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Abstract

Leveraging machine learning methods to solve constraint satisfaction problems has shown
promising, but they are mostly limited to a static situation where the problem description is
completely known and fixed from the beginning. In this work we present a new approach to
constraint satisfaction and optimization in dynamically changing environments, particularly
when variables in the problem are statistically independent. We frame it as a reinforcement
learning problem and introduce a conditional policy generator by borrowing the idea of class
conditional generative adversarial networks (GANs). Assuming that the problem includes
both static and dynamic constraints, the former are used in a reward formulation to guide
the policy training such that it learns to map to a probabilistic distribution of solutions
satisfying static constraints from a noise prior, which is similar to a generator in GANs.
On the other hand, dynamic constraints in the problem are encoded to different class labels
and fed with the input noise. The policy is then simultaneously updated for maximum
likelihood of correctly classifying given the dynamic conditions in a supervised manner.
We empirically demonstrate a proof-of-principle experiment with a multi-modal constraint
satisfaction problem and compare between unconditional and conditional cases.

1 Introduction

Constraint satisfaction problems (CSPs) are a fundamental class of combinatorial search problems that arise
in numerous domains, including task scheduling, resource allocation, product configuration, and hardware
design (Dechter], [1992)). They involve finding assignments of values to a set of variables that satisfy a given
set of constraints. Many efficient methods to solve them have been long developed, such as backtracking
search, constraint propagation, and local search (Kumar} 1992 |Rossi et al., 2006). But these algorithms
often struggle to scale to complex problems with high dimensionality and diverse multi-modal solutions,
and may not generalize well to different problem instances or classes (Dechter, |2003; |Kotthoff] 2014; [Bengio
et all 2021). In recent years, incorporating machine learning techniques in CSP solvers has emerged as an
attractive alternative to address these challenges (Popescu et al.| 2022; Sadana et al., 2025). For example,
deep neural networks are used to learn search heuristics (Yolcu & Pdéczos| |2019)), to predict the satisfiability
of a problem (Xu et all [2018), to select the best algorithm per case (Loreggia et all |2016), or to generate
solutions directly by learning the optimal solver’s decision through imitation or trial-and-error (Bello et al.
2016)). Despite the success of these methods, most of them are designed for static CSPs where the problem
structure remains unchanged and known a priori. In practice, however, many real-world problems evolve over
time or undergo conditional change. For example, in a scheduling problem, a new task may arrive, existing
jobs may be delayed, or resource availability may shift, requiring the system to dynamically re-optimize the
schedule. Similarly in a car configuration problem, availability of certain features may vary depending on
regional regulations or current inventory levels. Therefore, it is crucial to develop CSP solvers that can adapt
to these changes in finding solution.

In this work, we propose a reinforcement learning (RL) based method for solving a dynamic CSP (Dechter &
Dechter], [1988; Mittal & Falkenhainer, [1990) that especially involves conditional changes in the environment
such as conditional activation or deactivation of constraints. We assume that the problem consists of both
static and dynamic constraints and variables are independent of each other. By drawing inspiration from
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the concept of conditional generative adversarial networks (GANs) (Mirza & Osindero, |2014), we develop
a conditional policy generator. By training it through a noise source using the policy gradient method
together with the maximum likelihood objective in order to satisfy both static and dynamic constraints, the
stochastic policy generator eventually learns the general structure of solution space in a dynamic scenario.
In Section [2] background on CSPs, their RL formulation, and related works are provided. Section [3|describes
the proposed policy network architecture and training procedure. It is followed by experimental results on a
simple multi-modal benchmark problem for both unconditional and conditional cases in Section [d] Finally
we discuss future work.

2 Background

2.1 Constraint satisfaction problems

CSPs are typically represented by a 3-tuple (X, D, C) — a set of variables X = {X;,..., X1}, each with a
domain D = {D;,...,Dr} of possible discrete values, and a set of constraints that specify the relations
between the variables C = {C4,...,Ck} (Rossi et all [2006). The goal considered here is to find all
assignments of values to the variables that satisfies every constraint. Constrained optimization problems
can be also treated as CSPs by converting an additional objective function to maximize or minimize to a soft
constraint. Among many learning based approaches, a CSP can be casted as a RL task. In a Markov decision
process, the action a corresponds to assigning a set of values to the variables (z1,...,zr) where ) € Dy,
and the state s to the current assignmemﬂ and the reward R to the avoidance of penalties for violating
constraints. The policy 7 or the value function V is then optimized to maximize the expected reward by
interacting with the environment. The reward function is a crucial component of RL that directly influences
the agent’s behavior and learning, and for instance, it can be defined as a weighted sum of the degree of
satisfying each constraint. Various RL methods have been successfully applied to CSPs with improvement
of the search performance (Nareyekl 2004; |[Xu et al 2009; [Bello et al., 2016)), but most of them are limited
to well defined static problems and are not directly applicable to address dynamics in the problem.

