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ABSTRACT

Neural networks implicitly learn class-specific functional modules. In this work,
we ask: Can such modules be isolated and recombined? We introduce a method
for training sparse networks that accurately classify only a designated subset of
classes while remaining deliberately uncertain on all others, functioning as class-
specific subnetworks. A novel KL-divergence-based loss, combined with an itera-
tive magnitude pruning procedure, encourages confident predictions when the true
class belongs to the assigned set, and uniform outputs otherwise. Across multiple
datasets (MNIST, Fashion MNIST, tabular data) and architectures (shallow and
deep MLPs, CNNs), we show that these subnetworks achieve high accuracy on
their target classes with minimal leakage to others. When combined via weight
summation, these specialized subnetworks act as functional modules of a com-
posite model that often recovers generalist performance. We experimentally con-
firm that the resulting modules are mode-connected, which justifies summing their
weights. Our approach offers a new pathway toward building modular, compos-
able deep networks with interpretable functional structure.

1 INTRODUCTION

Modern neural networks (NNs) implicitly develop internal subgraphs of neurons and connections
tuned to respond to specific classes. These structures, sometimes referred to as circuits (Olah et al.,
2020; O’ Neill and Buil [2024)), emerge during training but are difficult to isolate, reuse, or compose.
Representations for different classes are often entangled, resulting in shared neurons or features—a
phenomenon known as superposition (Mu and Andreas|, 20205 Saphra and Wiegretfe, 2024)—which
makes clean modularity elusive.

This lack of class-level modularity limits our ability to understand, edit, or compose networks. If
we could reliably extract a functional module—a subnetwork that specializes in recognizing one
class (or a small subset) while ignoring others—we could provide new tools both for modular neural
networks and for mechanistic interpretability. Crucially, such modules must not only function in
isolation, but also be designed to compose smoothly, without fine-tuning or alignment (Ilharco et al.,
2023 Hazimeh et al.,|2024). In this work, we want to answer the following question:

Can we train sparse, class-specialized subnetworks that remain ignorant outside
their domain, and compose into accurate, generalist models?

We answer affirmatively, proposing a methodology that leverage two key concepts: the Maximum-
Entropy (MaxEnt) principle and sparse training. The MaxEnt principle (Jaynes, |1957) advocates
choosing the most uninformative distribution consistent with known constraints. Originally applied
in statistical mechanics, it has become central to inference theory (Kuic, 2016; [De Martino and
De Martinol, [2018)).

We claim that MaxEnt can guide functional isolation: modules are trained to make confident pre-
dictions only for their class, and uniform predictions otherwise. This differs from standard entropy
regularization used in calibration or selective prediction (Marczak et al., 2024)).

On the other hand, sparsity plays a crucial role in this context. Sparse models tend to exhibit less
overlap in their parameters or activations, reducing interference when modules are merged. We
demonstrate its practical benefits by leveraging the Lottery Ticket Hypothesis (LTH). In general,
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LTH claims that sparse subnetworks can match dense models if trained with the right initialization
(Frankle and Carbin, [2018};|/Zhou et al.,[2019; [Liu et al., 2024). In our scenario, we show that sparse
subnetworks outperform dense ones while improving modular compatibility.

In light of this, we propose a framework based on two main components: a novel Max-Entropy loss
(ME) coupled with an Iterative Magnitude Pruning (IMP) strategy (Frankle and Carbin, 2018)),
and a model merging step to achieve generalist models. The goal of the MaxEnt loss is to enforce
confident predictions on a subnetwork’s rewarded class set and uniform predictions otherwise, while
the IMP removes spurious capacity and reinforces specialization through sparsity (Burkholzl 2022;
Girish et al) 2021)). We call the resulting components subnetwork modules: sparse networks that
specialize in a class or class subset, and can be combined to form more generalist models.

To the best of our knowledge, this is the first work that trains a NN by isolation and merging. Our
results suggest a new approach to NN construction: rather than learning entangled solutions end-to-
end, we can build systems from independently trained, entropy-regularized modules. To summarize,
our contribution is threefold: (i) we introduce a novel MaxEnt loss able to train specialized modules;
(ii) we propose a new training pipeline to achieve better isolation and model merging to get generalist
models; (iii) we validate our findings through extensive experiments on several architectures and
datasets.

2 RELATED WORK

In this section, due to lack of space, we put only the most relevant related work. An extended version
of related works involving model merging, pruning methods, modular training and MaxEntropy
principle is available in Appendix [B]

Modular Neural Networks and Interpretability. Several works have explored modular neural
architectures that decompose computation across tasks (Kirsch et al., 2018; Han et al., [2021} [Salem
et al.| [2023). Notably, Kirsch et al.|(2018)) introduced end-to-end learning of both modules and their
composition via a controller. They rely on subsequent modules for learning broader tasks, while
using Expectation-Maximisation (EM) for learning a specific module. While sharing a similar mo-
tivation to our work, we build class-specific functional modules, trained to focus on a single class
while producing high-entropy on different classes. This specific goal is hindered by their structure
of subsequent modules, that are chosen by a controller and reused across tasks, making it difficult to
isolate class-specific functionality. Additionally, our approach relies on model merging, rather than
leveraging subsequent modules.

Interestingly, Malakarjun Patil et al.|(2023)) highlight the importance of pruning methods in unveil-
ing the hierarchical structure of NNs. In particular, they propose an iterative approach for hierarchy
detection, where the hierarchy is the underlying hierarchy of sub-functions in a specific task, deliver-
ing interesting network analysis. Our work partially shares the goal, but focuses more on a complete
training pipeline and on submodules isolation without seeking a hierarchical structure, rather than
network analysis about submodules.

Interpretability. Our work inevitably aligns with the goal of producing interpretable net-
works. Among the methods that tackle this challenge, we can distinguish between post hoc and
interpretable-by-design methods. While post hoc interpretability methods (Ribeiro et al., 2016
Lundberg and Lee} [2017)) are constrained to work with trained models, our methodology is applied
during training, yielding units with clear semantics and compositional behavior. In particular, our
approach aligns with mechanistic interpretability methods (Saphra and Wiegreftel 2024} |Olah et al.,
2020), where subnetworks (or circuits) are studied as functional entities. Interestingly, Liu et al.
(2023) propose a brain-inspired modular training procedure, relying on network embedding into
geometric spaces, and neurons swapping. Instead of leveraging pruning methodologies, they rely
mainly on regularization. However, they mainly use synthetic datasets and never scale to CNN,
while we show that our technique is applicable also to a broader range of tasks.

Finally, our work also complements neuron-level analyses like Mu and Andreas|(2020)), which seek
meaningful internal representations but suffer from polysemanticity. Instead, we encourage modu-
larity at the subnetwork level. This is conceptually related to [Marchetti et al.| (2024), where sym-
metry constraints shape functional structure—our modules may reflect class-wise symmetry com-
ponents in such a framework.
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3 LEARNING COMPOSABLE CLASS-SPECIFIC SUBNETWORK MODULES
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3.1 MAX-ENTROPY LOSS Figure 1: Overview of our method. Starting from

common initialization 6y we find, via Iterative
Let C be the full set of classes and R C C the Magnitude Pruning (IMP) exploiting our Max-
set of rewarded classes for a given subnetwork Entropy (ME) loss (see Algorithm [I)), for each
module. For a training sample (z,y), where class in C a specialized subnetwork. Modules can
y € C, we define a target distribution §j € RICl  be summed via weight summation.
as:
Yi = ey

1

5i:y if VRS R
i otherwise

For example, if C = {0,1,2} and R = {0} we will use § = (1,0,0) for class 0, § =
(0.33,0.33,0.33) for classes 1 and 2. Let § = softmax(fp(x)) be the predicted class probability
distribution produced by the model. The MaxEnt loss is then defined as the Kullback-Leibler (KL)
divergence between the target distribution ¢ and the predicted distribution g:

Ic|

Cane(w,y) = KL(F || 9) = 3 dilos (z) @
i=1 !

