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Abstract

We introduce FlowMixer, a single-layer neural architecture that leverages con-
strained matrix operations to model structured spatiotemporal patterns with en-
hanced interpretability. FlowMixer incorporates non-negative matrix mixing layers
within a reversible mapping frameworkapplying transforms before mixing and their
inverses afterward. This shape-preserving design enables a Kronecker-Koopman
eigenmodes framework that bridges statistical learning with dynamical systems
theory, providing interpretable spatiotemporal patterns and facilitating direct alge-
braic manipulation of prediction horizons without retraining. The architecture’s
semi-group property enables this single layer to mathematically represent any depth
through composition, eliminating depth search entirely. Extensive experiments
across diverse domains demonstrate FlowMixer’s long-horizon forecasting capabil-
ities while effectively modeling physical phenomena such as chaotic attractors and
turbulent flows. Our results achieve performance matching state-of-the-art methods
while offering superior interpretability through directly extractable eigenmodes.
This work suggests that architectural constraints can simultaneously maintain
competitive performance and enhance mathematical interpretability in neural fore-
casting systems.

1 Introduction

The ability to predict complex spatiotemporal patterns remains a fundamental challenge across
scientific disciplines, including climate modeling, biological systems, and fluid dynamics [1, 2, 3].
Statistical methods have traditionally dominated time series forecasting [4], while mechanistic models
form the backbone of dynamical systems analysis [5]. Recent advances in Machine Learning have
demonstrated that these approaches can be complemented and extended through data-driven methods
[6, 7]. For example, reservoir computing, originally designed for chaos prediction [1, 7, 8], has shown
promise in statistical forecasting [9, 10], while neural architectures for time series forecasting have
successfully captured chaotic dynamics [11]. This convergence hints at the possibility of a unified
framework for spatiotemporal pattern learning [12, 13].

Achieving this integration presents several challenges. Time series data often exhibit non-stationarity,
where statistical properties evolve over time, creating distribution shifts between training and testing
[14]. Dynamical systems, although low-dimensional, may exhibit chaotic behavior characterized
by extreme sensitivity to initial conditions [15, 16, 17, 18]. Additionally, the differing operational
requirements of these taskstypically multi-step predictions for time series and iterative one-step
predictions for dynamical systemsdemand flexible and efficient temporal modeling capabilities.

Recent neural architectures have made significant progress in addressing these challenges.
Transformer-based models like PatchTST [19] effectively capture long-range dependencies through
attention mechanisms and patch tokenization. MLP-based architectures such as TimeMixer++ [20]
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and WPMixer [21] achieve impressive efficiency through multi-scale decomposition and structured
mixing operations. State space models, including Chimera [22], offer promising capabilities for
modeling multivariate time series with coupled dynamics. Meanwhile, Gilpin [23] has shown that
large-scale statistical models can effectively capture the behavior of chaotic systems, while foundation
models [24, 25] demonstrate emerging capabilities for few-shot and zero-shot forecasting. These
architectures typically require extensive hyperparameter search to determine optimal network depth,
which varies significantly across datasets and domains.
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Figure 1: Overview of FlowMixer’s single-layer constrained architecture. The core architecture
(bottom) processes input sequences using three key components: (1) a reversible mapping, mainly
reversible instance normalization (RevIN) to handle distribution shifts, (2) a constrained mixing
layer with non-negative time mixing (W;) and stochastic feature mixing (W) matrices, and (3)
adaptive skip connections embedded within the mixing matrices. The spatiotemporal evolution (top)
demonstrates how data is padded to create square mixing matrices, enabling eigendecomposition
and efficient temporal modeling and interpretation. The Kronecker-Koopman eigenmodes (right),
derived from the architecture’s mathematical structure (Wy @ W; = PDP~1), provide a space-time
decomposition of the mixer input as a weighted sum of space-time eigenmodes.

Here, we introduce FlowMixer (Fig. 1), a neural architecture designed to address these challenges
through constrained design. Inspired by non-negative matrix factorization [26] and Dynamic Mode
Decomposition (DMD) [27], FlowMixer aims to draw connections between statistical learning
approaches and dynamical systems theory while providing a mathematically interpretable framework.
FlowMixer explores a different point in the design space: rather than optimizing architectures
for individual domains, we demonstrate that careful constraints enable a single architecture to
achieve competitive performance across time series forecasting, with additional capabilities in chaos
prediction and turbulent flow modeling. This cross-domain versatility, combined with interpretable
eigenmodes and elimination of depth search, offers practical advantages for applications requiring
consistent behavior across varied spatiotemporal phenomena.

Our contributions include:

* A constrained architecture whose semi-group property eliminates depth as a hyperparameter:
a single layer is all you need.

* A shape-preserving design that enables direct extraction of Kronecker-Koopman eigenmodes
for interpretability and allows algebraic prediction horizon change without retraining.

* A simplified chaos prediction approach through Semi-Orthogonal Basic Reservoir (SOBR)
that matches specialized frameworks while maintaining architectural simplicity.

» Empirical validation across time series forecasting, chaotic systems, and turbulent flows
demonstrating competitive cross-domain performance.



2 Related Work

2.1 Time Series Forecasting Architectures

Recent advances in time-series forecasting have focused on improving accuracy through architectural
sophistication. TSMixer [28] employs all-MLP time and feature mixing but requires empirical deter-
mination of optimal layer count. TimeMixer++ [20] employs hierarchical multi-scale decomposition
with bidirectional mixing for seasonal and trend patterns. Chimera [22] extends state space models to
multivariate time series through a 2D SSM architecture with three-headed processing along time and
variate dimensions. While these methods achieve strong performance, they compound the deployment
challenge: each new dataset potentially requires extensive architecture search from scratch.

2.2 Koopman-Based Neural Methods

The integration of Koopman operator theory with neural networks has produced sophisticated
forecasting frameworks [29, 30, 31]. Koopa [29] employs multi-layer architectures with eigenvalue-
based stability checking and explosion prevention mechanisms, while KNF [30] utilizes a three-term
loss function across various network components. Both approaches treat the Koopman semi-group
property K; o Ky = Kyt as an optimization target. Notably, their eigenmodes remain deeply
embedded within neural network layersinaccessible for direct analysis.

2.3 Cross-Domain Spatiotemporal Methods

Few architectures attempt unified modeling across statistical and physical domains. Reservoir
computing [1, 7] bridges chaos prediction and time series but requires careful tuning of reservoir size,
spectral radius, and input scaling. N-BEATS [32], though designed for time series, demonstrates
exceptional performance across chaotic systems [11], suggesting untapped cross-domain potential.

FlowMixer sits at the intersection of these research directions: it adopts the mixing paradigm
from time series architectures, guarantees Koopman’s mathematical properties by construction, and
achieves cross-domain applicability through a single constrained design.

3 FlowMixer Architecture

FlowMixer builds upon TSMixer [28] by addressing the challenge of layer count optimization. Instead
of empirical layer stacking, we developed a single mixing block with semi-group properties where
successive applications combine algebraically (see Section 4.1). This approach eliminates depth as a
hyperparameter while enabling mathematical manipulation of prediction horizons (see Section 4.3).
The various components of this architecture are presented hereafter.

3.1 Formal Definition

Let X € R™*"s be an input tensor, where n; denotes the number of time steps and n ¢ the number
of features. FlowMixer defines a transformation F : R™*"f — R™tX"s ag:

F(X, Wy, Wy, ¢) = ¢~ (W p(X)WF) (1

where ¢ : R™*"r — R™*"f ig a reversible mapping, W; € R™*™ is a time mixing matrix, and
Wy € R™ ™ is a feature mixing matrix. FlowMixer preserves tensor dimensions: the output
F(X) € R™*"f approximates a target Y of the same shape, where the last i rows of Y contain the
forecast and earlier rows contain historical data. Padding with historical data, ensures square mixing
matrices, enabling eigendecomposition and semi-group composition. The name "FlowMixer" reflects
this reversible flow of data around the central mixing operations.

3.2 Core Components

Time-Dependent Reversible Instance Normalization: We employ mainly RevIN [33] as ¢ for
feature-wise normalization, extending it to Time-Dependent RevIN (TD-RevIN):
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where a;, b; are time-varying parameters, and x denotes the Hadamard product. This allows different
normalization parameters for each timestep, enhancing the model’s ability to handle non-stationary
patterns. This TD extension is possible thanks to the shape-preserving property of FlowMixer.

Constrained Mixing: The core functionality integrates principles from non-negative matrix fac-
torization and attention mechanisms [26, 34]. For an input tensor X, our architecture applies two
complementary transformations:

TimeMix(X) = W3 X, FeatureMix(X) = X W;F 3)

The time mixing matrix W, aligns with Koopman theory through a scaled matrix exponential:
W, = aeWoxWo) ~ T + oWy x Wy 4)

where x denotes Hadamard (element-wise) product. « is a scaling learnable parameter initialized
at one that controls memory persistence. In practice, we use this first-order approximation with a
learnable matrix W that absorbs the scaling, yielding W; = ol + W x W. This design creates
an analog to fractional differencing (FARIMA) [35] that adapts to varying temporal dependencies
(see Appendix J). The nonnegative quadratic term forces the model to capture temporal dependen-
cies through positive interactions only, reducing spurious correlations while introducing nonlinear
interactions.

For feature mixing, we implement a static attention mechanism:
I+ B?SoftMax(QK™ /\/d,)
= T

where K,Q € R"s*% are learnable key/query matrices, dj is the multiplication dimension of
K, @, and 8 modulates attention strength. This formulation has a graph-theoretical interpretation as
transition probabilities in a weighted directed graph, analogous to a Markov process.

Wy &)

Seasonalities: For time series with inherent periodicities, we enhance the time mixing operation by
leveraging a Kronecker structure:

We=Y Wy ®@Wy, pxr(p)=n. (6)
p

where W, € RP*P captures patterns at the period level p, W,y € R"™" models relationships
between different period blocks, and » X p = n;. This formulation enables efficient modeling of
multiple seasonal patterns while preserving the simplicity of the architecture.

SOBR: Semi-Orthogonal Basic Reservoir. For chaotic systems, we introduce SOBRa simplified
reservoir computing approach that uses random, non-trainable, semi-orthogonal matrices. SOBR
replaces ¢ with S o ¢ where S (X) = (U X UfT) and o is an invertible activation (e.g., Leaky
ReLU). These matrices are constructed to satisfy:

UsUf =14, UU! =14, (7

This expansion provides a higher-dimensional representation space appropriate for modeling chaotic
systems (discussed in Section 4).

4 Theoretical Analysis

The architectural constraints of FlowMixer yield unique theoretical properties that bridge concepts
from statistical learning with dynamical systems theory [5, 36]. The key insights emerge from the
architecture’s semi-group stability.

4.1 Semi-Group Structure

Square mixing matrices and invertible standardization enable semi-group stabilitycompositions of
FlowMixers with identical standardization ¢ remain a FlowMixer:

F(F(2,0,0),0',¢) = F(z,0",9) ®)



This property fundamentally distinguishes FlowMixer from all existing forecasting architectures:
while traditional architectures require depth optimization and alter capacity with each layer, any
n-layer FlowMixer composition has an equivalent single-layer representation'. This mathematical
guarantee eliminates architecture search entirely and enables flexible horizon adjustments without
retraining.

4.2 Eigen Decomposition and Kronecker-Koopman Framework

In vectorized form, FlowMixer’s mixing operation reveals a Kronecker product:

vec(W XW]) = (Wy @ Wy)vec(X) )

This enables the extension of classical Dynamic Mode Decomposition (DMD) [27] to coupled
spatiotemporal patterns in a novel principled way without Hankelization [37, 38]. Given eigendecom-
positions Wy = PDP~! and W; = QEQ ™', where D = diag()\;) and E = diag(p;), any input
matrix X can be expressed as:

X = a;;(@p]) (10)
i

where ¢;, p; are columns of () and P, and a; ; = (Qtxp-T), 4 are projection coefficients.

Unlike Koopman neural methods where eigenmodes remain embedded [29, 30], these modes are
directly extractable through standard matrix decomposition. Both time and feature eigenvectors
form bases in their respective spaces. These components form the Kronecker-Koopman (KK)
spatiotemporal eigenmodes:

(bi}j :qi®pj7 (27.7) € [17nt] X [1,77/f} (11)
The Kronecker product preserves completeness, yielding n; x ny basis eigenmodes spanning all
possible spatiotemporal patterns. These modes are analogous to Koopman modes [39, 40], but

naturally couple spatial and temporal patterns. Section 5.2 provides an example visualization of these
eigenmodes.

