resulting in degraded compositional performance.

* The benefit of pruning is especially marked in deep MLPs, where without IMP the merging
process suffers from significant degradation in rewarded accuracy.

These extended results support the conclusions drawn in the main paper: pruning strengthens func-
tional specialization and enhances composability, especially when combined with entropy-based
objectives.
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Figure 16: Confusion matrices (total predicted counts per class) for 16 pairwise merges of Shallow
MLP submodules on MNIST. Each cell shows the average across 5 seeds.

Figure 17: Confusion matrices (total predicted counts per class) for 10 pairwise merges
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Figure 18: Confusion matrices (total predicted counts per class) for 16 pairwise merges of CNN
submodules on FMNIST. Each cell shows the average across 5 seeds. The CNN was pruned with a
99% pruning ratio.
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Figure 19: Confusion matrices (total predicted counts per class) for pairwise merges of CNN sub-
modules on FMNIST, for exemplary modules of cardinality 1, 2, and 5 each. Each cell shows the
average across 5 seeds. The CNN was pruned with a 99% pruning ratio.
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Figure 20: Confusion matrices (total predicted counts per class) for incremental merge steps of
a Shallow MLP on MNIST. Each submodule is trained independently and merged following in-
creasing order. Results are averaged over 5 seeds. The structure of predictions remains clean and
interpretable throughout the merge.
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Figure 21: Confusion matrices (total predicted counts per class) for incremental merge steps of a
Deep MLP on HAR. Each submodule is trained independently and merged following increasing
order. Results are averaged over 5 seeds.
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Figure 22: Confusion matrices (total predicted counts per class) for incremental merge steps of

a CNN on FMNIST. Each submodule is trained independently and merged following increasing
order. Results are averaged over 5 seeds. The CNN was pruned with a 99% pruning ratio.
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Figure 23: Values for 7y, ¢, (t) for pairwise merges of CNN submodules on FMNIST, for exem-

plary modules of cardinality 1, 2, and 5 each (same as Figure[T9). Results are averaged over 5 seeds.
The CNN was pruned with a 99% pruning ratio.
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Figure 24: Values for vy, 0, (t) for incremental merge steps of a Deep MLP on HAR (same as Fig-

ure 21)). Each submodule is trained independently and merged following increasing order. Results
are averaged over 5 seeds.
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Figure 25: Values for g, 0, () for incremental merge steps of a CNN on FMNIST (same as Fig-
ure 22)). Each submodule is trained independently and merged following increasing order. Results
are averaged over 5 seeds. The CNN was pruned with a 99% pruning ratio.
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Table 4: Performance of pairwise-Weightmed sub-modules with Shallow MLP and Deep MLP on
FMNIST, MNIST, HAR and Yeast.