2.2 Unconditional policy generator

An interesting RL algorithm applied to analog circuit design was introduced by |Lee & Oliehoek| (2020). As an
instance of a CSP, its goal is to search for optimal circuit parameters that meet all design constraints imposed
on performance metrics. To tackle the problem, the stochastic policy generator is combined with the reward
model to take advantage of sample-efficient Dyna-style RL. However, for this type of CSPs where the input
variables are statistically independent, each variable is represented by its own distribution that is the output
of an independent softmax classifier found in Figure [I} and together these form a policy that is a product
distribution. This leads to a simple architecture based on the feedforward network without involving any
recurrent units often used for the problems with sequential variables (Zoph & Le,|[2016)). Furthermore, in order
to allow flexible distributions for each variable, the policy network learns a probabilistic distribution of all
feasible solutions by mapping a known noise distribution to it, which resembles a generator in unconditional
GANSs.

2.3 Related works

GANS, composed of a generator and a discriminator, employ an adversarial process where these two compete
in a minimax game (Goodfellow et all |2014)). The generator aims to produce realistic data samples that
can deceive the discriminator, which simultaneously attempts to accurately distinguish between real and
generated data. Though developed as distinct branches, potential connection and synergy between RL and
GANSs have been increasingly recognized and explored by both communities. |Pfau & Vinyals (2016) drew
the formal connection between GANs and actor-critic methods in RL with insights into a unified theoretical
perspective. Ho & Ermon| (2016) proposed a GAN-like algorithm for imitation learning to recover a policy
that matches the expert demonstrations, and [Finn et al.| (2016 also showed a mathematical equivalence
between maximum entropy inverse RL and GANs. Conversely, RL techniques were exploited to overcome

n a strict sense, this RL formulation is stateless because there is no time component in it.
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training challenges inherent to GANs. For example, SeqGAN (Yu et al. 2017)) used the policy gradient
method to train the generator for non-differentiable sequence generation.

3 Conditional policy generator

A direct parallel between the policy in RL and the generator in GANs allows us to incorporate recent advances
in GANs into the architecture design of the policy network. One straightforward application is to draw
inspiration from conditional GANs. Conditional GANs are an extension of vanilla GANs that controls data
generation conditioned on additional information (Mirza & Osindero], [2014]). Conditions, used as input with
random noise, can take various forms including class labels which are also considered in this work, attribute
vectors, text descriptions, or other modality data (Mirza & Osinderol 2014; Perarnau et al.;, 2016 |Reed et al.|
2016; Isola et al., 2017)). Since they serve as certain additional criteria imposed on the GAN generator output
which corresponds to input variables of CSPs in case of the policy generator, conditions can be viewed in the
context of CSPs as dynamic constraints that are subject to change during the solving process (Heyrani Nobari
et al., 2021)). Together with standard static constraints that are used in the reward formulation, they form a
dynamic CSP that extends the traditional static CSP framework to accommodate dynamics in the problem
structure. There are a variety of subsets in the realm of dynamic CSPs, and particularly conditional CSPs
(Sabin & Freuder} |1999)) can be well suited to our approach. Conditional CSPs, which dynamically activate
or deactivate constraints and variables depending on predefined conditions, similarly incorporate conditional
logic in their framework.
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Figure 1: One simple implementation of a conditional policy generator.

