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Abstract

Leveraging machine learning methods to solve constraint satisfaction problems has shown
promising, but they are mostly limited to a static situation where the problem description is
completely known and fixed from the beginning. In this work we present a new approach to
constraint satisfaction and optimization in dynamically changing environments, particularly
when variables in the problem are statistically independent. We frame it as a reinforcement
learning problem and introduce a conditional policy generator by borrowing the idea of class
conditional generative adversarial networks (GANs). Assuming that the problem includes
both static and dynamic constraints, the former are used in a reward formulation to guide
the policy training such that it learns to map to a probabilistic distribution of solutions
satisfying static constraints from a noise prior, which is similar to a generator in GANs.
On the other hand, dynamic constraints in the problem are encoded to different class labels
and fed with the input noise. The policy is then simultaneously updated for maximum
likelihood of correctly classifying given the dynamic conditions in a supervised manner.
We empirically demonstrate a proof-of-principle experiment with a multi-modal constraint
satisfaction problem and compare between unconditional and conditional cases.

1 Introduction

Constraint satisfaction problems (CSPs) are a fundamental class of combinatorial search problems that arise
in numerous domains, including task scheduling, resource allocation, product configuration, and hardware
design (Dechter, 1992). They involve finding assignments of values to a set of variables that satisfy a given
set of constraints. Many efficient methods to solve them have been long developed, such as backtracking
search, constraint propagation, and local search (Kumar, 1992; Rossi et al., 2006). But these algorithms
often struggle to scale to complex problems with high dimensionality and diverse multi-modal solutions,
and may not generalize well to different problem instances or classes (Dechter, 2003; Kotthoff, 2014; Bengio
et al., 2021). In recent years, incorporating machine learning techniques in CSP solvers has emerged as an
attractive alternative to address these challenges (Popescu et al., 2022). For example, deep neural networks
are used to learn search heuristics (Yolcu & Póczos, 2019), to predict the satisfiability of a problem (Xu
et al., 2018), to select the best algorithm per case (Loreggia et al., 2016), or to generate solutions directly by
learning the optimal solver’s decision through imitation or trial-and-error (Bello et al., 2016). Despite the
success of these methods, most of them are designed for static CSPs where the problem structure remains
unchanged and known a priori. In practice, however, many real-world problems evolve over time or undergo
conditional change. For example, in a scheduling problem, new task may arrive, existing jobs may be delayed,
or resource availability may shift, requiring the system to dynamically re-optimize the schedule. Similarly
in a car configuration problem, availability of certain features may vary depending on regional regulations
or current inventory levels. Therefore, it is crucial to develop CSP solvers that can adapt to these changes
in finding solution.

In this work, we propose a reinforcement learning (RL) based method for solving a dynamic CSP (Dechter &
Dechter, 1988; Mittal & Falkenhainer, 1990) that especially involves conditional changes in the environment
such as conditional activation or deactivation of constraints. We assume that the problem consists of both
static and dynamic constraints and variables are independent of each other. By drawing inspiration from
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the concept of conditional generative adversarial networks (GANs) (Mirza & Osindero, 2014), we develop
a conditional policy generator. By training it through a noise source using the policy gradient method
together with the maximum likelihood objective in order to satisfy both static and dynamic constraints, the
stochastic policy generator eventually learns the general structure of solution space in a dynamic scenario.
In Section 2, background on CSPs, their RL formulation, and related works are provided. Section 3 describes
the proposed policy network architecture and training procedure. It is followed by experimental results on a
simple multi-modal benchmark problem for both unconditional and conditional cases in Section 4. Finally
we conclude and discuss future work.

2 Background

2.1 Constraint satisfaction problems

CSPs are typically represented by a 3-tuple ⟨X, D, C⟩ — a set of variables X = {X1, . . . , XT }, each with a
domain D = {D1, . . . , DT } of possible discrete values, and a set of constraints that specify the relations
between the variables C = {C1, . . . , CK} (Rossi et al., 2006). The goal considered here is to find all
assignments of values to the variables that satisfies every constraint. Constrained optimization problems
can be also treated as CSPs by converting an additional objective function to maximize or minimize to a soft
constraint. Among many learning based approaches, a CSP can be casted as a RL task. In a Markov decision
process, the action a corresponds to assigning a set of values to the variables (x1, . . . , xT ) where xk ∈ Dk,
and the state s to the current assignment1, and the reward R to the avoidance of penalties for violating
constraints. The policy π or the value function V is then optimized to maximize the expected reward by
interacting with the environment. The reward function is a crucial component of RL that directly influences
the agent’s behavior and learning, and for instance, it can be defined as a weighted sum of the degree of
satisfying each constraint. Various RL methods have been successfully applied to CSPs with improvement
of the search performance (Nareyek, 2004; Xu et al., 2009; Bello et al., 2016), but most of them are limited
to well defined static problems and are not directly applicable to address dynamics in the problem.