FMNIST MNIST HAR Yeast
Model |R| IMP loss Merge  Entropy Rewarded Acc  Entropy Rewarded Acc  Entropy Rewarded Acc  Entropy Rewarded Acc
XE Logit 0.308 (0.280)  0.852 (0.197) 0.580 ©.085)  0.806 (0.156) 0.582 0.616)  0.893 (0.157) 1.099 0077 0.692 ©.042)
Weight  0.045 0.039)  0.723 (0.219) 0.001 0.003)  0.492 (©.024) 0.318 0399 0.811 (0.235) 0.176 ©246)  0.559 (0.146)
No ME Logit 2.294 ©.004)  0.984 (0.027) 2.299 001y 0.994 (0.003) 1.592 00120 0.984 (0.021) 1.349 (0.013)  0.862 (.118)
Weight  2.295 0.006)  0.800 (0.116) 2.300 0.002)  0.969 ©.014) 1.512 0052 0.966 (0.033) 0.804 ©.190)  0.829 (0.150)
QME Logit 2.107 ©.009)  0.962 (0.033) 2.105 0011 0.986 (0.004) 1.160 ©.030)  0.955 (0.020) 1.259 0058y 0.792 (0.090)
1 Weight  2.038 (0.060)  0.909 (0.088) 2.040 ©0.091)  0.968 (0.021) 0.902 ©.167)  0.974 ©.041) 0.828 0.092)  0.792 0.096)
XE Logit 0.561 04s1)  0.859 .1s1) 0.667 (0.043)  0.798 (.162) 0.836 0.491)  0.882 (0.164) 1.384 0001 0.667 (0.100)
Weight  0.269 0.294)  0.813 (0.209) 0.452 0159 0.679 (0.188) 0.571 ©0625)  0.866 (0.181) 1.367 001 0.660 (0.094)
Yes ME Logit 2.294 ©0.003)  0.983 (0.029) 2.299 001y 0.992 ©.004) 1.590 ©o11)  0.982 (0.026) 1.366 (0.005)  0.844 (0.115)
Weight  2.279 ©.011)  0.980 0.031) 2.288 0.004)  0.991 (0.005) 1.555 ©.029)  0.983 (0.026) 1.287 0.036)  0.843 (0.116)
QME Logit 2.109 ©010)  0.962 (0.035) 2.102 ©.009  0.984 (0.006) 1.183 0.035)  0.955 (0.023) 1.366 0007 0.734 ©.127)
Weight  2.047 ©.127)  0.868 (0.147) 2.081 0004y  0.973 011 1.076 ©.0s6)  0.954 (0.041) 1.300 0024y 0.737 0132
XE Logit 0.382 0.138)  0.685 0.135) 0.662 ©.102)  0.771 (0.087) 0.356 ©268)  0.918 (0.032) - 0.598 ©.010)
Weight  0.064 00s3)  0.555 (0.076) 0.133 0.075)  0.564 (0.085) 0.152 ©.137)  0.772 (0.189) - 0.437 (0.003)
No Logit 2.282 ©.005)  0.963 (0.022) 2.295 001y 0.988 (0.004) 1.570 ©.022)  0.953 (0.010) - 0.611 ©.007)
Shallow MLP ME Weight  2.288 (0.007)  0.734 0.077) 2.297 ©0002)  0.957 o011y 1.521 0062 0.945 0.015) - 0.549 (0.009)
QME Logit 2.108 ©.012)  0.955 (0.020) 2.099 ©0.009)  0.987 (0.004) 1.129 ©036)  0.952 (0.012) - 0.583 ©.011)
2 Weight  1.999 0.072)  0.881 (0.058) 1.696 (0.252)  0.954 0.022) 0.286 ©.257  0.929 (0.036) - 0.556 ©.012)
XE Logit 0.610 ©.183)  0.813 (0.093) 0.714 0124y 0.852 (©.070) 0.691 0.400)  0.870 (0.068) = 0.439 (.056)
Weight  0.309 0.110)  0.777 .111) 0.334 ©.068)  0.831 (0.067) 0.411 ©318)  0.864 (0.059) - 0.419 0.039)
Yes ME Logit 2.283 ©.004)  0.960 (0.023) 2.290 (0.002)  0.983 (0.005) 1.568 (0.016)  0.949 (0.014) - 0.565 (0.065)
Weight  2.252 ©0.012)  0.952 ©.025) 2.264 ©.007  0.980 (0.006) 1.509 ©.034)  0.945 ©0.016) - 0.549 ©.064)
QME Logit 2.114 ©012)  0.953 (0.021) 2.101 o011y 0.982 (0.006) 1.149 ©o61)  0.937 0.010) - 0.474 ©.018)
Weight  1.773 0341y 0.918 (0.043) 1.698 0.180)  0.963 (0.015) 0.577 0344 0.919 ©.020) - 0.475 ©.021)
XE Logit - 0.516 (0.045) - 0.849 ©.021) - - - -
Weight - 0.451 ©.061) - 0.554 (0.056) - - - -
No ME Logit - 0.883 (0.003) - 0.974 ©.001) - - - -
Weight — 0.681 (0.037) - 0.937 ©.017) - - - -
Logit - 0.877 (0.004) - 0.972 ©.001) - - - -
5 QME Weight - 0.713 (.085) - 0.891 (0.025) - - - -
XE Logit - 0.655 ©.021) - 0.855 (0.006) - - - -
Weight - 0.434 (0.084) - 0.831 ©.018) - - - -
Yes ME Logit = 0.867 (0.002) - 0.952 (0.001) - - - -
Weight - 0.827 0.014) - 0.945 ©0.001) - - - -
Logit - 0.865 (0.002) - 0.950 (0.001) - - - -
QME  \yeight — 0752 00 - 0909 0oy - - - -
XE Logit 0.151 ©.175)  0.864 (0.184) 0.420 0.128)  0.780 (0.159) 0.419 ©512)  0.888 (0.167) 0.631 ©.110)  0.724 (0.082)
Weight  0.016 0.039)  0.544 ©.115) 0.000 ©.0000  0.490 (0.022) 0.218 0277)  0.797 0.250) 0.019 0051 0.509 (0.169)
No ME Logit 2.294 ©.003) 0.982 (0.028) 2.300 ©00n  0.994 (0.003) 1.590 0012y 0.977 0.022) 1.349 0014y 0.859 (0.126)
Weight  2.293 (0.015)  0.886 (0.138) 2.300 0.004)  0.833 (0.123) 1.305 0277 0.979 0033 0.865 0.157)  0.850 (0.132)
| QME Logit 2.108 00100 0.960 ©.032) 2.112 ©o11)  0.983 (0.006) 1.156 ©0.030)  0.949 (0.021) 1.236 0.062)  0.777 ©.084)
Weight  1.836 (0152  0.916 0.107) 1.996 .14 0.975 (0.023) 0.792 ©.175  0.965 (0.036) 0.594 ©.104)  0.787 (0.109)
XE Logit 0.460 (©.403)  0.889 (0.150) 0.656 0.029)  0.834 (0.128) 0.731 0.553)  0.887 (0.160) 1.386 0.000)  0.689 (0.095)
Weight  0.216 0151y 0.813 (0.212) 0.486 (0.149)  0.668 (0.176) 0.543 ©0.633) 0.840 (0214 1.376 ©.008)  0.674 (0.097)
Yes g Logit 2.298 ©.002)  0.978 (0.034) 2.301 0.000)  0.992 (0.004) 1.593 ©.013)  0.982 (0.029) 1.356 0.008)  0.844 .17
Weight  2.237 0.073)  0.973 (0.040) 2.294 0.009)  0.991 (0.005) 1.081 0.432)  0.982 (0.030) 1.201 00720 0.839 (0.119)
QME Logit 2.108 ©.011)  0.956 (0.039) 2.098 0.008)  0.971 (0.009) 1.166 ©.034)  0.943 (0.026) 1.334 ©.028)  0.800 (0.113)
Weight  1.844 (0.282)  0.858 (0.152) 2.062 0.028)  0.960 (0.029) 0.779 0237 0.923 0.091) 1.178 0.077)  0.807 (0.112)
XE Logit 0.271 ©.095)  0.655 (0.133) 0.564 0.108)  0.799 ©.067) 0.380 0.338)  0.794 (0.150) - 0.527 0.023)
Weight  0.066 0.045)  0.622 (0.116) 0.133 0.087)  0.580 (0.123) 0.141 ©.157)  0.668 (0.169) - 0.438 (0.035)
Deep MLP No ME Logit 2.284 0.005) 0.964 (0.022) 2.297 ©002)  0.989 (0.003) 1.569 0.028)  0.948 0.011) - 0.619 0.013)
Weight  2.291 (0.014)  0.798 0.087) 2.295 ©0.007)  0.685 (0.082) 1.219 ©214)  0.935 0033 - 0.619 (0.006)
QME Logit 2.113 @011y 0.954 (0.020) 2.107 0.009)  0.986 0.004) 1.134 0.028)  0.949 0.016) - 0.601 0.021)
2 Weight  1.966 (0256)  0.862 (0.066) 1.825 0197 0.900 (0.075) 0.238 0.187)  0.919 (0.044) - 0.582 0.019)
XE Logit 0.435 ©.168)  0.790 (0.098) 0.498 ©.100)  0.841 (0.060) 0.601 0369  0.857 (0.068) - 0.400 0.031)
Weight  0.226 (0.116)  0.748 (0.121) 0.194 (0.059)  0.724 (©.085) 0.400 0.255)  0.821 (0.065) = 0.372 ©.027)
Yes g Logit 2.290 ©.003)  0.955 (0.024) 2.298 0001y 0.983 (0.005) 1.570 0.023)  0.942 (0.014) - 0.608 ©.013)
Weight  2.225 (0.064)  0.930 (0.030) 2.272 0.040)  0.975 0.010) 0.672 ©.541)  0.870 (0.098) - 0.598 ©.015)
QME Logit 2.118 o1y 0.947 0.023) 2.100 011y 0.979 ©.007) 1.120 ©.049)  0.926 (0.020) - 0.485 (0.024)
Weight  1.347 0.469)  0.846 (0.113) 1.158 (0368)  0.910 (0.055) 0.205 ©.192)  0.868 (0.085) - 0.486 (0.026)
XE Logit - 0.586 (0.070) - 0.882 (0.014) - - - -
Weight — 0.556 (0.042) - 0.578 0.133) - - - -
No ME Logit - 0.882 (0.005) - 0.975 (0.002) - - - -
Weight - 0.485 ©.067) - 0.639 (0.047) - - - -
Logit - 0.881 (0.003) - 0.975 ©.002) - - - -
5 QME  \eight — 0.601 0090 - 0784 0039y - - - -
XE Logit - 0.624 0.014) - 0.799 ©.017) - - - -
Weight — 0.500 (0.094) - 0.687 (0.069) - - - -
Yes ME Logit - 0.852 (0.002) - 0.944 (0.003) - - - -
Weight — 0.800 .018) - 0.919 (0.008) - - - -
QME Logit - 0.850 (0.003) - 0.941 ©.003) - - - -
Weight - 0.649 (0.068) - 0.807 (0.040) - - - -
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Table 5: Performance of pairwise-Weightmed sub-modules with CNN on FMNIST and MNIST.