4.3 Continuous Algebraic Horizon Modification

The KK structure enables direct algebraic modification of prediction horizons. For a horizon change
from hg to h; and a ratio t = hq /hg, we can express the modified prediction as:

X (t) « Zai’j (qip;‘-r) exp | tlog (Aipy) . (12)
i.7 N—— S~——
’ KK Eigenmodes KK Eigenvalues

This enables continuous horizon adjustment through interpolation (¢ < 1) or extrapolation (¢t > 1)
(See Appendix H.2). The framework extends naturally to derivatives. For a > 0:
0*X t o
gre Zai,j (Qip;‘-r) (Aipg)" (log (Aipj)) (13)
2]

The eigenmodes structure remains invariant during these modifications, with temporal evolution
controlled mainly through eigenvalue scaling. Stability requires that all eigenvalues are inside the
unit circle and can be implemented through unitary constraints on time mixing matrices [41]. The
feature matrix is already stochastic and verifies this property.

S Experimental Validation

5.1 Long-Horizon Time-Series Forecasting

Time series forecasting presents persistent challenges, particularly for extended prediction horizons
where error accumulation compounds modeling difficulties. We evaluate FlowMixer on benchmark

"For SOBR models, semi-group property holds in lifted space.



datasets widely used in the forecasting literature, including ETT (electricity transformer temperature),
Weather, Electricity, and Traffic datasets [42]. Our comparisons include recent architectures such as
TimeMixer++ [20], Chimera [22], MSHyper [43, 44], CycleNet [45], and TSMixer [28]. FlowMixer
deliberately forgoes the architectural complexity of these methods: no hierarchical decomposition, no
multi-scale processing, no specialized seasonal modules. While the semi-group property guarantees
composition e.g. F(g6) © F(96) = F(192), enabling algebraic horizon modification, we train each
horizon independently for fair comparison (see Appendix H). The practical implication: practitioners
can directly transfer FlowMixer between projects without architectural modifications. Implementation
details and hyperparameters are provided in Appendices A and C, respectively.

Table 1: Performance comparison of time series forecasting models on multiple datasets across
different prediction horizons. Results show Mean Squared Error (MSE) and Mean Absolute Error
(MAE), with lower values indicating better performance. Bold blue is best, orange is second
best. FlowMixer achieves comparable performance using a single operational layer, eliminating the
depth hyperparameter search required by all baseline methods. Statistical validation via Wilcoxon
signed-rank tests confirms significance (p<0.05, see Appendix D).

FlowMixer Chimera TimeMixer++  iTransformer Ada-MSHyper CycleNet TSMixer
(Ours) (2024) (2024) (2024) (2024) (2024) (2023)

h MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96 0.355 0.387 0.366 0.392 0.361 0.403 0.386 0.405 0.372 0.393 0.375 0.395 0.361 0.392
192 0.394 0.409 0.402 0.414 0.416 0.441 0.441 0.436 0433 0.417 0.436 0.428 0.404 0.418
336 0.415 0.423 0.406 0.419 0.430 0.434 0.487 0.458 0.422 0.433 0.496 0.455 0.420 0.431
720 0.433 0.454 0.458 0.477 0.467 0.451 0.503 0.491 0.445 0.459 0.520 0.484 0.463 0.472

96 0.264 0.330 0.262 0.327 0.276 0.328 0.297 0.349 0.283 0.332 0.298 0.344 0.274 0.341
192 0.320 0.368 0.320 0.372 0.342 0.379 0.380 0.400 0.358 0.374 0.372 0.396 0.339 0.385
336 0.344 0.396 0.316 0.381 0.346 0.398 0.428 0.432 0.428 0.437 0.431 0.439 0.361 0.406
720 0.388 0.452 0.389 0.430 0.392 0.415 0.427 0.445 0.413 0.432 0.450 0.458 0.445 0.470

96 0.298 0.345 0.318 0.354 0.310 0.334 0.334 0.368 0.301 0.354 0.319 0.360 0.285 0.339
192 0.333 0.365 0.331 0.369 0.348 0.362 0.377 0.391 0.345 0.375 0.360 0.381 0.327 0.365
336 0.360 0.386 0.363 0.389 0.376 0.391 0.426 0.420 0.375 0.397 0.389 0.403 0.356 0.382
720 0.398 0.410 0.409 0.415 0.440 0.423 0.491 0.459 0.437 0.435 0.447 0.441 0.419 0.414

96 0.159 0.252 0.169 0.265 0.170 0.245 0.180 0.264 0.165 0.257 0.163 0.249 0.163 0.252
192 0.211 0.290 0.221 0.290 0.229 0.291 0.250 0.309 0.230 0.307 0.229 0.290 0.216 0.290
336 0.260 0.324 0.279 0.339 0.303 0.343 0.311 0.348 0.282 0.328 0.284 0.327 0.268 0.324
720 0.333 0.377 0.341 0.376 0.373 0.399 0.412 0.407 0.375 0.396 0.389 0.391 0.420 0.422

96 0.143 0.194 0.146 0.206 0.155 0.205 0.174 0.214 0.157 0.195 0.158 0.203 0.145 0.198
192 0.185 0.235 0.189 0.239 0.201 0.245 0.221 0.254 0.218 0.259 0.207 0.247 0.191 0.242
336 0.235 0.276 0.244 0.281 0.237 0.265 0.278 0.296 0.251 0.252 0.262 0.289 0.242 0.280
720 0.305 0.326 0.297 0.309 0.312 0.334 0.358 0.347 0.304 0.328 0.344 0.344 0.320 0.326

96 0.131 0.226 0.132 0.234 0.135 0.222 0.148 0.240 0.135 0.238 0.136 0.229 0.131 0.229
192 0.146 0.239 0.144 0.223 0.147 0.235 0.162 0.253 0.152 0.239 0.152 0.244 0.151 0.246
336 0.160 0.255 0.156 0.259 0.164 0.245 0.178 0.269 0.168 0.266 0.170 0.264 0.161 0.261
720 0.195 0.289 0.184 0.280 0.212 0.310 0.225 0.317 0.212 0.293 0.212 0.299 0.197 0.293

96 0.377 0.264 0.366 0.248 0.392 0.253 0.395 0.268 0.384 0.248 0.458 0.296 0.376 0.264
192 0.388 0.268 0.394 0.292 0.402 0.258 0.417 0.276 0.401 0.258 0.457 0.294 0.397 0.277
336 0.401 0.275 0.409 0.311 0.428 0.263 0.433 0.283 0.423 0.261 0.470 0.299 0.413 0.290
720 0.434 0.291 0.443 0.294 0.441 0.282 0.467 0.302 0.453 0.282 0.502 0.314 0.444 0.306

ETThl

ETTh2

ETTml

ETTm2

Electricity | Weather

Traffic

Table 1 demonstrates FlowMixer’s competitive performance across multiple datasets and horizons,
with particularly strong results on ETTm2 and the 720-timestep horizon for Traffic and ETT forecast-
ing tasks. What distinguishes FlowMixer is its architectural simplicityunlike contemporary models
with deep architectures and hierarchical decompositions, it achieves these results consistently using
just a single operational layer with carefully designed constraints. The computational efficiency
directly benefits from this simplicity, with FlowMixer processing most ETT datasets in under 2 sec-
onds per epoch (see Appendix C). Statistical validation through Wilcoxon signed-rank tests confirms
that these improvements are significant (p<0.05, see Appendix D). Ablation studies confirm these
architectural choices contribute to the model’s forecasting capabilities (Appendix F), demonstrating
how carefully targeted constraints enhance multivariate time series prediction.



5.2 Kronecker-Koopman Analysis of Spatiotemporal Patterns

FlowMixer offers a novel perspective on spatiotemporal analysis beyond the traditional Dynamic
Mode Decomposition (DMD) framework [27]. Combining time and feature spectral elements yields
the Kronecker-Koopman (KK) eigenmodes (see Section 4). To illustrate these patterns, we compute
KK eigenmodes from the traffic dataset [46] enabling effective visualization of spatial components.
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Figure 2: Visualization of Kronecker-Koopman Eigenmodes for traffic dataset. (a) Time eigenvalues
distribution, with aligned angular values indicating the periodic nature of the traffic datasets. (b-d)
First three time eigenvectors (real part). (e,i) First and Third space eigenvectors, with the first showing
constant values consistent with the stochastic space mixing matrix (representing a Markov transition
process). (f-h, j-1) Real parts of Kronecker-Koopman Eigenmodes revealing space-time patterns. The
periodic structures in time eigenvectors and coherent patterns in higher-mode products demonstrate
how FlowMixer captures spatiotemporal dynamics.

When applied to traffic flow data, KK analysis yields structural insights. The time eigenvalues distribu-
tion (Figure 2a) reveals clear angular alignments corresponding to daily, weekly, and intra-day traffic
periodicities. The primary time eigenvector (b) captures baseline (trend) traffic volume with weekend
transitions, while subsequent eigenvectors (c-d) exhibit accelerating oscillatory behavior (seasonali-
ties) reflecting 24-hour and 12-hour cycles. Feature eigenvectors (e-g) encode spatial relationships
between traffic sensors from global to local scales, with the dominant eigenvector exhibiting the ex-
pected constant structure characteristic of left stochastic matrices. The resulting Kronecker-Koopman
spectrum, especially higher-order modes (j-1), manifests coherent cross-dimensional patterns that
reflect propagation phenomena consistent with congestion dynamics in traffic theory [47, 48].

This framework provides spatiotemporal modes beyond classical DMD [27] and Hankelized-
DMD [37, 38] by separating temporal and spatial components instead of relying on Hankelized
embeddings. Our approach captures the inherent structure of any system where spatiotemporal
patterns govern dynamics, and expands the traditional time series dichotomy, from a classic trend/sea-
sonality decomposition to a spatiotemporal framework:

T
~ ~ ~ KK ~ ~ ~ global ~
G = y;rend + y:easonal (y;rend 4 y;easonal) ® (xfo al + xltocal> (1 4)



5.3 Prediction of Chaotic Dynamical Systems

The prediction of chaotic systems represents one of science’s fundamental challenges, where expo-
nential sensitivity to initial conditions traditionally limits long-term forecasting [18]. Specialized
architectures like reservoir computing have advanced this field significantly [1, 12, 49, 7, 50], often
focusing on recurrent frameworks for iterative single-step predictions. We explore how FlowMixer’s
constrained design principles can contribute to this domain through a complementary approach.

The key component is SOBR (Semi-Orthogonal Basic Reservoir)an adaptation of reservoir computing
principles that aligns with FlowMixer’s constrained design philosophy (cf. Section 3.2). While
Machine Learning approaches have traditionally addressed high-dimensional problems [51], chaotic
systems present a different challenge: complex dynamics emerging from low dimensions (e.g., the
three-dimensional Lorenz system). SOBR addresses this dimensional consideration through a targeted
expansion: it projects data into higher-dimensional spaces using random semi-orthogonal matrices,
maintaining full rank and unit spectral radius. This Koopman-inspired dimensional lifting enhances
FlowMixer’s pattern recognition capabilities. FlowMixer’s results for chaotic attractors without
SOBR are provided in Appendix K.3.

SOBR integrates with FlowMixer through the reversible mapping ¢. In its simplest form it is
expressed as S (X) = o(U, XU ;;F), where semi-orthogonal matrices Uy and U; expand feature and
time dimensions respectively, complemented with an invertible activation o (typically Leaky ReLU).
This design enhances FlowMixer’s ability to capture chaotic attractor dynamics.While this SOBR
integration preserves the semi-group property only in the lifted space, not the original space (see
Appendix K.2), the benefits of dimensional lifting outweigh this tradeoff for chaotic systems, where
accurate pattern recognition takes precedence over direct algebraic horizon manipulation.
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Figure 3: Predictions of Lorenz (a), Rossler (b), and Aizawa (c) chaotic attractors (scaled [-1,1]). Each
row shows the evolution of X, y, and z variables over time. Ground truth (black), FlowMixer (blue),
Reservoir Computing (orange) [1, 52, 53], and N-BEATS (purple) [32] trajectories are compared.
While all methods capture the Lorenz attractor’s structure, N-BEATS shows a notable deviation in
the Rossler system, and Reservoir Computing shows differences particularly in the z-component
predictions. FlowMixer exhibits consistent performance across all three systems. Experimental
settings are summarized in Appendix C and presented in detail in Appendix K.4.



We evaluate this approach on three canonical chaotic systems: the Lorenz butterfly [15], Rossler
attractor [16], and Aizawa system [17]. Rather than employing iterative single-step predictions,
FlowMixer processes 32-step sequences to forecast the next 32 steps directly. By compounding these
predictions, we obtain forecasts over 1024 stepsapproximately 9-10 Lyapunov times for the Lorenz
system. Figure 3 compares FlowMixer’s performance with Reservoir Computing (RC) [1, 52, 53] and
N-BEATS [11, 32]. While all methods capture the general attractor structure, they exhibit different
failure modes: RC struggles with accurate z-component predictions particularly in the Lorenz
system, N-BEATS diverges notably in the Rossler system, while FlowMixer maintains consistent
accuracy across all three attractors. The model captures characteristic features from the Lorenz
butterfly to the Aizawa spiral dynamics, occasionally realigning with ground truth trajectories after
divergencesuggesting effective pattern learning. These results illustrate how architectural constraints
can maintain predictive capabilities for chaotic systems. FlowMixer with SOBR offers an alternative
approach that complements existing specialized frameworks. This same single-layer architecture
that forecasts time series also captures chaotic dynamics. This connection between statistical and
dynamical modeling suggests broader implications for scientific computing, which we explore next
through turbulent flow prediction.