This formulation encourages the model to output peaked predictions (low entropy) for samples in
rewarded classes and uniform predictions (high entropy) for non-rewarded ones. In doing so, it
promotes functional isolation, ensuring that each subnetwork module specializes only in its intended
class subset and remains maximally uncertain elsewhere.

Unlike one-vs-all formulations, our approach enforces neuron-permutation invariance on non-
rewarded samples—a crucial property for composability. In a one-vs-all setup, training a module
for class 0 would implicitly push other output neurons (e.g., neuron 1) to represent “not class 0.”
However, if another module uses neuron 1 to represent “class 1,” summing the two leads to a seman-
tic collision: the same neuron would encode both “class 1” and “not class 0, which includes many
other classes.

3.2 ITERATIVE MAGNITUDE PRUNING

To enhance specialization and remove spurious capacity, we apply Iterative Magnitude Pruning
(IMP) (Frankle and Carbin, 2018) as in Algorithm[I} At each iteration, we train with the MaxEnt
loss, prune a fixed percentage of low-magnitude weights, and reinitialize the remaining ones. After
several rounds, a final training phase is applied to the sparse subnetwork. This process encourages
class-specific specialization and improves uncertainty calibration on non-rewarded classes.
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Algorithm 1 Iterative Magnitude Pruning with Max-Entropy Loss

Require: Initial weights 6, training data D, rewarded classes R, number of pruning iterations IV,
pruning percentage P, epochs per iteration

0+ 00

for: =1to N do

Train model fy on D using max-entropy loss with rewarded classes R for E epochs
1

Prune K % of weights in 6 with smallest absolute value, with K =1 — (1 — P)~
Reset remaining weights in € to their initial values from 6,
end for
Train the final pruned subnetwork on D using max-entropy loss with rewarded classes R for Ef
epochs

A A R S

3.3 MODEL MERGING VIA WEIGHT SUMMATION

To compose a generalist model, we merge submodules by summing their weights: Omerged = » ; 6;-
This operation is enabled by our design: submodules are trained to specialize on disjoint subsets of
classes and to behave identically—via uniform predictions—on all others, minimizing interference.

We consider both pairwise merges (61 + 62) and complete merge (> ; 0:), and evaluate composition-
ality using the same metrics used for individual modules. To understand when and why summation
preserves performance, we analyze the loss landscape through the lens of mode connectivity. Cru-
cially, unlike typical mode connectivity studies—where 6; and 05 solve the same task—our submod-
ules are specialized for different sets of classes. The merged model is intended to solve the union
task, and is evaluated using the MaxEnt loss over the combined rewarded classes. This distinction
makes it essential to assess whether the merged weights lie in a low-loss region for the composite
task.

Following [Frankle et al.| (2020) and [Lubana et al.|(2023)), we say that §; and 05 are mode connected
along a path ~(¢) if:

vt e [0,1],  L(fy)(D)) < (1= 1)L(fo,(D)) + tL(fo,(D)) + € 3)

where ¢ is a small margin, set to 2% of the first term on the r.h.s. following [Frankle et al.[(2020),
and £ is our MaxEnt loss evaluated on a dataset D with labels restricted to R1 U R, the union of
the rewarded classes for the two modules.

To test this, we define the following piecewise-linear path, designed such that 6, 4 65 appears as an
intermediate point:

01+ 2t - 05 ift <0.5

t) = - 4

Vo162 (%) {2(1t)~01+92 ift > 0.5 @

This path satisfies: v(0) = 61, v(1) = 02, and ¥(0.5) = 61 + 6. We evaluate the loss along ()
and interpret low-barrier profiles as evidence that the modules are composable by construction.

4 EXPERIMENTS

We empirically evaluate our method on multiple image and tabular datasets, aiming to answer the
following questions: (i) Can MaxEnt training enforce meaningful class-specific specialization? (ii)
How well do merged submodules recover generalist performance? (iii) Does iterative pruning im-
prove the quality of submodules and composability? (iv) Does our training procedure induce mode
connectivity between independently trained modules and does it scale with the number of modules?

4.1 TRAINING AND EVALUATION PROTOCOL

We apply our MaxEnt loss and iterative pruning independently to each class or subset R C C. Each
submodule is trained as in Algorithm and evaluated on: (i) rewarded accuracy, i.e., classification
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Table 1: Single submodule behaviour when using MaxEnt Loss with and without IMP.

MNIST Fashion MNIST HAR Yeast

Model ~ IMP Entropy Rewarded Acc Entropy Rewarded Acc Entropy Rewarded Acc Entropy Rewarded Acc

Shallow No 2.296 ©0.003)  0.998 ©002) 2.296 ©.003)  0.998 ©002) 1.762 ©.017)  0.997 0007y 1.298 00620  0.995 (0.009)
MLP Yes 2293 o004  0.999 ©oony 2.293 004  0.999 ©oon 1.757 ©.023  0.996 ©.008) 1.297 ©.059)  0.998 (0.006)

Deep No 2298 ©002)  0.997 0.003) 2.285 ©o13)  0.995 ©o04) 1.772 ©o14)  0.992 ©013) 1.302 0064  0.996 (0.009)
MLP Yes 2300 o001  0.998 ©o002) 2.291 0008y 0.991 ©o0n 1.762 0023  0.999 ©o0s) 1.302 056  1.000 (0.000)

No 2.302 (0.000) 0.998 .004) 2.302 (0.000) 0.996 (0.004) - - - -
Yes 2302 ©0o000)  0.994 ©005) 2.302 00000  0.992 (0.005) - - - -

CNN

accuracy on samples from R; (ii) non-rewarded entropy, i.e., the average predictive entropy on
inputs from C \ R; and (iii) the confusion matrix, used qualitatively to assess specialization and
leakage.

In particular, it is worth mentioning that in our training procedure we simulate a scenario in which
only the classes in R are labeled, but we still have access to the other samples.

To evaluate composability, we used |R| € {1,2,5} to test pairwise merging. For a specific car-
dinality, the model is trained to recognize solely a selected set of classes, of the given cardinality
and sampled among the ones available for that specific dataset. We sample 10 pairs of class sets
{(Raks Rak+1) oo With Rag () Rak+1 = @ and Ray, Rox+1 spanning in the set of combinations
for the dataset’s class set. For each pair, we perform 5 independent random seeds and merge a pair
into a single model. For example, with |R| = 1, the procedure consists of: training a NN using our
MaxEnt loss rewarding one specific class R, then a different NN is trained on a different single
class R1, and then the two models are merged and tested. The resulting model should perform well
on the 2 classes. This procedure is repeated for 5 seeds to ensure statistical evidence, and for a total
of 10 paired sets. When |R| = n > 1, two NN are trained to specialize on two different sets of n
classes at the same time, and there is no overlap between the sets. Figure 2] depicts an example of
resulting confusion matrices for these pairwise-merging experiments.

Formal definitions and implementation details are provided in Appendix [C}

4.2 EXPERIMENTAL SETUP

We evaluate our approach on three model classes: shallow MLPs (1 hidden layer), deeper MLPs (2
hidden layers), and CNNs (LeNet-style). For image data, we use MNIST (LeCun et al.| [1998)) and
Fashion MNIST (Xiao et al.l [2017). These datasets are in line with similar works (Liu et al., 2023}
Malakarjun Patil et al. [2023), but to get a broader impact we include two tabular classification
datasets from the UCI repository: Human Activity Recognition (HAR) (Reyes-Ortiz et al.l [2012),
and Yeast (Dua and Graff, 2017).
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(a) Classes [0]+[6] (b) Classes [0,1]+[8,9] (c) Classes [0—4]+[5-9]

Figure 2: Confusion matrices for three representative pairwise merges of shallow MLP submodules
on the MNIST dataset. Even after merging, each rewarded class remains highly separable, and
predictions on non-rewarded classes remain nearly uniform.