FMNIST MNIST
Model |R| IMP loss Merge  Entropy Rewarded Acc  Entropy Rewarded Acc
XE Logit 0.240 0204 0.588 (0.158) 0.338 02629  0.517 (0.083)
Weight  0.045 0.097)  0.592 (0.175) 0.077 ©0.172)  0.517 (0.064)
No ME Logit 2.296 0.003) 0.987 (0.021) 2.301 0.000) 0.997 (0.002)
Weight 2.226 0.107)  0.950 (0.056) 2.102 0273y  0.977 (0.027)
QME Logit 2.106 0.010) 0.969 (0.028) 2.097 ©.006) 0.992 (0.003)
1 Weight 1.272 ©324)  0.906 (0.098) 1.210 ©301)  0.970 (0.047)
XE Logit 0.151 0151  0.633 (0.182) 0.296 (0.254)  0.539 (0.103)
Weight 0.022 0.043) 0.576 (0.158) 0.023 0.104  0.520 (0.070)
Yes ME Logit 2.294 ©.009  0.983 (0.024) 2.301 ©.001)  0.997 (0.002)
Weight 2.189 0.112)  0.966 (0.037) 2.021 0357 0.984 (0.020)
QME Logit 2.091 ©.009)  0.955 (0.031) 2.085 0.003)  0.986 (0.007)
Weight 1.096 0287y 0.896 (0.131) 0.969 0371y  0.952 (0.081)
XE Logit 0.354 0.164)  0.603 (0.122) 0.630 ©.165)  0.753 (0.109)
Weight 0.081 0.050) 0.664 (0.164) 0.095 0.050) 0.711 (0.130)
CNN No ME Logit 2.287 ©.009  0.973 (0.017) 2.299 0.001)  0.995 (0.002)
Weight 2.147 0.093) 0.894 (0.065) 1.981 0204  0.948 (0.040)
) QME Logit 2.110 0.013)  0.964 0.017) 2.094 ©0.006)  0.993 (0.002)
Weight 1.188 0318)  0.909 (0.055) 0.743 0376)  0.936 (0.061)
XE Logit 0.164 0.126)  0.568 (0.110) 0.438 0.165)  0.675 (0.139)
Weight  0.047 ©0.037)  0.630 (0.162) 0.062 0.032) 0.638 (0.135)
Yes ME Logit 2.281 0007  0.972 (0.017) 2.297 0.002)  0.994 (0.003)
Weight  2.055 0.190)  0.926 (0.047) 1.649 0466)  0.964 (0.040)
QME Logit 2.089 ©.0100  0.959 (0.017) 2.083 0.003)  0.992 (0.003)
Weight 0.694 03720  0.898 (0.065) 0.366 02600  0.945 (0.054)
XE Logit - 0.632 (0.045) - 0.830 (0.041)
Weight - 0.462 (0.034) - 0.708 (0.087)
No ME Logit - 0.914 0.002) - 0.988 (0.001)
Weight - 0.803 (0.055) - 0.915 (0.042)
Logit - 0.908 (0.002) - 0.987 (0.001)
5 QME Weight - 0.767 (0.043) — 0.884 (0.043)
XE Logit - 0.625 (0.052) - 0.901 (0.025
Weight - 0.493 (0.144) — 0.776 (0.061)
Yes ME Logit - 0.915 (0.002) - 0.988 (0.001)
Weight - 0.791 (0.083) — 0.943 (0.034)
QME Logit - 0.912 (0.004) - 0.986 (0.000)
Weight - 0.790 (0.046) - 0.909 (0.034)
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Table 6: Performance of pairwise-Weightmed sub-modules with ResNet18 on FMNIST, MNIST
and CIFAR-10.