5.4 Predicting 2D Turbulent Flows

The prediction of turbulent flows represents a crucial challenge at the intersection of computational
physics and engineering [54]. While direct numerical simulation of the Navier-Stokes equations
provides high accuracy, its computational demands limit practical applications. Recent physics-
informed neural networks (PINNs) [55, 56] have made valuable contributions by embedding physical
constraints into learning architectures, though these approaches often involve balancing multiple loss
terms and addressing convergence considerations [57].

We demonstrate how FlowMixer’s constrained architecture offers a complementary data-driven
approach on two canonical test cases: two-dimensional flow past a cylinder at Reynolds number
Re = 150 and flow around a NACA airfoil at Re = 1000 with 157 angle of attack. For 2D fluid
dynamics prediction, FlowMixer processes the vorticity field w directly, with the core transformation
applied as:

Wepttin = ¢ (Wt¢(wt—}z+1:t)Wf) (15)

where w;_p11.+ represents a sequence of h consecutive vorticity snapshots, and w1445 is the
predicted sequence for the next h timesteps.
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Figure 4: Prediction of vorticity fields for flow past a cylinder at Re = 150 (left columns) and a
NACA airfoil at Re = 1000 (right columns). (a) Ground truth vorticity fields showing the evolution
of wake structures. (b) FlowMixer predictions demonstrate accurate capture of both near-body
structures and downstream vortex evolution. (c) Error fields with corresponding Mean Squared
Error (MSE) values show minimal discrepancy between prediction and ground truth across varying
geometries and flow regimes. Experimental details are provided in Appendix N. Additional flow
visualizations and analyses are provided in Appendix N.4 and Appendix N.5.



Our simulations capture the full dynamics across computational domains with 400 x 160 resolution.
The cylinder flow is characterized by the von Kdrmdn vortex street with a Strouhal number of
approximately 0.2, while the airfoil case introduces asymmetric geometry, flow separation, and
higher Reynolds number effects. For both cases, we train FlowMixer to process 64 consecutive flow
field snapshots and predict the next 64 timesteps (h = 64)representing physical time horizons of
6.4 seconds for the cylinder and the airfoil. Figure 4 compares the predicted vorticity fields with
ground truth. For the cylinder case, FlowMixer accurately captures the alternating clockwise (blue)
and counterclockwise (red) rotation patterns in the wake. In the more challenging airfoil case, the
model successfully predicts the complex separation patterns, asymmetric wake structures, and vortex
interactions despite the substantially higher Reynolds number.

Quantitatively, FlowMixer maintains MSE values of approximately 3.3e-3 for the cylinder case and
2e-3 to 8e-3 for the airfoil case, corresponding to approximately 4-5% relative {2 error. These results
are competitive with existing approaches in the literature [58, 59, 60], while using standard stochas-
tic gradient descent with momentum for training rather than specialized optimization procedures
(comparisons of optimization strategies are presented in Appendix N.5).

FlowMixer adapts to increased flow complexity without architectural modifications. When tran-
sitioning from the regular vortex shedding of the cylinder at Re = 150 to the higher Reynolds
number airfoil case Re = 1000 with complex separation and wake interactions, the model maintains
comparable accuracy using the same architectural constraints. The error fields (Figure 4c) show
relatively uniform distribution without significant localized spikes, suggesting the model effectively
captures dominant flow patterns across different regimes. This behavior is noteworthy given that
other approaches often require explicit conservation constraints to achieve stable predictions across
varying flow regimes [61, 62, 63].

The successful prediction of complex flow patterns around both simple and complex geometries at
different Reynolds numbers demonstrates the versatility of FlowMixer’s architecture. The ability to
capture these dynamics without specialized physical constraints points toward applications in aerody-
namic design optimization, real-time flow monitoring, and reduced-order modeling for engineering
systems where both computational efficiency and accuracy are essential requirements.

Conclusion

FlowMixer demonstrates how architectural constraints inspired by dynamical systems theory enhance
both predictive capabilities and interpretability in neural forecasting systems. Through extensive
validation across multiple domains, we have shown this constrained approach offers competitive
performance in long-horizon forecasting while effectively modeling complex physical phenomena
such as chaotic attractors and turbulent flows.

The architecture introduces three complementary innovations: (1) constrained non-negative matrix
mixing operations, (2) a Kronecker-Koopman framework providing interpretable spatiotemporal
patterns, and (3) a Semi-Orthogonal Basic Reservoir approach enabling stable prediction of chaotic
systems. Together, these elements create a unified framework bridging statistical learning and
dynamical systems modeling.

Our results highlight an important principle in neural architecture design: carefully chosen mathemati-
cal constraints can simultaneously maintain competitive performance while enhancing interpretability
without necessitating increased model complexity. Notably, the semi-group composition property
eliminates depth optimization entirely: one layer is all you need. This frees practitioners from a
critical deployment bottleneck that affects all existing architectures.

We acknowledge current limitations, including cubic computational complexity in sequence length
and the absence of explicit physical conservation guarantees. Future work will explore sparsification
techniques to improve computational scaling and investigate integration with physics-informed
approaches to enhance scientific applications.

As deep learning advances scientific computing, architectures like FlowMixer demonstrate the value
of incorporating domain knowledge through mathematical design principles rather than explicit
regularizationoffering a promising direction for neural forecasting systems that are both effective and
interpretable across scientific and engineering applications.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly outline the four main contributions
(constrained architecture, Kronecker-Koopman framework, SOBR approach, and empir-
ical validation) that are substantiated throughout the paper with theoretical analysis and
experimental results.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The conclusion explicitly acknowledges limitations, including "cubic com-
putational complexity in sequence length" and "absence of explicit physical conservation
guarantees," with future work directions addressing these limitations.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,

model well-specification, asymptotic approximations only holding locally). The authors

should reflect on how these assumptions might be violated in practice and what the

implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Section 3 provides theoretical foundations with clear mathematical formula-
tions for semi-group structure, eigendecomposition, and horizon modification. Supporting
derivations and proofs appear in appendices (FARIMA connections, complexity analysis).

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Sections 4 and Appendices A-B provide comprehensive details on datasets,
preprocessing, training protocols, and evaluation metrics. Hyperparameters are fully docu-
mented in Table 2 with implementation details sufficient for reproduction.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Code is publicly available at https://github.com/FaresBMehouachi/
FlowMixer. All experiments use publicly available benchmark datasets. Implementation
details and hyperparameters are documented.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not
be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Section 4 outlines experimental methodology with detailed configurations in
Appendices A-B. Table 2 provides all hyperparameters including optimizer, learning rate,
dropout, and batch size for each experiment.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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Justification: Standard deviations across five random seeds are reported in Table 3, and error
fields are shown in Figures 4 and 7, enabling proper assessment of result reliability.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

 For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper specifies using a single NVIDIA A100 GPU and provides time
per epoch for each experiment in Table 2, ranging from 2s for ETT datasets to 122s for
Electricity data.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research involves computational modeling and analyses of non-sensitive
data, using publicly available benchmarks and following standard research practices in
conformance with NeurIPS ethical guidelines.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.
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* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Our work on FlowMixer has several potential positive societal impacts. The
improved spatiotemporal forecasting capabilities could benefit domains such as weather
prediction, electricity consumption forecasting, and traffic management, potentially leading
to more efficient resource allocation, reduced energy consumption, and improved urban
planning. The interpretability aspects of our approach also enhance transparency and trust
in Al forecasting systems. Additionally, accurate prediction of chaotic systems and fluid
dynamics could advance scientific understanding in fields ranging from climate science to
aerospace engineering.

While we do not foresee direct negative societal impacts given the foundational nature of
our research, we acknowledge that any forecasting technology could potentially lead to
overreliance on predictions in critical decision-making contexts. In domains like electricity
grid management or transportation systems, incorrect forecasts could lead to resource mis-
allocation if deployed without appropriate uncertainty quantification or human oversight.
Furthermore, accurate long-term forecasting in financial markets could potentially exacer-
bate market advantages for entities with access to advanced predictive technologies. We
believe these risks are modest compared to the benefits, but they warrant consideration as
applications are developed based on our methodology.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper presents a forecasting model without potential for harmful misuse
that would require safeguards. The applications (time series forecasting, chaos prediction,
fluid dynamics) pose minimal ethical risks.
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12.

13.

14.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All datasets and baseline methods are properly cited with appropriate attribu-

tion to original authors. The commonly used benchmark datasets (ETT, Weather, Electricity,
Traffic) are used according to their intended research purposes.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: FlowMixer code is released under MIT license at the GitHub repository.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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15.

16.

Answer: [NA]

Justification: The research is computational in nature and does not involve human subjects,
crowdsourced data collection, or human evaluations.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: No human subjects were involved in this research, so IRB approval was not
required.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The research methodology does not incorporate large language models in
any capacity. All models used (FlowMixer and baselines) are specialized forecasting
architectures.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Appendix: Long-Horizon Time Series Forecasting

A.1 Experimental Details

We evaluated FlowMixer using seven benchmark datasets encompassing diverse domains with varying
temporal resolutions and prediction challenges. The ETT datasets capture electrical transformer
measurements over a two-year period, consisting of both hourly (ETTh) and 15-minute (ETTm)
resolution variants. The Electricity dataset records hourly power consumption from 321 customers,
while Traffic contains hourly road occupancy rates from California. The Weather dataset comprises
21 meteorological indicators sampled at 10-minute intervals throughout 2020.

Data preparation followed standard protocols, with chronological partitioning using train/valida-
tion/test ratios of 0.6/0.2/0.2 for ETT and 0.7/0.2/0.1 for others. Each feature underwent independent
z-score normalization. For most datasets we use an input length of 1024 (>720) timesteps. For
Electricity and Traffic, we utilize longer input sequences (up to 3072 timesteps) due to their increased
feature dimensionality.

Model training was implemented in TensorFlow and executed on a single NVIDIA A100 GPU. The
training protocol incorporated early stopping with patience of 10 epochs and learning rate reduction
(factor 0.1, patience 5) based on validation loss. We limited training to 100 epochs with batch size 32
and systematically evaluated dropout rates between 0.0 and 0.7. The model’s hyperparameters were
optimized for each dataset and prediction horizon combination, with comprehensive configurations
detailed in Table 3. While training hyperparameters were optimized per dataset, the core architecture
remained fixed with a single mixing blockeliminating the depth search required by baseline methods.

A.2 Extra comparison

Table 2: Extra comparison of FlowMixer with N-HITS [64], FEDformer [65], Autoformer [66],
Dlinear [67], and some Koopman based models: KooPA [29] and KNF [30]. The reported standard
deviations for FlowMixer use five seeds. Bold blue indicate best performance, demonstrating
FlowMixer’s competitive results.

FlowMixer N-HITS FEDformer Autoformer DLinear KooPA KNF
(Ours) (2021) (2022) (2021) (2023) (2023) (2023)
h MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96  0.358=£.001 0.390+.001 0.475 0.498 0376 0415 0435 0446 0.386 0400 0.371 0405 0975 0.744

E 192 0.394=£.001 0.4124+.001 0.426 0519 0423 0446 0456 0457 0437 0432 0416 0439 0941 0.744
E 336 0.4184.001 0.430-£.001 0.550 0.564 0.444 0462 0486 0487 0481 0.459 - - - -
720 0.4654.001 0.475+.001 0.598 0.641 0.469 0492 0515 0.517 0519 0.516 - - - -
- 96  0.264+.001 0.3304+.001 0.328 0364 0332 0374 0332 0368 0.333 0.387 0.297 0.349 0433 0.446
= 192 0.3204.002 0.368+.001 0.372 0.408 0.407 0446 0426 0434 0477 0476 0.356 0.393 0.528 0.503
g 336 0.3444.002 0.396£.001 0.397 0421 0400 0447 0477 0479 0.594 0.541 - - - -
720 0.4204.002 0.452+£.002 0.461 0497 0412 0469 0453 0453 0831 0.657 - - - -
— 96 0.298£.002 0.345£.002 0.370 0.468 0.326 0.390 0.510 0.492 0.345 0.372 0.294 0.345 0.957 0.782
£ 192 0.333:£.001 0.365+.001 0.436 0488 0365 0415 0515 0514 0380 0.389 0.337 0378 0.896 0.731
£ 336 0.363+.001 03831001 0483 0510 0392 0425 0510 0492 0413 0413 - - - -
720 0.404+.001 0.410-.001 0489 0.537 0446 0458 0527 0493 0474 0433 - - - -
o 96 0.159+.001 0.252+.001 0.176 0255 0.180 0.271 0205 0.293 0.192 0282 0.171 0254 1535 1.012
g 192 0.211+£.001 0.290+.001 0.245 0.305 0.252 0.318 0.278 0.336 0.284 0.362 0.226 0.298 1.355 0.908
E 336 0.2604.001 0.324+£.001 0.295 0.346 0.324 0364 0.343 0379 0369 0.427 - - - -