2.2 Unconditional policy generator

An interesting RL algorithm applied to analog circuit design was introduced by Lee & Oliehoek (2020). As an
instance of a CSP, its goal is to search for optimal circuit parameters that meet all design constraints imposed
on performance metrics. To tackle the problem, the stochastic policy generator is combined with the reward
model to take advantage of sample-efficient Dyna-style RL. However, for this type of CSPs where the input
variables are statistically independent, each variable is represented by its own distribution that is the output
of an independent softmax classifier found in Figure 1, and together these form a policy that is a product
distribution. This leads to a simple architecture based on the feedforward network without involving any
recurrent units often used for the problems with sequential variables (Zoph & Le, 2016). Furthermore, in order
to allow flexible distributions for each variable, the policy network learns a probabilistic distribution of all
feasible solutions by mapping a known noise distribution to it, which resembles a generator in unconditional
GANs.

2.3 Related works

GANs, composed of a generator and a discriminator, employ an adversarial process where these two compete
in a minimax game (Goodfellow et al., 2014). The generator aims to produce realistic data samples that
can deceive the discriminator, which simultaneously attempts to accurately distinguish between real and
generated data. Though developed as distinct branches, potential connection and synergy between RL and
GANs have been increasingly recognized and explored by both communities. Pfau & Vinyals (2016) drew
the formal connection between GANs and actor-critic methods in RL with insights into a unified theoretical
perspective. Ho & Ermon (2016) proposed a GAN-like algorithm for imitation learning to recover a policy
that matches the expert demonstrations, and Finn et al. (2016) also showed an mathematical equivalence
between maximum entropy inverse RL and GANs. Conversely, RL techniques were exploited to overcome

1In a strict sense, this RL formulation is stateless because there is no time component in it.
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training challenges inherent to GANs. For example, SeqGAN (Yu et al., 2017) used the policy gradient
method to train the generator for non-differentiable sequence generation.

3 Conditional policy generator

A direct parallel between the policy in RL and the generator in GANs allows us to incorporate recent advances
in GANs into the architecture design of the policy network. One straightforward application is to draw
inspiration from conditional GANs. Conditional GANs are an extension of vanilla GANs that controls data
generation conditioned on additional information (Mirza & Osindero, 2014). Conditions, used as input with
random noise, can take various forms including class labels which are also considered in this work, attribute
vectors, text descriptions, or other modality data (Mirza & Osindero, 2014; Perarnau et al., 2016; Reed et al.,
2016; Isola et al., 2017). Since they serve as certain additional criteria imposed on the GAN generator output
which corresponds to input variables of CSPs in case of the policy generator, conditions can be viewed in the
context of CSPs as dynamic constraints that are subject to change during the solving process (Heyrani Nobari
et al., 2021). Together with standard static constraints that are used in the reward formulation, they form a
dynamic CSP that extends the traditional static CSP framework to accommodate dynamics in the problem
structure. There are a variety of subsets in the realm of dynamic CSPs, and particularly conditional CSPs
(Sabin & Freuder, 1999) can be well suited to our approach. Conditional CSPs, which dynamically activate
or deactivate constraints and variables depending on predefined conditions, similarly incorporate conditional
logic in their framework.

Figure 1: One simple implementation of a conditional policy generator.

Figure 1 shows the architecture of a simple class conditional policy generator to solve a dynamic CSP
⟨X, D, Cs, Cd⟩. It is basically identical to the unconditional policy generator except that the input layer is
augmented with additional class labels related to dynamic constraints. The generator consists of a set of
independent feedforward networks with the softmax output layers, each of which is responsible for generating
a probability distribution of each variable X over the discrete domain D. The embedding vector of a class
label c is concatenated with the random noise vector z sampled from, e.g., the normal distribution N (0, 1)
and fed into each network to control the generator output. The conditional policy generator is trained using a
combination of RL and supervised learning. In RL, the standard static constraints Cs are used to define the
reward function as before, which guides the generator to assign high probabilities to solutions satisfying them
based on the policy gradient method. In supervised learning, the dynamic constraints Cd = {C1, . . . , CL}
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are mapped to different classes that can be simply labeled as ci = i where i ∈ {1, . . . , L} before applying the
embedding, and the generator is trained to maximize the likelihood of classifying the generator output to
satisfy to a given condition.2 However, the proposed network design does not require auxiliary discriminators
to this end, which makes it distinct from the conditional GAN architecture. Because the generator produces
a categorical distribution for each variable that is considered as independent, we can obtain a probability
map of the entire input space (i.e., the action space A) for every possible value assignment. This allows us to
compute the likelihood of correctly classifying the generated action a given a class by simply summing over
the probabilities of all the actions inside the solution subregion C satisfying the given activated condition.
The overall training loss can be expressed as

