

000 DREAMACTOR-M2: UNLEASHING PRE-TRAINED 001 VIDEO MODELS FOR UNIVERSAL CHARACTER IMAGE 002 ANIMATION VIA IN-CONTEXT FINE-TUNING 003

004 **Anonymous authors**
005
006

007 Paper under double-blind review
008

036 Figure 1: The proposed **DreamActor-M2** exhibits strong generalization capability, producing
037 diverse animations while preserving consistent character appearance. The arrow → denotes the trans-
038 fer of character motion from the driving video to the character depicted in the reference image.

039 ABSTRACT

040
041
042 Character image animation aims to generate high-fidelity videos from a reference
043 image and a driving video, with broad applications in digital humans. Despite re-
044 cent advances, current methods suffer from two key limitations: reliance on aux-
045 iliary pose encoders introduces modality gaps that weaken alignment pre-trained
046 generative priors, and dependence on explicit pose signals severely limits gener-
047 alization beyond human-centric scenarios. We propose **DreamActor-M2**, a uni-
048 versal framework that redefines motion conditioning through an in-context LoRA
049 fine-tuning paradigm. By directly concatenating motion signals and reference im-
050 ages into a unified input, our approach preserves the backbone’s native modality
051 and fully exploits pre-trained capabilities without architectural modifications, en-
052 abling plug-and-play motion control consistent with the principles of in-context
053 learning. Furthermore, we extend this formulation beyond pose-driven control to
an end-to-end framework that conditions directly on raw video frames, trained by
a synthesis-driven data generation pipeline. Extensive experiments demonstrate

054
 055
 056
 057
 058
 059
 060
 061
 062
 063
 064
 065
 066
 067
 068
 069
 070
 071
 072
 073
 074
 075
 076
 077
 078
 079
 080
 081
 082
 083
 084
 085
 086
 087
 088
 089
 090
 091
 092
 093
 094
 095
 096
 097
 098
 099
 100
 101
 102
 103
 104
 105
 106
 107
 that DreamActor-M2 achieves state-of-the-art performance with superior fidelity, controllability, and cross-domain generalization, marking a significant step toward more flexible and scalable motion-driven video generation.

1 INTRODUCTION

Character image animation (Tan et al., 2024; 2025; Luo et al., 2025; Li et al.) is an appealing yet challenging task with broad applications in digital entertainment, virtual avatars, film and television production, and human-computer interaction. It aims to generate high-fidelity videos in which the subject’s appearance remains consistent with a given reference image, while its motion faithfully follows a driving video. This task imposes stringent constraints: it must concurrently ensure identity preservation (Tu et al., 2025; Chang et al., 2025; Wang et al., 2024b), motion consistency (Ma et al., 2025; Lei et al., 2024), and effective generalization across diverse character types, including humans, cartoons, and animals (Zhang et al., 2025a; Tan et al., 2024; 2025).

Recent advances in large-scale video generation models (Blattmann et al., 2023; Yang et al., 2024; Wan et al., 2025; Kong et al., 2024; Seaweed et al., 2025; Gao et al., 2025; Zhang et al., 2025b) have provided powerful pre-trained backbones with remarkable generative capabilities. Building on these foundational models, most contemporary studies (He et al., 2025; Luo et al., 2025; Zhang et al., 2025a; Ding et al., 2025; Wang et al., 2025) have adapted these backbones for character image animation, achieving promising progress. These approaches demonstrate that pre-trained video generators can act as strong priors, significantly reducing the need for training from scratch and enabling rapid transfer to the downstream task of character image animation.

Despite recent progress, most existing methods still suffer from two fundamental drawbacks. **First**, most methods (MooreThreads, 2024; Zhang et al., 2024; Wang et al., 2025; Luo et al., 2025; Ding et al., 2025) inject motion into pre-trained video generation backbones via auxiliary pose encoders. This design inevitably introduces a *input modality gap*, as pose information is separately encoded and fused with the backbone through feature concatenation or cross-attention. Such a mismatch disrupts the consistency with large-scale pre-training, weakening the generative priors learned during pre-training. As a result, the generated outputs often exhibit reduced fidelity and controllability, particularly in complex or unseen scenarios. **Second**, the predominant reliance on explicit pose control signals (e.g., 2D keypoints or 3D SMPL) make current methods highly dependent on pose estimators (Karras et al., 2023; Xu et al., 2024; Wang et al., 2024a; Zhu et al., 2024; Zhang et al., 2024; Peng et al., 2024; Gan et al., 2025; Ding et al., 2025). However, these estimators are error-prone in human-centric videos and fundamentally lack generalizability to non-human domains such as cartoons or animals, severely restricting adaptability. Although implicit motion representations have been explored (Tan et al., 2024; 2025; Song et al., 2025), they still rely on pose-derived supervision and thus remain constrained by the inherent weaknesses of pose estimation.

