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Abstract
Reinforcement learning (RL) has demonstrated
significant success in enhancing reasoning capa-
bilities in large language models (LLMs). One of
the most widely used RL methods is Group Rel-
ative Policy Optimization (GRPO) (Shao et al.,
2024), known for its memory efficiency and suc-
cess in training DeepSeek-R1 (Guo et al., 2025a).
However, GRPO stalls when all sampled re-
sponses in a group are incorrect – referred to as
an all-negative-sample group – as it fails to up-
date the policy, hindering learning progress. The
contributions of this paper are two-fold. First,
we propose a simple yet effective framework that
introduces response diversity within all-negative-
sample groups in GRPO using AI feedback. We
also provide a theoretical analysis, via a stylized
model, showing how this diversification improves
learning dynamics. Second, we empirically val-
idate our approach, showing the improved per-
formance across various model sizes (7B, 14B,
32B) in both offline and online learning settings
with 9 benchmarks, including base and distilled
variants. Our findings highlight that learning from
all-negative-sample groups is not only feasible but
beneficial, advancing recent insights from Xiong
et al. (2025).

1. Introduction
The rapid rise of OpenAI-o1 (Jaech et al., 2024), DeepSeek-
R1 (Guo et al., 2025a) and Kimi-1.5 (Team et al., 2025)
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has highlighted the emergence of large AI reasoning mod-
els. In contrast to instruction-tuned models (Brown et al.,
2020; Chowdhery et al., 2023; Touvron et al., 2023; Achiam
et al., 2023) that generate quick responses based on a sta-
tistical inference of what the next token should be, these
reasoning models take time to break a complex prompt (e.g.,
a mathematical problem) down into individual steps and
work through chain of thought (Wei et al., 2022; Yao et al.,
2023; Besta et al., 2024; Xiang et al., 2025) to offer slower
yet more accurate responses. As a consequence, reason-
ing models are more human-like and can perform complex
tasks (Yang et al., 2018; Shi et al., 2024; Jain et al., 2025).
As generative AI applications have evolved beyond basic
conversational interfaces, these reasoning models are ex-
pected to grow in power and adoption, thereby positioning
them as a key development to monitor in practice1.

At the heart of the revolution is the post-training with out-
come and verifiable rewards (Cobbe et al., 2021; Uesato
et al., 2022; Zelikman et al., 2022; Singh et al., 2023; Hos-
seini et al., 2024; Lightman et al., 2024; Wang et al., 2024;
Setlur et al., 2025; Zhang et al., 2025b), and reinforcement
learning (RL) methods (Schulman et al., 2015; 2017; Li
et al., 2024b; Ahmadian et al., 2024; Shao et al., 2024;
Xiong et al., 2025) being simple, intuitive and practical.
A prominent RL method is proximal policy optimization
(PPO) (Schulman et al., 2017), which requires a critic (or
value) model for estimating the advantage. This model is
important for general RL tasks but can be unnecessary for
RL in large language models (LLMs) due to their determin-
istic transition nature (Li et al., 2024b). This insight has
motivated the development of group relative policy opti-
mization (GRPO) (Shao et al., 2024) and its variants (Yu
et al., 2025b; Liu et al., 2025b; Chu et al., 2025; Zhang
et al., 2025a), which directly estimate the advantage in a
group-relative manner.

However, all these methods encounter a significant limita-
tion when all sampled responses in a group are incorrect
– referred to as an all-negative-sample group – as this pre-
vents the policy from receiving any learning signal, stalling
progress (Xiong et al., 2025). Specifically, given a prompt

1https://platform.openai.com/docs/guides/reasoning-best-
practices
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Figure 1: Main pipeline for Spectral Policy Optimization. On each llama, r indicates the reward of the sampled response
and A indicates response’s advantage through group relative computation.

x, GRPO samples a group of responses {yi}Gi=1 from the
old policy πold and assigns binary rewards {ri}Gi=1 using
a rule-based reward model, where ri = 1 if yi is correct
and 0 otherwise. GRPO then computes the advantage by
normalizing ri using the group’s mean and standard devi-
ation. In an all-negative-sample group with ri = 0 for all
i, the advantage for each response is 0, demonstrating no
learning signal. Such all-negative-sample groups are com-
mon during the early phases of GRPO training, when the
model’s reasoning abilities remain weak2. This limitation
underscores a gap between artificial and human intelligence:
humans effectively learn from mistakes, which act as essen-
tial learning signals during cognitive development (Chialvo
& Bak, 1999). In mathematical reasoning, for example, the
all-negative-sample groups encourage a child to revise or re-
fine their rules and helps enhance the reasoning capabilities.

Recent work (Xiong et al., 2025) has suggested that the util-
ity of negative samples in RL-based large reasoning model
training can be more nuanced than previously assumed.
Rather than replying on raw negative feedback (i.e., ri = 0
if yi is incorrect), they also advocate for more principled
mechanisms to differentiate negative samples. A common

2To reduce computational cost, it is also common to employ a
small group sampling and with a small number of token genera-
tion length, which further increases the likelihood of all-negative-
sample groups

approach is using process reward models (PRMs) (Lightman
et al., 2024; Wang et al., 2024; Setlur et al., 2025; Zhang
et al., 2025b) which are trained to assign intermediate re-
wards to reasoning steps. PRMs can provide fine-grained
supervision to incorporate the sample quality, but they are
vulnerable to reward hacking (Skalse et al., 2022) and fail to
capture logical dependencies in multi-step reasoning tasks.

Inspired by PRMs, we show that all-negative-sample groups
in GRPO can be effectively leveraged by process supervi-
sion using AI feedback (Bai et al., 2022; Lee et al., 2024).
Unlike traditional PRMs, our approach employs advanced
reasoning capabilities of LLMs (e.g., o4-mini3 and Claude
3.74), enabling a holistic evaluation of multi-step reasoning
chains to color negative samples from “black-and-white”
outcome reward to diversified spectral reward. For ex-
ample, a negative sample consists of 5 reasoning steps:
(a1, a2, a3, a4, a5). Our approach checks each step sequen-
tially to identify the first mistake. If the first mistake is
found in a3, then a1 and a2 are correct and the proportion of
correct reasoning steps in this negative sample is 2

5 . Then,
we use this score to output a reward in [0, 1) (see Equa-
tion (2)). Notably, our method avoids the memory overhead
of traditional PRM architectures and removes the need for
expensive step-level human annotations, simplifying and

3https://platform.openai.com/docs/models/o4-mini
4https://www.anthropic.com/claude/sonnet
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accelerating the training pipeline.

Contribution. In this paper, we propose a simple and effi-
cient framework that introduces response diversity within
all-negative-sample groups in GRPO using AI feedback. It
is designed to effectively utilize all-negative-sample groups,
offering a more robust solution to reasoning. Our contribu-
tions can be summarized as follows:

1. We identify that the difficulty of GRPO in enhancing
reasoning capabilities is exacerbated by the ineffective
handling of all-negative-sample groups in GRPO. We
propose to mitigate this issue by proposing a Spectral
Policy Optimization (SPO) framework that leverages
AI feedback to color negative samples in GRPO from
“black-and-white” outcome reward to diversified “spec-
tral” reward. We also provide a theoretical analysis, via
a stylized model, explaining why SPO can potentially
outperform GRPO.

2. We conduct the experiments demonstrating the effec-
tiveness of our approach in improving LLM reasoning.
Evaluations are undertaken across various model sizes
(7B, 14B, 32B) in both offline and online learning set-
tings with 10 state-of-the-art benchmarks, including
base and distilled variants. Experimental results val-
idate our approach’s effectiveness, which addresses
limitations in current GRPO pipelines.

Related works. Our work mainly relates to the literature on
reinforcement learning from AI feedback (RLAIF) and rein-
forcement learning for reasoning. Due to space constraints,
we defer discussion of additional topics to Appendix B. Prior
to our study, the framework of reinforcement learning from
human feedback (RLHF) uses human-preference-aligned
reward models to evaluate response quality (Christiano et al.,
2017; Ziegler et al., 2019; Stiennon et al., 2020; Ouyang
et al., 2022). A key barrier to scale RLHF is the need for
high-quality human labels. Previous studies (Gilardi et al.,
2023; Ding et al., 2023) have shown that modern LLMs
exhibit strong alignment with human judgments, suggesting
that AI-generated labels can serve as a viable alternative. In
this context, (Bai et al., 2022) was the first to explore RLAIF,
jointly optimizing helpfulness and harmlessness using both
human and AI-generated labels, and (Roit et al., 2023; Kwon
et al., 2023; Lee et al., 2024) showed that LLMs can pro-
duce informative reward signals for RL post-training. Our
work leverages AI feedback to introduce response diversity
within all-negative-sample groups by assigning intermediate
binary rewards to reasoning steps. Indeed, one identifies
the proportion of correct steps in the reasoning trajectory
and use it to compute a reward ri ∈ [0, 1). Our approach is
more robust for complex reasoning tasks, as advanced LLMs
are capable of reliably detecting the mistake in individual
reasoning step.

Reinforcement learning has gained prominence as an ef-
fective method for improving the reasoning capabilities of
LLMs, especially in mathematics and programming. The
recent findings (Xiong et al., 2025) have shown that the
REINFORCE-type methods (including GRPO (Shao et al.,
2024)) can not effectively learn from all-negative-sample
groups. Our work alleviates this issue by leveraging AI
feedback to differentiate negative samples. We also provide
a theoretical analysis through a stylized model, explaining
why such diversification improves GRPO’s learning dynam-
ics.

2. Preliminaries and Technical Background
We provide an overview of the setup of reasoning in LLMs,
the definitions for outcome reward model (ORM), and the
scheme of GRPO.

Reasoning and reward models. Modern LLMs are de-
signed based on the Transformer architecture (Vaswani et al.,
2017) and follow user prompts x to generate a response
y = (a1, . . . , aH), i.e., a sequence of tokens with ah ∈ V⋆,
where V is a vocabulary of tokens and V⋆ is the set of all
possible token sequences that can be formed using elements
from V . We consider an LLM as a policy πθ(y|x) which
corresponds to probabilities to y given x. For assigning
probabilities to each steps of y, the policy πθ operates in an
auto-regressive manner as follows,

πθ(y|x) = ΠH
h=1πθ(ah|x, a1, a2, . . . , ah−1).

where θ stands for the model’s parameter. For the prompt x
with a ground-truth response y⋆

x, we evaluate πθ by running
a regular expression match on the final answer: r(x,y) = 1
if y matches y⋆

x on the final answer and r(x,y) = 0 other-
wise (Hendrycks et al., 2021). We consider the reasoning
task that depends on a datasetD containing samples (x,y⋆

x),
where x is a problem and y⋆

x refers to a ground-truth answer.

GRPO. The policy gradient methods (Williams, 1992; Sut-
ton & Barto, 1998) are introduced to maximize the objec-
tive function J(θ) = Ex∼ρ,y∼πθ(·|x)[r(x,y)] where ρ is a
prompt distribution and πθ is an LLM. Indeed, we perform
θ ← θ + η∇θJ(θ) at each iteration. In practice, we collect
the sampled trajectories from πθold which is different from
πθ and hope to use them to compute the policy gradient esti-
mator. This motivates us to adopt the importance sampling
to rewrite the objective function as follows,

J(θ) = Ex∼ρ,y∼πθold (·|x)

[
πθ(y|x)
πθold (y|x)

r(x,y)
]
.

However, importance sampling can lead to high variance
when πθ deviates from πθold . To stabilize the training, one
can maximize the following clipped surrogate function as
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follows,

J(θ) = Ex∼ρ,y∼πθold (·|x)

[
min

{
πθ(y|x)
πθold (y|x)

r(x,y),

clip
(

πθ(y|x)
πθold (y|x)

, 1−ϵ, 1+ϵ
)
r(x,y)

}]
.

In this context, GRPO and its variants (Yu et al., 2025b; Liu
et al., 2025b; Chu et al., 2025; Zhang et al., 2025a) operate
within the aforementioned framework and estimate a policy
gradient from groups of samples. For each prompt x, GRPO
samples a group of responses {y1,y2, . . . ,yG} from the
old policy πθold and maximizes the objective function in the
following form of

J(θ) = 1
G

G∑
i=1

[
min

{
πθ(yi|x)
πθold (yi|x)Ai,

clip
(

πθ(yi|x)
πθold (yi|x) , 1−ϵ, 1+ϵ

)
Ai

}]
.

where ϵ ∈ (0, 1) is a hyper-parameter and the advantage
Ai is computed using a group of rewards corresponding to
{y1,y2, . . . ,yG} within each group as follows,

Ai =
r(x,yi)−mean({r(x,y1),...,r(x,yG)})

std({r(x,y1),...,r(x,yG)}) , (1)

where r(x,yi) = 1 if yi matches the ground-truth final
answer and r(x,y) = 0 otherwise.
Remark 2.1. When the rewards are identical across all of
samples within one group, the advantage Ai = 0, resulting
in no parameter updates. This makes sense for all-positive-
sample group where r(x,yi) = 1 for all i but turns out to be
a significant limitation for all-negative-sample group where
r(x,yi) = 0 for all i, demonstrating that GRPO can not
effectively learn from mistakes.

3. Main Results
We introduce SPO that leverages AI feedback to better uti-
lize all-negative-sample groups in GRPO. We also provide
a theoretical analysis via a stylized model, explaining why
SPO can potentially lead to provably faster learning than
GRPO.

3.1. Process supervision via RLAIF

An incorrect final answer does not necessarily indicate that
the entire reasoning process is invalid. For instance, a model
may follow a logically sound sequence of steps but commit a
minor error—such as an arithmetic mistake—that leads to an
incorrect conclusion. It would be inappropriate to treat such
responses equivalently to those that exhibit fundamentally
flawed or incoherent reasoning. To address this issue, we
propose a more principled reward mechanism for negative
samples, wherein AI feedback is employed to differentiate

between structurally sound but partially incorrect reasoning
and wholly erroneous responses. This refinement remains
applicable even under constraints such as reduced output
length, where the model may be unable to complete the full
answer but still demonstrates a valid reasoning trajectory.