Figure [I] shows the architecture of a simple class conditional policy generator to solve a dynamic CSP
(X,D, Cq, Cq). It is basically identical to the unconditional policy generator except that the input layer is
augmented with additional class labels related to dynamic constraints. The generator consists of a set of
independent feedforward networks with the softmax output layers, each of which is responsible for generating
a probability distribution of each variable X over the discrete domain D. The embedding vector of a class
label ¢ is concatenated with the random noise vector z sampled from, e.g., the normal distribution N (0, 1)
and fed into each network to control the generator output. The conditional policy generator is trained using a
combination of RL and supervised learning. In RL, the standard static constraints Cg are used to define the
reward function as before, which guides the generator to assign high probabilities to solutions satisfying them
based on the policy gradient method. In supervised learning, the dynamic constraints Cq = {C1,...,CL}
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are mapped to different classes that can be simply labeled as ¢; = ¢ where i € {1,..., L} before applying the
embedding, and the generator is trained to maximize the likelihood of classifying the generator output to
satisfy a given conditionﬂ However, the proposed network design does not require auxiliary discriminators
to this end, which makes it distinct from the conditional GAN architecture. Because the generator produces
a categorical distribution for each variable that is considered as independent, we can obtain a probability
map of the entire input space (i.e., the action space A) for every possible value assignment. This allows us to
compute the likelihood of correctly classifying the generated action a given a class by simply summing over
the probabilities of all the actions inside the solution subregion {2 satisfying the given activated condition.
The overall training loss can be expressed as

L (9) = Lpc (0) + LeNT (9) + LN (9)

N
Z —b)logmg(ai|zi, ;) + aH(mg(-|zi, i) + B Z log (a2, ;i)
=1 ac;

where the entropy H(m(+|2:,¢;)) and the policy mg(a;|z;, ¢;) are given by

H(mo(-|zisei)) = = Y mo(@lz, ci) logm(@lzi, cs), (2)

acA
mo(ailzi, ¢i) = Hme at,i|2is Ci)- (3)

Here 6 is the parameters of the generator to be optimized, N the minibatch size, and T the number of
input variables. In Equation (1, Lpg(6) represents the REINFORCE algorithm (Williams| [1992) with the
baseline b to reduce the variance of the estimate, LrpnT(0) the entropy regularization added to encourage
exploration (Mnih et all|2016), and Lnrr(0) the negative log-likelihood objective for the classification task.
The hyperparameters a and § are used to balance the contributions of the three loss components, and
especially [ is set to gradually increase from zero during the training because the RL loss is very noisy in
the beginning. The detailed training procedure is described in Algorithm [I]

Algorithm 1 Training of proposed conditional policy generator for (X, D, Cg, Cq).

Require:
Define reward function R using static constraints Cg
Define class labels and solution subregions {c;, 2;}%, using dynamic constraints Cq

Initialize generator my with random weights 6
for number of training iterations do
fori=1to N do
Sample z; ~ N (0,1)
Sample ¢; randomly from {ci,...,cr}
Sample a vector of T actions a; ~ 7 (| 24, ¢;)
Evaluate reward R; = R(X = a;) where variables X are bounded by domains D
Use entropy regularized policy gradient method to compute Lpg(0), LenT(0)
Use negative log-likelihood to compute Lnrr,(6) based on §;
end for
Compute total loss £(0) in Equation
12: Update 6 using gradient descent 6 « 6 —nVoL(6) > 7): learning rate
13: end for

— =
= O

2These conditions are supposed to have disjoint solution regions in the input space.
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4 Experiments

In this section, we present a proof-of-principle experiment to empirically evaluate the performance of the
proposed algorithm on a simple multi-modal CSP benchmark. We start with the unconditional policy
generator to address the static CSP, and then we extend it to the conditional policy generator by modifying
the problem to include dynamic constraints for comparison.

4.1 Unconditional case

The test problem, which is called a Synt-3D function as found in[Hakhamaneshi et al.| (2020)), consists of three
variables x = {x1, 2, x5}, each with a domain of [—5, 5] discretized with 100 possible values. The associated
evaluation function is given by fiest(x) = & Zg’zl(ixf — 222 +5). For simplicity, the goal is to find all value
assignments that satisfy a single static constraint of fiest(x) < 1.2. The reward function is expressed as

R = min (%ﬁg;ﬁ) As depicted in Figure [3| (a), this problem has a multi-modal solution space in

which each solution mode is formed as a cloud of 248 solution points centered at minima of (£2,42,£2)
within eight different octants in the 3D Cartesian coordinate system. The unconditional policy network
is implemented using 3 independent cells of the softmax classifier with 100 output units. The input noise
vector per cell is sampled from the Gaussian noise of 64 dimensions, and the generator is trained based on
the entropy regularized REINFORCE update rule (i.e., the first two terms in Equation to learn about the
action space from the noise prior for generalization.
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Figure 2: (a) Reward trajectory in policy training, (b) Distribution of Gaussian noise input to trained
unconditional policy generator, (¢) Reward distribution of 5,000 generated actions from input noise.