To address these challenges, we propose **DreamActor-M2**, a universal framework featuring an **In-Context** LoRA fine-tuning strategy that supports both pose- and video-driven control. Unlike prior methods that rely on auxiliary pose encoders, our approach directly concatenates motion control signals with the reference image at the spatial level. This design allows the pre-trained backbone to naturally interpret motion as input context. As a result, the LoRA adapter can align motion and appearance seamlessly without changing the input modality or backbone architecture, achieving a seamless plug-and-play motion injection consistent with the principles of in-context learning.

Our framework is implemented in two powerful variants. The first, **Pose-based DreamActor-M2**, leverages 2D pose skeletons as motion signals to drive character animation. To expand applicability beyond pose-driven settings, we then create **End-to-End DreamActor-M2**, which directly accepts raw video frames as motion conditions. A key obstacle, however, lies in the scarcity of paired data that simultaneously ensures motion fidelity and cross-identity diversity. To solve this, we devise a novel two-stage synthesis-and-training strategy. In the first stage, we use pre-trained *Pose-based DreamActor-M2* to automatically generate motion-consistent videos with varied identities by transferring motion from source videos to different reference images. Then, in the second stage, we pair these synthesized videos with the originals to create a large-scale, high-quality pseudo-paired dataset. This enables effective end-to-end training without the need for manual, real-world annotations. By removing the dependency on explicit pose signals, our end-to-end variant can generalize

108 effortlessly to both human and non-human motion videos, marking an important step toward more
 109 flexible and broadly applicable motion-driven generation.
 110

111 For a comprehensive evaluation, we construct an Evaluation Benchmark covering a wide range of
 112 motion categories and character identities. Extensive experiments demonstrate that DreamActor-M2
 113 consistently outperforms prior methods, achieving superior motion consistency and generalization.
 114 Our main contributions are summarized as follows:

115 2 RELATED WORK

116 **Latent Video Diffusion Models.** Diffusion-based generative models (Blattmann et al., 2023; Yang
 117 et al., 2024; Wan et al., 2025; Kong et al., 2024; Seawead et al., 2025; Gao et al., 2025; Zhang et al.,
 118 2025b) have recently achieved remarkable success in video generation. More recently, Wan2.1 (Wan
 119 et al., 2025) and Seedance 1.0 (Gao et al., 2025) have emerged as high-performance video foundation
 120 model, supporting both text-to-video and image-to-video generation. Given that character image
 121 animation is inherently more aligned with the image-to-video generation setting, we adopt Seedance
 122 1.0 as the pre-trained video generation backbone for our proposed DreamActor-M2 framework.
 123

124 **Pose Guidance in Character Image Animation.** Pose-guided approaches remain the dominant
 125 paradigm for character image animation. A series of studies (Hu, 2024; Zhu et al., 2024; Xu et al.,
 126 2024; Zhang et al., 2024; Wang et al., 2025; Gan et al., 2025; Chang et al., 2025; He et al., 2025)
 127 adopt a *pose-aligned* strategy, which uses 2D skeletons via pose estimation as motion control signals.
 128 While this enforces spatial alignment and ensures motion consistency, training under same-identity
 129 settings often causes *identity leakage*, where identity cues become entangled with motion features,
 130 severely degrading performance in cross-identity scenarios. To alleviate this, *alignment-free* strate-
 131 gies (Tan et al., 2024; 2025; Ding et al., 2025) attempt to decouple pose signals from strict spatial
 132 alignment. For example, Animate-X (Tan et al., 2024) introduces random skeleton scaling, and
 133 MTVCrafter (Ding et al., 2025) normalizes 3D SMPL joints using statistical templates. However,
 134 such designs inevitably distort motion semantics, leading to reduced motion fidelity. In contrast, our
 135 method adopts an alignment-free design to mitigate identity leakage and further leverage MLLMs
 136 to preserve high-level motion intent and improve overall animation quality.