Under review as a conference paper at ICLR 2026

We compare our MaxEntropy loss with two baselines, showing that entropy maximization plays a
crucial role in isolation. In particular, we compare MaxEnt with:

* Quasi-MaxEnt loss: a loss function that on non-rewarded classes ignores the rewarded
classes and produces a uniform distribution solely on non-rewarded classes. Formally re-
ferring to equation [T}

{ y Y (5)

y' = 1 .
¢ 5i¢j,je7gm otherwise

* CrossEntropy loss: the standard loss used in standard classification tasks. In this case, we
do not modify the labels, which remain standard, but the model is exposed only to the
classes in R, rather than all available classes.

Full dataset details and preprocessing steps are reported in Appendix [C] Each submodule is trained
on a specific subset of classes using the MaxEnt loss, with or without IMP.

4.3 SUBMODULE BEHAVIOR WITH MAXENT LOSS

We begin by evaluating submodules trained solely with the MaxEnt loss, without pruning. Each
subnetwork is tasked with recognizing one specific class from the original dataset, and to output
uniform predictions on all others.

For each of 5 random seeds, we train a separate submodule per class. The results in Table[T] are ag-
gregated across both classes and seeds, providing average values and standard deviations for overall
trends.

Table [1| reports the accuracy on rewarded classes and the average entropy on non-rewarded sam-
ples. Accuracy is consistently high (close to 100%) across all classes, confirming that submodules
correctly specialize on their class. The entropy, meanwhile, approaches the theoretical value of
log(Nasses) for a uniform distribution, e.g. log(10) ~ 2.30 for MNIST and Fashion MNIST, sug-
gesting that predictions on excluded classes are nearly uniform.

These results suggest that our proposed submodules can effectively recognize individual classes and
exhibit the theoretical behavior they were designed to emulate, across different architectures.

4.4 PAIRWISE MERGING

We further evaluate the effectiveness of our method through pairwise merging experiments across
different configurations. Table [2] reports the aggregated metrics over seeds and merged pairs. Re-
warded accuracy remains high (often > 0.90), indicating that each merged module retains its classi-
fication ability. The mean entropy on non-rewarded classes stays close to the theoretical maximum
of log( Nejasses )» €-g. it is around 2.28 for MNIST and Fashion MNIST, confirming minimal interfer-
ence.

Surprisingly, we can see that MaxEnt outperforms the Quasi-MaxEnt in all cases. Besides being
such a small change in the learning phase (MaxEnt enforces uniformity over all neurons for non-
rewarded inputs, while Quasi-MaxEnt enforces uniformity over all but the rewarded ones), this loss
function loses in performance with respect to ours. This surprising result is probably due to the
leakage of information on non-rewarded classes. In particular, the QME incentivizes changes in
the flow of information even for non-rewarded classes, which violates the MaxEnt principle. In
contrast, ME encourages only information from the rewarded classes, improving the specialization
and better avoiding spurious activations. Our method also outperforms standard CrossEntropy. This
was expected, since the CrossEntropy is intended to train with all the labels at once, while in this
case its effectiveness is hindered by the reduced number of classes on which it is optimized.

Figure [2]shows qualitative examples of confusion matrices for representative merges with increasing
class coverage. In Figure 3| we show the effectiveness of IMP on MNIST and Fashion MNIST on
all the architectures and cardinalities, while merging. We can see in particular that IMP improves
the performances consistently for a Deep MLP, while benefiting more modestly the Shallow MLP
and the CNN.
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Figure 3: Impact of IMP on pairwise merging for different architectures and cardinalities, consider-
ing the MNIST and Fashion MNIST datasets, and using the ME loss.

Table 2: Average entropy and rewarded accuracy across datasets, models, and loss functions. Bold
indicates the best result per group according to Welch’s test at 95% confidence.

FMNIST MNIST HAR Yeast
Model |R|  Loss Entropy R-Acc Entropy R-Acc Entropy R-Acc Entropy R-Acc

XE 0.183 (0.151) 0.877 (0.186)  0.507 (0.150) 0.708 (0.179)  1.255 (0.191) 0.855 (0.197) 1.378 (0.004) 0.631 (0.101)
1 QME  2.031 (0.132) 0.908 (0.105) 2.082 (0.005) 0.973 (0.014) 1.196 (0.073) 0.946 (0.046) 1.056 (0.082) 0.799 (0.106)
ME 2.287 (0.005) 0.977 (0.005) 2.287 (0.005) 0.991 (0.005) 1.716 (0.033) 0.985 (0.016) 1.146 (0.077) 0.853 (0.127)

MLP XE 0.277 (0.108) 0.786 (0.141)  0.332 (0.080) 0.838 (0.074) 1.167 (0.217) 0.871 (0.055) — 0.381 (0.036)
2 QME  1.824 (0.207) 0.917 (0.049) 1.683 (0.216) 0.959 (0.016) 1.013 (0.223) 0.891 (0.024) - 0.559 ©.011)

ME  2.267 0.007) 0.977 (0.005) 2.268 (0.007) 0.980 (0.006) 1.670 (0.045) 0.935 (0.027) - 0.616 (0010

XE — 0.480 (0.075) — 0.842 (0.027) - - - -

5 QME — 0.741 (0.026) — 0.905 (0.023) - - - -

ME — 0.946 (0.004) — 0.946 (0.004) - - - -

XE 0.215 (0.150) 0.802 (0.205)  0.422 (0.190) 0.689 (0.194) 1.059 (0.313) 0.840 (0.210) 1.386 (0.0003) 0.553 (0.144)

1 QME  1.842 (0.329) 0.868 (0.176)  2.061 (0.046) 0.954 (0.045) 1.098 (0.128) 0.819 (0.155) 0.883 (0.118) 0.783 (0.114)

ME 2245 0.072) 0.975 0.039) 2.291 (0.031) 0.990 (0.005) 1.697 (0.050) 0.988 (0.016) 1.063 (0.109) 0.859 (0.120)

Deep MLP XE 0.166 (0.083) 0.678 (0.081)  0.208 (0.054) 0.743 (0.111)  1.065 (0.344) 0.824 (0.068) — 0.382 (0.046)
cep 2 QME  1.347 (0.484) 0.863 (0.088) 1.224 (0352 0.912 (0.038) 0.665 (0.251) 0.787 (0.093) — 0.562 (0.023)
ME  2.197 (0.095) 0.898 (0.045) 2.275 (0.026) 0.976 (0.011) 1.607 (0.134) 0.930 (0.028) — 0.589 (0.018)

XE 0.016 (0.026) 0.557 (0.150)  0.041 (0.128) 0.529 (0.080) - - - -

1 QME 0.981 (0.322) 0.880 (0.136)  1.001 (0.377) 0.961 (0.078) - - - -

ME 2297 (0.039) 0.960 (0.097) 2.286 (0.057) 0.989 (0.012) - - - -

CNN XE 0.052 (0.038) 0.604 (0.169)  0.070 (0.042) 0.624 (0.138) - - - -

2 QME 0.705 (0.397) 0.888 (0.071) 0.312 (0.307) 0.928 (0.074) - - - -
ME 1.984 (0.304) 0.930 (0.044)  1.950 (0.456) 0.965 (0.046) - - - -

For what it concerns IMP itself, for each model we have tried different level of pruning. Interestingly,
MLP and Deep MLP did not show specific harm with pruning, enabling us to use a percentage of
99%. For the CNN, the optimal pruning ratio was 60%. More details about this are provided in the
Appendix. Notice that each model is pruned over two iterations, followed by a final training phase.

In Table[I] we also report the performances of single submodules when applying IMP, showing the
results aggregated over both seeds and classes. We can see that pruning has little impact on rewarded
accuracy and entropy on non-rewarded inputs remains high and close to the theoretical maximum.

These results suggest that pruning removes capacity responsible for encoding unintended structure,
thus reinforcing the functional isolation induced by the loss. In addition, the results from Figure 3]
suggest that IMP is beneficial for pairwise merging.