FMNIST MNIST CIFAR-10
Model |R| IMP loss Merge  Entropy Rewarded Acc  Entropy Rewarded Acc  Entropy Rewarded Acc
XE Logit 0.804 0.008) 0.519 (0.114) 0.804 0.010)  0.529 (0.088) 0.705 0.004)  0.549 (0.046)
Weight  0.388 0.089)  0.721 (0.127) 0.423 0.047)  0.748 (0.083) 0.650 0.03¢)  0.510 (0.028)
No ME Logit 2.296 0.003)  0.987 (0.024) 2.301 0001y  0.998 (0.002) 2.287 0.003)  0.947 (0.050)
Weight  2.208 (0.056)  0.982 (0.028) 2.282 0.013)  0.987 (0.054) 1.803 (02190  0.881 (0.096)
QME Logit 2.132 0.008) 0.964 (0.031) 2.124 ©.005)  0.993 (0.003) 2.184 0.009)  0.866 (0.050)
1 Weight  2.030 0.033)  0.944 (0.050) 2.072 0.006)  0.983 (0.013) 1.979 0.060)  0.587 (0.097)
XE Logit 0.809 (0.008)  0.536 (0.109) 0.808 (0.008)  0.482 (0.097) 0.686 0.006)  0.547 (0.049)
Weight  0.487 0.073)  0.691 (0.138) 0.500 0.064)  0.656 (0.130) 0.637 0.043)  0.508 (0.026)
Yes ME Logit 2.292 0.006)  0.987 (0.023) 2.300 0.005)  0.997 (0.002) 2.286 0.006)  0.953 (0.044)
Weight  2.249 0.037)  0.878 (0.156) 2.293 0.007)  0.987 (0.056) 1.504 0309 0.812 (0.145)
QME Logit 2.113 0.005)  0.948 (0.040) 2.112 ©0.004)  0.991 (0.005) 2.155 0.009)  0.862 (0.045)
Weight  2.031 0.029)  0.929 (0.055) 2.072 ©.004)  0.983 (0.009) 1.941 ©.102)  0.375 (0.101)
XE Logit 0.902 0.122)  0.644 (0.106) 1.058 (0.154)  0.816 (0.096) 1.005 0.069)  0.724 (0.052)
Weight  0.136 0.046)  0.808 (0.089) 0.136 0.028)  0.868 (0.084) 0.306 (0.106)  0.528 (0.082)
ResNet No  ME Logit 2.285 0.006)  0.972 (0.017) 2.300 0.001)  0.996 (0.002) 2.273 ©.006)  0.927 (0.023)
Weight  2.110 0.080)  0.964 (0.020) 2.276 ©.016)  0.991 (0.008) 1.484 0305)  0.681 (0.055)
QME Logit 2.126 0011y  0.962 (0.018) 2.119 0.006)  0.994 (0.002) 2.128 0.015)  0.905 (0.025)
2 Weight  1.830 0.097)  0.936 (0.039) 1.978 0.062)  0.983 (0.016) 1.245 ©241)  0.561 (0.040)
XE Logit 0.842 0.052)  0.729 (0.108) 0.908 0.072)  0.881 (0.069) 0.963 0.053)  0.701 (0.053)
Weight 0.101 ©0.043)  0.768 (0.099) 0.113 0018 0.832 (0.092) 0.565 0.138)  0.527 (0.075)
Yes ME Logit 2.276 0.008)  0.971 (0.018) 2.299 ©.001)  0.994 (0.002) 2.269 ©o11)  0.894 (0.027)
Weight  2.164 0.060)  0.955 (0.025) 2.286 0011y 0.989 (0.007) 1.619 0.183)  0.647 (0.058)
QME Logit 2.101 011y 0.955 (0.018) 2.108 0.003)  0.994 (0.002) 2.146 ©0.016)  0.870 (0.035)
Weight 1.806 0.106)  0.936 (0.027) 1.833 0.122)  0.988 (0.005) 1.406 0.163)  0.514 (0.045)
XE Logit - 0.701 (0.062) - 0.959 (0.008) - 0.740 0.013)
Weight — 0.683 (0.112) - 0.876 (0.083) - 0.392 (0.023)
No ME Logit - 0.906 (0.004) - 0.990 (0.001) - 0.852 (0.005)
Weight - 0.874 (0.009) - 0.977 ©.011) - 0.486 (0.028)
QME Logit - 0.904 (0.004) - 0.989 (0.001) - 0.846 (0.004)
5 Weight - 0.866 (0.020) - 0.887 (0.122) - 0.521 (0.019)
XE Logit - 0.747 ©.031) - 0.958 (0.006) - 0.693 (0.023)
Weight - 0.788 (0.029) - 0.897 0.071) - 0.362 (0.029)
Yes ME Logit - 0.903 (0.005) - 0.991 (0.001) - 0.775 0.036)
Weight - 0.861 (0.013) - 0.985 (0.002) - 0.328 (0.019)
QME Logit — 0.905 (0.004) — 0.990 (0.001) - 0.781 (0.010)
Weight - 0.861 (0.007) - 0.982 (0.002) - 0.350 0.032)
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Table 7: Performance of pairwise-summed sub-modules with VGG on FMNIST.