137 **In-Context Learning.** In-context learning (ICL) (Brown et al., 2020) enables models to adapt to
 138 new tasks without parameter updates by conditioning on task-specific examples within the input con-
 139 text. While ICL has achieved remarkable success in LLMs (Brown et al., 2020; Dong et al., 2022),
 140 its application in visual generation remains in its infancy, and its potential remains to be further
 141 tapped. In this work, we introduce ICL principles into diffusion-based motion-driven video gener-
 142 ation by directly concatenating motion signals with the reference image (humans or non-humans).
 143 This design allows the backbone to interpret motion as a part of the input context, enabling seamless
 144 plug-and-play motion control without any architectural modification.

145 3 METHOD

146 In this section, we present DreamActor-M2, a unified framework designed to generate realistic ani-
 147 mation videos conditioned on a reference image and driving signals (e.g., pose sequences or video
 148 clips). Sec. 3.1 provides an overview of the Diffusion Transformer (DiT) backbone. Sec. 3.2
 149 introduces the in-context motion injection strategy. Sec. 3.3 then elaborates on the Pose-based
 150 DreamActor-M2 framework. Finally, Sec. 3.4 details the End-to-End DreamActor-M2 pipeline.
 151

152 3.1 PRELIMINARY

153 **Latent Diffusion Model.** As shown in Fig. 2, our framework is built upon the Latent Diffusion
 154 Model (LDM). A pretrained Variational Autoencoder (VAE) is employed to encode the input images
 155 I into a latent representation $z = \xi(I)$. During training, Gaussian noise ϵ is progressively injected
 156 into the latent z_t at different timesteps. The model is optimized with the following objective:
 157

$$\mathcal{L} = \mathbb{E}_{z_t, c, \epsilon, t} \left(\|\epsilon - \epsilon_\theta(z_t, c, t)\|_2^2 \right) \quad (1)$$

158 where ϵ_θ denotes the denoising network and c represents conditional input. At inference time,
 159 noise latents are iteratively denoised and reconstructed into images through VAE’s decoder. In this
 160