4.5 MERGING ANALYSIS

In this section, we further evaluate our method in a more challenging scenario and provide further
analysis.
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Complete Merge. We perform a complete merge experiment. For each dataset, we randomly
generate 10 permutations of the class labels. For each of 5 random seeds, we train one submodule
per class using either MaxEnt loss alone or in combination with IMP. We then merge the submodules
incrementally, following the order dictated by the permutation: at step k, the merged model contains
submodules for the first £ classes in the permuted list.

Figure [ reports the average rewarded accuracy at each merge step, aggregated across permutations
and seeds. We can see that submodules trained with IMP (solid lines) consistently outperform or
match those trained without pruning (dashed lines).

On Yeast and HAR, performance degrades
more rapidly as modules accumulate. Still,
pruning helps mitigate this drop in the shallow
MLP setting. In the deep MLP on HAR, prun-
ing slightly underperforms—potentially due to
the presence of narrower layers, which seem to
be more affected by IMP.

Shallow MLPs show good composability on
MNIST and Fashion MNIST, where accuracy
stays above 90% up to the full merge. On more
complex tabular datasets like HAR and Yeast,
performance drops more rapidly, although IMP
consistently improves results. Deep MLPs do
not outperform shallower ones overall. CNNs
also face a performance degradation, but IMP
importantly benefits their performance.

The specific comparison between Shallow and
Deep MLP suggests that additional depth and
narrower layers do not benefit composabil-
ity, augmenting the possibility of intereference.
This suggests that width has a crucial role in
enabling composability.

Overall, these results confirm that pruning im-
proves composability across model types and
datasets, especially in combination with the
MaxEnt loss. For Deep MLP and CNN the per-
formances might be improved by better pruning
and merging techniques or width analysis. With
these results, we have shown that it is possible
to train in our proposed way, but we retain op-
timized techniques for future work.
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Figure 4: Average rewarded accuracy across in-
cremental submodule merging. All models are
pruned at 99%.
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Mode connectivity. To better understand why merging submodules via weight summation is often
effective, we study the connectivity of models in weight space. Specifically, we follow the formula-
tion of |Lubana et al.| (2023)), and evaluate whether the merged model lies on a low-loss path between
its components, using the MaxEnt loss as criterion.

We analyze complete merges on the Fashion MNIST dataset using shallow MLPs. For each step k
in the merge sequence—e.g., combining a submodule obtained from the merge [0] + - - - + [k — 1]
and one trained on class k—we evaluate the MaxEnt loss along a piecewise linear path between the
previous model and the new submodule, with the midpoint corresponding to their weight summation.

Figure [5] shows the relative loss barrier for each step, computed as the gap between the loss at the
midpoint (merged model) and the linear interpolation of the endpoint losses. Values near or below
zero indicate mode connectivity.

In the majority of cases, merged models correspond to local minima or lie along smooth, low-loss
trajectories, with no significant barriers emerging along the merge path. This supports the hypothesis
that the training procedure induces functional composability. However, small barriers (around 2%)
begin to emerge in the later steps of the complete merge—when many submodules have already
been added—suggesting mild interference.

5 DISCUSSION AND LIMITATIONS

Our proposed modular design might open new avenues, but also presents limitations and open chal-
lenges.

Trade-offs Between Specialization and Scale. As the number of merged modules increases, we
observe degradation in accuracy and entropy, suggesting a trade-off between the degree of modular-
ity and the robustness of the final model. Understanding and mitigating this scaling limit is a key
direction for future work.

Composability and Mode Connectivity. For shallow MLPs, merged models lie in regions reach-
able without incurring in loss-barriers, indicating mode connectivity. This property appears to
emerge naturally from our training procedure and supports reliable merging. While we rely on sim-
ple weight summation, more sophisticated merging techniques—e.g., Git-Rebasin or PLeas (Haz-
imeh et al.|2024;Zeng et al.,|2025)—may further improve composability, particularly in challenging
architectures.

Width Sensitivity analysis. We do not currently provide a compatibility metric between sub-
modules. However, we empirically observed that modules trained on wider fully connected layers
(both for MLPs and LeNet-style networks) tend to compose more reliably than those from narrower
networks. We hypothesize that a minimal expressive width may be required to support isolated
functional representations. Identifying this threshold, or adapting the procedure to narrower archi-
tectures, remains an important open direction—e.g. for applications to transformer blocks.

6 CONCLUSIONS

We introduced a principled framework for training sparse neural submodules that specialize in recog-
nizing a designated subset of classes while deliberately remaining ignorant of others. This behavior
is encouraged via a novel KL-based MaxEnt loss and an iterative magnitude pruning procedure. To-
gether, they yield compact, high-performing subnetworks that can be composed via simple weight
summation—a procedure supported by empirical evidence showing that such modules are mode
connected.

Our approach strengthens the agenda of modular neural networks by providing submodules with
well-defined functional roles. At the same time, it creates a controlled testbed for mechanistic inter-
pretability, where circuits are available by design rather than discovered post-hoc. In the long run,
we envision functional submodules as a key abstraction for building interpretable neural systems.
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REPRODUCIBILITY STATEMENT

To ensure reproducibility of our results, all code necessary to reproduce the experiments presented
in this paper is available in the source code included in the supplementary materials. Additional
details are provided in Appendix [C} which thoroughly documents the experimental setting: training
configurations and pipeline, evaluation metrics, mode connectivity tests, datasets, pruning schedules,
and hyperparameter choices.
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COMPOSABLE SPARSE SUBNETWORKS VIA MAXIMUM-ENTROPY PRINCIPLE -
APPENDIX

A APPENDIX STRUCTURE

The appendix is structured as follows:

* Appendix |B|describes the extended related work;

* Appendix [C| focuses on detailing the experimental setting of our work. Specifically, we
further describe the training configurations and pipeline (Appendix [C.I), the metrics
employed to evaluate the proposed methods (Appendix[C.2)), the procedure we developed to
test for presence or absence of mode connectivity (Appendix [C.3), the datasets considered
for our experiments (Appendix [C.4), the pruning ratio per iteration (Appendix [C.5), the
hyperparameters of our proposed procedure (Appendix [C.6);

» Appendix |D| focuses on providing additional experimental results to support the find-
ings in the main text. We report extended confusion matrices for individual submod-
ules without (Appendix and with pruning (Appendix [D.2)), as well as for pairwise
(Appendix and incremental merges (Appendix [D.4). We also include loss land-
scape plots from the mode connectivity analysis (Appendix [D.5), and a comprehensive
table comparing merging results with and without pruning across all loss functions (Ap-

pendix [D.6).

B EXTENDED RELATED WORK

Modular Neural Networks and Interpretability. Several works have explored modular neural
architectures that learn to decompose computation across tasks (Kirsch et al.L[2018;|Han et al., 2021}
Salem et al., |2023). In particular, Kirsch et al.| (2018) introduced a method to jointly learn both the
modules and their composition end-to-end, showing interpretable specialization through controller-
based selection. However, their approach does not isolate class-specific knowledge: modules are
reused across multiple tasks and selected based on input context, making it difficult to extract inde-
pendently meaningful functional units.

In contrast, our work explicitly aims to construct class-specific functional modules, where each
module is trained to specialize in a single class and produce maximum-entropy outputs for all oth-
ers. This sharp functional separation not only promotes compositionality via weight merging, but
also improves interpretability: submodules can be understood in terms of their response to a single
concept. Unlike these post hoc analyses, we impose structure during training, yielding functional
units with clear class semantics and compositional behavior. This aligns with the goals of mecha-
nistic interpretability (Saphra and Wiegreffe| [2024), where subnetworks (or “circuits” (Olah et al.,
2020)) are analyzed as self-contained structures responsible for identifiable sub-tasks.