FMNIST
Model |R| IMP loss  Merge Entropy Rewarded Acc

Logit 0.000 0.0000 0.501 (0.006)

XE Weight  0.000 0.000) 0.500 (0.000)

No ME Logit 2.296 0.003)  0.986 (0.023)
Weight 1.732 07127 0.938 (0.101)

Logit 2.108 0.0179  0.971 (0.027)

1 QME Weight 2.148 0.059) 0.713 (0.201)
XE Logit 0.275 0253)  0.558 (0.138)

Weight  0.000 (0.000) 0.500 (0.000)

Yes ME Logit 2.293 0.005)  0.989 (0.023)
Weight 2.174 01749 0.914 (0.116)

QME Logit 2.095 0.023) 0.957 (0.035)

Weight 2.004 0.249) 0.663 (0.214)

XE Logit 0.143 0.092) 0.707 (0.133)

Weight 0.271 0214  0.575 (0.138)

No Logit 2.287 0.005)  0.969 (0.018)

VGG ME " Weight 2.047 0346 0.762 ©0089)
Logit 2.112 0017y  0.964 (0.017)

2 QME Weight 2.101 0215  0.704 (0.121)
XE Logit 0.090 0.058) 0.690 (0.143)

Weight  0.240 ©.201)  0.524 (0.140)

Yes ME Logit 2.280 0.008)  0.971 (0.018)
Weight 2.005 0274  0.689 (0.100)

Logit 2.088 (0.011)  0.959 (0.018)

QME Weight 2.003 02350 0.611 (0.104)

XE Logit - 0.680 (0.056)

Weight - 0.452 (0.046)

No ME Logit - 0.913 (0.003)
Weight - 0.432 (0.079)

Logit — 0.911 (0.003)

5 QME Weight - 0.411 (0.060)
XE Logit - 0.628 (0.052)

Weight - 0.330 (0.052)

Yes ME Logit - 0.912 (0.004)
Weight - 0.388 (0.121)

Logit — 0.911 (0.004)

QME Weight - 0.356 (0.083)
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Table 8: Performance of pairwise-summed sub-modules with VGG equipped with BatchNorm on
FMNIST.