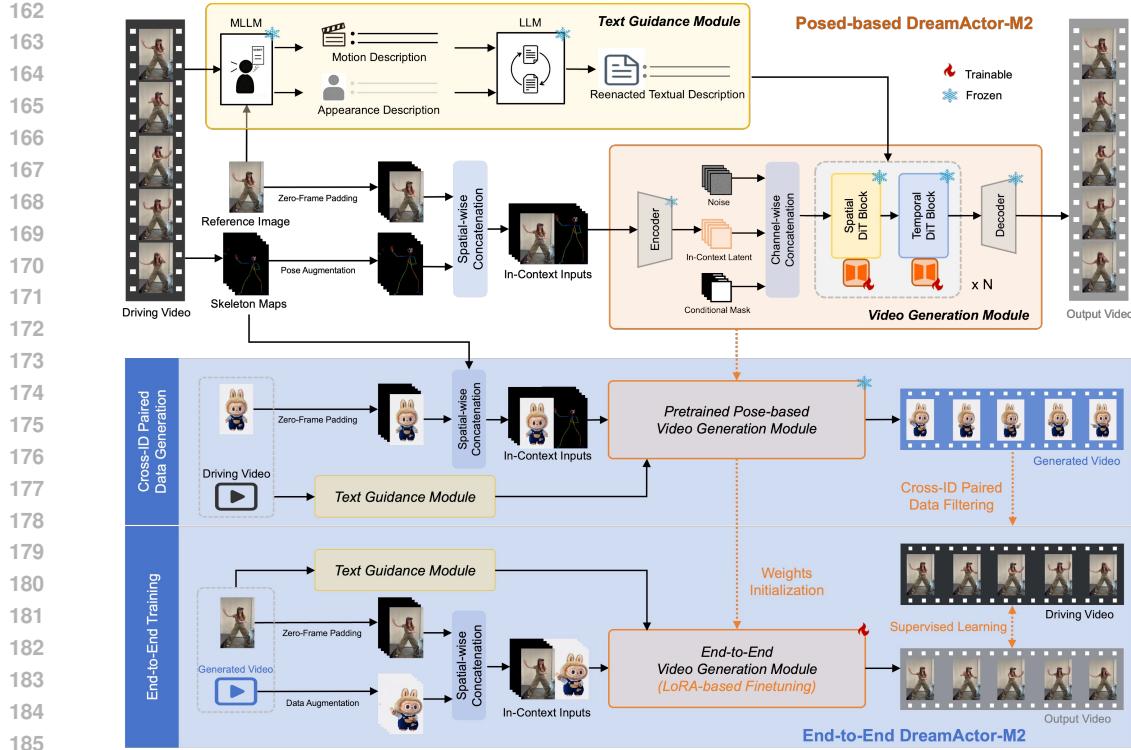


Figure 2: The overview of proposed DreamActor-M2.

work, we adopt Seedance 1.0 (Gao et al., 2025) as the video generative backbone, which follows the MMDiT architecture design in *Stable Diffusion 3* (Esser et al., 2024). It supports bilingual generation and accommodates multiple tasks, including text-to-video and image-to-video synthesis, thereby providing a versatile foundation for building our framework.

3.2 MOTION INJECTION VIA IN-CONTEXT

Previous character animation approaches typically inject motion via auxiliary pose encoders, where motion is separately encoded and fused into the video backbone via cross-attention or feature concatenation. However, this additional modality branch shifts the backbone’s inputs away from its large-scale pre-training distribution. The resulting large modality gap disrupts pre-trained generative priors, leading to degraded visual fidelity, weakened controllability, and poor generalization.

Inspired by *in-context learning* in large language models, where tasks are guided by directly concatenating prompts without altering the model structure, we adopt a structurally consistent strategy for motion-driven video generation. Specifically, we concatenate motion signals with the reference image at the spatial level. In this way, the backbone perceives motion as part of its *native input context*, rather than as an externally encoded feature. This design preserves the backbone’s pre-training consistency, and allows LORA adapters to seamlessly align motion and appearance in a plug-and-play manner without modifying the backbone architecture.

In-Context Operation. As shown in Fig. 2, our objective is to generate a video where the subject identity from a reference image $I_{\text{ref}} \in \mathbb{R}^{H \times W \times 3}$ faithfully follows the driving motion signals (poses or video sequences) $\mathbf{D} \in \mathbb{R}^{T \times H \times W \times 3}$. Central to our *in-context* design is the construction of a composite input sequence $\mathbf{C} \in \mathbb{R}^{T \times H \times 2W \times 3}$. For the first frame ($t = 1$), we spatially concatenate the reference image with the first frame of the driving video. For all subsequent frames ($t > 1$), we use a zero-filled image in place of the reference image. This process is formulated as:

$$\mathbf{C}[t] = \begin{cases} I_{\text{ref}} \oplus \mathbf{D}[t], & t = 1, \\ \mathbf{0} \oplus \mathbf{D}[t], & t > 1. \end{cases} \quad (2)$$

216 Here, \oplus denotes spatial concatenation along the width axis, and $\mathbf{0}$ is a zero image matching the
 217 dimensions of I_{ref} .
 218

219 The composited video sequence \mathbf{C} is fed into the video generation backbone to synthesize the target
 220 video. Initially, a 3D VAE compresses the video \mathbf{C} into a latent sequence \mathbf{Z} . To accommodate
 221 the unique in-context input, which includes a dedicated region for motion signals, we construct a
 222 specialized mask condition. In detail, we create a motion mask \mathbf{M}_m for highlighting the motion
 223 region, alongside a reference mask \mathbf{M}_r following conventional image-to-video DiT models. Their
 224 spatially concatenation yields the final mask condition $\mathbf{M} = \mathbf{M}_r \oplus \mathbf{M}_m$. Finally, the video latent \mathbf{Z} ,
 225 noise latent $\mathbf{Z}_{\text{noise}}$, and the mask condition \mathbf{M} are concatenated along the channel dimension. This
 226 combined representation is then passed to our video generation backbone for diffusion training,
 227 ultimately synthesizing the target video.
 228