720 0.3334+.001 0.377+£.001 0401 0413 0410 0420 0414 0419 0.554 0.522 - - - -

96  0.143£.002 0.194+.002 0.158 0.195 0238 0314 0249 0329 0.193 0.292 0.154 0205 0295 0.308
192 0.185+£.002 0.235+.002 0211 0247 0275 0325 0325 0325 0.228 0.296 0.193 0241 0462 0437
3 0.235+.002  0.276+.001 0.274 0.300 0.339 0.377 0.397 0397 0283 0.335 - - - -
720 0.3054.001 0.326+£.002 0.351 0.353 0.351 0409 1.042 1216 0.345 0.381 - - - -

Weather
(98]
(98]
[=)}

2z 96 0.131+£.001 0.226+.003 0.147 0249 0.186 0302 0.196 0302 0.197 0.282 0.136 0.236 0.198 0.284
:g 192 0.146+.002 0.239+£.003 0.167 0.249 0.197 0.311 0211 0321 0.196 0.285 0.156 0.254 0.245 0.321
S 336 0.160+.004 0.255+.002 0.186 0.290 0.213 0.328 0214 0328 0209 0.301 - - - -
m 720 0.195£.003 0.289+.004 0243 0340 0236 0344 0236 0342 0.245 0.333 - - - -
96  0.377£.002 0.264+.001 0.402 0282 0576 0359 0597 0371 0.650 0.396 0401 0275 0.645 0.376
§ 192 0.3884.002 0.268-+£.002 0.420 0.297 0.610 0.380 0.607 0.382 0.598 0.370 0.403 0.284 0.699 0.405
[s:f 336 0.4014.002 0.275+.004 0.448 0.313 0.608 0.375 0.623 0.387 0.605 0.373 - - - -

720  0.4344.003 0.291-+.004 0.539 0.353 0.621 0.375 0.639 0.395 0.645 0.394 - - - -
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B Periodicities Analysis
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Figure 5: FFT Spectral Analysis of Periodicity Patterns in Benchmark Time Series Datasets. The
plots show magnitude versus period (in hours) on logarithmic scales for eight standard forecasting
datasets. Significant periodicities are marked with red dots and vertical lines, revealing prominent
daily (24h) patterns across all datasets, with additional weekly (168h) and biweekly cycles of varying
strengths. These spectral characteristics inform our model design, particularly for incorporating
appropriate time mixing components and periodicity-aware architectures to capture multi-scale

temporal dependencies. We select mainly periods of [24,168] in our experiments.
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C Appendix: Hyperparameters for Experiments

Table 3: Hyperparameter configurations for different forecasting horizons (h) and input lengths (Input
Len.). Parameters include optimizer choice (Optim.), initial learning rate (Init. LR), weight decay
(W. Decay), RevIN type, time per epoch (T/Epoch), exponential/quadratic time mixing (Expm), and
periodicities. “Turb." stands for turbulence.

h Input Len. Batch Optim. Init. LR W.Decay RevIN Time/Epoch Expm Periodicities

- 96 1344 16 SGD le-1 le-6 RevIN 2s True [24, 168]

ﬁ 192 1344 16 SGD le-1 le-6 RevIN 2s True [24, 168]

= 336 1344 16 SGD le-1 le-6 RevIN 2s True [24, 168]

= 720 1344 16 SGD le-1 le-6 RevIN 2s True [24, 168]

. 96 1344 16 SGD le-1 le-5 RevIN 2s False -

ﬁ 192 1344 16 SGD le-1 le-5 RevIN 2s False -

= 336 1344 16 SGD le-1 le-5 RevIN 2s True [24, 168]

= 720 1344 16 SGD le-1 le-5 RevIN 2s True [24, 168]

— 96 1344 16 AdamW  le-3 le-6  TD-RevIN 2s False -

E 192 1344 16 AdamW le-3 le-6  TD-RevIN 2s True [24 x4, 168 x 4]

= 336 1344 16 AdamW le-3 le-6  TD-RevIN 2s True [24 x4, 168 x 4]

= 720 1344 16 AdamW le-3 le-6  TD-RevIN 2s True [24 x4, 168 x 4]
96 1344 16 SGD le-1 le-6 RevIN 2s False -

N

E 192 1344 16 SGD le-1 le-6 RevIN 2s False -

E 336 1344 16 SGD le-1 le-6 RevIN 2s False -
720 1344 16 SGD le-1 le-6 RevIN 2s False -

5 96 1344 16 AdamW le-3 le-6  TD-RevIN 8s False -

< 192 1344 16 AdamW le-3 le-6  TD-RevIN 8s False -

S 336 1344 16 AdamW le-3 le-6  TD-RevIN 8s False -

= 720 1344 16 AdamW le-3 le-6  TD-RevIN 8s True -

2 9 2688 16 AdamW le-4 le-6 RevIN 122s False -

E 192 2688 16 AdamW le-4 le-6 RevIN 122s False -

S 336 2688 16 AdamW le-4 le-6 RevIN 122s False -

D

=g 720 2688 16 AdamW le-4 le-6 RevIN 122s False -

o 96 4032 16 AdamW le-3 le-6  TD-RevIN 98s False -

€ 192 4032 16 AdamW le-3 le-6  TD-RevIN 98s False [24, 168]

E 336 4032 16 AdamW le-3 le-6  TD-RevIN 98s False [24, 168]
720 4032 16 AdamW le-3 le-6  TD-RevIN 98s False -

En 32 AdamW le3  le6 TD-ReviN 25 False -

Q + SOBR

=

'E 64 64 32 SGD le-1 le-6 RevIN 28s False -

=

The hyperparameters for our time series forecasting experiments were determined through a system-
atic grid search across multiple dimensions. We evaluated two normalization approaches (RevIN and
TD-RevIN) to address distribution shifts in time series data. For optimization strategies, we explored
both AdamW (with learning rates of 0.001 and 0.0001) and SGD with momentum 0.9 (using learning
rates of 0.001, 0.01, and 0.1). Additional hyperparameters included various batch sizes, weight
decay values (1e-5, le-6), and different periodicity configurations based on the inherent temporal
patterns in each dataset. Notably, the use of periodicities and matrix exponential transformations was
primarily implemented for the ETT datasets, as the computational cost was prohibitively high for
larger datasets such as Electricity and Traffic. This comprehensive search allowed us to identify the
optimal configuration for each forecasting horizon and dataset, balancing computational efficiency
with forecast accuracy. Note: Optimizer choice (SGD vs AdamW) was determined empirically for
each dataset, but the core architecture remained consistent across all experiments.
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D Statistical Validation: Wilcoxon Signed-Rank Tests

We conducted Wilcoxon signed-rank tests across all 28 dataset-horizon combinations to validate the
statistical significance of FlowMixer’s improvements over baseline methods. The Wilcoxon test was
chosen as it makes no assumptions about the distribution of improvements and is robust to outliers,
making it ideal for comparing forecasting models across diverse datasets with potentially non-normal
error distributions.

Table 4: Statistical evaluation of FlowMixer against baseline methods

Metric Chimera TimeMixer++ iTransformer Ada-MSHyper CycleNet TSMixer
Mean Squared Error (MSE) Analysis
W-statistic 119.5 0.0 0.0 1.0 0.0 38.0
P-value 0.047 <0.001 <0.001 <0.001 <0.001 <0.001
Significant (a=0.05) v v v v v v
Wins / 28 18 28 28 27 28 23
Win Rate 64.3% 100% 100% 96.4% 100% 82.1%
Avg. Improvement 0.93% 4.98% 12.78% 6.20% 10.62% 3.17%
Mean Absolute Error (MAE) Analysis
W-statistic 135.5 171.5 2.0 112.0 2.0 12.0
P-value 0.099 0.236 <0.001 0.032 <0.001 <0.001
Significant («=0.05) X X v v v v
Wins / 28 18 14 27 21 26 20
Win Rate 64.3% 50.0% 96.4% 75.0% 92.9% 71.4%
Avg. Improvement 0.89% 0.24% 6.02% 1.20% 4.61% 2.12%
Combined MSE+MAE Analysis (56 comparisons)
We-statistic 497.0 288.0 2.0 194.5 2.0 92.0
P-value 0.017 <0.001 <0.001 <0.001 <0.001 <0.001
Significant (a=0.05) v v v v v v
Wins / 56 36 42 55 48 54 43
Win Rate 64.3% 75.0% 98.2% 85.7% 96.4% 76.8%
Avg. Improvement 0.91% 2.61% 9.40% 3.70% 7.61% 2.64%
Overall Performance Summary
Methods Outperformed MSE: 6/6 MAE: 4/6 Combined: 6/6
Average Win Rate 90.5% 75.0% 82.7%
Average Improvement 6.45% 2.51% 4.48%

Note: Wilcoxon signed-rank test with one-sided alternative (H1: FlowMixer < Baseline). W-statistic represents
the sum of positive ranks, where lower values indicate stronger evidence against the null hypothesis. Significance
threshold: a = 0.05.

FlowMixer achieves statistically significant improvements (p<0.05) over all baseline methods for MSE, confirm-
ing that the performance differences are not due to random variation. While the magnitude of improvements is
incremental (1-12%), these gains are meaningful in the context of mature benchmarks. The W-statistic values
near 0 for several comparisons (TimeMixer++, iTransformer, CycleNet) indicate that FlowMixer outperformed
these methods on nearly all dataset-horizon pairs. While MAE shows non-significance against Chimera and
TimeMixer++, this is expected as MAE is less sensitive to extreme errors that MSE capturesand extreme
event prediction is crucial for practical forecasting applications. The average win rate of 82.7% across all
comparisons demonstrates consistent performance despite the incremental nature of improvements on these
saturated benchmarks, where even 1-2% improvements are considered meaningful in the forecasting literature.
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E Further Details on the FlowMixer Architecture

E.1 Mixing Expressions

T + B?SoftMax(QKT /+/d
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Figure 6: Overview of the FlowMixer architecture. Input data X is first normalized using
RevIN/SOBR, then processed through a central mixing layer with two components: time mix-
ing (bottom) and feature mixing (top). The mixing layer transforms the normalized input ¢(.X ) using
weight matrices W; and W, resulting in an intermediate representation Z that is finally denormalized
to produce the output Y. The figure also illustrates various mixing mechanisms for time dependencies
(left) and details on how periodic mixing is implemented using tensor products (right), demonstrating
how the model captures different temporal patterns at multiple scales.

E.2 Selection of Input Sequence Length

The selection of appropriate sequence length n; is critical for capturing meaningful temporal patterns in time
series forecasting. For FlowMixer, we establish that the lookback window should be longer than the maximum
prediction horizon (720), thus n; > 720. This requirement ensures the model has sufficient historical context
for all forecasting tasks. Based on our spectral analysis, we identified that the most prominent periodicities in
the ETT datasets are daily (24 hours) and weekly (24 x 7 = 168 hours) cycles. For ETTm datasets specifically,
these periods are multiplied by a factor of four due to the 15-minute sampling rate compared to hourly sampling
in other datasets. To accommodate both these periodic patterns and allow for effective multiplicity search in
our structured decomposition, we selected ny = 1344 = 24 x 7 x 4 x 2. This value represents two complete
cycles of the largest periodicity (biweekly) in the 15-minute sampled data. For Electricity data, we increased
the sequence length by a factor of 2 (n; = 2688) to improve results, particularly for longer horizons where
capturing multiple cycles of the longer-term patterns proved beneficial. Similarly, for Weather data, we increased
n¢ by a factor of 3 to better model the complex atmospheric dynamics that exhibit longer-range dependencies.

E.3 Channel-Independent FlowMixer Variant

E.3.1 Mathematical Formulation

The channel-independent variant decomposes multivariate forecasting into 1y independent univariate problems.

Definition E.1 (Channel-Independent FlowMixer). For input X € R™ *"f the channel-independent operation
is:

Yo =F;(X.;) Vi€ [lng] (16)
where each F; : R"* — R™* operates independently:
Fi(x) = ¢5 ' (Wh,j;(x)) a7

E.3.2 Theoretical Properties

Proposition E.2 (Properties of Channel-Independent Variant). The channel-independent FlowMixer preserves:
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1. Semi-group property (per channel): }';k) o f;h) = f;kJrh)

2. Temporal eigenmodes: Each channel maintains independent temporal decomposition
3. Algebraic horizon modification: Per-channel via (W, j)hl/ h
But loses:

1. Kronecker structure: No spatial-temporal coupling

2. Cross-channel dependencies: Cannot model feature interactions

E.3.3 Computational Analysis

Table 5: Parameter count comparison

Configuration Standard FlowMixer Channel-Independent
Time mixing n? ng x n?
Feature mixing nfc 0

Total parameters ni +n} ng x n?
ETTh1 (7 channels) 1.8M 12.7M (7E)
Traffic (862 channels) 3.2M 1,566M (489(E)

E.3.4 Empirical Performance

Table 6: Performance comparison on ETTh1 (MSE)

Horizon 96 192 336 720

Standard FlowMixer 0.358 0.394 0.418 0.465
Channel-Independent 0.371 0.412 0439 0.491
PatchTST (channel-ind.) 0.370 0.413 0.422 0.447

Remark E.3 (Trade-offs). The channel-independent variant:
* Gains: Per-channel optimization flexibility, parallel training
* Loses: Cross-channel patterns, parameter efficiency
¢ Optimal when: Channels are truly independent (e.g., unrelated sensor streams)
* Suboptimal for: Spatially correlated data (turbulence, traffic networks)

For FlowMixer’s target applications (traffic, turbulence) where spatial correlations are fundamental, the standard
architecture with full mixing matrices proves more suitable despite higher computational complexity.
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F Appendix: FlowMixer Ablation Study

To understand the contribution of each component in FlowMixer, we conducted a comprehensive ablation study
on the ETTh1 dataset. Figure 7 illustrates the comparative performance analysis of different model variants,
while Table 7 presents the detailed numerical results.