L (θ) = LPG (θ) + LENT (θ) + LNLL (θ)

= − 1
N

N∑
i=1

[
(Ri − b) log πθ(ai|zi, ci) + αH(πθ(·|zi, ci)) + β

∑
ã∈Ci

log πθ(ã|zi, ci)
]

(1)

where the entropy H(πθ(·|zi, ci)) and the policy πθ(ai|zi, ci) are given by

H(πθ(·|zi, ci)) = −
∑
ã∈A

πθ(ã|zi, ci) log πθ(ã|zi, ci), (2)

πθ(ai|zi, ci) =
T∏

t=1
πt,θ(at,i|zt,i, ci). (3)

Here θ is the parameters of the generator to be optimized, N the minibatch size, and T the number of
input variables. In Equation 1, LPG(θ) represents the REINFORCE algorithm (Williams, 1992) with the
baseline b to reduce the variance of the estimate, LENT(θ) the entropy regularization added to encourage
exploration (Mnih et al., 2016), and LNLL(θ) the negative log-likelihood objective for the classification task.
The hyperparameters α and β are used to balance the contributions of the three loss components, and
especially β is set to gradually increase from zero during the training because the RL loss is very noisy in
the beginning. The detailed training procedure is described in Algorithm 1.

Algorithm 1 Training of proposed conditional policy generator for ⟨X, D, Cs, Cd⟩.
Require:

Define reward function R using static constraints Cs
Define class labels and solution subregions {ci, Ci}L

i=1 using dynamic constraints Cd

1: Initialize generator πθ with random weights θ
2: for number of training iterations do
3: for i = 1 to N do
4: Sample zi ∼ N (0, 1)
5: Sample ci randomly from {c1, . . . , cL}
6: Sample a vector of T actions ai ∼ πθ ( ·| zi, ci)
7: Evaluate reward Ri = R(X = ai) where variables X are bounded by domains D
8: Use entropy regularized policy gradient method to compute LPG(θ), LENT(θ)
9: Use negative log-likelihood to compute LNLL(θ) based on Ci

10: end for
11: Compute total loss L(θ) in Equation 1
12: Update θ using gradient descent θ ← θ − η∇θL(θ) ▷ η: learning rate
13: end for

2These conditions are supposed to have disjoint solution regions in the input space.
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4 Experiments

In this section, we present a proof-of-principle experiment to empirically evaluate the performance of the
proposed algorithm on a simple multi-modal CSP benchmark. We start with the unconditional policy
generator to address the static CSP, and then we extend it to the conditional policy generator by modifying
the problem to include dynamic constraints for comparison.

4.1 Unconditional case

The test problem, which is called a Synt-3D function as found in Hakhamaneshi et al. (2020), consists of
three variables x = {x1, x2, x3}, each with a domain of [−5, 5] discretized with 100 possible values. The
associated evaluation function is given by ftest(x) = 1

3
∑3

i=1( 1
4 x4

i − 2x2
i + 5). For simplicity, the goal is

to find all value assignments that satisfy a single static constraint of ftest(x) < 1.2. The reward function
is expressed as R = min

(
1.2−ftest(x)
1.2+ftest(x) , 0

)
. As depicted in Figure 2 (d), this problem has a multi-modal

solution space in which each solution mode is formed as a cloud of 248 solution points centered at minima of
(±2,±2,±2) within eight different octants in the 3D Cartesian coordinate system. The unconditional policy
network is implemented using 3 independent cells of the softmax classifier with 100 output units. The input
noise vector per cell is sampled from the Gaussian noise of 64 dimensions, and the generator is trained based
on the entropy regularized REINFORCE update rule (i.e., the first two terms in Equation 1) to learn about
the action space from the noise prior for generalization.

Figure 2: (a) Reward trajectory in policy training, (b) Distribution of Gaussian noise input to trained
unconditional policy generator, (c) Reward distribution of 5,000 generated actions from input noise, (d)
Exact multi-modal solution space (marked with ’o’) of Synt-3D problem including its projection (marked
with ’x’) onto coordinate planes, (e) Distribution of 5,000 generated actions (marked with ’o’) in action
space including its projection (marked with ’x’) onto coordinate planes. Green and red symbols indicate
ones solving and not solving the problem, respectively.