FMNIST
Model |R| IMP loss Merge  Entropy Rewarded Acc

Logit 0.003 0.001)  0.340 (0.096)

XE Weight  0.011 ©.074  0.499 (0.007)

No ME Logit 2.296 0.003)  0.985 (0.020)
Weight 2.238 0.104  0.840 (0.165)

Logit 2.106 0015 0.971 (0.027)

1 QME Weight 1.605 0279 0.746 0.173)
XE Logit 0.180 0.071y  0.180 (0.120)

Weight  0.200 02300 0.505 (0.027)

Yes ME Logit 2.294 0.006)  0.987 (0.021)
Weight  2.134 02500 0.940 (0.052)

QME Logit 2.091 ©.008)  0.956 (0.033)

Weight 1.475 0.358) 0.781 (0.141)

XE Logit 0.112 0057y  0.746 (0.130)

Weight  0.150 0.118)  0.688 (0.119)

No Logit 2.288 (0.005)  0.966 (0.018)
VGGbn ME Weight 1.866 05777  0.744 (0.146)
Logit 2.104 ©0012)  0.964 (0.016)

2 QME Weight 1.890 0.196)  0.710 (0.154)
XE Logit 0.056 0.042) 0.722 (0.124)

Weight 0.034 ©0.030) 0.551 (0.124)

Yes ME Logit 2.282 0011y  0.967 (0.028)
Weight 1.898 0383) 0.748 (0.132)

QME Logit 2.091 0013  0.956 (0.021)

Weight 1.795 0379  0.745 (0.152)

XE Logit - 0.691 (0.052)

Weight - 0.477 (0.145)

No ME Logit - 0.910 (0.010)
Weight - 0.610 (0.102)

Logit - 0.911 (0.005)

5 QME  \eioht - 0.594 (0.097)
XE Logit — 0.662 0.027)

Weight - 0.524 (0.096)

Yes ME Logit - 0.913 (0.005)
Weight - 0.583 (0.084)

Logit - 0.858 (0.124)

QME  \eioht - 0.525 (0.15%)
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Figure 26: Visualization of Shallow MLP performance on MNIST and FMNIST.
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Figure 28: Visualization of Deep MLP performance on MNIST and FMNIST.
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Figure 29: Visualization of Deep MLP performance on HAR and Yeast.

37

CrossEntropy MaxEnt

QuasiMaxEnt



Under review as a conference paper at ICLR 2026

1998
1999
2000
2001
2002
2003

2004

2005 IMP MNIST ---- Random classifier FMNIST Merge Method
[ No =3 logit
2006 CZ3 Yes = sum

2007
2008
2009
2010
2011
2012
2013
2014
2015
2016 ool
2017 CrossEntropy MaxEnt QuasiMaxEnt

o
o
)

Cardinality = 1
o
o

I
S
L

0.2

CrossEntropy MaxEnt QuasiMaxEnt
2018 MNIST FMNIST

2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030 CrossEntropy MaxEnt QuasiMaxEnt ’ CrossEntropy MaxEnt QuasiMaxEnt
2031 MNIST FMNIST

2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042

2043 00° CrossEntropy MaxEnt QuasiMaxEnt ’ CrossEntropy MaxEnt QuasiMaxEnt
2044

2045 Figure 30: Visualization of CNN performance on MNIST and FMNIST.

2046

2047

2048

2049

2050

2051

Cardinality = 2

1.0 1

0.8 1

=5
o
o

Cardinality
o
»

0.2 1

38



Under review as a conference paper at ICLR 2026

Table 9: Average performance of pairwise-merged sub-modules.