We tested the following architectural variants:

* FlowMixer (Full): The complete model as described in Methods and the supplementary material.
¢ w/o RevIN: FlowMixer without Reversible Instance Normalization.

* w/o Feature Mixing: FlowMixer with the feature mixing component removed.

» w/o Time Mixing: FlowMixer with the time mixing component removed.

* w/o Positive Time Mixing: FlowMixer without the positivity constraint on time mixing.

¢ w/o Static Attention: FlowMixer with a generic mixing structure for features instead of the proposed
approach.

* w/o Adaptive Skip Connection: FlowMixer without the adaptive skip connections.

FlowMixer Ablation Study on ETTh1 Dataset

a) Ablation Study MSE vs. Forecast Horizon b) Average Performance Across All Horizons
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Figure 7: Comprehensive ablation study of FlowMixer architectural components. a, MSE perfor-
mance across multiple prediction horizons (48-720 hours) for different model variants. The complete
FlowMixer model (dark blue) demonstrates consistently strong performance, particularly for longer
horizons. b, Relative performance degradation (%) quantifying the impact of removing individual
components. The most significant performance drops are observed when removing the time mixing
and static attention components, underlining their crucial role in the architecture. Note the logarithmic
scale in (a) highlighting performance differences across horizons.

Table 7: Ablation study results on ETTh1 dataset. We report average MSE for different prediction
horizons, with + std from five seeds.

Model Variant / Horizon 48 96 168 336 720

FlowMixer (Full) 0.336+ 0001 0.358+ 0001  0.394+0001 0.418+ 0001  0.465+ 0.001
w/o RevIN 0.341+-0003 0.371+0003 0.412+0002 0.461+0006 0.620+ 0.012
w/o Feature Mixing 0.378+ 0004  0.390+0001  0.410+0001  0.427+0002 0.4764+ 0.002
w/o Time Mixing 0.486+ 0014  0.523+0008 0.543+0005 0.555+0011  0.634+ 0.009
w/o Positive Time Mixing 0.338+ 0002 0.364+0001  0.398+0002 0.427+0001  0.482+ 0.001
w/o Static Attention 0.373+0003  0.386+0007 0.413+0005 0.432+0006 0.519+ 0.007

w/o Adaptive Skip Connection  0.336+0002  0.362+0001  0.395+0001  0.420+ 0001  0.497+ 0.001

The results demonstrate several key insights about FlowMixer’s architecture:
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Time Mixing: The time mixing component proves essential, with its removal leading to the most
substantial performance degradation (up to 36% relative increase in MSE), mainly affecting longer-
horizon predictions.

Feature Mixing: The static attention mechanism for feature mixing significantly contributes to model

performance, with its replacement by a generic mixing structure resulting in inconsistent performance
across horizons.

RevIN: Reversible Instance Normalization plays a crucial role in handling distribution shifts, showing
increased importance at longer horizons (720h), where its removal leads to a 33.3% performance
degradation.

Positive Time Mixing: The positivity constraint on time mixing has minimal impact on performance
(around 1.9% degradation on average) but is crucial to reach SOTA.

Architectural Choices: Both adaptive skip connections and dropout contribute to model robustness,
though their impact is more subtle than the core mixing components. Nevertheless, their contribution
is essential to reach SOTA.

This comprehensive ablation study validates the architectural choices in FlowMixer, demonstrating that each
component contributes meaningfully to the model’s overall performance. The results highlight the importance of

the time mixing and feature mixing mechanisms, which form the core of FlowMixer’s architecture, as presented
in the main text.
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Figure 8: Comparison of forecasting performance for FlowMixer, NHiTS, and TSMixer on the
ETThl dataset. The plots show predictions for four variables: (a) HUFL, (b) HULL, (c) MUFL, and
(d) MULL. The x-axis represents time in hours, with 0 marking the start of the prediction period.
The y-axis shows the values for each variable. Ground truth (dashed black line) is plotted alongside
predictions from FlowMixer (blue), NHiTS (green), and TSMixer (orange). FlowMixer demonstrates
competitive performance, consistently producing forecasts that are more closely aligned with the
ground truth across all four variables. This is particularly evident in capturing the amplitude and
phase of the cyclical patterns. NHiTS and TSMixer, implemented using their default configurations
in the Nixtla forecasting library, show less accurate predictions, often missing key fluctuations in the
data. FlowMixer’s enhanced predictive capability is especially notable in periods of rapid change or
unusual patterns, suggesting a more robust and adaptive forecasting approach.
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H Algebraic Horizon Modification: Theory and Practice

H.1 Overview

FlowMixer’s algebraic horizon modification capability represents a fundamental departure from traditional
forecasting approaches. Through the semi-group property and Kronecker-Koopman decomposition, we can adjust
prediction horizons post-training via simple matrix operations. This section provides theoretical foundations,
practical demonstrations, and comparisons with existing Koopman-based methods including Koopa [29] and
KNF [30].

H.2 Practical Illustration

Performing horizon change is straightforward using equation 12. Our theoretical framework allows both
interpolation (£ < 1) and extrapolation (¢ > 1) of horizons through eigenvalue scaling:

X0y =671 D au(ap) ) Qupg)" " (18)
0,3
To demonstrate this capability and its limits, we conduct an experiment on ETTh1 with a model trained for
horizon h = 96, then algebraically adjust to predict various other horizons.

FlowMixer Horizon Modification on ETThl
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Figure 9: FlowMixer trained for horizon h = 96 (green), then algebraically adjusted for various
horizons. The model maintains reasonable performance for ¢ € [0.5, 2.0], with degradation beyond
this range. Values of ¢ closer to 1 yield best results naturally, as the model was optimized for the
original horizon.

The results reveal that FlowMixer can successfully adjust horizons within a factor of 2 (halving or doubling) while
maintaining reasonable accuracy. This flexibility enables practical applications where prediction requirements
vary dynamically.

H.3 Theoretical Error Bounds

‘We now establish theoretical foundations for understanding extrapolation performance and its limitations.

Theorem H.1 (Horizon Extrapolation Error Bound). For FlowMixer F with time mixing spectral radius p(W),
max; |v;]/0;

feature mixing spectral radius p(Wy), and RevIN condition number = RIS
J J J

, the k-step prediction
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FlowMixer Interpolation/Extrapolation Across Different Horizons
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Figure 10: MSE for interpolated/extrapolated horizons on log scale, showing approximately exponen-
tial error growth for large deviations from the training horizon.

error satisfies:

IF5(X +€) = FEXO)| < 65 p(W) p(Wy)* el (19)
where ~y; are RevIN’s learned affine parameters and o; are instance-wise standard deviations.
Proof. Let Xo = X, Xo = X + ¢, and denote X; = F(X;_1), X; = F(Xi—1).

Step 1: Single-step error bound. For one FlowMixer application:

X1 = Xu| = [l¢~ (Wa(Xo)W) — ¢~ (We(Xo) W] )| 20)
< Jac(¢™ )| - [[Wep(Xo)WF — Wig(Xo) W/ || @n
< Kaenomp(W2) p(W) | 6(Xo) — ¢(Xo) | (22)
< KdenormFonorm P(We ) p(Wy) || €| 23)

where Knorm = max; |y;|/o; bounds the normalization Jacobian and Kdenorm = max; o;/|7;| bounds the
denormalization Jacobian.

Step 2: Multi-step propagation. By induction on k: For k = 2:

1X2 = Xl < Fgenomp(We)p(Wi)[6(X1) — &(X1)]| 24
< FdenormP(We) p(Wp ) inorm || X1 — X1 | 25)
< & p(We)*p(Wy)? el (26)
The general case follows by applying this argument recursively:
Xk = Xl < 65 p(W2)*p(Wp)" le] @7
Since kK = Knorm * Kdenorm, the bound follows. O

Corollary H.2 (Stability Conditions for Extrapolation). For stable long-horizon extrapolation, we require:
1. p(Wy) < 1and p(Wy) < 1 (spectral normalization)
2. k = 1 (well-conditioned normalization)

3. Small initial perturbation ||¢||

H.4 Implications and Design Considerations

The error bound reveals three critical factors affecting extrapolation:

+ Spectral radii control: Even with p(W;) = p(W;) = 1, error can grow as "

* RevIN conditioning: The normalization’s condition number fundamentally limits extrapolation range
¢ Eigenvalue constraints: For improved stability, we could enforce:
Wi = exp(A — AT) (orthogonal, all eigenvalues on unit circle) (28)

This preserves energy but may reduce expressivity.
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H.5 Comparison with Koopman-Based Methods

We compare FlowMixer’s algebraic approach with existing Koopman-based forecasting methods, particularly
Koopa [29] and KNF (Koopman Neural Forecaster) [30].

H.5.1 Methodological Differences

Koopa [29] addresses non-stationary time series through learned Koopman operators but requires operator
adaptation (OA) for horizon changes. Their approach involves freezing the Koopman encoder and decoder while
retraining the transition operator for new horizons. In contrast, KNF [30] handles temporal distribution shifts
through an implicit Koopman framework but lacks explicit horizon adjustment mechanisms.

FlowMixer’s approach differs fundamentally: our Kronecker-Koopman structure enables direct algebraic
manipulation of horizons without any retraining or architectural modifications.

Table 8: Forecast performance comparison: baseline at h = 48 and scale-up to h = 144 using
different horizon adjustment methods. FlowMixer’s algebraic adjustment outperforms Koopa-based
methods in this evaluation.

Settin Method ETTh2 ECL Traffic Weather

g MSE MAE | MSE MAE | MSE MAE | MSE MAE
Baseline FlowMixer 0.264 0.330 | 0.131 0.226 | 0.377 0.264 | 0.143 0.194
(h =48) Koopa [29] 0.297 0.349 | 0.148 0.240 | 0.395 0.268 | 0.174 0.214

FlowMixer (algebraic) | 0.339 0.385 | 0.151 0.246 | 0.397 0.277 | 0.191 0.242
Scale-Up | FlowMixer (retrained) | 0.323 0.362 | 0.146 0.239 | 0.392 0.271 | 0.188 0.238
(h = 144) | Koopa (rollout) [29] 0437 0429 | 0.199 0.298 | 0.709 0.437 | 0.237 0.276
Koopa+OA [29] 0.372 0404 | 0.182 0271 | 0.699 0.426 | 0.225 0.264

H.6 Theoretical Comparison

Table 9: Theoretical properties of Koopman-based forecasting methods

Property FlowMixer Koopa [29] KNF [30]
Semi-group property  Guaranteed Approximate Not enforced
Eigenmode extraction Direct Embedded Implicit
Horizon flexibility Algebraic  Operator adaptation Fixed
Retraining needed No Partial Full
Computational cost o(1) O(epochs) O(full training)

H.7 Method Implementation Comparison

Table 10: Implementation details for horizon adjustment

Method Mechanism Retraining  Time Flexibility

FlowMixer Matrix power W' /% None <1s  Continuous
Koopa [29] (rollout)  Iterative application None O(h')  Integer only
Koopa+OA [29] Operator adaptation Partial Minutes Integer only
KNF [30] Full retraining Complete Hours  Any horizon
Retrain from scratch Full training Complete Hours  Any horizon

H.8 Key Observations

¢ Performance: FlowMixer’s algebraic adjustment outperforms both Koopa [29] with or without
operator adaptation and KNF [30] when horizon adjustment is required

« Efficiency: Matrix powering takes milliseconds versus minutes for Koopa’s operator adaptation or
hours for KNF’s full retraining
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* Flexibility: FlowMixer enables fractional horizons (e.g., h = 324.5) impossible with integer-based
rollout methods in Koopa

* Simplicity: No architectural modifications or retraining required, unlike both Koopa and KNF

* Theoretical grounding: Error bounds provide principled understanding of extrapolation limits.

I Complexity Analysis and Stability

I.1 Computational Complexity

Understanding the computational demands of FlowMixer helps assess its practical applicability across different
domains. This analysis examines both time and memory requirements for the model’s core operations.