Reward framework. Concretely, we utilize an advanced
reasoning model to evaluate each agent response on a
sentence-by-sentence basis, identifying the first sentence
that contains a substantive error—be it a computational mis-
take or a reasoning fallacy—that causes the trajectory to
deviate from the correct solution path. To quantify this, we
define a Reasoning Trajectory Score for wrong response
ywrong, denoted by RT S(ywrong) ∈ [0, 1], in which we
prompt a stronger model to reason the logical correctness
of each sentence in the sampled response one by one (see
Appendix D) and identify the first clear mistake that causes
the solution to deviate from the correct answer. We con-
sider all portions of the response before this mistake as the
correct reasoning segment, andRT S(ywrong) is calculated
as the ratio of the length of this correct reasoning segment
to the total length of the response. Suppose a model gen-
erates ywrong that consists of 5-step reasoning trajectory
(a1, a2, a3, a4, a5). RLAIF checks each step sequentially
to find the first mistake. If the first mistake is in a4, then
RT S(ywrong) =

3
5 , showing that three steps of reasoning

are correct in this trajectory.

RLAIF prompting details. We empirically observe that
different prompting strategies can cause even strong judge
models to produce varying judgments. To ensure robustness
and make the reward signal as deterministic as possible,
we recommend the following prompting method. First, in
addition to the sampled response for RLAIF evaluation, a
reference reasoning solution should also be provided. This
typically requires a training dataset suitable for supervised
fine-tuning—namely, one that contains both correct answers
and correct reasoning trajectories. Providing such a ref-
erence enables the judge model to better understand the
intended solution path and more accurately identify errors
in the sampled response for evaluation. Second, instead of
prompting the judge model to assess the answer holistically,
we suggest prompting it to evaluate the solution step by
step, sentence by sentence. For each sentence, the judge
should explain why it is correct or, if incorrect, why it con-
stitutes an error. After identifying the first clear mistake,
the judge should continue reading the remaining sentences
and reason through how this error leads to the final incorrect
conclusion.

Based on this process supervision, we introduce a new out-
come reward function:

rAIF(y) =

{
1, if y is correct,
1

1+exp(β(RT S(y)−γ)) , otherwise.
(2)
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where γ > 0 and β > 0 are two constant parameters to
decide scale threshold and scale intensity, respectively. This
design ensures that the model receives a more informative
gradient signal during training, thereby encouraging refine-
ment of partially correct reasoning rather than indiscriminate
penalization of all incorrect outputs. This specification of
rAIF can be directly incorporated into the advantage calcu-
lation in Equation (1). As a consequence, we refer to SPO
as GRPO using Equation (2).

Remark 3.1. The reward function rAIF in Equation (2) yields
the same optimal policy as the original binary outcome
reward r, while providing more nuanced training signals.

3.2. Theory on a stylized model

We present a stylized analysis to explain why SPO can
potentially lead to provably faster learning than GRPO. We
consider the setting introduced in Section 2, and focus on
a simplified case where the number of reasoning steps is
H = 2, and each step has only two possible choices, i.e.,
ah ∈ {1, 2} for h = 1, 2. This minimal configuration
follows precedent in the literature (Dayan, 1991; Li et al.,
2024b), where similar simplified examples have been used
to validate theoretical insights.

For simplicity, we assume a unique ground-truth response
y⋆
x = (2, 2) for the prompt x. Our goal is to iteratively

learn the optimal policy using samples generated by the
current policy πθ. In our stylized model, we restrict the
sample space to y ∈ {(1, 1), (2, 1), (2, 2)}, excluding the
sample (1, 2). This is based on an observation from human
reasoning: a correct reasoning step is unlikely to, and should
not, follow an incorrect precursor.

Reward mechanisms. To illustrate the effect of SPO, we
compare the learning dynamics of SPO and GRPO this
stylized setting. In particular, GRPO uses classical ORM to
assign r((2, 2)) = 1 and r((2, 1)) = r((1, 1)) = 0. Thus,
only the complete selection of the “good” action 2 in both
steps yields the optimal reward. In contrast, SPO assigns
rAIF((2, 2)) = 1, rAIF((2, 1)) = 1

2 , and rAIF((1, 1)) = 0.
The key difference is that partial progress – selecting the
“good" action 2 even in just the first step – receives no credit
in GRPO yet proportional credit in SPO. Note that 1

2 is
only chosen to reflect the qualitative behavior of the reward
mechanism for simplicity, while the exact values used in
our experiments are computed by Equation (2).

In our analysis, we consider the population-level learning
dynamics of GRPO with the group size G = 2 and no
clipping or importance sampling for simplicity. We denote
p
(k)
GRPO as the probability of selecting a “good” action in the

first step at iteration k under GRPO (with classical ORM),
and q

(k)
GRPO as the probability of selecting a “good” action

in the second step, given that a “good” action is chosen in

the first step. We also denote p
(k)
SPO and q

(k)
SPO as the corre-

sponding probabilities under SPO. The following theorem
summarizes our main theoretical results.

Theorem 3.2. Suppose that we initialize p
(0)
GRPO =

q
(0)
GRPO = p

(0)
SPO = q

(0)
SPO = 1

2 and use the stepsize
η = 15 for GRPO (with ORM) and SPO. Then, we
have (i) both SPO and GRPO achieve successful learning:
p
(k)
GRPO, q

(k)
GRPO, p

(k)
SPO, q

(k)
SPO → 1 as k → +∞; (ii) SPO outper-

forms GRPO in learning the “good” action in the first step
consistently: p

(k)
SPO > p

(k)
GRPO for all k ≥ 1; (iii) SPO out-

performs GRPO in learning the optimal policy eventually:
p
(k)
SPOq

(k)
SPO > p

(k)
GRPOq

(k)
GRPO for all k satisfying q

(k)
SPO > 31

32 .

Remark 3.3 (Theoretical insights). The first result confirms
that SPO successfully learns the optimal policy. The second
and third results show that SPO offers both rapid acquisition
of partially correct reasoning steps and retention of partial
reasoning capabilities despite incorrect final answers.
Remark 3.4 (Technical novelty). To our knowledge, The-
orem 3.2 is among the very first results for GRPO-type
methods with multiple samples and steps in the context of
LLM reasoning. Notably, it provides a per-iteration com-
parison of learning under different reward mechanisms, an
aspect rarely explored in prior works. However, the prov-
ably improved learning of the optimal policy is only local,
despite consistent numerical support in a global sense; see
Figure 2 in Appendix C.4.

4. Experiment
We demonstrate the benefits of coloring negative samples
in GRPO through experiments conducted in both offline
and online settings. In the offline setting, both SPO and
GRPO update the policy model using a fixed dataset. In the
online setting, the policy is updated using data generated
by the policy in the previous iteration. Offline RL requires
fewer computational resources and generally results in more
stable training, whereas online RL offers greater flexibility
and learning capacity. The latter approach has been widely
adopted in large AI reasoning models, including DeepSeek-
R1 (Guo et al., 2025a).

4.1. Experiment setups

Offline models. For baseline models, we first focus on
stronger ones without supervised fine-tuning (SFT), specifi-
cally Qwen2.5-14B-Instruct and Qwen2.5-32B-Instruct.

Offline benchmarks. Recent studies have shown that a
small set of carefully curated prompts can significantly en-
hance the reasoning capabilities of LLMs. In our experi-
ments, we use the GAIR/LIMO dataset (Ye et al., 2025),

5We use the unit stepsize for simplicity. Our results are valid
for any sufficiently small step size.
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which has demonstrated strong potential for improving
the reasoning performance of large-scale (32B) models in
offline SFT settings. For evaluation, we present offline
RL results across four standard mathematical reasoning
benchmarks: the American Invitational Mathematics Ex-
amination (AIME24), the American Mathematics Compe-
titions (AMC23), MATH500 (Hendrycks et al., 2021), and
OlympiadBench (He et al., 2024). Our goal is to high-
light the rich information contained in all-negative-sample-
groups – specifically, that learning exclusively from them
have already driven model improvement. For benchmarks
with fewer than 100 questions (AMC23, AIME24), we re-
port the results in terms of both pass@16 and avg@16
using a decoding temperature of 0.6 and Top_P=0.95.
We report only avg@16 if pass@16 does not show signif-
icant gains. For benchmarks with more than 100 questions,
we report the results in terms of pass@1 using greedy de-
coding. Across all benchmarks, the maximum output length
is fixed at 32K tokens.

Offline training. We adopt the standard GRPO response
sampling and generation framework, but perform all re-
sponse generation and model updates under an offline RL
framework (Peters & Schaal, 2007). Specifically, we update
the model with the advantage estimated with offline dataset
(see e.g., (Peng et al., 2019; Li et al., 2024b)). For each
prompt, we sample 6 responses within one group and iden-
tify all-negative-sample groups where all responses yield
incorrect answers. We apply RLAIF to assign specific re-
wards to differentiate negative samples within one group
(see Equation (2)), which are then used for offline RL train-
ing. The model is trained for 3 epochs with a learning rate
of 2 × 10−6. As a contrastive baseline, we also perform
offline RL using only positive responses that output correct
answers, applying an ORM reward to guide learning. This
parallel setup enables a direct comparison of the effective-
ness of learning from purely negative versus purely positive
reasoning processes.

Online models. Proceeding to the online setting, we expand
the range of baseline models to examine whether negative
samples can consistently improve the performance of GRPO.
Our baseline models include (i) Qwen-Instruct models:
Qwen2.5-7B-Instruct, Qwen2.5-14B-Instruct, and Qwen2.5-
32B-Instruct; and (ii) R1-Distillation models: DeepSeek-R1-
Distill-Qwen-7B and DeepSeek-R1-Distill-Llama-8B. On-
line GRPO training is implemented using the verl frame-
work (Sheng et al., 2025). For RLAIF, we use o4-mini
from OpenAI for Qwen2.5-7B-Instruct, Qwen2.5-14B-
Instruct, Qwen2.5-32B-Instruct, and DeepSeek-R1-Distill-
Qwen-7B. We also try Claude3.7 from Anthropic as the
reward model for DeepSeek-R1-Distill-Llama-8B.

Online benchmarks. Compared to offline RL, online RL
typically leads to greater enhancement in model’s reason-

Table 1: Hyperparameter configurations and setups for on-
line GRPO training.

Model Len Group Size Epochs Device

DeepSeek-R1-Distill-Qwen-7B 8192 8 12 8×H100
DeepSeek-R1-Distill-Llama-8B 8192 8 12 8×H100
Qwen2.5-7B-Instruct 8192 8 25 8×H100
Qwen2.5-14B-Instruct 8192 8 12 16×H100
Qwen2.5-32B-Instruct 4096 4 12 8×H200

ing abilities. Since we have included strong distillation
models as baselines, some benchmarks used in the offline
evaluation are becoming saturated. For example, base-
line models can achieve over 90% accuracy even before
applying GRPO. To address this, we expand our evalua-
tion benchmarks beyond AMC23, AIME24, MATH500, and
OlympiadBench, by including additional benchmarks:
AIME25, GradeSchool (Ye et al., 2025), CHMath24,
Kaoyan, and Gaokao. Specifically, CHMath24 is from
the 2024 Chinese High School Mathematics League Com-
petition, Gaokao is from China’s 2024 National College
Entrance Examination, Kaoyan is from the Chinese Gradu-
ate School Entrance Examinations, and GradeSchool is
for elementary-level mathematical reasoning. Among these
benchmarks, CHMath24 and Gaokao each contain fewer
than 100 questions; similar to AMC23 and AIME24, we ap-
ply multi-sample decoding for evaluation on these datasets.

Online training. For GRPO training, we adopt the AIME
collections from 1997 to 2023, as used in DeepScaler (Luo
et al., 2025b), providing approximately 1,000 questions
per epoch. Notably, all of questions in our training set
is written in English, whereas the evaluation benchmarks
include multilingual questions. Interestingly, we observe
that the negative samples learned during training generalize
well to out-of-domain mathematical reasoning tasks. We
encourage future work to adopt the same evaluation setup
to ensure consistency and comparability.

For SPO training, we use the same configuration as in GRPO
training. Note that process supervision from RLAIT is ap-
plied only to all-negative-sample groups during the first 3
epochs. This is because we believe that this duration is
sufficient for the model to internalize the corrective signals
– continued training beyond this point on unresolved ex-
amples likely reflects limitations in model capacity rather
than learnability. These seemingly too difficult examples
should be excluded from subsequent training iterations to
avoid introducing noise or destabilizing the optimization
process. Our results show that leveraging RLAIF to differ-
entiate examples within all-negative-sample group in GRPO
can improve the performance of LLMs, even under reduced
context length and smaller group sizes.

Due to memory constraints, we reduce the group size to 4
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Table 2: Evaluation results on offline RL training. Baseline
performance is shown alongside RL training results using
only negative or only positive samples across benchmarks
and the LIMO training set.

AMC23
avg@16

AIME24
avg@16

MATH500
pass@1

Olympiads
pass@1

LIMO
pass@1

Qwen2.5-14B-Instruct

Baseline 58.59 14.58 80.40 41.78 31.70
w/ Neg. Samples only 61.88 15.21 80.40 42.37 30.11
w/ Pos. Samples only 61.72 14.58 79.80 42.07 38.68

Qwen2.5-32B-Instruct

Baseline 64.22 17.08 83.60 45.93 34.64
w/ Neg. Samples only 69.53 20.42 83.00 46.37 36.47
w/ Pos. Samples only 66.87 18.75 83.60 47.41 41.86

for larger models or those with longer reasoning chains. In
particular, for online GRPO training with the 32B model,
we limit the output length to 4K tokens to fit within the
memory capacity of 8 NVIDIA H200 GPUs (143 GB each).
For all other models, we use 8 or 16 NVIDIA H100 HBM3
GPUs (81 GB memory each). We summarize the online
GRPO training hyperparameter configurations and setups in
Table 1.

4.2. Experimental results

Offline training. We conduct offline RL training to demon-
strate that SPO using only all-negative-sample groups that
are discarded by GRPO can improve the reasoning abilities
of LLMs. Additionally, we include positive-only offline RL
training as a comparison against the negative-sample setup.
The results are shown in Table 2.