FMNIST MNIST HAR Yeast
Model |R| IMP loss Entropy Rewarded Acc  Entropy Rewarded Acc  Entropy Rewarded Acc  Entropy Rewarded Acc
XE 0.045 0.039)  0.723 (0.219) 0.001 0.003)  0.492 (0.024) 0.318 (0399  0.811 (0235) 0.176 (0246)  0.559 (0.146)
CpP 0.061 0.040)  0.753 (0210) 0.019 0029 0.506 (0.045) 0.320 (0401 0.817 (0228) 0.177 0243 0.539 (0.141)
No LS 0.334 02720 0.603 (0.166) 0.338 (0.161)  0.519 (0.107) - - 0.170 0224y 0.515 (0.161)
ME 2.295 0.006)  0.800 (0.116) 2.300 0.002)  0.969 (0.014) 1.512 0052)  0.966 (0.033) 0.804 0.190)  0.829 (0.150)
1 QME  2.038 0.060)  0.909 (0.088) 2.040 ©.091y  0.968 (0.021) 0.902 (0.167)  0.974 (0.041) 0.828 0.092)  0.792 (0.096)
XE 0.269 0294y  0.813 (0.209) 0.452 0159 0.679 (0.188) 0.571 (0625 0.866 (0.181) 1.367 0011y 0.660 (0.094)
Cp 0.306 (0328)  0.800 (0217 0.600 0611 0.871 (0.175) 0.504 0.138)  0.622 (0.161) 1.368 0.010)  0.666 ©.091)
Yes LS 0.786 0.158)  0.703 (0.204) 0.946 03720 0.891 (0.148) 0.742 0015 0.580 (0.137) 1.368 0.010)  0.666 (0.095)
ME 2.279 0011y 0.980 (0.031) 2.288 0.004)  0.991 (0.005) 1.555 0029 0.983 (0.026) 1.287 0.036)  0.843 (0.116)
QME  2.047 0127y  0.868 (0.147) 2.081 0.004) 0.973 ©.011) 1.076 ©0.056)  0.954 (0.041) 1.300 0024y  0.737 (0.132)
XE 0.064 0.053)  0.555 0.076) 0.133 0075 0.564 (0.085) 0.152 0137y 0.772 (0.189) - 0.437 (0.003)
CpP 0.081 0.058)  0.571 (0.074) 0.162 0.093)  0.577 (0.096) 0.164 0.150)  0.780 (0.185) - 0.438 (0.004)
No LS 0.268 0.099)  0.530 (0.045) 0.749 0.192)  0.659 (0.094) 0.257 0217 0.784 (0.189) - 0.437 0.003)
ME 2.288 (0007  0.734 (0.077) 2.297 0002)  0.957 ©.011) 1.521 0.062)  0.945 (©.015) - 0.549 (0.009)
) QME  1.999 0072y 0.881 (0.058) 1.696 0.252)  0.954 (0.022) 0.286 (0257  0.929 (0.036) - 0.556 (0.012)
XE 0.309 ©.1100  0.777 ©.111) 0.334 ©0.068)  0.831 (0.067) 0.411 (0318 0.864 (0.059) - 0.419 (0.039)
Shallow MLP CP 0.347 0.123)  0.773 0.116) 0.460 0.339)  0.863 (0.061) 0.368 0.075)  0.822 (0.068) - 0.418 (0.026)
Yes LS 0.778 0081y  0.507 (0.152) 0.912 (0239)  0.825 (0.038) 0.887 (0.115  0.723 (0.063) - 0.418 (0.031)
ME 2.252 0012)  0.952 (0.025) 2.264 0.007)  0.980 (0.006) 1.509 0034 0.945 0.016) - 0.549 (0.064)
QME 1.773 0341y  0.918 (0.043) 1.698 (0.180)  0.963 (0.015) 0.577 0344 0.919 (0.020) - 0.475 (©.021)
XE - 0.451 (0.061) - 0.554 (0.056) - - - —
Cp - 0.474 (0.028) - 0.580 (0.059) - - - -
No LS - 0.527 (0.059) - 0.690 (0.077) - - - -
ME - 0.681 (0.037) - 0.937 (0.017) - - - -
5 QME - 0.713 (0.085) - 0.891 (0.025) - - - -
XE - 0.434 (0.084) - 0.831 (0.018) - - - -
CP - 0.438 (0.063) - 0.832 (0.007) - - - -
Yes LS - 0.521 (0.058) - 0.848 (0.017) - - - -
ME - 0.827 0.014) - 0.945 (0.001) - - - -
QME - 0.752 (0.036) - 0.909 (0.012) - — — —
XE 0.016 0.034) 0.544 ©.115) 0.000 0.0000  0.490 (0.022) 0.218 02777 0.797 (0.250) 0.019 051y 0.509 (0.169)
CP 0.022 0.041)  0.568 (0.140) 0.000 ©.000)  0.490 (0.022) 0.253 (0.323)  0.818 (0.236) 0.020 0.048)  0.509 (0.169)
No LS 0.260 (0211)  0.545 (0.114) 0.333 0177 0.494 (0.032) 0.220 0244y 0.838 (0.215) 0.181 0.198)  0.519 (0.155)
ME 2.293 0015)  0.886 (0.138) 2.300 0.004)  0.833 (0.123) 1.305 02777 0.979 (0.033) 0.865 (0.157)  0.850 (0.132)
1 QME  1.836 0152 0.916 (0.107) 1.996 0.114)  0.975 (0.023) 0.792 0.175)  0.965 (0.036) 0.594 0.104)  0.787 (0.109)
XE 0.216 0.181)  0.813 (0212 0.486 (0.149)  0.668 (0.176) 0.543 (0.633)  0.840 (0214) 1.376 0.008)  0.674 0.097)
CP 0.228 0.178)  0.788 (0.224) 0.564 06220  0.850 (0.212) 0.528 (0.148)  0.682 (0.175) 1.375 0.009)  0.669 (0.089)
Yes LS 0.718 0.154)  0.655 (0.185) 0.925 ©0361)  0.865 (0.185) 0.676 (0.026)  0.553 (0.119) - -