Our method can be seen as a complement to neuron-level analysis techniques such as those in Mu
and Andreas| (2020), which decompose single neuron activations into logical or perceptual compo-
nents. However, such analyses often suffer from polysemanticity—the same neuron responding to
unrelated stimuli—limiting their explanatory power. Instead, we enforce functional modularity at
the network level, allowing the identification of interpretable, composable subgraphs. This modular
decomposition is also conceptually connected to recent work on harmonics of learning (Marchetti
et al.| [2024), where symmetry structures constrain the function space; our class-specific modules
may correspond to symmetry-aligned components in this broader framework.

Maximum Entropy Principle. The principle of maximum entropy (MaxEnt), introduced by
Jaynes| (1957)), asserts that when making inferences under partial knowledge, one should prefer
the probability distribution that satisfies known constraints while remaining otherwise maximally
uninformative. Originally formulated to connect statistical mechanics and information theory, Max-
Ent has since become a foundational tool in probabilistic modeling and statistical inference (Kuic,
2016} [De Martino and De Martino, 2018]). Its generalization to complex-valued functions has also
been explored, for example in image reconstruction tasks (Bajkoval, [1992).
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In our setting, MaxEnt serves as a guiding principle for functional specialization: we train sub-
modules to be highly confident only on their assigned class and maximally uncertain (i.e., high-
entropy) elsewhere. This interpretation differs from standard entropy regularization, which is typi-
cally used to smooth predictions or calibrate confidence scores (Marczak et al.l [2024). Rather than
encouraging mild uncertainty, our max-entropy loss enforces uniformity outside the rewarded class
set—actualizing the MaxEnt principle to promote class exclusion and module isolation. To our
knowledge, this use of entropy as a strict compositional prior is novel within the context of modular
deep learning.

Lottery Ticket Hypothesis and Sparse Training. Our approach builds on the Lottery Ticket Hy-
pothesis (LTH), which states that sparse subnetworks in randomly initialized networks can be trained
to match the performance of the full dense model (Frankle and Carbin, 2018; Zhou et al.l2019; Liu
et al., 2024). This idea has been extended theoretically to show that such subnetworks exist with
high probability even in convolutional architectures with ReLLU activations (Burkholz, [2022)). Em-
pirical studies also demonstrate that global unstructured pruning outperforms structured pruning in
high-sparsity regimes (Girish et al., |2021). We adopt global pruning in our setting to retain the
most functionally relevant connections across the entire network. LTH has been further explored
in transfer learning (Van Soelen and Sheppard, 2019; Burkholz et al., 2022) and federated learning
(Itahara et al., 2020). In contrast to prior work that uses pruning primarily for compression or trans-
fer, we leverage it to enforce functional isolation: pruning removes spurious capacity, encouraging
submodules to specialize only on their rewarded classes.

Mode Connectivity and Model Merging. Recent work on model merging has explored how in-
dependently trained networks can be combined through linear or non-linear paths in weight space,
a property known as mode connectivity (Ilharco et al.| [2023)). This has inspired techniques for task
arithmetic (Ortiz-Jimenez et al.} 2023} [Yang et al., 2024} [Wang et al., 2024), which define task vec-
tors as differences between fine-tuned and base models, enabling operations like unlearning and
multi-task interpolation. These methods typically assume large pre-trained models and alignment in
parameter space, and focus on editing rather than modular design.

Other approaches, such as Git-Rebasin or PLeas (Hazimeh et al.| 2024} |Zeng et al.| [2025)), address
the challenge of merging models with different initializations via weight alignment. While these
techniques focus on how to combine models after training, our method focuses on how to construct
modules that are composable by design. Specifically, we show that submodules trained with max-
entropy loss and pruning often exhibit linear mode connectivity—allowing for effective merging via
weight summation—while also identifying cases where destructive interference occurs.

Our results suggest that mode connectivity may emerge naturally when modules are trained under
entropy-based functional isolation, without requiring explicit alignment. This positions our work as
complementary to task arithmetic and merging strategies: we do not assume pre-trained baselines,
but instead provide a procedure to build sparse, specialized components that are compatible by
construction.

C EXTENDED EXPERIMENTAL SETTING

C.1 TRAINING CONFIGURATIONS AND PIPELINE

We report here the key training configurations used in our experiments. All models were trained
using the max-entropy loss and iterative magnitude pruning (IMP), with two pruning iterations and
a final sparsity of 99% for MLPs and 60% for CNNs, unless stated otherwise. The optimizer used
was Adam. We use the highest accuracy achieved on the validation set as our checkpointing strategy.
All experiments are conducted on a workstation equipped with an Intel Core 19-10940X (14-core
CPU running at 3.3GHz), 256GB of RAM, and a single Nvidia RTX A6000 GPU with 48GB of
VRAM.

Temperature scaling for the softmax was fixed to ¢. Inputs were normalized when appropriate, and
all datasets were used with standard training/validation splits. Each experiment was run with 5
random seeds.
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All YAML configuration files are released alongside the code repository for full reproducibility.
Model Architectures and Hyperparameters

Common Settings. All models use Rel.U activations, are trained with a batch size of 64, and are
evaluated using the same training and pruning pipeline.

Table 3: Configurations.

Model Hidden Layers Dropout ¢

Shallow MLP [512] 0.5 5.0
Deep MLP [512,256] 0.5 5.0
CNN (LeNet-style) Conv + [120, 64] 0. 1.0

The learning rate was set to 10~3 for MNIST and FMNIST across all architectures, and to 10~ for
Yeast and Human Activity Recognition, where only Shallow and Deep MLPs were evaluated.

Dataset-specific Input Dimensions and Classes

* MNIST / FMNIST: 784 input features (flattened 28 x 28 images), 10 classes.
* Human Activity Recognition (HAR): 561 input features, 5 classes.
* Yeast: 8 input features, 4 classes.

Training Pipeline. Here we present an overview of a generic experiment. For each experiment:

 Given the set of classes C in the dataset, choose a subset of classes C’ C C.

¢ Train one subnetwork module per class or per subset R C C’, using the max-entropy loss
and IMP.

 Evaluate each subnetwork using:

— Accuracy on rewarded classes.
— Mean entropy on non-rewarded classes.
— Confusion matrix on the validation set.

C.2 FORMAL DEFINITION OF METRICS

Accuracy on Rewarded Classes. Let R C C be the set of rewarded classes, and let DR denote the
subset of validation data whose labels belong to R. The accuracy over rewarded classes is defined

as:

1 .
Accuracyrewa.rded - W Z ]l[y(x) = y] (6)
val (w,y)ED\l}al

where 1[-] is the indicator function. This measures how well the subnetwork performs on the class
subset it is trained to recognize.

Mean Entropy on Non-Rewarded Classes. Let D""R be the validation subset containing sam-
ples from non-rewarded classes, and let Vo, be its cardinality. We define the average entropy of

the model’s predictions over this set as:

1

EntrOPYHon-rewarded = N R
non-

> H(j() (7)

non-R
€Dy

where §(z) is the predicted probability distribution for input 2, and H (p) denotes the entropy of a
distribution p, defined as:
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c|
H(p)=—) pilogp; ®)
1=1

This metric quantifies the uncertainty the model exhibits on inputs it is not supposed to classify, with
higher values indicating closer adherence to the maximum entropy principle.

Confusion Matrix. Given a validation dataset Dy, and a trained model fy, we define the confusion
matrix M € NICIXICl such that each entry M;_; counts the number of samples with true label i that
are predicted as class j:

M= > Aly=i-1[jx) =) )

(z,9)€EDya

where y(x) = arg maxy, fp(x)y is the predicted class. This matrix allows us to qualitatively inspect
specialization and interference across class predictions.

C.3 ADDITIONAL EXPLANATIONS ON MODE CONNECTIVITY

To further shed light on why merging via summation works (as demonstrated in the main paper), we
study also the loss landscape through the lens of mode connectivity.