We make the following key observations: negative sam-
ples are as effective as positive samples on the training
dataset itself. However, we find that negative samples can
actually improve performance across a broader set of evalua-
tion benchmarks, in some cases even outperforming models
trained with positive samples. It’s surprising to highlight
that for 14B model experiment, even negative samples re-
duces the performance on training dataset (from 0.3170 to
0.3011), it brings a significant improvement across the other
benchmarks comparing to the positive samples. Without
doubt, this highlights the effectiveness of the negative sam-
ples, which should not be easily discarded in online GRPO
training. Still, both negative and positive samples can also
lead to performance degradation. This effect appears to be
more dependent on the specific characteristics of the training
dataset. We will elaborate it in the online learning results
discussion.

Online training. Compared to the offline results, we in-
clude a broader range of model types (e.g., distilled models
and base models without SFT), a wider selection of model
families (Qwen2.5 and Llama), and more diverse bench-
marks to better reflect the performance of stronger distilled

models after training. We present the online learning results
in Table 3.

In addition to the best results after tuning shown in Ta-
ble 3, we also present additional experimental results in Ap-
pendix D, including evaluations on an even weaker model
without distillation or SFT, as well as the robustness of SPO
across multiple independent runs.

A key insight from our experimental results is that stronger
models tend to produce higher-quality negative samples that
can significantly benefit model learning. In brief, we argue
that as model quality improves, so does the quality and
informativeness of its negative samples. First, as previously
discussed, due to memory constraints, larger models cannot
generate long outputs (e.g., 16K or 32K tokens) needed to
fully complete complex chain-of-thought reasoning required
for certain difficult questions. As a result, negative samples
can be broadly categorized into two types: (i) those that
follow a correct reasoning process but fail to reach the final
answer due to output length limitations, and (ii) those that
contain incorrect reasoning steps or logical errors that lead
to a wrong answer.

The first type offers meaningful reasoning trajectories that
the model can still learn from—precisely the motivation
behind our RLAIF framework with process supervision. In
contrast, such samples are discarded in GRPO. Moreover,
when a group of samples all yield incorrect answers, this
often indicates the question itself is genuinely challenging.
These cases should not be ignored, as they contain valuable
signal, even if only partially correct. Learning from such
difficult questions could ultimately be more beneficial than
from questions the model can already solve.

It’s also worth noting that for stronger distilled models, the
average response length during training is approximately
6K tokens, whereas for weaker base models without distilla-
tion and SFT, the average is only around 1K tokens. As a
result, the first type of negative samples—those containing
correct reasoning but truncated due to output length limi-
tations—occurs much more frequently in stronger models
than in weaker ones. In a similar way, for the second type
of negative samples—those with incorrect reasoning steps,
stronger models also tend to produce more informative re-
sponses for the AI model to judge. Recall from Eq. (2) that
we use logistic scaling to intentionally penalize responses
that make mistakes early in the reasoning process. Specif-
ically, responses receiving very low raw rewards (e.g., 0.1
or 0.2) are effectively treated similarly after scaling. In
contrast, responses with more correct intermediate steps are
amplified, allowing the model to learn from partially correct
reasoning paths. This design makes the reward signal for
type (ii) cases more stable and reduces sensitivity to minor
inaccuracies in AI feedback.
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Table 3: Benchmark performance of online learning between GRPO and SPO. Specifically, BASELINE is referring to the
performance of the original model without RL finetuning. Overall is average performance across all the benchmarks. Note
that the training dataset is AIME1997-2023.

Kaoyan GradeMath MATH500 Olympiads CHMath24 AIME25 AIME24 Gaokao AMC23 Overall
pass@1 pass@1 pass@1 pass@1 avg@16 avg@16 avg@16 avg@16 avg@16 avg

DeepSeek-R1-Distill-Qwen-7B
BASELINE 50.25 41.43 87.00 49.93 73.75 40.62 52.92 80.22 89.53 62.85
GRPO 55.78 43.33 89.40 56.00 71.04 36.68 52.08 80.30 88.91 63.72
SPO 57.79 46.19 90.80 54.67 75.00 38.33 54.58 81.33 90.00 65.41

DeepSeek-R1-Distill-Llama-8B
BASELINE 29.15 23.81 77.40 41.48 61.46 27.92 42.29 72.78 87.97 51.58
GRPO 35.68 28.33 84.00 46.32 57.08 28.33 42.08 68.99 86.72 53.06
SPO 39.70 29.05 83.60 48.44 58.96 24.58 39.37 71.52 89.06 53.81

Qwen2.5-14B-Instruct
BASELINE 37.69 49.52 80.40 41.78 21.88 13.13 14.58 41.14 58.59 39.85
GRPO 43.22 47.14 80.20 43.11 21.88 13.13 13.33 39.16 59.84 40.11
SPO 38.69 53.33 81.00 44.00 22.92 16.67 14.17 39.00 59.22 41.00

Qwen2.5-32B-Instruct
BASELINE 45.73 53.81 83.60 45.93 26.87 12.29 17.08 44.15 64.22 43.74
GRPO 48.24 52.86 83.20 45.93 22.50 12.08 21.67 45.73 67.34 44.39
SPO 48.24 53.81 83.00 46.81 29.79 14.58 19.58 45.09 69.53 45.06

The above insight is further supported by our experimental
results, where all four models are trained under the same
setup. A representative example is the Kaoyan dataset,
where DeepSeek-R1-Distill-Qwen-7B and DeepSeek-R1-
Distill-Llama-8B exhibit improvements of 7% and 10% over
their respective baselines after only 12 epochs of training.
In contrast, the performance gains are significantly smaller
for the larger Qwen2.5 base models, which possess weaker
initial capabilities.

4.3. Discussions: offline versus online

We would like to reiterate the purpose of using both offline
RL and online RL. In the offline setup, we use only negative
samples for training—i.e., the model is explicitly trained
to learn from its incorrect or incomplete reasoning trajec-
tories. This setup is designed to directly evaluate whether
such negative samples can improve model performance. In
the online setup, we simulate the realistic GRPO learning
scenario, where training batches consist of a random mix
of both positive and negative samples. This allows us to
demonstrate not only that negative samples are effective in
independent setups, but also that they remain valuable in
practical implementations where mixed samples and higher
levels of noise are present.

Indeed, mixing both negative and positive samples intro-
duces additional noise into the learning process, compared
to simply discarding challenging questions that the model
fails to solve. However, we also observe that discarding
negative samples does not necessarily lead to a more stable

learning environment. In fact, in several cases, the GRPO
results degrade below the original baseline, yielding poorer
performance when the model is trained solely on problems
it can already solve.

This instability can be attributed to several factors, including
poor out-of-domain (OOD) generalization, and catastrophic
forgetting. Without exposure to challenging or partially
correct reasoning trajectories, the model may overfit to a
narrow subset of easy examples, losing its ability to gener-
alize to harder or novel tasks. This can result in the model
reinforcing shallow heuristics rather than developing robust
problem-solving skills. Additionally, the lack of diverse
failure cases may lead to catastrophic forgetting, where pre-
viously acquired knowledge is overwritten during training,
further degrading performance on tasks that were once solv-
able. Therefore, including negative samples could to some
extent alleviate these problems, as SPO perform typically
better than GRPO on Chinese OOD math reasoning bench-
marks. Still, there remains significant room for future work
to explore how to achieve a stable learning environment
by incorporating negative samples through further reward
diversification mechanisms.

5. Conclusion
We propose a simple yet effective framework that intro-
duces response diversity within all-negative-sample groups
using AI feedback and provide a theoretical analysis, via a
stylized model, showing how this diversification improves
learning dynamics of GRPO. Experimental results show
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the improved performance of GRPO across various model
sizes (7B, 14B, 32B) in both offline and online learning
settings with 10 benchmarks, including base and distilled
variants. This demonstrates the importance of learning from
all-negative-sample groups, which advances recent insights
from Xiong et al. (2025). Future directions include the ex-
tension of our theoretical results to a more general model
with multiple reasoning steps and applications of our frame-
work to improve other RL methods.

Acknowledgment
We sincerely appreciate Buzz High Performance Computing
(https://www.buzzhpc.ai/, info@buzzhpc.ai) for providing
computational resources and support for this work.

References
Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,

Aleman, F. L., Almeida, D., Altenschmidt, J., Altman,
S., Anadkat, S., et al. GPT-4 technical report. ArXiv
Preprint: 2303.08774, 2023.

Agarwal, A., Kakade, S. M., Lee, J. D., and Mahajan, G.
Optimality and approximation with policy gradient meth-
ods in markov decision processes. In COLT, pp. 64–66,
2020.

Ahmadian, A., Cremer, C., Gallé, M., Fadaee, M., Kreutzer,
J., Pietquin, O., Üstün, A., and Hooker, S. Back to basics:
Revisiting REINFORCE-style optimization for learning
from human feedback in LLMs. In ACL, pp. 12248–
12267, 2024.

Arora, D. and Zanette, A. Training language models to
reason efficiently. ArXiv Preprint: 2502.04463, 2025.

Azar, M. G., Guo, Z., Piot, B., Munos, R., Rowland, M.,
Valko, M., and Calandriello, D. A general theoretical
paradigm to understand learning from human preferences.
In AISTATS, pp. 4447–4455, 2024.

Bai, Y., Kadavath, S., Kundu, S., Askell, A., Kernion, J.,
Jones, A., Chen, A., Goldie, A., Mirhoseini, A., McKin-
non, C., et al. Constitutional AI: Harmlessness from AI
feedback. ArXiv Preprint: 2212.08073, 2022.

Besta, M., Blach, N., Kubicek, A., Gerstenberger, R., Pod-
stawski, M., Gianinazzi, L., Gajda, J., Lehmann, T.,
Niewiadomski, H., Nyczyk, P., et al. Graph of thoughts:
Solving elaborate problems with large language models.
In AAAI, pp. 17682–17690, 2024.

Bi, X., Chen, D., Chen, G., Chen, S., Dai, D., Deng, C.,
Ding, H., Dong, K., Du, Q., Fu, Z., et al. Deepseek LLM:
Scaling open-source language models with longtermism.
ArXiv Preprint: 2401.02954, 2024.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
In NeurIPS, pp. 1877–1901, 2020.

Chen, H., He, G., Yuan, L., Cui, G., Su, H., and Zhu, J.
Noise contrastive alignment of language models with
explicit rewards. In NeurIPS, pp. 117784–117812, 2024a.

Chen, H., Zhao, H., Lam, H., Yao, D., and Tang, W. Mal-
lowsPO: Fine-tune your LLM with preference dispersions.
In ICLR, 2025a. URL https://openreview.net/
forum?id=d8cnezVcaW.

Chen, P., Chen, X., Yin, W., and Lin, T. ComPO: Prefer-
ence alignment via comparison oracles. ArXiv Preprint:
2505.05465, 2025b.

Chen, Q., Qin, L., Liu, J., Peng, D., Guan, J., Wang, P., Hu,
M., Zhou, Y., Gao, T., and Che, W. Towards reasoning
era: A survey of long chain-of-thought for reasoning large
language models. ArXiv Preprint: 2503.09567, 2025c.

Chen, X., Xu, J., Liang, T., He, Z., Pang, J., Yu, D., Song,
L., Liu, Q., Zhou, M., Zhang, Z., et al. Do not think that
much for 2+3 = ? on the overthinking of o1-like LLMs.
ArXiv Preprint: 2412.21187, 2024b.

Cheng, J. and Van Durme, B. Compressed chain of thought:
Efficient reasoning through dense representations. ArXiv
Preprint: 2412.13171, 2024.

Chialvo, D. R. and Bak, P. Learning from mistakes. Neuro-
science, 90(4):1137–1148, 1999.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra,
G., Roberts, A., Barham, P., Chung, H. W., Sutton, C.,
Gehrmann, S., et al. Palm: Scaling language modeling
with pathways. Journal of Machine Learning Research,
24(240):1–113, 2023.

Christiano, P. F., Leike, J., Brown, T. B., Martic, M., Legg,
S., and Amodei, D. Deep reinforcement learning from
human preferences. In NeurIPS, pp. 4302–4310, 2017.

Chu, X., Huang, H., Zhang, X., Wei, F., and Wang, Y. GPG:
A simple and strong reinforcement learning baseline for
model reasoning. ArXiv Preprint: 2504.02546, 2025.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., et al. Training verifiers to solve math word problems.
ArXiv Preprint: 2110.14168, 2021.

Dayan, P. Reinforcement comparison. In Connectionist
Models, pp. 45–51. Elsevier, 1991.

9

https://openreview.net/forum?id=d8cnezVcaW
https://openreview.net/forum?id=d8cnezVcaW


Spectral Policy Optimization: Coloring your Incorrect Reasoning in GRPO

Ding, B., Qin, C., Liu, L., Chia, Y. K., Li, B., Joty, S., and
Bing, L. Is GPT-3 a good data annotator? In ACL, pp.
11173–11195, 2023.

Dong, H., Xiong, W., Goyal, D., Zhang, Y., Chow, W.,
Pan, R., Diao, S., Zhang, J., Shum, K., and Zhang, T.
RAFT: Reward ranked fine-tuning for generative founda-
tion model alignment. Transactions on Machine Learning
Research, 2023. URL https://openreview.net/
forum?id=m7p5O7zblY.

Dong, H., Xiong, W., Pang, B., Wang, H., Zhao, H.,
Zhou, Y., Jiang, N., Sahoo, D., Xiong, C., and Zhang,
T. RLHF workflow: From reward modeling to online
RLHF. Transactions on Machine Learning Research,
2024. URL https://openreview.net/forum?
id=a13aYUU9eU.

Ethayarajh, K., Xu, W., Muennighoff, N., Jurafsky, D., and
Kiela, D. Model alignment as prospect theoretic opti-
mization. In ICML, pp. 12634–12651, 2024.

Feng, G., Zhang, B., Gu, Y., Ye, H., He, D., and Wang, L.
Towards revealing the mystery behind chain of thought:
A theoretical perspective. In NeurIPS, pp. 70757–70798,
2023.

Gandhi, K., Lee, D., Grand, G., Liu, M., Cheng, W., Sharma,
A., and Goodman, N. D. Stream of search (SOS): Learn-
ing to search in language. ArXiv Preprint: 2404.03683,
2024.