Time Complexity. For an input matrix X € R™*"f where n; represents the number of time steps and n 5
the number of features, FlowMixer’s computational demands stem primarily from three operations:

The time mixing process begins with forming the matrix W; = ol + W x W, requiring O(n?) operations, but
importantly, this is computed once per forward pass rather than per feature. The subsequent matrix multiplication
W, X involves multiplying the pre-computed W; with each feature column, incurring a cost of O(n?ny). Using
the exact matrix exponential W; = ae("YoX"0) would significantly increase computational cost to O(nd),
which motivates our first-order approximation.

When employing the Kronecker structure for seasonality, W; = Zp Wi (p)y @ Wy, the computational cost can
decrease providing some efficiency gains for long sequences with periodicity.

Feature mixing through static attention computes key-query interactions QK™ / Vd at O(n? d) cost, where d is
the attention dimension. The subsequent SoftMax and matrix multiplication add O(nfc n.) operations. These
computations enable the model to capture feature interdependencies.

The RevIN component performs normalization and denormalization with O(n;ny) operations, addressing
distribution shifts between training and inference.

Combining these components yields an overall time complexity bound of:

T(n,ny,d) = O(ning +nine +n} d) (29)

When time steps and feature dimensions are comparable (n; =~ ny = n) and d < n, this simplifies to
approximately O(n®). This cubic scaling is mitigated by the high efficiency of matrix multiplication on
GPUs. The matrix exponential typically uses Padé approximation requiring inversion, which might hinder the
performance overall.

Memory Complexity. FlowMixer’s memory requirements stem from storing the mixing matrices and
intermediate activations. The time mixing matrix W; € R™*"¢ and feature mixing matrix Wy € R™f*"f
require O(n7) and O(n7) storage, respectively. Intermediate activations add an additional O(n¢n ;) memory
requirement. Combined, the memory complexity is:

M(ng,ny) :O(nf+n?+mnf) (30)

With the Kronecker structure for seasonality modeling, memory requirements for W; decrease to O(r? + p?)
where 7 X p = n., substantially reducing storage needs.

Scalability Strategies. To address computational challenges with large-scale data, FlowMixer employs
several optimization strategies:

First, low-rank approximations can factorize W; or W into rank-r products, reducing computational require-
ments to O(r(n¢ + ny)). This approach preserves the essential mixing patterns while substantially decreasing
computational demands.

Second, sparse attention mechanisms can restrict feature mixing to block-sparse or local patterns. This reduces
the effective complexity to O(n s log ns), making the model more efficient for high-dimensional feature spaces.

Third, chunked processing divides long sequences into blocks of size k, lowering the per-block complexity to
O(k*ny). This approach is particularly valuable for extended time series where the full quadratic cost would be
prohibitive.

These optimization techniques enable FlowMixer to scale efficiently to practical applications with long sequences
or high-dimensional feature spaces while maintaining its theoretical properties.
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L.2 Stability Analysis

FlowMixer’s numerical stability derives from carefully designed spectral properties in its mixing matrices,
ensuring robust performance across diverse forecasting tasks.

I.2.1 Feature Mixing Stability

The feature mixing matrix W; is constructed as a left-stochastic matrix through a SoftMax-based operation.

This design ensures that its maximum eigenvalue is exactly one ()\EIQX = 1), effectively preventing unbounded
amplification during feature propagation. This property creates a natural stability constraint that helps the model
maintain numerical robustness even for complex, multi-dimensional datasets.

L.2.2 Time Mixing Stability

The time mixing matrix Wy = oI + (W x W) incorporates a positivity constraint through the Hadamard square
operation. According to the Perron-Frobenius theorem, this structure guarantees a dominant positive eigenvalue,
contributing to stable temporal propagation. For applications requiring fully conservative dynamics, one could

normalize W by its maximum eigenvalue A or impose unitary constraints.

Notably, FlowMixer deliberately omits strict normalization to allow the model to capture both conservative
and dissipative dynamicsa crucial capability for modeling real-world systems where energy may be gained or
lost over time. This flexibility enables accurate representation of diverse temporal behaviors while maintaining
predictable numerical properties through constrained eigenstructures.

1.3 Computational Scaling Analysis

L.3.1 Empirical Wall-Clock Runtime Analysis

We empirically evaluated FlowMixer’s computational scaling to understand practical deployment boundaries
beyond theoretical complexity.

Table 11: FlowMixer wall-clock runtime scaling (ETTml1, pred_len=96, A100 GPU)

Sequence Length 256 512 1024 2048 4096 8192 16384
Time/1000 iter (s) 201 213 233 405 853 225 771
Theoretical O(n?) 1.00 4.00 160 640 256 1024 4096
Actual Scaling Factor  1.00 1.06 1.16 2.01 425 112 384
GPU Efficiency 100% 94% 86% 49% 23% 8.7% 23%

Remark 1.1 (Sub-quadratic Behavior). FlowMixer exhibits sub-quadratic scaling up to 4096 timesteps due to
efficient GPU parallelization of matrix operations. Beyond 5000 timesteps, memory bandwidth becomes the
bottleneck, and linear models become necessary.

L.3.2 Comparison with Linear-Complexity Models

Table 12: Complexity comparison across architectures

Model Complexity Key Properties

FlowMixer O(ning + nfn?c) Full eigendecomposition, interpretability
FlowMixer (expm) O(n}) Optional, for dynamical properties
S4/Mamba O(ny-d- k) Linear scaling, diagonal approximation
Transformer O(n? - d) Similar to FlowMixer

Linear Attention O(ny - d?) Kernel approximation

FlowMixer is computationally advantageous when:

1. Sequence length n; < 5000 (sub-quadratic GPU regime)

2. Interpretability via eigendecomposition is required

3. Single-model deployment across multiple datasets is needed
4

. Algebraic horizon manipulation is beneficial

For ny > 10000, linear-complexity models become necessary.

35



1.4 Matrix Exponential Approximation Analysis

The time mixing matrix Wy = aexp(Wy x Wy) connects to Koopman theory where temporal evolution
is naturally exponential. We investigate the trade-off between computational efficiency and accuracy when
approximating this exponential using Taylor series truncation:

n Ak A2
eXp(A)zZﬁ:I"'A‘Fj"'"""* G1)
k=0 :

Table 13: Performance comparison of Taylor approximation orders (ETTh1 dataset)

\ Order1 Order2 Order3 Order4 Order5 Exact

MSE (h=96) 0.362 0.361 0.362 0.361 0.361 0.356
MSE (h=720) 0.488 0.479 0.475 0.470 0.469 0.471
Runtime (s/epoch) 1.8 2.0 2.0 2.0 2.1 5.8

Relative Cost 1.0(E 1.L11GE L.L11GE 1.11GE 1.17E 3.22E

Key Finding: Higher-order approximations provide negligible accuracy gains (< 1% MSE improvement) while
the exact exponential increases runtime by 3.22x. GPU parallelization dominates computation time, making
orders 1-5 nearly equivalent (1.8-2.1s). We adopt the first-order approximation Wy = o + Wy x W) for its
simplicity and efficiencythe quadratic term already provides sufficient nonlinearity for temporal dynamics.

J Theoretical Connections to FARIMA Models

This section establishes the connection between FlowMixer’s adaptive skip connections and fractional autore-
gressive integrated moving average (FARIMA) models.

In ARIMA(p,d,q) models, first-order integration (d=1) transforms non-stationary series into stationary ones
through differencing:
VX =Xe — Xea (32)

Neural networks implement conceptually similar operations through residual connections:

Te41 = Tt + F (x4, 0) (33)

FlowMixer makes this integration process learnable through parameter o:

ZTip1 = axy + F(xe, 0) 34)

Rearranged with the lag operator L:
(1 — OJL)LEt+1 = .F(l‘t, 0) (35)

This formulation parallels FARIMA models, where the fractional differencing operator has the first-order Taylor
expansion:

(1—L)*~1—dL+O(L? (36)

Our a parameter functions analogously to d, controlling memory persistence. The key innovation is making o
learnable, allowing the model to adaptively determine appropriate memory persistence for each dataset. This
approach offers two primary advantages over fixed fractional differencing:

1. Automatic Parameter Tuning: FlowMixer learns the optimal « directly from data rather than
requiring a priori estimation

2. Computational Tractability: The first-order approximation maintains efficiency while capturing
essential long-memory characteristics

Through this mechanism, FlowMixer effectively addresses non-stationarity through a theoretically grounded,
differentiable approach inspired by classical time series models.
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K Chaotic Systems Prediction

K.1 Overview

We evaluated FlowMixer on three canonical chaotic systems with distinct dynamical characteristics. Each system
is defined by a set of ordinary differential equations:

Lorenz System. [0 = 10.0, 8 =8/3, p = 28.0, Lyapunov exponent = 0.91]

& =o(y -z
y =z(p—2)—y (37)
2 =uxy— Bz

Réossler System. [¢ =0.2,b=0.2,c=5.7]

=—-y—2z
y —a+ay (38)
Z =b+z(z—c¢)

Aizawa System. [a =0.95,b=0.7,¢=0.6,d = 3.5,e = 0.25, f = 0.1]

z =(z—bx—dy
y =dz+(z-by (39)

z :c+az—§—(x2+y2)(l—|—ez)+f§

Data Generation Protocol. Trajectories were generated via 4th-order Runge-Kutta integration (d¢ = 0.01s)
with the following specifications:

« Initial conditions: [1.0, 1.0, 1.0] with 500-step transient removal

¢ Sequence length: 12,500 timesteps (125 time units)

 Normalization: Min-max scaling to [—1, 1]

» Dataset partitioning: 70% training, 15% validation, 15% testing (chronological)

Model Configuration. FlowMixer with SOBR was configured with:

* Time/feature hyperdimensions: 1024/64

¢ Leaky ReLU activation (o« = 0.1)

+ Optimization: AdamW (Ir = 10™*, weight decay=107°)
* Training: 100 epochs, early stopping (patience=10)

Comparative Methods. Benchmark models included:

* Reservoir Computing: 300 nodes, spectral radius 1.1, connectivity 0.05
* N-BEATS: 30 blocks, 3 stacks, 256 units per layer
Performance evaluation covered 1024 prediction steps (~9-10 Lyapunov times for Lorenz) using both trajectory

alignment metrics and attractor reconstruction analysis. This framework assessed each model’s capacity to
capture the complex dynamics that characterize these systems across different attractor geometries.
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K.2 Semi-Orthogonal Basic Reservoir: Mathematical Foundations

K.2.1 Semi-group Preservation Through Koopman Lifting

The Semi-Orthogonal Basic Reservoir (SOBR) addresses the challenge of modeling chaotic systems where
low-dimensional nonlinear dynamics require high-dimensional representations for linear approximation.

Proposition K.1 (Semi-group Preservation in Lifted Space). Consider the standard FlowMixer operation:
F(X) = ¢~ (Wep(X)W]) (40)

With SOBR, we introduce a lifting operator S : R™*™f — R**%f where d; > n; and df > ny. Let
F = St o F o S be the FlowMixer network with SOBR included.

We can work in two spaces:

1. Original space (X,Y') with Fasan approximate mapping between X and Y mapping. For example
an 12 loss could be expressed: Lyandard = |lF(X) - Y||§

2. Lifted space (S(X), S(Y')) with F as an approximate mapping between S(X ) and S(Y"). This choice
impacts the loss functions, for an I* loss we get: Lipea = || F(S(X)) — S(Y)|I3

In the lifted space, the semi-group property is preserved:

]_—(k-) O]_—(h) _ ]_—(k-+h) in Rthdf 41

Proof. In the lifted space R% s, FlowMixer operates on Z = S(X) as:
F(Z) = ¢~ (Wid(Z)W)) 42)
where W, € R**4t and Wy e R? >4 are the mixing matrices in the lifted space.

For successive applications:

FM(2) = ¢ (Wie(2)(W)") 3)
FEFM(2)) = ¢ (WEe(o™ (W e(2) (W) (W])F) (44)
Since ¢ o ¢! = T (identity), we have:
FREFEM(2)) = ¢ (WEWL(2) (W) (W) 45)
= ¢ (W e(Z)(WHE (46)
= FHR (7)) (47

Therefore, the semi-group property holds in the lifted space. The algebraic horizon modification similarly
transfers to this space, where eigenvalue powers control temporal evolution. The trade-off is computational: we
operate in R1924%64 ingtead of R32%3 for chaotic systems. O

K.2.2 Spectral Radius Guarantees

Proposition K.2 (Spectral Stability of SOBR). The SOBR transformation S(X) = o(UyXU}') with semi-
orthogonal matrices satisfying:
VU = la,, UsUf = Ia, (48)

ensures spectral stability:
P(SOBR o W) < ||o|luip - p(Wr) - p(Wy) (49)
where ||o||Lip is the Lipschitz constant of the activation.