ME 2.237 0.073)  0.973 0.040) 2.294 0.009)  0.991 (0.005) 1.081 0432)  0.982 (0.030) 1.201 0072 0.839 (0.119
QME  1.844 (0282) 0.858 (0.152) 2.062 0.028)  0.960 (0.029) 0.779 0237y 0.923 (0.091) 1.178 0077y 0.807 (0.112)
XE 0.066 0.045)  0.622 (0.116) 0.133 (0.087)  0.580 (0.123) 0.141 (0157 0.668 (0.169) — 0.438 (0.035)
CP 0.074 0.044)  0.627 0.121) 0.133 (0.089)  0.559 (0.113) 0.123 (0.140)  0.633 (0.137) - 0.460 (0.045)
No LS 0.306 0.150)  0.575 (0.106) 0.446 (02199 0.551 (0.106) 0.329 (0.266)  0.805 (0.121) - 0.476 (0.024)
ME 2.291 014y 0.798 0.087) 2.295 0.007)  0.685 (0.082) 1.219 0214 0.935 0.033) - 0.619 (0.006)
2 QME  1.966 ©0.256) 0.862 (0.066) 1.825 0.197)  0.900 (0.075) 0.238 0.187)  0.919 (0.044) - 0.582 (0.019
XE 0.226 0.116)  0.748 0.121) 0.194 (0059  0.724 (0.085) 0.400 (0.255)  0.821 (0.065) — 0.372 (0.027)
Deep MLP CP 0.227 0.106)  0.729 0.132) 0.438 (0.283)  0.812 (0.055) 0.213 (0.0s8)  0.705 (0.082) - 0.405 (0.048)
Yes LS 0.636 0.094) 0.648 (0.138) 0.807 ©0.213)  0.831 (0.033) 0.763 0.137)  0.634 (0.127) - 0.407 (0.034)
ME 2.225 0.064)  0.930 (0.030) 2.272 0.040)  0.975 0.010) 0.672 (0.541)  0.870 (0.098) - 0.598 (0.015)
QME  1.347 0469 0.846 (0.112) 1.158 0368y  0.910 (0.055) 0.205 0.192)  0.868 (0.085) - 0.486 (0.026)
XE — 0.556 (0.042) - 0.578 (0.133) - — — -
CP — 0.558 (0.061) - 0.607 (0.132) - — — -
No LS - 0.566 (0.066) - 0.551 (0.066) - — — —
ME - 0.485 (0.067) - 0.639 (0.047) - — - -
5 QME - 0.601 (0.090) - 0.784 (0.039) - - - -
XE - 0.500 (0.094) - 0.687 (0.069) - — — -
CP — 0.437 (0.034) - 0.718 (0.031) - — - -
Yes LS — 0.486 (0.032) - 0.806 (0.025) - — - -
ME - 0.800 (0.018) - 0.919 (0.008) - — — —
QME - 0.649 (0.068) - 0.807 (0.040) - - - —
XE 0.045 0.097)  0.592 (0.175) 0.077 (0.172)  0.517 (0.064) - — — -
CP 0.031 0.074)  0.547 0.131) 0.064 (0.147)  0.513 (0.053) - — — -
No LS 0.197 0.192)  0.510 (0.093) 0.225 (0.249)  0.518 (0.073) - — — -
ME 2.226 0.107  0.950 (0.056) 2.102 0273  0.977 ©.027) - — - -
1 QME  1.272 0324  0.906 (0.098) 1.210 301 0.970 0.047) - - - -
XE 0.022 0.043)  0.576 (0.158) 0.023 (0.104  0.520 (0.070) - — — -
CP 0.024 0.040)  0.575 (0.152) 0.002 (0.006)  0.509 (0.022) - — — -
Yes LS 0.169 (0.165)  0.582 (0.151) 0.196 (02199 0.527 (0.081) - — — -
ME 2.189 0.112)  0.966 (0.037) 2.021 03577  0.984 (0.020) - — — -
QME  1.096 ©.287) 0.896 (0.131) 0.969 (0.371)  0.952 (0.081) - — - -
XE 0.081 0.050)  0.664 (0.164) 0.095 (00500 0.711 (0.130) - — — -
CP 0.092 0.057)  0.671 (0.156) 0.135 (0067 0.731 (0.100) - — — -
No LS 0.212 0.101)  0.618 (0.148) 0.275 (0.126)  0.683 (0.130) - — — -
ME 2.147 0.093)  0.894 (0.065) 1.981 0204y  0.948 (0.040) - — — -
2 QME 1.188 0318  0.909 (0.055) 0.743 (0.376)  0.936 (0.061) - — — -
XE 0.047 0.037)  0.630 (0.162) 0.062 (0.032)  0.638 (0.135) - — — -
CNN CP 0.054 0.044)  0.614 (0.158) 0.066 (0.043)  0.623 (0.150) - — — -
Yes LS 0.183 (0.123y  0.587 (0.120) 0.233 (0.111)  0.644 (0.132) - — — -
ME 2.055 0.190)  0.926 (0.047) 1.649 (0.466)  0.964 (0.040) - — — -
QME  0.694 ©372)  0.898 (0.065) 0.366 (0.260)  0.945 (0.054) - — — -
XE - 0.462 (0.034) - 0.708 (0.087) - — — -
CP - 0.475 (0.071) - 0.738 (0.034) - — — -
No LS - 0.497 (0.086) - 0.641 (0.13) - — — -
ME - 0.803 (0.055) - 0.915 (0.042) - — — -
5 QME - 0.767 (0.043) - 0.884 (0.043) - — — -
XE - 0.493 (0.144) - 0.776 0.061) - - - -
CP - 0.535 (0.045) - 0.794 (0.092) - — — -
Yes LS - 0.538 (0.069) - 0.554 (0.173) - — — -
ME - 0.791 (0.083) - 0.943 (0.034) - — — -
QME - 0.790 (0.046) - 0.909 (0.034) - — — -
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