Gao, L., Schulman, J., and Hilton, J. Scaling laws for reward
model overoptimization. In ICML, pp. 10835–10866,
2023.

Gilardi, F., Alizadeh, M., and Kubli, M. ChatGPT out-
performs crowd workers for text-annotation tasks. Pro-
ceedings of the National Academy of Sciences, 120(30):
e2305016120, 2023.

Gou, Z., Shao, Z., Gong, Y., Shen, Y., Yang, Y., Huang, M.,
Duan, N., and Chen, W. ToRA: A tool-integrated reason-
ing agent for mathematical problem solving. In ICLR,
2024. URL https://openreview.net/forum?
id=Ep0TtjVoap.

Guo, D., Yang, D., Zhang, H., Song, J., Zhang, R., Xu, R.,
Zhu, Q., Ma, S., Wang, P., Bi, X., et al. DeepSeek-R1:
Incentivizing reasoning capability in LLMs via reinforce-
ment learning. ArXiv Preprint: 2501.12948, 2025a.

Guo, J., Wu, Y., Qiu, J., Huang, K., Juan, X., Yang, L.,
and Wang, M. Temporal consistency for LLM reasoning
process error identification. ArXiv Preprint: 2503.14495,
2025b.

Hao, S., Gu, Y., Ma, H., Hong, J., Wang, Z., Wang, D., and
Hu, Z. Reasoning with language model is planning with
world model. In EMNLP, pp. 8154–8173, 2023.

Hao, S., Gu, Y., Luo, H., Liu, T., Shao, X., Wang, X., Xie,
S., Ma, H., Samavedhi, A., Gao, Q., Wang, Z., and Hu,
Z. LLM reasoners: New evaluation, library, and analysis
of step-by-step reasoning with large language models. In
COLM, 2024a. URL https://openreview.net/
forum?id=b0y6fbSUG0.

Hao, S., Sukhbaatar, S., Su, D., Li, X., Hu, Z., Weston, J.,
and Tian, Y. Training large language models to reason in
a continuous latent space. ArXiv Preprint: 2412.06769,
2024b.

Havrilla, A., Du, Y., Raparthy, S. C., Nalmpantis,
C., Dwivedi-Yu, J., Zhuravinskyi, M., Hambro, E.,
Sukhbaatar, S., and Raileanu, R. Teaching large language
models to reason with reinforcement learning. ArXiv
Preprint: 2403.04642, 2024.

He, C., Luo, R., Bai, Y., Hu, S., Thai, Z., Shen, J., Hu,
J., Han, X., Huang, Y., Zhang, Y., et al. Olympiad-
Bench: A challenging benchmark for promoting AGI
with Olympiad-level bilingual multimodal scientific prob-
lems. In ACL, pp. 3828–3850, 2024.

Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart,
S., Tang, E., Song, D., and Steinhardt, J. Measur-
ing mathematical problem solving with the MATH
dataset. In NeurIPS Datasets and Benchmarks Track,
2021. URL https://openreview.net/forum?
id=7Bywt2mQsCe.

Hong, J., Lee, N., and Thorne, J. ORPO: Monolithic prefer-
ence optimization without reference model. In EMNLP,
pp. 11170–11189, 2024.

Hosseini, A., Yuan, X., Malkin, N., Courville, A., Sordoni,
A., and Agarwal, R. V-STar: Training verifiers for self-
taught reasoners. In COLM, 2024. URL https://
openreview.net/forum?id=stmqBSW2dV.

Huang, J. and Chang, K. C.-C. Towards reasoning in large
language models: A survey. In ACL, pp. 1049–1065,
2023.

Huang, K., Guo, J., Li, Z., Ji, X., Ge, J., Li, W., Guo, Y., Cai,
T., Yuan, H., Wang, R., Wu, Y., Yin, M., Tang, S., Huang,
Y., Jin, C., Chen, X., Zhang, C., and Wang, M. MATH-
Perturb: Benchmarking LLMs’ math reasoning abilities
against hard perturbations. ArXiv Preprint: 2502.06453,
2025.

Huang, S., Ma, Z., Du, J., Meng, C., Wang, W., and Lin, Z.
Mirror-consistency: Harnessing inconsistency in majority
voting. In EMNLP, pp. 2408–2420, 2024.

10

https://openreview.net/forum?id=m7p5O7zblY
https://openreview.net/forum?id=m7p5O7zblY
https://openreview.net/forum?id=a13aYUU9eU
https://openreview.net/forum?id=a13aYUU9eU
https://openreview.net/forum?id=Ep0TtjVoap
https://openreview.net/forum?id=Ep0TtjVoap
https://openreview.net/forum?id=b0y6fbSUG0
https://openreview.net/forum?id=b0y6fbSUG0
https://openreview.net/forum?id=7Bywt2mQsCe
https://openreview.net/forum?id=7Bywt2mQsCe
https://openreview.net/forum?id=stmqBSW2dV
https://openreview.net/forum?id=stmqBSW2dV


Spectral Policy Optimization: Coloring your Incorrect Reasoning in GRPO

Hwang, H., Kim, D., Kim, S., Ye, S., and Seo, M. Self-
explore: Enhancing mathematical reasoning in language
models with fine-grained rewards. In EMNLP, pp. 1444–
1466, 2024.

Jaech, A., Kalai, A., Lerer, A., Richardson, A., El-Kishky,
A., Low, A., Helyar, A., Madry, A., Beutel, A., Car-
ney, A., et al. OpenAI o1 system card. ArXiv Preprint:
2412.16720, 2024.

Jain, N., Han, K., Gu, A., Li, W.-D., Yan, F., Zhang,
T., Wang, S., Solar-Lezama, A., Sen, K., and Stoica,
I. LiveCodeBench: Holistic and contamination free
evaluation of large language models for code. In ICLR,
2025. URL https://openreview.net/forum?
id=chfJJYC3iL.

Khot, T., Trivedi, H., Finlayson, M., Fu, Y., Richardson, K.,
Clark, P., and Sabharwal, A. Decomposed prompting: A
modular approach for solving complex tasks. In ICLR,
2023. URL https://openreview.net/forum?
id=_nGgzQjzaRy.

Kwon, M., Xie, S. M., Bullard, K., and Sadigh, D.
Reward design with language models. In ICLR,
2023. URL https://openreview.net/forum?
id=10uNUgI5Kl.

Lampinen, A. K., Dasgupta, I., Chan, S. C. Y., Sheahan,
H. R., Creswell, A., Kumaran, D., McClelland, J. L., and
Hill, F. Language models, like humans, show content
effects on reasoning tasks. PNAS Nexus, 3(7):pgae233,
2024.

LeCun, Y. A path towards autonomous machine intelligence
version 0.9. 2, 2022-06-27. Open Review, 62(1):1–62,
2022.

Lee, H., Phatale, S., Mansoor, H., Mesnard, T., Ferret, J.,
Lu, K., Bishop, C., Hall, E., Carbune, V., Rastogi, A.,
et al. RLAIF vs. RLHF: Scaling reinforcement learning
from human feedback with AI feedback. In ICML, pp.
26874–26901, 2024.

Lehnert, L., Sukhbaatar, S., Su, D., Zheng, Q., McVay, P.,
Rabbat, M., and Tian, Y. Beyond A⋆: Better planning
with transformers via search dynamics bootstrapping. In
COLM, 2024. URL https://openreview.net/
forum?id=SGoVIC0u0f.

Li, Z., Liu, H., Zhou, D., and Ma, T. Chain of thought em-
powers transformers to solve inherently serial problems.
In ICLR, 2024a. URL https://openreview.net/
forum?id=3EWTEy9MTM.

Li, Z., Xu, T., Zhang, Y., Lin, Z., Yu, Y., Sun, R., and Luo,
Z.-Q. ReMax: A simple, effective, and efficient reinforce-
ment learning method for aligning large language models.
In ICML, pp. 29128–29163, 2024b.

Li, Z., Chen, C., Xu, T., Qin, Z., Xiao, J., Luo, Z.-Q., and
Sun, R. Preserving diversity in supervised fine-tuning of
large language models. In ICLR, 2025. URL https:
//openreview.net/forum?id=NQEe7B7bSw.

Lightman, H., Kosaraju, V., Burda, Y., Edwards, H.,
Baker, B., Lee, T., Leike, J., Schulman, J., Sutskever,
I., and Cobbe, K. Let’s verify step by step. In ICLR,
2024. URL https://openreview.net/forum?
id=v8L0pN6EOi.

Liu, T., Zhao, Y., Joshi, R., Khalman, M., Saleh, M., Liu,
P. J., and Liu, J. Statistical rejection sampling improves
preference optimization. In ICLR, 2024a. URL https:
//openreview.net/forum?id=xbjSwwrQOe.

Liu, T., Qin, Z., Wu, J., Shen, J., Khalman, M., Joshi,
R., Zhao, Y., Saleh, M., Baumgartner, S., Liu, J., et al.
LiPO: Listwise preference optimization through learning-
to-rank. In NAACL, pp. To appear, 2025a.

Liu, Z., Lu, M., Zhang, S., Liu, B., Guo, H., Yang, Y.,
Blanchet, J., and Wang, Z. Provably mitigating overop-
timization in RLHF: Your SFT loss is implicitly an ad-
versarial regularizer. In NeurIPS, pp. 138663–138697,
2024b.

Liu, Z., Chen, C., Li, W., Qi, P., Pang, T., Du, C., Lee, W. S.,
and Lin, M. Understanding R1-zero-like training: A
critical perspective. ArXiv Preprint: 2503.20783, 2025b.

Luo, H., Shen, L., He, H., Wang, Y., Liu, S., Li, W., Tan,
N., Cao, X., and Tao, D. o1-pruner: Length-harmonizing
fine-tuning for o1-like reasoning pruning. ArXiv Preprint:
2501.12570, 2025a.

Luo, L., Liu, Y., Liu, R., Phatale, S., Guo, M., Lara, H., Li,
Y., Shu, L., Zhu, Y., Meng, L., et al. Improve mathemati-
cal reasoning in language models by automated process
supervision. ArXiv Preprint: 2406.06592, 2024.

Luo, M., Tan, S., Wong, J., Shi, X., Tang, W. Y.,
Roongta, M., Cai, C., Luo, J., Li, L. E., Popa,
R. A., and Stoica, I. DeepScaleR: Surpassing
o1-preview with a 1.5B model by scaling RL.
https://pretty-radio-b75.notion.site/
DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2,
2025b. Notion Blog.

Madaan, A., Hermann, K., and Yazdanbakhsh, A. What
makes chain-of-thought prompting effective? a counter-
factual study. In EMNLP, pp. 1448–1535, 2023.

Mei, J., Gao, Y., Dai, B., Szepesvari, C., and Schuurmans,
D. Leveraging non-uniformity in first-order non-convex
optimization. In ICML, pp. 7555–7564, 2021.

11

https://openreview.net/forum?id=chfJJYC3iL
https://openreview.net/forum?id=chfJJYC3iL
https://openreview.net/forum?id=_nGgzQjzaRy
https://openreview.net/forum?id=_nGgzQjzaRy
https://openreview.net/forum?id=10uNUgI5Kl
https://openreview.net/forum?id=10uNUgI5Kl
https://openreview.net/forum?id=SGoVIC0u0f
https://openreview.net/forum?id=SGoVIC0u0f
https://openreview.net/forum?id=3EWTEy9MTM
https://openreview.net/forum?id=3EWTEy9MTM
https://openreview.net/forum?id=NQEe7B7bSw
https://openreview.net/forum?id=NQEe7B7bSw
https://openreview.net/forum?id=v8L0pN6EOi
https://openreview.net/forum?id=v8L0pN6EOi
https://openreview.net/forum?id=xbjSwwrQOe
https://openreview.net/forum?id=xbjSwwrQOe
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2


Spectral Policy Optimization: Coloring your Incorrect Reasoning in GRPO

Meng, Y., Xia, M., and Chen, D. SimPO: Simple preference
optimization with a reference-free reward. In NeurIPS,
pp. 124198–124235, 2024.

Merrill, W. and Sabharwal, A. The expressive power
of transformers with chain of thought. In ICLR,
2024. URL https://openreview.net/forum?
id=NjNGlPh8Wh.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright,
C. L., Mishkin, P., Zhang, C., Agarwal, S., Slama, K.,
Ray, A., et al. Training language models to follow in-
structions with human feedback. In NeurIPS, pp. 27730–
27744, 2022.

Pal, A., Karkhanis, D., Dooley, S., Roberts, M., Naidu, S.,
and White, C. Smaug: Fixing failure modes of prefer-
ence optimisation with DPO-positive. ArXiv Preprint:
2402.13228, 2024.

Pang, R. Y., Yuan, W., He, H., Cho, K., Sukhbaatar, S., and
Weston, J. Iterative reasoning preference optimization. In
NeurIPS, pp. 116617–116637, 2024.

Park, R., Rafailov, R., Ermon, S., and Finn, C. Disentangling
length from quality in direct preference optimization. In
ACL, pp. 4998–5017, 2024.

Peng, X., Kumar, A., Zhang, G., and Levine, S. Advantage-
weighted regression: Simple and scalable off-policy rein-
forcement learning. ArXiv Preprint: 1910.00177, 2019.

Peters, J. and Schaal, S. Reinforcement learning by reward-
weighted regression for operational space control. In
ICML, pp. 745–750, 2007.

Rafailov, R., Sharma, A., Mitchell, E., Ermon, S., Manning,
C. D., and Finn, C. Direct preference optimization: Your
language model is secretly a reward model. In NeurIPS,
pp. 53728–53741, 2023.

Rafailov, R., Hejna, J., Park, R., and Finn, C. From $r$ to
$q^*$: Your language model is secretly a Q-function. In
COLM, 2024. URL https://openreview.net/
forum?id=kEVcNxtqXk.

Razin, N., Malladi, S., Bhaskar, A., Chen, D., Arora, S.,
and Hanin, B. Unintentional unalignment: Likelihood
displacement in direct preference optimization. In ICLR,
2025. URL https://openreview.net/forum?
id=uaMSBJDnRv.