Proof. The Jacobian of the SOBR transformation is:

Js = diag(o’ (U XUY)) - (U; @ Uy) (50)

Since U; and Uy are semi-orthogonal:

|Ut]l2 = \/Amax (UL Ur) < 1 1)

38



Therefore:

1Us @ Utll2 = IUsll2 - [|Uell2 < 1 (53)

For Leaky ReLU with o = 0.1:
llollLip = max(1, Jaf) = 1 (54)
This ensures SOBR does not amplify the spectral radius of the core mixing operation. O

K.2.3 Practical Implications for Chaos Prediction

For chaotic systems like Lorenz (z¢ € R®), the lifting to z; = S(z;) € R*024x64

to linearize dynamics over 9-10 Lyapunov times. This results in:

provides sufficient expressivity

« Effective Lyapunov exponent: 0.136 (vs true 0.906)
* Predictability time: 7.34 time units (vs 3-5 for alternatives)

* Correlation dimension accuracy: 95.2%

K.3 Appendix: FlowMixer Results for Chaotic Attractor without SOBR.
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Figure 11: Predictions of Lorenz (a), Rossler (b), and Aizawa (c) chaotic attractors (scaled [-1,1])
without SOBR. Each row shows the evolution of X, y, and z variables over time. Ground truth
(black), FlowMixer (blue). Experimental settings are detailed in the following section. The vertical
dashed line indicates the beginning of the prediction. The time step is 0.1 s and the prediction covers
approximately 10 Lyapunov periods for Lorenz attractor. FlowMixer predicts efficiently both Aizawa
and Rossler attractor; however Lorenz is more challenging, hence the need for SOBR.
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K.4 Detailed Hyperparameters

In this section, we provide a comprehensive description of all hyperparameters used in our comparative analysis
of chaotic system forecasting methods.

Reservoir Computing (RC)

Parameter Value Description

Reservoir size 300 Number of nodes in the reservoir

Spectral radius 1.1 Scaling factor for reservoir matrix eigenvalues

Input scaling 0.2 Controls the magnitude of input weights

Density 0.05 Proportion of non-zero connections in reservoir
Activation function Sigmoid Applied element-wise to reservoir states

Ridge parameter 0.0001 Regularization in readout training

Leakage rate 0.1 Base value, tuned between [0.01, 1.2] for each system

Table 14: Hyperparameters for Reservoir Computing model

Our implementation of Reservoir Computing follows the approach described by Pathak et al. (2018) [1]. The
reservoir is configured as a random directed graph with connection probability of 0.05, following the ErdsRényi
model. The reservoir dynamics are governed by a continuous-time formulation with leakage rate controlling the
memory capacity. The core architecture (reservoir size, spectral radius, input scaling) remains fixed based on
established best practices in the literature.

N-BEATS
Parameter Value Description
Stack count 30 Number of stack components in the network
Block count 1 Number of blocks in each stack
Layer count 4 Hidden layers in each block
Neurons per layer 256 Width of fully connected layers
Theta size 8 Parameter controlling basis representation size
Feature dimension 3 Input/output dimension (x,y,z) for chaotic systems
Batch size 32 Number of samples per gradient update
Learning rate le-4 Step size for Adam optimizer
Activation function ReLU Used in all hidden layers
Training epochs 100 Maximum iterations through the dataset
Early stopping patience 10 Epochs without improvement before halting

Table 15: Hyperparameters for N-BEATS model

N-BEATS (Neural Basis Expansion Analysis for Interpretable Time Series forecasting) represents a state-of-the-
art architecture specifically designed for time series forecasting tasks. The model follows the original design
proposed by Oreshkin et al. (2020), consisting of multiple stacks of fully connected blocks. Each block processes
the input using several dense layers, producing both a backcast (reconstruction of the input) and a forecast. A
notable characteristic of our implementation is the deep stack configuration (30 stacks) combined with a minimal
block count (1 block per stack), which we found provides the optimal balance between representational capacity
and computational efficiency for chaotic attractors. The relatively high width (256 neurons) of hidden layers
allows the model to capture the complex nonlinear dynamics of chaotic systems. This configuration works well
for Lorenz and Aizawa attractors, but could be improved for Rossler attractor.

FlowMixer

FlowMixer represents our proposed architecture that combines matrix mixing operations with Semi-Orthogonal
Basic Reservoir (SOBR) to efficiently model complex spatiotemporal patterns in chaotic systems. The relatively
high SOBR time dimension (1024) compared to the feature dimension (64) reflects the importance of temporal
dynamics in chaotic systems prediction. The model employs a higher dropout rate (0.5) compared to LSTM,
which we found necessary to prevent overfitting given the model’s high capacity. The reversible activation
implementation using Leaky ReLU with a=0.1 provides stable gradient flow during training while maintaining
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Parameter Value Description

Sequence length 16 Number of past timepoints as input
Prediction length 16 Number of future timepoints to predict
SOBR dimension 64 Reservoir dimension for feature lifting
SOBR time dimension 1024 Reservoir dimension for time lifting
Dropout rate 0.5 Regularization for preventing overfitting
Learning rate 3e-3 Step size for AdamW optimizer

Weight decay le-7 L2 regularization in AdamW

Batch size 32 Number of samples per gradient update
Training epochs 100 Maximum iterations through the dataset
Early stopping patience 10 Epochs without improvement before halting
Activation Leaky ReLU (a=0.1) Used in reversible implementation

Table 16: Hyperparameters for FlowMixer model

the model’s expressivity. We use the AdamW optimizer with a weight decay parameter of le-7, which provides
regularization without significantly affecting the model’s ability to capture the intricate dynamics of chaotic
systems. The usage of SOBR in this context, removes the intrinsic extraploation capaibilties, which would have
been very valuable for autoregressive rollouts. This a direction for future research.

All models were trained using a 70/30 train/test split with min-max scaling to a range of [-1,1] for consistent
evaluation across different chaotic systems. We used validation-based early stopping with patience=10 to prevent
overfitting. For fair comparison, we maintained consistent environment settings across experiments, including
random seed initialization for all random processes, ensuring reproducibility of our results.

K.5 Metrics for Chaotic Attractor Analysis

To evaluate the dynamical fidelity of predicted chaotic trajectories, we compute three primary metrics: correla-
tion dimension, power spectral density, and geometric attractor visualization. Each provides a distinct view
into the structural and statistical properties of the system dynamics.

Correlation Dimension Estimation

The correlation dimension D- is estimated using a refined version of the Grassberger—Procaccia algorithm.
Given a phase-space trajectory {a; } 7, , we compute the set of all pairwise distances and evaluate the correlation
sum:

2
Cle) = m29(6— i — ;1)) (55)
1<jJ
where © is the Heaviside step function and || - || denotes Euclidean distance. The correlation dimension is
defined by the scaling relation:
Ds = lim 1089 (56)

e—~0 dloge

In practice, we perform a linear regression on log C'(¢) versus log € over a scaling region defined by the 5th
to 50th percentiles of the distance distribution. Epsilon values are logarithmically spaced, and only fits with
R? > 0.95 and positive slopes are considered valid. The final estimate is averaged across multiple randomly
seeded predictions to report a mean = standard deviation.

Power Spectral Density (PSD)
The power spectral density of each coordinate axis is computed using Welchs method with a Hann window,

which averages over overlapping segments to reduce variance. The PSD is plotted on a log-log scale to highlight
scale-free and broadband structures, characteristic of chaotic systems.
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Geometric Visualization

We provide both 3D phase portraits and 2D projections (X-Y, X-Z, Y-Z) of the attractor trajectories. To avoid
inter-axis distortion, each dimension is independently normalized to the range [—1, 1]. These plots offer a
qualitative assessment of topological similarity between predicted and true attractors, emphasizing features such
as folding, divergence, and symmetry.

Table 17: Long-term Statistics Summary

System Model Theoretical Dim Corr. Dim (Pred) Dim. Ratio Abs. Diff (%)
Lorenz Reservoir 2.060 0.044 0.021 97.9%
Lorenz FlowMixer 2.060 1.961 0.952 4.8%
Lorenz NBEATS 2.060 1.931 0.937 6.3%
Rossler Reservoir 1.800 0.043 0.024 97.6%
Rossler FlowMixer 1.800 1.432 0.796 20.4%
Rossler NBEATS 1.800 2.306 1.281 28.1%
Aizawa Reservoir 1.900 0.004 0.002 99.8%
Aizawa FlowMixer 1.900 1.750 0.921 7.9%
Aizawa NBEATS 1.900 1.839 0.968 3.2%
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Figure 12: Comparative analysis of Lorenz chaotic attractor predictions across three forecasting
models. Each row presents a different model’s performance: Reservoir Computing (top), FlowMixer
(middle), and NBEATS (bottom). The columns show three complementary visualizations: (left)
full 3D attractor reconstruction showing butterfly-shaped trajectories, (middle) 2D X-Y projections
revealing structural fidelity, and (right) power spectral density plots displaying frequency domain
characteristics. Ground truth trajectories appear in light blue across all plots, while model predictions
are shown in model-specific colors (red, green, and purple respectively). FlowMixer and NBEATS
demonstrate more complete coverage of the attractor’s phase space compared to Reservoir Com-
puting, which primarily captures one lobe of the attractor. The power spectra further reveal that
FlowMixer and NBEATS more accurately preserve the frequency characteristics of the ground truth
across multiple scales, while Reservoir Computing shows significant spectral deviations at higher
frequencies.
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Figure 13: Comparison on Rossler attractor
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43



K.6 Time EigenModes for Chaotic Attractor
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Figure 15: Eigenvalue analysis of the FlowMixer model for Lorenz, Rossler, and Aizawa attractors.
(a-c) Each row corresponds to a different attractor: Lorenz (a), Rossler (b), and Aizawa (c). Left
column: Complex plane representation of eigenvalues, with magnitude indicated by color and the
unit circle shown in red. Middle column: Second eigenvector components, revealing characteristic
oscillatory patterns. Right column: Log-log plot of eigenvalue magnitudes vs. their rank order,
illustrating the spectral decay. This analysis provides insights into the model’s stability, dominant
modes, and computational efficiency across different chaotic systems.

L. Lyapunov Exponents and Predictability Analysis

L.1 Theoretical Foundation

Chaotic systems exhibit sensitive dependence on initial conditions, quantified by Lyapunov exponents that
measure the rate of exponential divergence between nearby trajectories [18]. For neural network predictions,
we introduce an effective Lyapunov exponent A that characterizes actual prediction error growth, revealing
whether models capture underlying attractor geometry or merely fit short-term trajectories.
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L.2 Methodology
Given a prediction error trajectory, we estimate the effective Lyapunov exponent through:

RMSE(t) = RMSE - ™ (57)

We perform linear regression of log(RMSE(¢)) versus ¢ over the exponential growth regime (typically 100-500
timesteps), excluding initial transients and saturation regions. The predictability horizon 7 = 1/ quantifies
the timescale over which forecasts remain useful before chaotic divergence dominates.

L.3 Results and Analysis

Table 18: Effective Lyapunov exponents and predictability horizons for chaotic systems

System | True \; | FlowMixer LSTM NBEATS RC
Effective Lyapunov Exponent Az (per time unit)

Lorenz 0.906 0.136 0.209 0.151 0.261
Rossler 0.071 0.133 0.135 0.156 0.153
Aizawa | 0.042 0.118 0.147 0.092 0.211
Predictability Horizon T = 1/ )y (time units)
Lorenz 1.10 7.34 4.79 6.63 3.84
Rossler 14.08 7.54 7.43 6.39 6.53
Aizawa | 23.81 8.50 6.79 10.89 4.74
Relative Lyapunov Reduction \gz/ M\
Lorenz 1.000 0.150 0.231 0.167 0.288
Rossler 1.000 1.873 1.901 2.197 2.155
Aizawa 1.000 2.810 3.500 2.190 5.024

Remark L.1 (Physical Interpretation). Three key insights emerge from the Lyapunov analysis:

1. Attractor Learning: When M. < A1 (as in Lorenz), models capture global attractor structure rather
than tracking individual trajectories

2. Predictability Enhancement: FlowMixer extends the Lorenz predictability horizon by 6.7(E through
learning invariant measures on the attractor

3. System Dependence: For smoother systems (Rossler, Aizawa), all methods show Aefr > A1, suggest-
ing incomplete dynamics capture

This analysis, combined with 95.2% correlation dimension accuracy (Appendix K), confirms FlowMixer learns
fundamental dynamical properties rather than performing trajectory memorization.

L.4 Comparison with Physics-Aware Methods for Chaos Prediction

L.4.1 Motivation and Baseline Selection

Standard Physics-Informed Neural Networks (PINNs) [55] fail at chaos prediction due to their reliance on
smooth solutions and difficulty handling exponential divergence of trajectories. We therefore compare against
physics-aware methods specifically designed for dynamical systems:

» Causal-PINN [57]: Extends PINNs with causality constraints through temporal domain decomposi-
tion, enabling better handling of sequential dynamics

* Neural ODE [68]: Learns continuous dynamics via adjoint methods, naturally preserving phase space
structure through ODE integration

* Reservoir Computing [1]: Physics-aware variant with spectral radius tuning to match system’s
Lyapunov exponents

L.4.2 Experimental Protocol

All methods were evaluated under identical conditions:
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* Training data: 8,000 timesteps after removing 500-step transient

* Validation/Test split: 2,000/2,500 timesteps (chronological)

* Prediction task: Given 32 timesteps, predict next 32 (multi-step ahead)

¢ Evaluation points: 128, 512, and 1024 steps (approximately 1, 4, and 9 Lyapunov times)
* Metrics: Root Mean Squared Error (RMSE) averaged over 10 random seeds

¢ Implementation: PyTorch 2.0, NVIDIA A100 GPU, consistent random seeds for reproducibility

For Neural ODE, we used the torchdiffeq library with dopri5 solver and relative/absolute tolerances of 10" .
Causal-PINN employed 10 temporal subdomains with 100 collocation points each. Reservoir Computing used
300 nodes with spectral radius 1.1.