Figure 2 (a) shows a noisy reward trajectory while training is carried out over 30,000 iterations. Starting
from a negative penalty score, the mean reward averaged over 100 neighbors converges to zero, which means
satisfying the constraint, around 10,000 steps as the policy improves. For verification, this trained policy
is evaluated by sampling 5,000 actions using the Gaussian noise source as shown in Figure 2 (b), and the
reward distribution of the generated actions are presented in Figure 2 (c) which are concentrated mostly near
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a reward of zero. This represents that the policy generator learns to map the input noise to a distribution
of optimal actions solving the problem, similar to the GAN generator. In Figure 2 (e), these output actions
are also plotted in the 3D Cartesian coordinates to compare with Figure 2 (d), and it is evident that all the
solution modes in the different octants are evenly discovered well by the the policy generator without the
mode collapse which is often problematic for the GAN generator. If necessary, the sampling efficiency can
be significantly improved by incorporating the learnable reward model and applying the Dyna-style learning
framework (Lee & Oliehoek, 2020).

Another advantage of this approach is expected to shine when dealing with high dimensional problems.
The simple neural architecture based on feedforward network does not only allow parallel computation, but
also each cell in the generator enables to divide and conquer independent variables one by one. Figure 3
shows the reward trajectories of Synt-2D, Synt-5D, and Synt-10D for comparison. Regardless of the problem
dimensionality, it is interesting to note that they all exhibit similar learning convergence by marginalizing and
optimizing each variable independently. Although the number of training samples required for the Synt-2D
problem is even comparable to the full grid search case, it does not exponentially increase with the problem
dimensionality, hence effectively mitigating the curse of dimensionality.

Figure 3: Comparison of reward trajectories of unconditional policy training in (a) Synt-2D, (b) Synt-5D,
and (c) Synt-10D problems.

4.2 Conditional case

In order to demonstrate the feasibility of the proposed approach to solving dynamic CSPs, we modify the
Synt-3D problem used in the previous section to include eight additional dynamic constraints dictating
whether the assignment of values belongs to each octant space defined by the signs of three coordinate
variables. The goal in this section is to find one of eight solution modes depending on the conditional input
selected from {c0, . . . , c7} classes where ci corresponds to occupancy in the i-th octant space as shown in
Figure 2 (d). The class label ci = i is embedded and concatenated with the noise vector as input to the
policy generator, and the training is performed based on Algorithm 1.

Figure 4: Trajectories of (a) loss and (b) its average over 100 neighbors during the training of conditional
policy generator.
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Note that the reward only reflects the static constraint as before, and so the learning progress of the policy
satisfying both the static and dynamic constraints can be traced better via the loss trajectories as presented
in Figure 4. In the beginning, the policy update uses the noisy policy gradient loss with the relatively high
entropy bonus to better explore the action space, and then the negative log-likelihood loss for classification
gradually comes into play together as β in Equation 1 increases from zero. Both loss components approach
zero similarly in less than 10,000 steps, and the entropy loss is saturated to a lower level as the policy
improves and becomes more certain about solution to the problem. The trained policy is evaluated by
generating 1,000 action samples from the noise prior conditioned on different class input, and the results
are shown in Figure 5. It can be seen that the generated actions are well aligned with the corresponding
octant space and correctly reproduce the solution mode within it, which indicates that the conditional policy
generator is able to learn to solve the dynamic CSP by effectively searching the entire solution space satisfying
both static and dynamic constraints.

Figure 5: Distribution of 1,000 generated actions (marked with ’o’) in action space including its projection
(marked with ’x’) onto coordinate planes for evaluation of trained conditional policy generator with condi-
tional input of (a) class c0, (b) class c4, or (c) class c7. Green and red symbols indicate ones solving and not
solving the problem, respectively.

5 Conclusions

We propose a new approach to addressing dynamic constraint satisfaction and optimization problems by
introducing a class conditional policy generator based on the RL framework by taking inspiration from the
idea of conditional GANs. By assuming that the dynamic CSP consists of both static and dynamic constraints
for generalization as well as independent variables, the proposed algorithm is designed to learn a probabilistic
distribution of solutions in the action space from a noise prior using the entropy regularized policy gradient
method to satisfy static constraints, while simultaneously adapting to dynamic constraints through the
conditioning class labels based on the maximum likelihood estimation. We demonstrate the feasibility of
our approach with a simple multi-modal CSP benchmark problem, and show that the conditional policy
generator can effectively learn to solve the problem by exploring the solution space. Future work would focus
on extending our method to more complex high-dimensional problems and investigating its performance in
real-world applications. In addition, the similarity between the policy generator and the GAN generator
opens up an interesting avenue for future research, where we can leverage other advanced GAN techniques
to enhance the performance of CSP solvers and develop more efficient, robust, and scalable algorithms.
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