Roit, P., Ferret, J., Shani, L., Aharoni, R., Cideron, G.,
Dadashi, R., Geist, M., Girgin, S., Hussenot, L., Keller,
O., et al. Factually consistent summarization via rein-
forcement learning with textual entailment feedback. In
ACL, pp. 6252–6272, 2023.

Schulman, J., Levine, S., Moritz, P., Jordan, M. I., and
Abbeel, P. Trust region policy optimization. In ICML, pp.
1889–1897, 2015.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
ArXiv Preprint: 1707.06347, 2017.

Setlur, A., Garg, S., Geng, X., Garg, N., Smith, V., and
Kumar, A. RL on incorrect synthetic data scales the effi-
ciency of LLM math reasoning by eight-fold. In NeurIPS,
pp. 43000–43031, 2024.

Setlur, A., Nagpal, C., Fisch, A., Geng, X., Eisenstein, J.,
Agarwal, R., Agarwal, A., Berant, J., and Kumar, A.
Rewarding progress: Scaling automated process verifiers
for LLM reasoning. In ICLR, 2025. URL https://
openreview.net/forum?id=A6Y7AqlzLW.

Shao, Z., Wang, P., Zhu, Q., Xu, R., Song, J., Bi, X., Zhang,
H., Zhang, M., Li, Y. K., Wu, Y., et al. DeepSeekMath:
Pushing the limits of mathematical reasoning in open
language models. ArXiv Preprint: 2402.03300, 2024.

Sheng, G., Zhang, C., Ye, Z., Wu, X., Zhang, W., Zhang, R.,
Peng, Y., Lin, H., and Wu, C. HybridFlow: A flexible and
efficient RLHF framework. In EuroSys, pp. 1279–1297.
ACM, 2025.

Shi, B., Tang, M., Narasimhan, K. R., and Yao, S. Can
language models solve Olympiad programming? In
COLM, 2024. URL https://openreview.net/
forum?id=kGa4fMtP9l.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
Van Den Driessche, G., Schrittwieser, J., Antonoglou, I.,
Panneershelvam, V., Lanctot, M., et al. Mastering the
game of Go with deep neural networks and tree search.
Nature, 529(7587):484–489, 2016.

Singh, A., Co-Reyes, J. D., Agarwal, R., Anand, A., Patil,
P., Garcia, X., Liu, P. J., Harrison, J., Lee, J., Xu, K.,
Parisi, A. T., Kumar, A., Alemi, A. A., Rizkowsky, A.,
Nova, A., Adlam, B., Bohnet, B., Elsayed, G. F., Sedghi,
H., Mordatch, I., Simpson, I., Gur, I., Snoek, J., Pen-
nington, J., Hron, J., Kenealy, K., Swersky, K., Mahajan,
K., Culp, L. A., Xiao, L., Bileschi, M., Constant, N.,
Novak, R., Liu, R., Warkentin, T., Bansal, Y., Dyer, E.,
Neyshabur, B., Sohl-Dickstein, J., and Fiedel, N. Beyond
human data: Scaling self-training for problem-solving
with language models. Transactions on Machine Learn-
ing Research, 2024. ISSN 2835-8856. URL https://
openreview.net/forum?id=lNAyUngGFK. Ex-
pert Certification.

Singh, I., Blukis, V., Mousavian, A., Goyal, A., Xu, D.,
Tremblay, J., Fox, D., Thomason, J., and Garg, A. Prog-
Prompt: Generating situated robot task plans using large

12

https://openreview.net/forum?id=NjNGlPh8Wh
https://openreview.net/forum?id=NjNGlPh8Wh
https://openreview.net/forum?id=kEVcNxtqXk
https://openreview.net/forum?id=kEVcNxtqXk
https://openreview.net/forum?id=uaMSBJDnRv
https://openreview.net/forum?id=uaMSBJDnRv
https://openreview.net/forum?id=A6Y7AqlzLW
https://openreview.net/forum?id=A6Y7AqlzLW
https://openreview.net/forum?id=kGa4fMtP9l
https://openreview.net/forum?id=kGa4fMtP9l
https://openreview.net/forum?id=lNAyUngGFK
https://openreview.net/forum?id=lNAyUngGFK


Spectral Policy Optimization: Coloring your Incorrect Reasoning in GRPO

language models. In ICRA, pp. 11523–11530. IEEE,
2023.

Skalse, J., Howe, N. H. R., Krasheninnikov, D., and Krueger,
D. Defining and characterizing reward hacking. In
NeurIPS, pp. 9460–9471, 2022.

Snell, C. V., Lee, J., Xu, K., and Kumar, A. Scaling
LLM test-time compute optimally can be more effec-
tive than scaling parameters for reasoning. In ICLR,
2025. URL https://openreview.net/forum?
id=4FWAwZtd2n.

Song, F., Yu, B., Li, M., Yu, H., Huang, F., Li, Y., and Wang,
H. Preference ranking optimization for human alignment.
In AAAI, pp. 18990–18998, 2024.

Srivastava, S., PV, A., Menon, S., Sukumar, A., Philipose,
A., Prince, S., Thomas, S., et al. Functional benchmarks
for robust evaluation of reasoning performance, and the
reasoning gap. ArXiv Preprint: 2402.19450, 2024.

Stiennon, N., Ouyang, L., Wu, J., Ziegler, D., Lowe, R.,
Voss, C., Radford, A., Amodei, D., and Christiano, P. F.
Learning to summarize with human feedback. In NeurIPS,
pp. 3008–3021, 2020.

Su, D., Sukhbaatar, S., Rabbat, M., Tian, Y., and Zheng,
Q. Dualformer: Controllable fast and slow thinking by
learning with randomized reasoning traces. In ICLR,
2025. URL https://openreview.net/forum?
id=bmbRCRiNDu.

Sutton, R. S. and Barto, A. G. Reinforcement Learning: An
Introduction, volume 1. MIT Press, 1998.

Tajwar, F., Singh, A., Sharma, A., Rafailov, R., Schneider,
J., Xie, T., Ermon, S., Finn, C., and Kumar, A. Prefer-
ence fine-tuning of LLMs should leverage suboptimal,
on-policy data. In ICML, pp. 47441–47474, 2024.

Tang, Y., Guo, Z., Zheng, Z., Calandriello, D., Munos,
R., Rowland, M., Richemond, P. H., Valko, M., Pires,
B., and Piot, B. Generalized preference optimization:
A unified approach to offline alignment. In ICML, pp.
47725–47742, 2024.

Team, K., Du, A., Gao, B., Xing, B., Jiang, C., Chen, C.,
Li, C., Xiao, C., Du, C., Liao, C., et al. Kimi k1.5: Scal-
ing reinforcement learning with LLMs. ArXiv Preprint:
2501.12599, 2025.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., et al. Llama: Open and efficient foundation
language models. ArXiv Preprint: 2302.13971, 2023.

Uesato, J., Kushman, N., Kumar, R., Song, F., Siegel, N.,
Wang, L., Creswell, A., Irving, G., and Higgins, I. Solv-
ing math word problems with process-and outcome-based
feedback. ArXiv Preprint: 2211.14275, 2022.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Attention
is all you need. In NeurIPS, pp. 6000–6010, 2017.

Wang, H., Qian, C., Zhong, W., Chen, X., Qiu, J., Huang, S.,
Jin, B., Wang, M., Wong, K.-F., and Ji, H. OTC: Optimal
tool calls via reinforcement learning. ArXiv Preprint:
2504.14870, 2025.

Wang, P., Li, L., Shao, Z., Xu, R., Dai, D., Li, Y., Chen, D.,
Wu, Y., and Sui, Z. Math-Shepherd: Verify and reinforce
LLMs step-by-step without human annotations. In ACL,
pp. 9426–9439, 2024.

Wang, X., Wei, J., Schuurmans, D., Le, Q. V., Chi,
E. H., Narang, S., Chowdhery, A., and Zhou, D. Self-
consistency improves chain of thought reasoning in
language models. In ICLR, 2023. URL https://
openreview.net/forum?id=1PL1NIMMrw.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B.,
Xia, F., Chi, E. H., Le, Q. V., and Zhou, D. Chain-of-
thought prompting elicits reasoning in large language
models. In NeurIPS, pp. 24824–24837, 2022.

Williams, R. J. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Machine
Learning, 8:229–256, 1992.

Wu, Y., Sun, Z., Li, S., Welleck, S., and Yang, Y. Infer-
ence scaling laws: An empirical analysis of compute-
optimal inference for LLM problem-solving. In ICLR,
2025. URL https://openreview.net/forum?
id=VNckp7JEHn.

Xiang, V., Snell, C., Gandhi, K., Albalak, A., Singh, A.,
Blagden, C., Phung, D., Rafailov, R., Lile, N., Mahan, D.,
et al. Towards system 2 reasoning in LLMs: Learning
how to think with meta chain-of-though. ArXiv Preprint:
2501.04682, 2025.

Xiao, J., Li, Z., Xie, X., Getzen, E., Fang, C., Long, Q.,
and Su, W. J. On the algorithmic bias of aligning large
language models with RLHF: Preference collapse and
matching regularization. ArXiv Preprint: 2405.16455,
2024.

Xie, Y., Kawaguchi, K., Zhao, Y., Zhao, J. X., Kan, M.-Y.,
He, J., and Xie, M. Q. Self-evaluation guided beam search
for reasoning. In NeurIPS, pp. 41618–41650, 2023.

Xiong, W., Dong, H., Ye, C., Wang, Z., Zhong, H., Ji, H.,
Jiang, N., and Zhang, T. Iterative preference learning

13

https://openreview.net/forum?id=4FWAwZtd2n
https://openreview.net/forum?id=4FWAwZtd2n
https://openreview.net/forum?id=bmbRCRiNDu
https://openreview.net/forum?id=bmbRCRiNDu
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=VNckp7JEHn
https://openreview.net/forum?id=VNckp7JEHn


Spectral Policy Optimization: Coloring your Incorrect Reasoning in GRPO

from human feedback: Bridging theory and practice for
RLHF under KL-constraint. In ICML, pp. 54715–54754,
2024.

Xiong, W., Yao, J., Xu, Y., Pang, B., Wang, L., Sahoo, D.,
Li, J., Jiang, N., Zhang, T., Xiong, C., and Dong, H. A
minimalist approach to LLM reasoning: From rejection
sampling to reinforce. ArXiv Preprint: 2504.11343, 2025.

Xu, H., Sharaf, A., Chen, Y., Tan, W., Shen, L., Van Durme,
B., Murray, K., and Kim, Y. J. Contrastive preference op-
timization: Pushing the boundaries of LLM performance
in machine translation. In ICML, pp. 55204–55224, 2024.

Yang, Y., Campbell, D., Huang, K., Wang, M., Cohen, J.,
and Webb, T. Emergent symbolic mechanisms support ab-
stract reasoning in large language models. ArXiv Preprint:
2502.20332, 2025.

Yang, Z., Qi, P., Zhang, S., Bengio, Y., Cohen, W., Salakhut-
dinov, R., and Manning, C. D. HotpotQA: A dataset for
diverse, explainable multi-hop question answering. In
Proceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 2369–2380,
2018.

Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T. L., Cao,
Y., and Narasimhan, K. Tree of thoughts: Deliberate
problem solving with large language models. In NeurIPS,
pp. 11809–11822, 2023.

Ye, Y., Huang, Z., Xiao, Y., Chern, E., Xia, S., and Liu,
P. LIMO: Less is more for reasoning. ArXiv Preprint:
2502.03387, 2025.

Yu, F., Gao, A., and Wang, B. OVM, Outcome-supervised
value models for planning in mathematical reasoning. In
NAACL, pp. 858–875, 2024a.

Yu, F., Jiang, L., Kang, H., Hao, S., and Qin, L. Flow of rea-
soning: Efficient training of LLM policy with divergent
thinking. In ICML, pp. To appear, 2025a.

Yu, L., Jiang, W., Shi, H., Yu, J., Liu, Z., Zhang, Y.,
Kwok, J., Li, Z., Weller, A., and Liu, W. MetaMath:
Bootstrap your own mathematical questions for large
language models. In ICLR, 2024b. URL https:
//openreview.net/forum?id=N8N0hgNDRt.

Yu, Q., Zhang, Z., Zhu, R., Yuan, Y., Zuo, X., Yue, Y.,
Fan, T., Liu, G., Liu, L., Liu, X., et al. DAPO: An
open-source LLM reinforcement learning system at scale.
ArXiv Preprint: 2503.14476, 2025b.

Yuan, H., Yuan, Z., Tan, C., Wang, W., Huang, S., and
Huang, F. RRHF: Rank responses to align language
models with human feedback. In NeurIPS, pp. 10935–
10950, 2023a.

Yuan, L., Cui, G., Wang, H., Ding, N., Wang, X., Shan,
B., Liu, Z., Deng, J., Chen, H., Xie, R., Lin, Y., Liu,
Z., Zhou, B., Peng, H., Liu, Z., and Sun, M. Advancing
LLM reasoning generalists with preference trees. In ICLR,
2025. URL https://openreview.net/forum?
id=2ea5TNVR0c.

Yuan, Z., Yuan, H., Li, C., Dong, G., Lu, K., Tan, C., Zhou,
C., and Zhou, J. Scaling relationship on learning math-
ematical reasoning with large language models. ArXiv
Preprint: 2308.01825, 2023b.

Yue, X., Qu, X., Zhang, G., Fu, Y., Huang, W., Sun, H., Su,
Y., and Chen, W. MAmmoTH: Building math general-
ist models through hybrid instruction tuning. In ICLR,
2024. URL https://openreview.net/forum?
id=yLClGs770I.

Zelikman, E., Wu, Y., Mu, J., and Goodman, N. D. STaR:
self-taught reasoner bootstrapping reasoning with reason-
ing. In NeurIPS, pp. 15476–15488, 2022.

Zhang, K., Hong, Y., Bao, J., Jiang, H., Song, Y., Hong,
D., and Xiong, H. GVPO: Group variance policy opti-
mization for large language model post-training. ArXiv
Preprint: 2504.19599, 2025a.

Zhang, L., Hosseini, A., Bansal, H., Kazemi, M., Kumar, A.,
and Agarwal, R. Generative verifiers: Reward modeling
as next-token prediction. In The NeurIPS Workshop on
System-2 Reasoning at Scale, 2024. URL https://
openreview.net/forum?id=aLgXy8A7k7.