Figure [2| (a) shows a noisy reward trajectory while training is carried out over 30,000 iterations. Starting
from a negative penalty score, the mean reward averaged over 100 neighbors converges to zero, which
means satisfying the constraint, around 10,000 samples as the policy improves. For verification, this trained
policy is evaluated by sampling 5,000 actions using the Gaussian noise source as shown in Figure [2| (b),
and the reward distribution of the generated actions are presented in Figure [2| (¢c) which are concentrated
mostly near a reward of zero. This represents that the policy generator learns to map the input noise
to a distribution of optimal actions solving the problem, similar to the GAN generator.In Figure 3| (b),
these output actions are also plotted in the 3D Cartesian coordinates to compare with Figure [3| (a), and
it is evident that all the solution modes in the different octants are evenly discovered well by the policy
generator without the mode collapse which is often problematic for the GAN generator. If necessary, the
sampling efficiency can be significantly improved by incorporating the learnable reward model and applying
the Dyna-style learning framework (Lee & Oliehoekl,2020). For the baseline comparison, we also evaluate the
generalized autoregressive cross-entropy method (GACEM) algorithm (Hakhamaneshi et al., |2020]) to solve
the same problem. It uses a masked auto-regressive neural network and RL training to learn diverse solution
distributions more effectively than traditional cross-entropy methods based on simple Gaussian models. It
can be trained either on-policy, updating with samples from the current distribution for better scalability, or
off-policy, using a replay buffer to maintain solution diversity in lower dimensions. We train both versions of
GACEM with 30,000 samples same as before, and the results of 5,000 evaluation samples from the trained
policies are shown in Figures |3| (c) and (d). It can be seen that the on-policy GACEM fails to discover
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(e)
No. of solutions ~ No. of modes
Success . .
Method Max: 5.000) Violation non-overlapped discovered
Max: 5, (Max: 1,984) (Max: 8)
(b) 4,667 333 1,317 8
(c) 1,980 3,020 231 1
(d) 430 4,570 356 8

Figure 3: Distributions of 5,000 evaluation samples (marked with ’0’) in action space including its projection
(marked with ’x’, if any) onto coordinate planes for baseline comparison: (a) Exact multi-modal solution
of Synt-3D problem, (b) Our approach, (c¢) On-policy GACEM, (d) Off-policy GACEM, (e) Performance

metrics comparison. Green and red symbols indicate ones that succeed in and violate the recovery of solution,
respectively.

diverse solution modes, while the off-policy GACEM finds them but with much less uniformity compared
to our approach. Figure|3| (e) summarizes the performance metrics of three methods, which shows that our

unconditional policy generator outperforms both GACEM methods in terms of solution diversity, prediction
accuracy, and mode coverage.
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Figure 4: Comparison of reward trajectories of unconditional policy training in (a) Synt-2D, (b) Synt-5D,
and (¢) Synt-10D problems.

Another advantage of this approach is expected to shine when dealing with high dimensional problems.
The simple neural architecture based on feedforward network not only allows parallel computation, but also
each cell in the generator enables us to divide and conquer independent variables one by one. Figure [4]
shows the reward trajectories of Synt-2D, Synt-5D, and Synt-10D for comparison. Regardless of the problem
dimensionality, it is interesting to note that they all exhibit similar learning convergence by marginalizing and
optimizing each variable independently. Although the number of training samples required for the Synt-2D
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problem is even comparable to the full grid search case, it does not exponentially increase with the problem
dimensionality, hence effectively mitigating the curse of dimensionality.

4.2 Conditional case

In order to demonstrate the feasibility of the proposed approach to solving dynamic CSPs, we modify the
Synt-3D problem used in the previous section to include eight additional dynamic constraints dictating
whether the assignment of values belongs to each octant space defined by the signs of three coordinate
variables. The goal in this section is to find one of eight solution modes depending on the conditional input
selected from {cy,...,cr} classes where ¢; corresponds to occupancy in the i-th octant space as shown in
Figure 3] (a). The class label ¢; = i is embedded and concatenated with the noise vector as input to the
policy generator, and the training is performed based on Algorithm [I]

Loss
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0 5000 10000 15000 20000 25600 30600 - 0 5000 10000 15000 20000 25000 30000
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Figure 5: Trajectories of (a) loss and (b) its moving average over 100 neighboring values during the training
of conditional policy generator.