Mode connectivity refers to a phenomenon observed in the loss landscape of neural networks. When
a neural network is trained, the optimization process (like SGD) typically finds a set of weights that
minimizes the loss function. This set of weights is called a mode or a local minimum in the high-
dimensional loss landscape. Several contributions (Frankle et al.,[2020;|Lubana et al., 2023) pointed
out that these different modes (solutions found by, for example, training the same model architecture
multiple times with different initializations or training procedures) are often not isolated; rather, they
can frequently be connected by paths along which the loss value remains consistently low.

Many paths of different shapes can connect two models, 6; and 65, in weight space. We are
specifically interested in testing for a path without significant loss barriers that includes the model
0[1,2) = 01 + 02, which results from merging the original models via summation. A key aspect of
our setup, diverging from typical mode connectivity studies, is that #; and 65 are initially specialized
for different sets of rewarded classes. The merged model 6|, 5; is intended to operate on the union
of these class sets. Consequently, we evaluate for barriers using our max-entropy loss function.
This loss function is consistently applied across the path and for the endpoint models (61, 6>), and it
considers the full union of rewarded classes relevant to 0[; 5.

Formally, in line with [Lubana et al.|(2023)), let #; and 65 be two sets of weights, D a dataset, fy a
neural network parametrized by weights 8, and £ our specific max-entropy loss function (evaluated
on D considering the union of rewarded classes as described above). We say that 6, and 5 are
mode connected along the path g, 0, (t) if V¢ € [0, 1] L(f5,, _,,1)(D)) < (1=1t)-L(fo, (D)) +t-
L(fo, (D)) + €, where € is a small margin, set to 2% of the first term on the r.h.s. following [Frankle
et al.|(2020).

Each point along the path 7y, _,¢, (¢) represents a valid set of weights for the network f(-). Stan-
dard linear mode connectivity considers the path v;MS, (¢) = (1 —t) - 61 +t - 65. For our case,
we require a path ~p, ¢, (¢) that satisfies: (i) for g, 9,(0) = 64, (ii) for 9, 9,(1) = 62, and
(iii) 3¢’ € [0, 1] s.t. Yo, -0, (t') = 01 + 62 . As a consequence, we define the mode connectivity with

respect to the following piecewise linear path:

01+ 2t 62 ift <0.5

Y0105 (t) = {2(1 _ t) . 91 + 92 ift > 0.5 (10)

It is trivial to see that our definition fulfill our properties, especially (iii) for ¢ = 0.5.
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C.4 DATASET DETAILS

MNIST and Fashion-MNIST. Both are standard 10-class image classification benchmarks with
grayscale 28 x 28 images. We normalize pixel values to [0, 1] and use the standard train/validation
splits (60,000 train, 10,000 test).

Human Activity Recognition (HAR). This dataset contains sensor data from smartphones, la-
beled with six different physical activities. Each example has 561 standardized features. We adopt
the original train/test split and reserve a validation portion from the training set.

Yeast. A protein localization dataset with 10 classes and 8 features. We normalize each feature to
zero mean and unit variance, and split the dataset using a 65/15/20 ratio. Since the class distribution
is highly imbalanced, we focused on the most represented 4 classes (i.e., CYT, NUC, MIT, ME3).

Preprocessing. For all tabular datasets, we apply z-score normalization and encode labels as inte-
gers. We use early stopping on the validation set and batch sizes of 64 during training.

C.5 ITERATIVE PRUNING SCHEDULE DERIVATION

We follow the Iterative Magnitude Pruning (IMP) framework, in which a neural network is pruned
over multiple iterations. At each pruning step, a fraction K of the remaining weights (those with
the smallest absolute value) is removed. This process is repeated for IV iterations until a target

sparsity level P € (0, 1) is reached, corresponding to retaining only a 1 — P fraction of the original
parameters.

Pruning Rate Schedule. Let S; denote the fraction of weights remaining after the -th pruning
iteration. The pruning process is multiplicative, meaning that:

Si=(1-K),

assuming Sy = 1 (i.e., all weights are initially present). After N pruning iterations, we desire a final
sparsity P, which implies a remaining fraction Sy = 1 — P. Therefore, we solve:

1-K)N=1-P
Solving for K, we obtain the pruning rate per iteration:
K=1-(1-P)YN,

This schedule ensures that pruning a fixed fraction K of the remaining weights at each of the N
steps results in an overall sparsity of P at the end of the iterative process.

Pruning Algorithm. Algorithm [2|summarizes the full procedure used in our experiments.

Algorithm 2 Iterative Magnitude Pruning with Max-Entropy Loss

Require: Initial weights 6, dataset D, rewarded classes R, number of pruning iterations IV, target
sparsity P, epochs per iteration
1: 0« 90
2 K+ 1—(1-P)YN
3: for iteration ¢ = 1to N do
4 Train model fy on D using max-entropy loss with reward set R for F epochs
5: Prune the fraction K of weights in 6 with the smallest absolute value
6 Reset remaining weights in € to their initial values from 6
7: end for
8: Train the final pruned subnetwork on D using max-entropy loss with R for E epochs
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C.6 HYPERPARAMETER TUNING

We perform a small-scale hyperparameter study with respect to two key components of the training
pipeline: the softmax temperature used in the max-entropy loss, and the pruning ratio applied in
iterative magnitude pruning. The temperature analysis is conducted on MNIST using a shallow
MLP in the complete merge setting. For the pruning ratio, we provide two complementary studies:
one on the shallow MLP in the same complete merge scenario, and one on CNNs (LeNet-style) in
the pairwise merge setting, using both MNIST and FashionMNIST. All results are averaged over 5
random seeds.

Temperature. We study the effect of the temperature hyperparameter ¢ € {1,3,5,7}, which
scales the logits before the softmax activation and thus controls the sharpness of the output dis-
tribution. Lower temperatures produce more peaked distributions, while higher values encourage
uniformity.

Figure [6a] and [6b] show the average entropy on non-rewarded classes and the rewarded accuracy
across merge steps for different temperatures.

Entropy vs Step per Temperature Rewarded Accuracy vs Step per Temperature

2295

2290

g — i
£ 200 Fos
] g

2280

Temperature Temperature

2] 51220 it
% T=7.000 0al =700
(a) Entropy on non-rewarded samples at each incre- (b) Rewarded accuracy at each incremental merge
mental merge step for different temperatures. step for different temperatures.

Figure 6: Effect of temperature scaling on specialization and composability. Temperature ¢ controls
the confidence of the softmax output; ¢ = 5 achieves a good trade-off between high entropy on
non-rewarded classes and accuracy on rewarded ones.

Pruning Ratio. We evaluate the impact of pruning ratio on submodule performance and merge
behavior for two architectures: a shallow MLP and a CNN (LeNet-style). For the shallow MLP, we
focus on the complete merge setting, testing three final sparsity levels—90%, 99%, and 99.9%—ad-
justed across two IMP iterations. As shown in Figure [/ pruning to 99% yields the best trade-off
between specialization and compositionality: it maintains high entropy on non-rewarded inputs and
preserves rewarded accuracy throughout the merge process. Lower sparsity (90%) retains excessive
capacity, causing interference when modules are merged. Higher sparsity (99.9%) leads to underfit-
ting and degraded performance.

For CNNs, we instead study pruning in the pairwise merge setting, focusing on class subset sizes
|R| = 2 and 5, across MNIST and FashionMNIST. The results, summarized in Figure show that
a pruning ratio of 0.6 consistently yields the highest average rewarded accuracy across both datasets
and cardinalities. This indicates that, unlike MLPs, CNNs benefit from less aggressive sparsification.
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Entropy vs Step per Pruning Ratio Rewarded Accuracy vs Step per Pruning Ratio

Rewarded Acct

Pruning Ratio

~8~ PR =0.900

PR = 0.990

8- PR=0999

1 2 H 4 5 6 7 [ s 2 a 6
step Step

8 10

(a) Entropy on non-rewarded samples across merge (b) Rewarded accuracy across merge steps for differ-
steps for different pruning ratios. ent pruning ratios.