Zhang, Z., Zheng, C., Wu, Y., Zhang, B., Lin, R., Yu, B.,
Liu, D., Zhou, J., and Lin, J. The lessons of developing
process reward models in mathematical reasoning. ArXiv
Preprint: 2501.07301, 2025b.

Zhao, H., Winata, G. I., Das, A., Zhang, S.-X., Yao, D.,
Tang, W., and Sahu, S. RainbowPO: A unified framework
for combining improvements in preference optimization.
In ICLR, 2025. URL https://openreview.net/
forum?id=trKee5pIFv.

Zhao, Y., Joshi, R., Liu, T., Khalman, M., Saleh, M., and
Liu, P. J. SLiC-HF: Sequence likelihood calibration with
human feedback. ArXiv Preprint: 2305.10425, 2023.

Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang,
X., Schuurmans, D., Cui, C., Bousquet, O., Le, Q. V.,
and Chi, E. H. Least-to-most prompting enables com-
plex reasoning in large language models. In ICLR,
2023. URL https://openreview.net/forum?
id=WZH7099tgfM.

Ziegler, D. M., Stiennon, N., Wu, J., Brown, T. B., Radford,
A., Amodei, D., Christiano, P., and Irving, G. Fine-
tuning language models from human preferences. ArXiv
Preprint: 1909.08593, 2019.

14

https://openreview.net/forum?id=N8N0hgNDRt
https://openreview.net/forum?id=N8N0hgNDRt
https://openreview.net/forum?id=2ea5TNVR0c
https://openreview.net/forum?id=2ea5TNVR0c
https://openreview.net/forum?id=yLClGs770I
https://openreview.net/forum?id=yLClGs770I
https://openreview.net/forum?id=aLgXy8A7k7
https://openreview.net/forum?id=aLgXy8A7k7
https://openreview.net/forum?id=trKee5pIFv
https://openreview.net/forum?id=trKee5pIFv
https://openreview.net/forum?id=WZH7099tgfM
https://openreview.net/forum?id=WZH7099tgfM


Spectral Policy Optimization: Coloring your Incorrect Reasoning in GRPO

A. Limitations
Robustness of the AI feedback. A common challenge faced by all process-based reward mechanisms is the potential
inaccuracy of the reward signal, particularly when it’s the feedback from a single judger model. These inaccuracies can
arise due to hallucinations, misinterpretation of reasoning steps, or over-penalization of minor errors. To address this,
future works could attempt more robust method that enhances the reliability of the reward signal at the cost of increased
computational resources. Specifically, we suggest the following API voting scheme, where multiple independent reward
models are queried to evaluate the same response. The final reward is then taken as the minimum score among the ensemble,
ensuring that any clear flaw in reasoning is penalized, even if only one model detects it. This conservative strategy reduces
the risk of overlooking logical mistakes and promotes more cautious learning behavior.

Improved analysis for reasoning. We analyze the learning dynamics of SPO and GRPO only using a stylized model
where the group size G, the number of reasoning steps H , and the number of choices per step are all set as 2. The learning
dynamics are also restricted to population-level, neglecting the stochasticity of sampled trajectories. Such simplifications
enable analytical tractability but limit generality. Another important limitation is that, even within this simplified model,
our theoretical results only show that SPO eventually outperforms GRPO in learning the optimal policy. In contrast, our
empirical evaluation shows that SPO consistently outperforms GRPO across all iterations (see Figure 2 in Appendix C.4).
Filling in this gap between theoretical guarantees and empirical evaluation, extending the analysis to G > 2, H > 2 and
more complex action spaces, as well as incorporating stochastic policy gradient updates, remains a promising yet challenging
direction.

Efficient reasoning for all-positive-sample groups. SPO is designed to improve learning efficiency by leveraging RLAIF
to extract rich information from all-negative-sample groups. However, for all-positive-sample groups, where all responses
are correct, SPO offers no further improvement. We believe that incorporating an appropriate length-controlled reward
framework could be helpful. Intuitively, once the correctness is achieved, the next stage of improving reasoning ability
should focus on producing responses that are more concise, elegant, and direct. This direction has been recently explored in
(Arora & Zanette, 2025; Team et al., 2025), and integrating such techniques into our framework remains a promising avenue
for future research.

B. Further Related Works
We comment on other topics, including more discussions on reasoning through test-time compute, chain-of-thought and its
variants, direct preference alignment methods, and reward models. For an overview of reasoning models and methods, we
refer to recent surveys (Huang & Chang, 2023; Chen et al., 2025c).

More discussions on reasoning through test-time compute. OpenAI-o1 (Jaech et al., 2024) is among the first large-scale
applications of RL to reasoning, and achieved state-of-the-art performance upon release. Following this trend, DeepSeek-
R1 (Guo et al., 2025a) is the first open-weight model to match or exceed OpenAI-o1. Their real-world success stories
have involved several simple yet novel techniques that enhance LLM reasoning through more test-time compute, including
chain-of-thought (Wei et al., 2022), self-consistency (Wang et al., 2023), best-of-N sampling (Snell et al., 2025), process
reward models (Lightman et al., 2024), Monte Carlo tree search (Silver et al., 2016; Hao et al., 2023), tree-of-thought (Yao
et al., 2023), and recent works on preventing overthinking (Chen et al., 2024b; Team et al., 2025; Luo et al., 2025a; Arora
& Zanette, 2025) and compressing chain-of-thought (Hao et al., 2024b; Cheng & Van Durme, 2024). More specifically,
chain-of-thought is a reasoning approach where intermediate steps are explicitly written to make complex problem-solving
processes more transparent and logical. Self-consistency suggests generating multiple final answers and returning the mode
of an empirical distribution, enhancing test-time performance when test-time verifiers are unavailable. Unfortunately, it is
computationally expensive and effective only when answers can be clustered. Best-of-N sampling resolves this issue by
sampling answers from the model and selecting the best at test time according to the scoring function; however, it is sensitive
to the accuracy of test-time scoring functions (Gao et al., 2023). Process reward models offer fine-grained supervision of
chain-of-thought reasoning, but they might be vulnerable to reward hacking and introduce computation overhead. Monte
Carlo tree search is a generic technique that allocates computational resources toward the most promising regions of the
search space, and tree-of-thought and its extension (Besta et al., 2024; Gandhi et al., 2024) simplified this idea by exploring
multiple reasoning paths in a specific structure, allowing language models to select the most promising line of thought for
complex problem-solving. Both length regularization and compressed chain-of-thought are developed to reduce inference
costs for reasoning, which is crucial for the economic feasibility, user experience and environmental sustainability of LLMs.
In addition, several works have focused on specific reasoning tasks (Lampinen et al., 2024; Yang et al., 2025; Srivastava
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et al., 2024; Huang et al., 2025; 2024; Guo et al., 2025b; Gou et al., 2024; Wang et al., 2025), demonstrating promising
performance.

Chain-of-Thought and its variants. Chain-of-thought (CoT) refers to as a broad class of methods that generate an
intermediate reasoning process before arriving at a final answer. These approaches either prompt LLMs (Wei et al., 2022;
Khot et al., 2023; Zhou et al., 2023) or train LLMs to generate reasoning chains through supervised fine-tuning (SFT) (Yue
et al., 2024; Yu et al., 2024b; Li et al., 2025) and/or RL (Wang et al., 2024; Shao et al., 2024; Havrilla et al., 2024; Yu et al.,
2025a). While CoT has proven effective for certain tasks, its auto-regressive generation nature makes it challenging to mimic
human reasoning on more complex problems (LeCun, 2022; Hao et al., 2023), which require planning and search. Recent
efforts were devoted to equipping LLMs with tree search methods (Xie et al., 2023; Yao et al., 2023; Hao et al., 2024a) or
training LLMs on search trajectories (Lehnert et al., 2024; Gandhi et al., 2024; Su et al., 2025). Several other works have
investigated why CoT is effective. For example, (Madaan et al., 2023) used a counterfactual prompting approach to examine
the relative contributions of prompt elements, including symbols (digits, entities) and patterns (equations). (Feng et al., 2023;
Merrill & Sabharwal, 2024; Li et al., 2024a) analyzed CoT from the perspective of model expressivity, and (Feng et al.,
2023) showed that employing CoT increases the effective depth of a transformer since the generated outputs are looped back
to the input. This insight motivated the chain-of-continuous-thought paradigm (Hao et al., 2024b), and a related approach
has been proposed in (Cheng & Van Durme, 2024).

Direct preference alignment methods. Direct preference alignment methods (such as DPO (Rafailov et al., 2023)) are
simple and stable offline alternatives to online RLHF. Various DPO variants with other objectives have been proposed,
including ranking ones beyond pairwise preference data (Dong et al., 2023; Yuan et al., 2023a; Song et al., 2024; Chen et al.,
2024a; Liu et al., 2025a) and simple ones that do not rely on a reference model (Hong et al., 2024; Meng et al., 2024). Since
DPO does not train a reward model, the limited size of human labels becomes a bottleneck. To alleviate this limitation,
subsequent works proposed to augment preference data using a trained SFT policy (Zhao et al., 2023) or a refined SFT policy
with rejection sampling (Liu et al., 2024a). The DPO loss was recently extended to token-level MDP (Rafailov et al., 2024)
given that the transition is deterministic – which has covered the fine-tuning of LLMs – and more general RL problems (Azar
et al., 2024). There are other DPO variants (Ethayarajh et al., 2024; Park et al., 2024; Xu et al., 2024; Tang et al., 2024;
Meng et al., 2024; Chen et al., 2025a; Zhao et al., 2025). For example, (Ethayarajh et al., 2024) designed the specific loss
using a prospect theory, (Tang et al., 2024) optimized a general preference loss instead of the log-likelihood loss, and (Meng
et al., 2024) aligned the reward function in the preference optimization objective with the generation metric. (Dong et al.,
2024) and (Xiong et al., 2024) proposed to generate human feedback in an online fashion to mitigate the distribution-shift
and over-parameterization phenomenon. This improves DPO for complex reasoning tasks (Pang et al., 2024). Several other
works focus on unintentional alignment of DPO and developing new methods (Pal et al., 2024; Tajwar et al., 2024; Liu et al.,
2024b; Xiao et al., 2024; Yuan et al., 2025; Razin et al., 2025; Chen et al., 2025b). Among these works, (Razin et al., 2025)
proposed to measure the similarity between preferred and dispreferred responses using the centered hidden embedding
similarity (CHES) score and showed that filtering out preference pairs with small CHES score improves DPO, while (Chen
et al., 2025b) proposed a new method based on comparison oracles, and showed that combining it with DPO effectively
alleviated the issue of unintentional alignment.

Reward models. For the prompt x with a ground-truth response y⋆
x, we evaluate by implementing a regular expression

match on the final answer (Hendrycks et al., 2021): r(x,y) = 1 if y matches y⋆
x on the final answer and r(x,y) = 0

otherwise. An outcome reward model (ORM) (Cobbe et al., 2021; Uesato et al., 2022) is trained for estimating r(x,y).
In particular, we first choose x ∈ D and collect training samples (x,y ∼ πθ(·|x), r(x,y)). Then, we take (x,y) as input
and train an ORM to predict r(x,y). This can be done using binary classification (Cobbe et al., 2021; Yu et al., 2024a),
direct preference optimization (Hosseini et al., 2024) or next-token prediction (Zhang et al., 2024). Previous works also
train LLMs on self-generated data using the ground-truth outcome reward model with either supervised fine-tuning (Singh
et al., 2024; Yuan et al., 2023b; Zelikman et al., 2022) or online RL (Bi et al., 2024; Guo et al., 2025a). A process reward
model (PRM) is trained to score ah at sh = (x, a1, . . . , ah−1) either using human annotations (Lightman et al., 2024) or
the value functions based on LLM-generated data (Wang et al., 2024; Luo et al., 2024; Setlur et al., 2025); indeed, PRMs
estimate either the likelihood of future success or the change in the likelihood of future success before and after taking ah.
In addition, PRMs were also developed to improve search methods (Snell et al., 2025; Wu et al., 2025), and to identify the
“first pit" in an incorrect reasoning trajectory to construct preference pairs for direct preference alignment (Hwang et al.,
2024; Setlur et al., 2024).
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C. Missing Proofs
We first present the detailed setup for our stylized model and prove several technical lemmas. Then, we use these lemmas to
prove our main result in Theorem 3.2.

C.1. Stylized model

We consider a policy parameterized by a softmax function, which is standard in the analysis of reinforcement learning
methods (Agarwal et al., 2020; Mei et al., 2021; Li et al., 2024b):

πθ(a1:T |x) =
T∏

t=1

πθt(at |x, a1:t−1) =

T∏
t=1

exp(θ
x,a1:t−1,at
t )∑

a′
t∈V⋆ exp(θ

x,a1:t−1,a′
t

t )
,

By convention, we assume that πθ1(a1 |x, a1:0) = πθ1 (a1 |x).

For simplicity, we perform our analysis in the likelihood space rather than in the parameter space (i.e., θ) directly. Indeed,
we define the key quantities as follows,

p
.
= πθ1(a1 = 2 |x) = eθ

x,2
1

eθ
x,1
1 +eθ

x,2
1

, q
.
= πθ2(a2 = 2 |x, a1 = 2) = eθ

x,2,2
2

eθ
x,2,1
2 +eθ

x,2,2
2

.

Note that the original 4-dimensional parameter space defined by θx,11 , θx,21 , θx,2,12 and θx,2,22 in R is reduced to a 2-
dimensional likelihood space defined by p, q ∈ [0, 1].

We rewrite the generic GRPO update with a step size η > 0 as follows,

θ(k+1) = θ(k) + η · g(θ), where g(θ) =
1

NGH

(
N∑
i=1

G∑
k=1

H∑
h=1

sθ(x
i, ai,k1:h−1)Ai,k

)
,

where N is the number of prompts, G is the number of groups, H is the number of reasoning steps in each response,
sθ(x

i, ai,k1:h−1) := ∇θ log πθ(at|x, a1:h−1) is the score function, and the advantage Ai,k is defined by

Ai,k =
r(xi,yi,k)−(1/G)

∑G
j=1 r(xi,yi,j)√

(1/G)
∑G

j=1(r(x
i,yi,j)−(1/G)

∑G
j′=1

r(xi,yi,j′ ))2

To distinguish, we denote gGRPO(·) as the gradient estimator using classical outcome reward model r, and gSPO(·) as the
gradient estimator using the reward rAIF as proposed in Section 3.1.