Note that the reward only reflects the static constraint as before, and so the learning progress of the policy
satisfying both the static and dynamic constraints can be traced better via the loss trajectories as shown
in Figure [5| In the beginning, the policy update uses the noisy policy gradient loss with the relatively high
entropy bonus to better explore the action space, and then the negative log-likelihood loss for classification
gradually comes into play together as 3 in Equation [I] increases from zero. Both loss components approach
zero similarly in less than 10,000 samples, and the entropy loss is saturated to a lower level as the policy
improves and becomes more certain about solution to the problem. The trained policy is evaluated by
generating 1,000 action samples from the noise prior conditioned on different class input, and the class-
conditioned sample plots are presented in Figure [} The boundary-confusion analysis including the multi-
class confusion matrix is also performed, and it can be seen that the generated actions per class are well
aligned with the corresponding octant space and correctly reproduce the solution mode within it, which
indicates that the conditional policy generator is able to learn to solve the dynamic CSP by effectively
searching the entire solution space satisfying both static and dynamic constraints.

5 Limitations and future work

The proposed method has several limitations that need to be addressed in future work. First, the current
implementation assumes that the input variables are statistically independent, which may not hold in many
real-world problems with correlated variables. Extending our approach to handle such dependencies would
require more sophisticated network architectures, such as incorporating attention mechanisms
, to enhance the expressiveness of the policy generator. Second, while the feasibility of our approach
has been demonstrated using a simple benchmark problem with low dimensionality and discrete domains,
its performance on more complex and high-dimensional problems remains to be evaluated. This includes
conducting extensive experiments on various benchmark datasets and comparing our method with existing
state-of-the-art methods in terms of solution quality, computational efficiency, and scalability. Although
one simple implementation of the proposed architecture that is effective for a low dimensional problem is
presented in this work, the tractability of summing class-likelihood over feasible solutions given in Equation|[i]
could be an issue in higher dimensions. One alternative to avoid this challenge is to add an auxiliary
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True class (output) Success No. of in-class
(d) o . . . o N ¢ o (Max: 1,000) solutions norll—overlapped
(Max: 248)
Co 998 0 2 0 0 0 0 0 887 206
c 0 997 0 3 0 0 0 0 859 203
g_ [ 2 0 998 0 0 0 0 0 856 194
,\_% [ 0 1 3 996 0 0 0 0 858 198
S
§ C4 2 0 0 0 996 0 2 0 925 184
E Cs 0 0 0 0 0 996 0 4 896 185
Cg 0 0 7 0 2 0 991 0 913 195
cs 0 0 0 3 0 0 0 997 905 188

Figure 6: Distributions of 1,000 generated samples (marked with ’0’) in action space including its projection
(marked with ’x’) onto coordinate planes for evaluation of trained conditional policy generator with condi-
tional input of (a) class cg, (b) class ¢4, or (c) class ¢;. Green and red symbols indicate ones that succeed
in and violate the recovery of solution, respectively.(d) Performance metrics including multi-class confusion
matrix.

classifier in the architecture. It is then trained together with the policy generator in the same way so that
the classifier discriminates the generated action to its corresponding class depending on a given conditioning
label input with noise. Finally, the similarity between the policy generator and the GAN generator opens up
an interesting avenue for future research, where we may leverage other advanced GAN techniques to enhance
the performance of CSP solvers and develop more efficient, robust, and scalable algorithms.

6 Conclusions

We propose a new approach to addressing dynamic constraint satisfaction and optimization problems by
introducing a class conditional policy generator based on the RL framework by taking inspiration from the
idea of conditional GANs. By assuming that the dynamic CSP consists of both static and dynamic constraints
for generalization as well as independent variables, the proposed algorithm is designed to learn a probabilistic
distribution of solutions in the action space from a noise prior using the entropy regularized policy gradient
method to satisfy static constraints, while simultaneously adapting to dynamic constraints through the
conditioning class labels based on the maximum likelihood estimation. We demonstrate the feasibility of
our approach with a simple multi-modal CSP benchmark problem, and show that the conditional policy
generator can effectively learn to solve the problem by exploring the solution space.
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