L.4.3 Quantitative Comparison

Table 19: RMSE for chaotic system prediction at different time horizons (lower is better)

Method Lorenz Rossler Aizawa

128 512 1024 128 512 1024 128 512 1024
FlowMixer 0.120 0.300 0.420 | 0.016 0.052 0.160 | 0.005 0.014 0.031
Neural ODE | 0.075 0.310 0.440 | 0.006 0.014 0.030 | 0.009 0.025 0.052
NBEATS 0.150 0.380 0.470 | 0.018 0.056 0.180 | 0.006 0.016 0.035
Causal-PINN | 0.460 0.660 1.430 | 0.540 0.930 1.060 | 0.420 0.540 0.590
Reservoir 0.065 0320 0.430 | 0.024 0.055 0.140 | 0.022 0.072 0.160

L.4.4 Lyapunov Analysis Comparison

We computed effective Lyapunov exponents by fitting exponential error growth over the linear regime (typically

100-500 timesteps):

Table 20: Effective Lyapunov exponents and predictability times

Method Lorenz ' Raossler ' Aizawa ‘
Aegf  T(units) | Aepp T (units) | Aepp 7 (units)
True System | 0.906 1.10 0.071 14.08 0.042 23.81
FlowMixer 0.136 7.34 0.133 7.54 0.118 8.50
Neural ODE | 0.142 7.04 0.098 10.20 0.087 11.49
Causal-PINN | 0.412 2.43 0.387 2.58 0.296 3.38
Reservoir 0.175 5.71 0.145 6.90 0.132 7.58

Remark L.2 (Key Insights). 1. Neural ODE excels on the Rossler system due to its continuous formula-
tion matching the smooth spiral dynamics

2. Causal-PINN struggles across all systemsphysics constraints alone cannot handle exponential trajec-
tory divergence

3. FlowMixer achieves competitive performance without requiring differential equation knowledge or
physics priors

4. Reservoir Computing shows strong short-term prediction but degrades rapidly at longer horizons

5. Lower effective Lyapunov exponents (Aefs < Awue) indicate models learn attractor geometry rather
than just trajectory fitting

L.4.5 References for Implementation

Neural ODE implementation followed [68], Causal-PINN used temporal decomposition from [57], and Reservoir
Computing adopted the echo state network configuration from [1, 52].
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M Eigenmode Stability and Reproducibility Analysis

M.1 Motivation

The Kronecker-Koopman decomposition (Section 5.2) extracts spatiotemporal eigenmodes through data-driven
optimization. Since the optimization landscape is non-convex, different initializations might converge to different
solutions. We investigate whether FlowMixer consistently identifies physically meaningful patterns despite this
potential non-uniqueness.

M.2 Experimental Protocol
We conducted systematic stability analysis using:

* Dataset: Traffic (862 sensors with known spatial correlations from road network topology)
 Task: 96-step lookback — 24-step forecast
+ Optimization: Adam optimizer (Ir=10~%), 100 epochs, early stopping (patience=10)

Initialization: 10 independent random seeds with Xavier/He initialization

« Evaluation: Cosine similarity between corresponding eigenmodes after alignment via Hungarian
algorithm

Validation: MSE variance across seeds to ensure performance consistency
M.3 Eigenmode Consistency Results

Table 21: Eigenmode reproducibility across 10 random initializations

Spatial Mode | TO (trend) T1 (24h) T2 (12h) | Mean | Interpretation

FO0 (global) 0.98550.013  0.99550.005  0.99350.008 | 0.991 | City-wide flow
F1 (arterial) 0.97250.026  0.98280.017  0.98050.022 | 0.978 Major roads

F2 (local) 0.64180.156 0.64650.153 0.64650.154 | 0.644 Local streets
Overall ‘ 0.86650.184 0.87480.179 0.873580.181 ‘ 0.871 ‘ -
MSE Performance | 0.37750.002

M.4 Analysis and Implications

Proposition M.1 (Eigenmode Hierarchy and Interpretability). FlowMixer exhibits a hierarchical stability
structure that aligns with physical interpretation:

1. Dominant modes (F0-F1): Cosine similarity > 0.97 indicates robust capture of macroscopic patterns
(global traffic flow, arterial road dynamics)

2. Secondary modes (F2): Moderate similarity =~ 0.64 reflects local variations and measurement noise

3. Performance consistency: MSE standard deviation of 0.002 confirms that different eigenmodes achieve
equivalent predictive power

Remark M.2 (Non-uniqueness and Physical Meaning). The observed non-uniqueness in minor modes is expected
from the mathematics: the reversible mapping ¢ introduces gauge freedomdifferent normalizations lead to
different but equivalent representations. Despite this mathematical degeneracy, the emergence of consistent
dominant modes (>97% similarity) suggests FlowMixer reliably discovers physically meaningful spatiotemporal
structures inherent in the data.

This stability analysis validates that the Kronecker-Koopman framework extracts reproducible, interpretable
patterns suitable for scientific applications where consistency across experiments is crucial.
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N Appendix: 2D Turbulent Flow Simulation and Prediction

N.1 Training settings:

Our numerical framework solves the two-dimensional incompressible Navier-Stokes equations for flow around a
circular cylinder:

—0. MW Viu= vt L2
V-u=0, +(u-V)u= Vp+ReVu

We employ a projection method combined with an Alternating Direction Implicit (ADI) scheme for the viscous
terms. The simulation domain spans 10D x 4D (where D is the cylinder diameter) and is discretized with a
400 x 160 grid at Reynolds number Re = 150. The numerical solver integrates semi-Lagrangian advection for
nonlinear terms, ADI diffusion for viscous terms, and Fast Fourier Transform for the pressure Poisson equation.
The vorticity field w = V X u characterizes the wake dynamics and serves as our primary prediction target.

For the prediction task, we generated 10,000 sequences with snapshots at d¢ = 0.1, treating each grid point as
an independent time series. FlowMixer was trained on 64-step sequences to predict the subsequent 64 steps,
utilizing SGD optimization with momentum 0.9 and learning rate 10™*. Training employed adaptive rate
scheduling (reduction factor 0.15, patience 12) and early stopping (patience 24) over 100 epochs using MSE loss.
Performance evaluation combined quantitative metrics (MSE, MAE) with qualitative assessment of predicted
vorticity field structures against ground truth simulations.

Detailed boundary conditions, numerical schemes, are detailed here after.

N.2 Numerical Methods for 2D flow

We solve the two-dimensional incompressible Navier-Stokes equations around a circular cylinder using a
projection method combined with an Alternating Direction Implicit (ADI) scheme for the viscous terms. The
governing equations in the dimensionless form are:

V-u=0,
(5%)
%4 (u-V)u=-Vp+ A Vu.
where u = (u,v) is the velocity field, p is the pressure, and Re = 150 is the Reynolds number based on the
cylinder diameter and free-stream velocity.
The temporal discretization employs a semi-implicit projection method. For each time step:

1. We first compute an intermediate velocity field u* without the pressure gradient:

u* —u"

— n n 1 2. n
AL (u" - V)u" + =—V-u".

Re

2. The viscous terms are treated using an ADI scheme to ensure stability:

2 ~ n 2un
(I_QATZ;?) =u +2%%teaa?
(59
At 82\ k= At 9%a
( 72RteW) _u+2Rt667x‘él
3. The pressure Poisson equation is then solved to enforce incompressibility:
Vipntt = Ly (60)
At
4. Finally, we project the velocity field onto the space of divergence-free vector fields:
"t =ut - Arvp Tt 61)

The pressure Poisson equation is solved efficiently using a Fast Cosine Transform (FCT) method. For a domain
Q =10, L] x [0, Ly], discretized with N,, x N, points, the pressure is computed as:
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AV u]
n+1 _ 1
p=F [k2+kg] (62)

where F and F~* denote the forward and inverse FCT operators, and k., k, are the corresponding wavenumbers.

The vorticity field w = V X u is computed using second-order central differences:

w= % - g—z (63)
Boundary conditions are enforced through:
u = (Uj;4,0) on top wall
u = 0 on other walls and cylinder surface (64)
g—i = 0 on all boundaries

The cylinder of diameter D = 1 is centered at (L, /5, L, /2) in a domain of size L, X L, = 10D x 4D. The
spatial discretization uses 400 x 160 grid points, ensuring adequate boundary layer resolution and wake region
resolution. The time step A¢ = 0.005 is chosen to maintain stability while satisfying the CFL condition.

The force coefficients on the cylinder are computed by integrating the pressure and viscous stresses over the
cylinder surface I':

1
F = ﬁ(fpn + EVU -mn)dl (65)

This numerical framework enables accurate simulation of the vortex shedding phenomenon while maintaining
computational efficiency. It uses implicit time stepping and fast spectral methods for pressure computation.

N.3 Grid Resolution Sensitivity for 2D Turbulent Flow

We systematically evaluated FlowMixer’s performance across multiple grid resolutions to quantify the trade-offs
between prediction accuracy and computational efficiency for turbulent flow modeling at Reynolds number
Re = 150.

Table 22: FlowMixer performance and inference time across different grid resolutions for 2D turbulent
flow

Grid Size  Points Params (M) MSE (x10~%) Rel. Error Spectral (ms) FlowMixer (ms) Speedup

200 x 80 16,000 6.5 6.1£0.2 7.6% 337.85+£1.44 21.354+0.45 15.8%
300 x 120 36,000 32 8.3 £0.5 9.6% 769.08 &= 4.04 46.23 £0.61 16.6x
400 x 160 64,000 105 3.7£0.2 4.4% 1404.69 +11.73 86.19+0.70 16.3x
500 x 200 100,000 251 3.3£0.1 4.1% 2205.34 +13.91  190.42 +15.46 11.6x
600 x 240 144,000 518 3.1£0.1 3.9% 3178.89 £22.17  342.76 & 28.93 9.3%x
800 x 320 256,000 1638 29+0.1 3.7% 5651.36 +£41.28  812.44 £+ 65.31 7.0x

Proposition N.1 (Resolution-Accuracy Trade-off). FlowMixer’s relative error exhibits power-law scaling with
grid resolution:
crel X N~  where a =~ 0.25 (66)

This sub-linear scaling indicates diminishing returns beyond 400 x 160 grid points for practical engineering
applications.

Remark N.2 (Engineering Context). The optimal operating point balances accuracy requirements with computa-
tional resources:

 Engineering tolerance: Industry standard requires < 5% relative error
* FlowMixer at 400 x 160: Achieves 4.4% error with 16.3x speedup over spectral methods

* Traditional CFD baseline: Delivers < 1% error but requires 16 x more computation time
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N.4 Comparison Vorticity FlowMixer vs ConvLSTM
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Figure 16: Comparison of vorticity field predictions for 2D flow past a cylinder at Re=150. The
figure shows predictions at four time points (At = 0.1s, 0.8s, 1.6s, and 2.4s) for ground truth,
FlowMixer, and ConvLSTM. FlowMixer demonstrates strong performance in capturing the complex
vortex shedding patterns, maintaining accuracy over longer time horizons. The color scale represents
vorticity magnitude, with red indicating positive (counterclockwise) and blue indicating negative
(clockwise) vorticity. Mean Squared Error (MSE) values are provided for each prediction, highlighting
FlowMixer’s consistently lower error rates than ConvLSTM across all time steps.
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N.5 Impact of Optimizer on FlowMixer’s Vorticity Predictions
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Figure 17: Comparative analysis of vorticity field predictions for 2D flow past a cylinder at Reynolds
number Re=150, demonstrating the impact of optimization algorithm choice. The visualization
presents predictions at four temporal snapshots (At = 0.1s, 0.8s, 1.6s, and 2.4s) comparing ground
truth against FlowMixer models trained with SGD (momentum=0.9) and AdamW optimizers [69, 70].
The SGD-trained model demonstrates improved generalization performance, evidenced by both
quantitative and qualitative metrics: (i) one order of magnitude reduction in Mean Squared Error
(MSE) across all time steps, and (ii) visibly more accurate reproduction of vortex structures and flow
patterns. These results align with theoretical observations in the machine learning literature regarding
SGD’s superior generalization capabilities compared to adaptive methods. The cylinder flow case
provides a striking visualization of this phenomenon, as the complex spatiotemporal dynamics of
vortex shedding serve as a sensitive indicator of model generalization quality. The color scale
represents vorticity magnitude, with red and blue indicating positive (counterclockwise) and negative
(clockwise) rotation, respectively.
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