For our simple stylized model, we compute the score functions in terms of likelihood parameters p, q as follows,

s(a1 = 1 |x) =


p
−p
0
0

 , s(a1 = 2 |x) =


p− 1
1− p
0
0

 ,

and

s(a2 = 1 |x, a1 = 2) =


0
0
q
−q

 , s(a2 = 2 |x, a1 = 2) =


0
0

q − 1
1− q

 .

Note that we restrict the sample space to y ∈ {(1, 1), (2, 1), (2, 2)}, excluding the sample (1, 2). The responses can be
drawn i.i.d. from the distribution as follows,

(a1, a2) =


(1, 1), w.p. 1− p,

(2, 1), w.p. p(1− q),

(2, 2), w.p. pq.
.
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We set G = 2 and focus on the SPO and GRPO training dynamics with population-level policy gradient which can be
computed exactly for the stylized model as follows,

ḡSPO(θ) = E[gSPO(θ)] = 1
2


p(p− 1)
p(1− p)
p2q(q − 1)
p2q(1− q)

 , ḡGRPO(θ) = E[gGRPO(θ)] = 1
2


p(p− 1)q
p(1− p)q
pq(q − 1)
pq(1− q)

 .

Since gGRPO(θ) and gSPO(θ) concentrate around ḡGRPO(θ) and ḡSPO(θ) when the number of samples in each group is
sufficiently large, it is reasonable to analyze the population-level dynamics at first. Note that the high-probability guarantees
for the sample-level dynamics can be derived using concentration inequalities under certain conditions.

Now, we can explicitly write down the SPO and GRPO update rules with η = 1 using the likelihood parameters p and q as
follows, {

p
(k+1)
SPO = exp(f11(p

(k)
SPO)),

q
(k+1)
SPO = exp(f12(p

(k)
SPO, q

(k)
SPO)),

and

{
p
(k+1)
GRPO = exp(f21(p

(k)
GRPO, q

(k)
GRPO)),

q
(k+1)
GRPO = exp(f22(p

(k)
GRPO, q

(k)
GRPO)),

, (3)

where the functions fij are defined by

f11(p) = log(p) + p(1− p)− log(1− p+ pep(1−p)),

f21(p, q) = log(p) + p(1− p)q − log(1− p+ pep(1−p)q),

f12(p, q) = log(q) + p2q(1− q)− log(1− q + qep
2q(1−q)),

f22(p, q) = log(q) + pq(1− q)− log(1− q + qepq(1−q)).

(4)

C.2. Technical lemmas

We provide several technical lemmas that are important to the subsequent proof of Theorem 3.2. Indeed, the first lemma
summarizes the properties of particular functions related to the aforementioned functions f11, f21, f12 and f22 from Equa-
tion (4).

Lemma C.1. The following statements hold true,

(i) The function f11 is strictly increasing on (0, 1).
(ii) The function hp(x) := x− log(1− p+ pex) is strictly increasing for any fixed p ∈ (0, 1).
(iii) The function f21 is strictly increasing in either p for any fixed q or q for any fixed p on (0, 1).
(iv) The function φ(x) := log(1 + (1/2)e−ex) is strictly concave on (−∞, 0).

Proof. First of all, we have

f ′
11(p1) =

1+(1−2p1)p1(1−p1)

p1(1+p1+p1ep1(1−p1))
> 3

4p1(1+p1+p1ep1(1−p1))
> 0.

Thus, the function f11 is strictly increasing on (0, 1).

Furthermore, we have

h′
p(x) = 1− pex

1−p+pex = 1−p
1−p+pex

0<p<1
> 0

Thus, the function hp(x) is strictly increasing.

Moreover, we have

∂f21(p1,p2)
p1

= 1+p2(1−2p1)p1(1−p1)

p1(1+p1+p1ep2p1(1−p1))
> 3

4p1(1+p1+p1ep1(1−p1))
> 0,

∂f21(p1,p2)
p2

= p1(1−p1)
2

1+p1+p1ep2p1(1−p1) > 0.

Thus, the function f21 is strictly increasing in either p for any fixed q or q for any fixed p on (0, 1).

Finally, we have

φ′′(x) = (ex+ex/2−ee
x
/2−1/4)ex

e2ex+eex+1/4
.
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Since u = ex ∈ (0, 1) for x < 0, we have

(ueu/2− eu/2− 1/4)u = (eu(u− 1)/2− 1/4)u < −(1/4)u < 0.

Thus, φ′′(x) < 0 for all x < 0 which shows that f is strictly concave on (−∞, 0). □

The second lemma presents basic inequalities and we provide the proofs for the sake of completeness.

Lemma C.2. The following statements hold true,

(i) For x ∈ (0, 1
2 ), we have

1 + x+ x2 + x3 + x4 + x5 ≤ 1
1−x ≤ 1 + x+ x2 + x3 + x4 + 2x5.

(ii) For x > 0, we have
1− x+ x2

2 −
x3

6 + x4

24 −
x5

120 ≤ e−x ≤ 1− x+ x2

2 −
x3

6 + x4

24 .

(iii) For x ∈ (− 1
2 , 0), we have √

1 + x ≤ 1 + x
2 −

x2

8 + x3

16 −
5x4

128 + 7x5

256 .

Proof. First of all, we have
1

1−x = 1 + x+ x2 + x3 + x4 + x5

1−x .

Since x ∈ (0, 1
2 ), we have x5 ≤ x5

1−x ≤ 2x5. Thus, the first desired inequality holds true.

Furthermore, we have f (n)(x) = (−1)ne−x where f(x) = e−x. Then, we have f (5)(ξ) < 0 for all ξ > 0 and f (6)(ξ) > 0
for all ξ > 0. This implies

e−x = 1− x+ x2

2 −
x3

6 + x4

24 + f(5)(ξ1)x
5

5! ≤ 1− x+ x2

2 −
x3

6 + x4

24 ,

e−x = 1− x+ x2

2 −
x3

6 + x4

24 −
x5

120 + f(6)(ξ2)x
6

6! ≥ 1− x+ x2

2 −
x3

6 + x4

24 −
x5

120 .

Thus, the second desired inequality holds true.

Finally, we have f (6)(x) = − 105
64 (1 + x)−11/2 where f(x) =

√
1 + x. Then, we have f (6)(ξ) < 0 for all ξ ∈ (−1/2, 0).

This implies
√
1 + x = 1 + x

2 −
x2

8 + x3

16 −
5x4

128 + 7x5

256 + f(6)(ξ)x6

6! ≤ 1 + x
2 −

x2

8 + x3

16 −
5x4

128 + 7x5

256 .

Thus, the third desired inequality holds true. □

The third lemma presents an inequality which plays a key role in the subsequent proof of Theorem 3.2. It is proved using
basic inequalities from Lemma C.2.

Lemma C.3. We define the auxiliary functions as follows,

A(x) = 1 +
(
1
x − 1

)
e−x(1−x), B(x, y) = 1 +

(
1
y − 1

)
e−x2y(1−y), C(x, y) = 1 +

(
1√
xy − 1

)
e−xy(1−√

xy).

Then, we have C(x, y)2 > A(x)B(x, y) for all x and y satisfying 31
32 < y < x < 1.

Proof. For simplicity, we let h = 1− y ∈ (0, 1
2 ), a = 1− x ∈ (0, 1

2 ) and ε = x−y
h ∈ (0, 1). First, we rewrite A(x) in terms

of a as follows,
A(x) = 1 +

(
1

1−a − 1
)
e−a(1−a).

By using the upper bound in Item C.2(ii), we have

e−a(1−a) ≤ 1− a(1− a) + a2(1−a)2

2 − a3(1−a)3

6 + a4(1−a)4

24

= 1− a+ 3
2a

2 − 7
6a

3 + 25
24a

4 − 2
3a

5 + 5
12a

6 − 1
6a

7 + 1
24a

8

= 1− a+ 3
2a

2 − 7
6a

3 + 25
24a

4 + a5R1(a),
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where R1 is defined by
R1(a) = − 2

3 + 5
12a−

1
6a

2 + 1
24a

3.

Since a ∈ (0, 1
2 ), we have

R′
1(a) =

5
12 −

1
3a+ 1

8a
2 > 1

8a
2 > 0.

Thus, we have R1(a) < R1(1/2) < 0. This together with a > 0 yields

e−a(1−a) ≤ 1− a+ 3
2a

2 − 7
6a

3 + 25
24a

4.

Combining the above inequality with the upper bound in Item C.2(i) yields

A(x) ≤ 1 + (a+ a2 + a3 + a4 + 2a5)
(
1− a+ 3

2a
2 − 7

6a
3 + 25

24a
4
)

= 1 + a+ 3
2a

3 + 1
3a

4 + 19
8 a5 − 5

8a
6 + 23

8 a7 − 31
24a

8 + 25
12a

9

= 1 + a+ 3
2a

3 + 1
3a

4 + 19
8 a5 + a6R2(a),

where R2 is defined by
R2(a) = − 5

8 + 23
8 a− 31

24a
2 + 25

12a
3.

Since a ∈ (0, 1
2 ), we have

R′
2(a) =

23
8 −

31
12a+ 25

4 a2 > 25
4 a2 > 0.

Thus, we have R2(a) < R2(1/2) = 3/4. This together with a < 1
2 yields

A(x) ≤ 1 + a+ 3
2a

3 + 1
3a

4 + 19
8 a5 + 3

4a
6 ≤ 1 + a+ 3

2a
3 + 1

3a
4 + 11

4 a5.

Finally, we rewrite the above inequality using a = (1− ε)h as follows,

A(x) ≤ 1 + (1− ε)h+ 3
2 (1− ε)3h3 + 1

3 (1− ε)4h4 + 11
4 h5. (5)

Furthermore, we obtain an upper bound for B(x, y) using Lemma C.2. Indeed, we have

(1− h+ εh)2h(1− h) = h+ (2ε− 3)h2 + (ε2 − 4ε+ 3)h3 − (1− 2ε+ ε2)h4.

By using the upper bound in Item C.2(ii), we have

e−(1−h+εh)2h(1−h) ≤ 1− h+
(
7
2 − 2ϵ

)
h2 +

(
−ϵ2 + 6ϵ− 37

6

)
h3 + 11h4.

We rewrite B(x, y) in terms of h and ε as follows,

B(x, y) = 1 +
(

1
1−h − 1

)
e−(1−h+εh)2h(1−h)

Applying the upper bound in Item C.2(i) yields

1
1−h ≤ 1 + h+ h2 + h3 + h4 + 2h5.

Putting these pieces together yields

B(x, y) ≤ 1 + h+
(
7
2 − 2ε

)
h3 +

(
− 8

3 + 4ε− ε2
)
h4 + 37

8 h5. (6)

Combining Equation (5) and Equation (6) yields

A(x)B(x, y) ≤ 1 + (2− ε)h+ (1− ε)h2 (7)
+
(
5− 13ε

2 + 9
2ε

2 − 3
2ε

3
)
h3 +

(
8
3 −

22
3 ε+ 15

2 ε2 − 17
6 ε3 + 1

3ε
4
)
h4 + 13h5.

Finally, we obtain a lower bound for C(x, y). Indeed, we set v = 1−√xy ∈ (0, 1
2 ) and rewrite C(x, y) in terms of v as

follows,
C(x, y) = 1 +

(
1

1−v − 1
)
e−v(1−v)2 =: ϕ(v).
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By using the lower bound in Item C.2(ii), we have

e−v(1−v)2 ≥ 1− v +
5

2
v2 − 19

6
v3 +

97

24
v4 − 601

120
v5.

Applying the lower bound in Item C.2(i) yields

1
1−v ≥ 1 + v + v2 + v3 + v4 + v5.

Putting these pieces together yields
ϕ(v) ≥ 1 + v + 5

2v
3 − 2

3v
4 + 2v5. (8)

Note that xy − 1 = (ε− 2)h+ (1− ε)h2. Then, applying Item C.2(iii) to xy − 1 ∈ (− 1
2 , 0) yields

√
xy ≤ 1 +

(
ε
2 − 1

)
h− ε2

8 h
2 + 1

16ε
2(ε− 2)h3 + 1

8ε
2(ε− 1)h4 + 1

8h
5.

which implies
v = 1−√xy ≥

(
1− ε

2

)
h+ ε2

8 h
2 + 1

16ε
2(2− ε)h3 + 1

8ε
2(1− ε)h4 − 1

8h
5. (9)

Since C(x, y) = 1
exp(f21(

√
xy,

√
xy)) is strictly decreasing in

√
xy (c.f. Item C.1(iii)), we have that ϕ is strictly increasing in

v. Thus, we have

C(x, y) = ϕ(v) ≥ ϕ
((

1− ε
2

)
h+ ε2

8 h
2 + 1

16ε
2(2− ε)h3 + 1

8ε
2(1− ε)h4 − 1

8h
5
)

≥ 1 +
(
1− ε

2

)
h+ ε2

8 h
2 +

(
− 3

8ε
3 + 2ε2 − 15

4 ε+ 5
2

)
h3 +

(
− 35

48ε
3 + 1

16ε
2 + 4

3ε
2
3

)
h4 − 1

100h
5.

where the first inequality uses Equation (9) and the second inequality uses Equation (8). This implies

C(x, y)2 ≥ 1 + (2− ε)h+
(
1− ε+ ε2

2

)
h2 (10)

+
(
− 7ε3

8 + 17ε2

4 −
15ε
2 + 5

)
h3 +

(
25ε4

64 −
101ε3

24 + 63ε2

8 −
22ε
3 + 11

3

)
h4 − 2h5.