Figure 7: Effect of pruning ratio on submodule specialization and merge stability. A pruning ratio of
0.99 yields a good balance between maintaining accuracy and increasing entropy on non-rewarded
classes.
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Figure 8: Effect of pruning ratio on CNN accuracy after pairwise merging on MNIST and Fashion-
MNIST, with cardinality |R| = 2 and 5. The optimal pruning ratio is 0.6.

D EXTENDED EXPERIMENTS

In this section, we present additional experimental results and qualitative insights.

First, we report representative examples for three settings:

 Shallow MLP on MNIST
* Deep MLP on Human Activity Recognition
* CNN (LeNet-style) on FashionMNIST

Then, we provide a comprehensive table reporting the full results for pairwise submodule merging
across all configurations—varying model architectures, pruning settings (with and without IMP),
cardinalities |R|, and loss functions. This extended comparison complements the main paper, where
only pruned results were shown, and helps quantify the impact of pruning across a wider set of
conditions.

D.1 CONFUSION MATRICES (NO PRUNING)

In this subsection, we show submodules trained using the max-entropy loss without applying iter-
ative magnitude pruning (IMP). For each model-dataset pair, we show the confusion matrix of a
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submodule trained on a single rewarded class. These visualizations allow us to assess the degree of
specialization and the presence of residual structure in the predictions for non-rewarded classes.

In all cases, the models exhibit strong activation on the rewarded class, while showing varying
degrees of non-uniformity on the excluded classes—especially evident in the confusion matrix rows
corresponding to non-rewarded labels.
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Figure 9: Confusion matrices for submodules trained on classes 0-9 without pruning, using the max-
entropy loss. Each model is trained to specialize on one class and suppress predictions on others.
Results refer to the Shallow MLP architecture applied to the MNIST dataset.
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Figure 10: Confusion matrices for submodules trained on classes 0—4 without pruning, using the
max-entropy loss. Each model is trained to specialize on one class and suppress predictions on
others. Results refer to the Deep MLP architecture applied to the HAR dataset.

D.2 CONFUSION MATRICES AFTER PRUNING
We report confusion matrices for submodules trained with both the max-entropy loss and iterative
magnitude pruning (IMP). These models are expected to exhibit stronger functional isolation, with

reduced leakage across non-rewarded classes. Comparisons with Section [D.1] highlight the impact
of pruning on output uniformity and specialization.

D.3 CONFUSION MATRICES FOR PAIRWISE MERGES

We show representative confusion matrices for pairwise merges of submodules, each specialized on
a distinct class. These examples illustrate that, even after weight summation, the merged model re-
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Figure 11: Confusion matrices for submodules trained on classes 0-9 without pruning, using the
max-entropy loss. Each model is trained to specialize on one class and suppress predictions on
others. Results refer to the CNN architecture applied to the FMNIST dataset. The CNN was pruned
with a 99% pruning ratio.

tains high confidence on rewarded classes and preserves uniform predictions on others—confirming
compatibility and lack of interference.

D.4 CONFUSION MATRICES FOR INCREMENTAL MERGES

This section presents confusion matrices from various stages of incremental merging, where multiple
submodules are combined one by one. The results demonstrate how compositional behavior is
maintained across merge steps, and how the model continues to correctly isolate rewarded class
behavior while suppressing predictions on excluded ones

D.5 MODE CONNECTIVITY

In this section, we present additional plots analyzing the loss landscape between merged submod-
ules. Following the framework described in Appendix [C.3] we evaluate the relative difference in
loss along the piecewise linear path connecting two modules and their sum.

We show incremental merging results for a Deep MLP on the HAR dataset and for a CNN on
FMNIST, for both incremental and pairwise merging settings. In the majority of the cases, the
pictures describe the desired behaviour (no or limited increase above 0). As already mentioned in
the main paper, it can also be observed that for the CNN, after many incremental merges (e.g., steps
9 and 10), the difficulty in achieving an optimal merge is reflected in the presence of barriers in the
loss function landscape.

D.6 COMPLETE RESULTS FOR PAIRWISE SUBMODULE MERGING
In the main paper (Section @), we report the results of pairwise submodule merging under the Iter-

ative Magnitude Pruning (IMP) regime, as this generally led to the best overall performance. For
completeness, here we provide the full set of results, including both pruned and non-pruned configu-
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Figure 12: Confusion matrices for submodules trained on classes 0-9, using the max-entropy loss
and pruning. Each model is trained to specialize on one class and suppress predictions on others.
Results refer to the Shallow MLP architecture applied to the MNIST dataset.
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Figure 13: Confusion matrices for submodules trained on classes 0—4, using the max-entropy loss
and pruning. Each model is trained to specialize on one class and suppress predictions on others.
Results refer to the Deep MLP architecture applied to the HAR dataset.

rations. Table[d]reports the average rewarded accuracy and average entropy on non-rewarded classes
for all model families (Shallow MLP, Deep MLP, CNN), across multiple datasets (MNIST, Fashion
MNIST, HAR, Yeast), cardinalities |R| € 1,2, 5, and loss functions (CrossEntropy, Quasi-MaxEnt,
and MaxEnt).

‘We observe that:

* Models trained with IMP consistently outperform their non-pruned counterparts in most
settings, particularly when using the MaxEnt loss.

* The MaxEnt loss yields the most reliable and composable modules across all model types
and datasets, both with and without pruning.

* Non-pruned models trained with standard CrossEntropy struggle to maintain entropy on
non-rewarded classes, often resulting in degraded compositional performance.

* The benefit of pruning is especially marked in deep MLPs, where without IMP the merging
process suffers from significant degradation in rewarded accuracy.
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Figure 14: Confusion matrices for submodules trained on classes 0-9, using the max-entropy loss
and pruning. Each model is trained to specialize on one class and suppress predictions on others.
Results refer to the CNN architecture applied to the FMNIST dataset. The CNN was pruned with a
99% pruning ratio.

These extended results support the conclusions drawn in the main paper: pruning strengthens func-
tional specialization and enhances composability, especially when combined with entropy-based
objectives.
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Figure 15: Confusion matrices for 16 pairwise merges of Shallow MLP submodules on MNIST
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Figure 16: Confusion matrices for 10 pairwise merges of Deep MLP submodules on HAR. Each
cell shows the average across 5 seeds.
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Figure 17: Confusion matrices for 16 pairwise merges of CNN submodules on FMNIST. Each cell
shows the average across 5 seeds. The CNN was pruned with a 99% pruning ratio.
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Figure 18: Confusion matrices for pairwise merges of CNN submodules on FMNIST, for exemplary
modules of cardinality 1, 2, and 5 each. Each cell shows the average across 5 seeds. The CNN was
pruned with a 99% pruning ratio.
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(f) Step 6 (g) Step 7 (h) Step 8 (i) Step 9 () Step 10

Figure 19: Confusion matrices for incremental merge steps of a Shallow MLP on MNIST. Each
submodule is trained independently and merged following increasing order. Results are averaged
over 5 seeds. The structure of predictions remains clean and interpretable throughout the merge.

(a) Step 1 (b) Step 2 (c) Step 3 (d) Step 4 (e) Step 5

Figure 20: Confusion matrices for incremental merge steps of a Deep MLP on HAR. Each sub-
module is trained independently and merged following increasing order. Results are averaged over
5 seeds.
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Figure 21: Confusion matrices for incremental merge steps of a CNN on FMNIST. Each submodule
is trained independently and merged following increasing order. Results are averaged over 5 seeds.
The CNN was pruned with a 99% pruning ratio.
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Figure 22: Values for 7y, g, (t) for pairwise merges of CNN submodules on FMNIST, for exem-

plary modules of cardinality 1, 2, and 5 each (same as Figure[I8). Results are averaged over 5 seeds.
The CNN was pruned with a 99% pruning ratio.
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Figure 23: Values for 7y, 0, (t) for incremental merge steps of a Deep MLP on HAR (same as Fig-

ure 20). Each submodule is trained independently and merged following increasing order. Results
are averaged over 5 seeds.
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Figure 24: Values for 7y, 0, () for incremental merge steps of a CNN on FMNIST (same as Fig-
ure 21)). Each submodule is trained independently and merged following increasing order. Results
are averaged over 5 seeds. The CNN was pruned with a 99% pruning ratio.