Since 31
32 < y < x < 1, we have h < 1

32 . This together with Eq. (7) and Eq. (10) yields

C(x, y)2 −A(x)B(x, y) ≥ 1
2ε

2h2 +
(
−ε− 1

4ε
2 + 5

8ε
3
)
h3 +

(
1 + 3

8ε
2 − 11

8 ε3
)
h4 − 15h5

> h2
(
1
2ε

2 +
(
−ε− 1

4ε
2
)
h+

(
17
32 − ε2

)
h2
)

> 0.49ε2 − εh+ 17
32h

2 > 0,

where the second inequality uses ϵ ∈ (0, 1) and the last inequality holds true since the quadratic function in ε has negative
discriminant. □

The last lemma presents some properties for the population-level SPO and GRPO dynamics.
Lemma C.4. Under the assumptions from Theorem 3.2, the following statements hold true,

(i) p
(k)
SPO, q

(k)
SPO, p

(k)
GRPO, q

(k)
GRPO ∈ (0, 1) for all k ≥ 0.

(ii) p
(k)
SPO, q

(k)
SPO, p

(k)
GRPO, q

(k)
GRPO are strictly increasing in k and lie in ( 12 , 1) for all k ≥ 1.

(iii) p
(k)
SPO > q

(k)
SPO for all k ≥ 1.

Proof. We first rewrite the update rule in Equation (3) as follows,

p
(k+1)
SPO = p

(k)
SPO

e
∆

(k)
SPO,p

1−p
(k)
SPO+p

(k)
SPOe

∆
(k)
SPO,p

, where ∆
(k)
SPO,p = p

(k)
SPO(1− p

(k)
SPO),

q
(k+1)
SPO = q

(k)
SPO

e
∆

(k)
SPO,q

1−q
(k)
SPO+q

(k)
SPOe

∆
(k)
SPO,q

, where ∆
(k)
SPO,q = (p

(k)
SPO)

2q
(k)
SPO(1− q

(k)
SPO),

p
(k+1)
GRPO = p

(k)
GRPO

e
∆

(k)
GRPO,p

1−p
(k)
GRPO+p

(k)
GRPOe

∆
(k)
GRPO,p

, where ∆
(k)
GRPO,p = p

(k)
GRPO(1− p

(k)
GRPO)q

(k)
GRPO,

q
(k+1)
GRPO = q

(k)
GRPO

e
∆

(k)
GRPO,q

1−q
(k)
GRPO+q

(k)
GRPOe

∆
(k)
GRPO,q

, where ∆
(k)
GRPO,q = p

(k)
GRPOq

(k)
GRPO(1− q

(k)
GRPO).
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First of all, the uniform initialization yields the desired result for k = 0. Suppose p
(k)
SPO ∈ (0, 1) for some k ≥ 0. Then, we

have
1− p

(k)
SPO + p

(k)
SPOe

∆
(k)
SPO,p > p

(k)
SPOe

∆
(k)
SPO,p > 0,

which implies p
(k+1)
SPO ∈ (0, 1). By induction, we have p

(k)
SPO ∈ (0, 1) for all k ≥ 0. Similarly, we can show that

q
(k)
SPO, p

(k)
GRPO, q

(k)
GRPO ∈ (0, 1) for all k ≥ 0.

Furthermore, we have ∆
(k)
SPO,p > 0 since p

(k)
SPO ∈ (0, 1). This implies

p
(k+1)
SPO

p
(k)
SPO

= 1

(1−p
(k)
SPO)e

−∆
(k)
SPO,p+p

(k)
SPO

> 1

1−p
(k)
SPO+p

(k)
SPO

= 1.

Since p
(0)
SPO = 1

2 , we have p
(k)
SPO ∈ ( 12 , 1) for all k ≥ 1. Similarly, we can show that q(k)SPO, p

(k)
GRPO, q

(k)
GRPO are strictly increasing

and lie in ( 12 , 1).

Finally, we have p
(0)
SPO ≥ q

(0)
SPO. Thus, it suffices to show that p(k)SPO ≥ q

(k)
SPO implies p(k+1)

SPO > q
(k+1)
SPO for all k ≥ 0. Indeed,

Item C.1(i) and p
(k)
SPO ≥ q

(k)
SPO yield

p
(k+1)
SPO = exp(f11(p

(k)
SPO)) ≥ exp(f11(q

(k)
SPO)) = exp(log(q

(k)
SPO) + h

q
(k)
SPO

(q
(k)
SPO(1− q

(k)
SPO))).

Then, Item C.1(ii) and p
(k)
SPO ∈ (0, 1) yield

exp(log(q
(k)
SPO) + h

q
(k)
SPO

(q
(k)
SPO(1− q

(k)
SPO))) > exp(log q

(k)
SPO + h

q
(k)
SPO

((p
(k)
SPO)

2q
(k)
SPO(1− q

(k)
SPO))).

In addition, we have

q
(k+1)
SPO = exp(f12(p

(k)
SPO, q

(k)
SPO)) = exp(log q

(k)
SPO + h

q
(k)
SPO

((p
(k)
SPO)

2q
(k)
SPO(1− q

(k)
SPO))).

Putting these pieces together yields p(k+1)
SPO > q

(k+1)
SPO . □

C.3. Proof of Theorem 3.2

To show (i), recall that the sequence (p
(k)
SPO)k∈N is strictly increasing and bounded in (0, 1) from Items C.4(i) and C.4(ii), so

it converge to some value c ∈ (0, 1]. Take limit as k →∞:

1 = lim
k→∞

p
(k+1)
SPO

p
(k)
SPO

= lim
k→∞

1

(1−p
(k)
SPO)e

−∆
(k)
SPO,p+p

(k)
SPO

= 1
(1−c)e−c(1−c)+c

.

Using the simple Taylor lower bound e−x ≥ 1− x, we have

1 = 1
(1−c)e−c(1−c)+c

≥ 1
(1−c)(1−c(1−c))+c =⇒ (c− 1)2 ≤ 0 =⇒ c = 1.

This shows p(k)SPO → 1 as k →∞. Similarly, we can show q
(k)
GRPO, p

(k)
SPO, q

(k)
SPO → 1 as k →∞.

To show (ii), consider the base case:

p
(1)
SPO = exp(f11(p

(0)
SPO)) = exp(log p

(0)
SPO + h

p
(0)
SPO

(p
(0)
SPO(1− p

(0)
SPO)))

= exp(log p
(0)
GRPO + h

p
(0)
GRPO

(p
(0)
GRPO(1− p

(0)
GRPO)))

> exp(log p
(0)
GRPO + h

p
(0)
GRPO

(p
(0)
GRPO(1− p

(0)
GRPO)q

(0)
GRPO)) = exp(f21(p

(0)
GRPO, q

(0)
GRPO)) = p

(1)
GRPO,

where the inequality follows from Item C.1(ii). Thus, we use induction and assume p(k)SPO > p
(k)
GRPO for some k ≥ 1. Then we

have,
p
(k+1)
SPO = exp(f11(p

(k)
SPO)) > exp(f11(p

(k)
GRPO)) = exp(log p

(k)
GRPO + h

p
(k)
GRPO

(p
(k)
GRPO(1− p

(k)
GRPO)))

> exp(log p
(k)
GRPO + h

p
(k)
GRPO

(p
(k)
GRPO(1− p

(k)
GRPO)q

(k)
GRPO)) = exp(f21(p

(k)
GRPO, q

(k)
GRPO)) = p

(k+1)
GRPO ,
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where the first inequality uses Item C.1(i) and the second one uses Item C.1(ii). Thus, p(k+1)
SPO > p

(k+1)
GRPO and induction

completes. We have proved that p(k)SPO > p
(k)
GRPO for all k ≥ 1.

To show (iii), first notice that we can show p
(k)
GRPO = q

(k)
GRPO for all k ≥ 0 by induction. The base case is trivial by initialization.

Suppose p
(k)
GRPO = q

(k)
GRPO for some k ≥ 0, then by noticing that f21(p, p) = f22(p, p), we have

p
(k+1)
GRPO = exp(f21(p

(k)
GRPO, q

(k)
GRPO)) = exp(f21(p

(k)
GRPO, p

(k)
GRPO))

= exp(f22(p
(k)
GRPO, p

(k)
GRPO)) = exp(f22(p

(k)
GRPO, q

(k)
GRPO)) = q

(k+1)
GRPO .

Thus, by induction, p(k)GRPO = q
(k)
GRPO for all k ≥ 0. Now, we can reduce the update rule of p(k)GRPO as

p
(k+1)
GRPO = 1

(1/p
(k)
GRPO−1) exp(−(p

(k)
GRPO)

2(1−p
(k)
GRPO))+1

.

Also recall the update rule of p(k)SPO and q
(k)
SPO:

p
(k+1)
SPO = 1

(1/p
(k)
SPO−1) exp(−p

(k)
SPO(1−p

(k)
SPO))+1

q
(k+1)
SPO = 1

(1/q
(k)
SPO−1) exp(−(p

(k)
SPO)

2q
(k)
SPO (1−q

(k)
SPO ))+1

,

and it suffices to show p
(k)
SPOq

(k)
SPO > (p

(k)
GRPO)

2 for all k ≥ 1. We prove by induction. For the base case,√
p
(1)
SPOq

(1)
SPO =

√
1

1+(1/2)e−1/4 · 1
1+(1/2)e−1/16 > 1

1+(1/2)e−1/8 = p
(1)
GRPO.

The above inequality holds true since Item C.1(iv) implies

2 log(1 + (1/2)e−1/8) > log(1 + (1/2)e−1/4) + log(1 + (1/2)e−1/16),

It remains to show that p(k)SPOq
(k)
SPO > (p

(k)
GRPO)

2 implies p(k+1)
SPO q

(k+1)
SPO > (p

(k+1)
GRPO )2 for k large enough. By Item C.4(iii), we

know p
(k)
SPO > q

(k)
SPO for all k ≥ 1. Thus, we can use Lemma C.3 to conclude that once q

(k)
SPO > 31/32, we will have

p
(k+1)
SPO q

(k+1)
SPO = 1

A(p
(k)
SPO)B(p

(k)
SPO ,q

(k)
SPO )

> 1

C(p
(k)
SPO ,q

(k)
SPO )

2
.

This is guaranteed to happen for large enough k because we have proved q
(k)
SPO → 1 as k → ∞. Using Item C.1(iii), we

complete the induction by applying our induction hypothesis:

1

C(p
(k)
SPO ,q

(k)
SPO )

2
= exp(f21(

√
p
(k)
SPOq

(k)
SPO,

√
p
(k)
SPOq

(k)
SPO)) > exp(f21(p

(k)
GRPO, p

(k)
GRPO)) = (p

(k+1)
GRPO )2.

This completes the proof.
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C.4. Empirical evaluations

We run some simple simulations to compare SPO to GRPO using our stylized model and plot the generated learning curves
in Figure 2. In particular, the left figure displays the likelihood of learning a “good” action in the first step for each iteration
k (i.e., p(k)SPO v.s. p(k)GRPO), whereas the right figure displays the likelihood of learning the optimal policy, (i.e., p(k)SPOq

(k)
SPO v.s.

p
(k)
GRPOq

(k)
GRPO). We find that the empirical results reflect the qualitative behavior predicted by Theorem 3.2. The key difference

is that the likelihood of learning the optimal policy for SPO consistently exceeds that for GRPO throughout the whole
training, whereas Theorem 3.2 only guarantees such result in a local sense: SPO eventually surpasses GRPO without
necessarily dominating at a few early iterations.
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Figure 2: Evolution of SPO and GRPO algorithms for the stylized model

D. Additional Experimental Results
Experiments results. We present two additional experiment results for comparing SPO to GRPO on a weaker model in
Table 4 and verifying robustness on multiple independent runs in Table 5.

Table 4: Further contrast between GRPO and SPO on weaker Qwen2.5-7B results.

AMC23
avg@16

AIME24
avg@16

MATH500
pass@1

Olympiads
pass@1

Qwen2.5-7B-Instruct

GRPO 50.62 14.58 75.20 38.07
SPO 55.00 12.50 76.40 40.00

Table 5: Extra experiment results on DeepSeek-R1-Distill-Llama-8B across multiple independent runs. The mean average
score and standard deviation is reported below.

Kaoyan GradeMath MATH500 Olympiads CHMath24 AIME25 AIME24 Gaokao AMC23
pass@1 pass@1 pass@1 pass@1 avg@16 avg@16 avg@16 avg@16 avg@16

DeepSeek-R1-Distill-Llama-8B

SPO 40.78±3.05 27.47±1.45 82.87±0.64 47.16±1.33 56.88±1.85 25.62±0.91 39.37±1.88 71.13±0.38 88.18±0.80

Prompt template. To better illustrate the process supervision mechanism, we present the following example prompt
template, which identifies the first incorrect sentence using char-level indexing. An alternative approach is to return the
full first incorrect sentence and match it against the model’s response to compute the reward.
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Example of RLAIF Feedback Prompt

Your task is to carefully read the agent’s solution and identify the first sentence
where a clear mistake occurs that deviates from the correct reasoning.

We will first provide you with a reference solution. Then, we will provide the
agent’s solution (the agent’s solution is truncated at the maximum output length;
just check the portion in the truncated portion). Please read the reference
solution to understand how to approach this problem, and then check agent’s
solution.

Please go through the agent’s solution sentence by sentence. For each sentence:

• If the sentence is correct, explain why it is correct.

• If the sentence shows a clear mistake that leads the reasoning away from the
correct solution, mark it as the first incorrect sentence.

Here’s the question:
{question}

Here’s the reference answer:
{reference answer}

Here’s the agent’s solution:
{agent’s response}

Please following the steps to reason agent’s solution

1. 1) Check each sentence one by one

2. 1) For each correct sentence, explain why it’s correct.

3. 2) Identify the first incorrect sentence with mistakes, explain why it leads to
the wrong final answer and moving to the correct portion calculation

After identifying the first incorrect sentence:

1. 1) Count how many chars are there in the agent’s answer

2. 2) Calculate the portion of correct characters in the reasoning:
correct_portion = (position of first incorrect sentence’s character)/(total
character in the response)

3. 3) Output in this EXACT format: \Portion{{correct_portion}}

For example, if agent makes a mistake in the 2nd sentence, starting at character 232,
and there are 19232 total characters, then: correct_portion = 232/19232 = 0.0121
Output should be: \Portion{{0.0121}}

THE OUTPUT MUST INCLUDE \Portion{} WITH THE CALCULATED correct_portion VALUE.
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