27



Under review as a conference paper at ICLR 2026

Table 4: Average performance of pairwise-summed sub-modules. For each group model-cardinality-
dataset, the best approach is highlighted in bold.

Dataset FMNIST MNIST HAR Yeast
Entropy Rewarded Acc  Entropy Rewarded Acc  Entropy Rewarded Acc  Entropy Rewarded Acc
Model |R|  IMP loss
XE 0.028 (0.016)  0.752 (0.248) 0.001 ©.003)  0.492 (0.024) 0.463 0521y 0.853 (0.191) 0.237 0259 0.571 0.162)

No QME 2.041 ©064) 0.910 (0.083) 2.038 0056 0.964 (0.037) 0.958 0.146)  0.971 (©.041) 0.843 1017  0.792 0.097)
ME 2.300 ©001)  0.970 ©.012) 2.300 @001 0.970 ©012) 1.598 ©.067)  0.987 (0.010) 0.827 0175 0.806 (0.153)

1
XE 0.183 .15 0.877 (0.186) 0.507 ©.1500  0.708 (0.179) 1.255 0191 0.855 0.197) 1.378 0004y 0.631 (0.101)
Yes QME 2.031 132 0.908 (.105) 2.082 ©005) 0.973 ©.014) 1.196 ©073) 0.946 (0.046) 1.056 0082 0.799 (.106)
ME 2.287 ©.005) 0977 (0.005) 2.287 ©.005) 0.991 (0.005) 1.716 ©.033) 0.985 (0.016) 1.146 ©.077) 0.853 (©0.127)
XE 0.068 ©.069  0.569 (.11 0.127 ©0s0)  0.572 0.114) 0.320 0274 0.761 (0.196) - 0.435 ©.005)
i No QME 1.980 (©.095) 0.883 (0.061) 1.719 0204 0.954 (0.023) 0.415 0300 0.930 (0.029) - 0.566 (0.011)
Shallow MLP ) ME 2.297 ©o02 0.957 ©013) 2297 ©o02 0.957 ©013) 1.521 ©171)  0.940 (©.017) - 0.527 ©012)
XE 0.277 ©.108)  0.786 (0.141) 0.332 ©0s0)  0.838 (0.074) 1.167 0217 0.871 (0.055) - 0.381 (0.036)
Yes QME 1.824 0207 0.917 (0.049) 1.683 0216 0.959 (0.016) 1.013 ©223) 0.891 (0.024) - 0.559 (.011)
ME 2.267 0007  0.977 (©0.005) 2.268 ©.007) 0.980 (0.006) 1.670 ©.045) 0.935 (©0.027) - 0.616 (©0.010)
XE - 0.456 (0.036) - 0.571 ©.076) - - - -
No QME - 0.687 0.077) - 0.896 (0.012) - - - -
5 ME - 0.945 (0.008) - 0.945 (0.008) - - - -
XE - 0.480 (0.075) - 0.842 (0.027) - - - -
Yes QME - 0.741 (0.026) - 0.905 (0.023) - - - -
ME - 0.946 (0.004) - 0.946 (0.004) - - - -
XE 0.041 ©.0s5)  0.675 (0.220) 0.000 ©.000)  0.505 (0.025) 0.519 0611y 0.823 0.227) 0.068 ©.169)  0.591 (0.144)
No QME 1.846 184 0.920 (0.110) 1.983 0175 0.978 (0.020) 0.812 (0.190) 0.975 (0.026) 0.655 .10 0.796 (©.102)
1 ME 2.290 0019 0.883 (0.148) 2.299 ©007) 0.819 (0.104) 1.716 ©0s8) 0.984 (0.012) 0.891 0177 0.836 (0.136)
XE 0.215 01500 0.802 (0.205) 0.422 ©0.190)  0.689 (0.194) 1.059 ©0313)  0.840 (0210) 1.386 (0.0000  0.553 (0.144)
Yes QME 1.842 (03299 0.868 (0.176) 2.061 ©046) 0.954 (0.045) 1.098 (0.128) 0.819 (0.155) 0.883 .11y 0.783 (.14
ME 2.245 0072 0.975 (0.039) 2.291 ©031)  0.990 (©.005) 1.697 ©0s0) 0.988 (0.016) 1.063 0.109)  0.859 (0.120)
XE 0.034 ©.030)  0.565 (0.097) 0.140 ©062)  0.602 (0.118) 0.324 0268y 0.708 (0.150) - 0.438 ©.007)
D MLP No QME 2.032 0.145 0.865 (0.079) 1.822 02277  0.897 (0.065) 0.213 ©.194 0.903 (0.060) - 0.570 (0.021)
eep ) ME 2283 o016  0.735 (0.087) 2297 ©008) 0.755 (0.090) 1.725 0039  0.946 (0.026) - 0.587 (0.036)
XE 0.166 0.083)  0.678 (0.081) 0.208 0054y  0.743 ©.111) 1.065 (0.344)  0.824 (0.068) - 0.382 (0.046)
Yes QME 1.347 0484y 0.863 (0.088) 1.224 0352 0912 (0.038) 0.665 0251 0.787 (0.093) - 0.562 (0.023)
ME 2.197 ©095)  0.898 (0.045) 2.275 002 0.976 ©o11) 1.607 ©.1349 0.930 (0.028) - 0.589 (0.018)
XE - 0.534 (0.053) - 0.580 .19 - - - -
No QME — 0.627 (o.101) - 0.800 (0.025) - - - -
5 ME - 0.483 (0.048) - 0.670 (0.106) - - - -
XE - 0.400 (0.082) - 0.710 (0.044) - - - -
Yes QME - 0.701 (0.084) - 0.834 (0.036) - - - -
ME - 0.774 (0.043) - 0.919 (0.003) - - - -
XE 0.038 (0.065)  0.639 (0.206) 0.072 ©.168)  0.519 (0.072) - - - -
No QME 1.247 ©280 0.916 (0.087) 1.261 0291y 0.974 (0.034) - - - -
1 ME 2.297 ©004) 0.908 (0.085) 2.285 0019 0.968 (0.033) - - - -
XE 0.016 ©.026)  0.557 (0.150) 0.041 ©.128)  0.529 (0.080) - - - -
Yes QME 0.981 03229 0.880 (0.136) 1.001 ©377 0.961 (0.078) - - - -
ME 2.297 0039  0.960 (©.097) 2.286 00571  0.989 ©.012) - - - -
XE 0.090 0.038)  0.632 (0.151) 0.092 ©0s2)  0.736 ©.131) - - - -
No QME 1.203 ©321p 0.910 (0.047) 0.742 0359  0.934 (0.054) - - - -
CNN 5 ME 2.137 ©a35) 0.876 (0.062) 2.012 ©241) 0.959 (0.034) - - - -
XE 0.052 0.038)  0.604 (0.169) 0.070 ©.042)  0.624 (0.138) - - - -
Yes QME 0.705 (0397) 0.888 (0.071) 0.312 0307 0.928 (0.074) - - - -
ME 1.984 ©304)  0.930 (0.044) 1.950 ©4s56)  0.965 (0.046) - - - -
XE - 0.519 (0.080) - 0.698 (©.151) - - - -
No QME - 0.798 (0.029) - 0.892 (0.056) - - - -
5 ME - 0.826 (0.038) - 0.926 (0.030) - - - -
XE - 0.512 (0.066) - 0.777 ©.056) - - - -
Yes QME - 0.779 (0.066) - 0.850 (0.084) - - - -
ME - 0.864 011 - 0.955 0.012) - - - -
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