229 **3.3 POSE-BASED DREAMACTOR-M2**
 230

231 We first present our **Pose-Based DreamActor-M2** framework, which adopts 2D pose skeletons
 232 as motion signals. The model is trained in a self-supervised manner. Given a reference video
 233 $\mathbf{V} \in \mathbb{R}^{T \times H \times W \times 3}$, we extract the character’s pose sequence \mathbf{P} to serve as the driving signal, and
 234 use the first frame of the video as the reference image $I_{\text{ref}} = \mathbf{V}[0]$. Given image I_{ref} and pose
 235 sequence \mathbf{P} as inputs, our model is tasked to reconstruct the original reference video \mathbf{V} . During
 236 inference, given a target character image and a driving video, our method can animate the character
 237 with consistent actions corresponding to the driving video.
 238

239 **Pose Augmentation.** A key drawback of directly using 2D skeletons as motion signals is that
 240 they inevitably encode body-shape cues (e.g., limb length and body proportions). This can lead the
 241 animation model to overfit to these shape signals, compromising the preservation of the reference
 242 image’s body shape and restricting *cross-identity* generation. To overcome this, we apply two *pose*
 243 *augmentation* strategies, which perturb skeleton representations to disrupt shape-dependent cues
 244 while retaining the essential motion dynamics:

245 **(1) Random Bone Length Scaling.** To further suppress body-shape cues, we introduce bone length
 246 scaling: bones are grouped into anatomical segments (e.g., arms, legs), each assigned a random
 247 scaling factor to adjust length proportionally. This ensures that while the overall pose dynamics
 248 are preserved, the skeletons exhibit diverse and randomized body proportions, preventing the model
 249 from overfitting to these shape signals.
 250

251 **(2) Bounding-Box-Based Normalization.** We perform normalization on the skeleton sequence
 252 within each clip. We compute the bounding box that encloses all joints across the entire clip and
 253 normalize the joint coordinates to the size of this bounding box. This operation eliminates dependency
 254 on the subject’s original position and scale, ensuring that skeletons from different identities
 255 are represented in a consistent, size-invariant manner.
 256

257 **Text Guidance.** Pose augmentation, while effective in alleviating identity leakage, inevitably weakens
 258 motion semantics. For example, a “hands in prayer” motion might no longer resemble clasped
 259 hands after augmentation. To compensate for this, we propose a text guidance module that provides
 260 richer and high-level motion semantic context. As depicted in Fig. 2, a pre-trained MLLM extracts
 261 *motion semantics* from the driving video \mathbf{V} and *appearance semantics* from the reference image
 262 I_{ref} . Subsequently, these semantics are fused by an LLM into a unified, target-oriented description.
 263 The resulting textual representation T_{fusion} is subsequently fed into the video generation model
 264 through its text-conditioning module. This high-level semantic guidance complements low-level
 265 pose signals, enhancing both the controllability and expressiveness of character animation.
 266

267 **LoRA Fine-tuning.** Since the video generation backbone has been pretrained on large-scale
 268 datasets, it inherently encodes strong generative priors, such as body proportion preservation and
 269 motion consistency. To retain these capacities, we adopt a parameter-efficient adaptation strategy
 270 based on LoRA (Hu et al., 2022) fine-tuning. Specifically, all backbone parameters are frozen,
 271 and lightweight LoRA modules are inserted only into the feed-forward layers (excluding text cross-
 272 attention). Because both in-context images and textural captions are native input modalities, our
 273 framework achieves seamless integration without any architectural modification, enabling plug-and-
 274 play adaptation to motion control tasks.
 275

270 3.4 END-TO-END TRAINING PARADIGM
271

272 While Pose-based DreamActor-M2 demonstrates high-quality motion transfer from human videos,
273 its reliance on pose estimation limits robustness in complex scenarios or non-human cases. To
274 overcome this limitation, we extend the framework to an *end-to-end variant* that directly leverages
275 raw RGB frames as motion signals, referred to as **End-to-End DreamActor-M2** (Fig. 2). The
276 overall training paradigm is divided into two stages: (i) data synthesis and quality filtering (details
277 are provided in Appendix D), and (ii) model optimization.

278 **Data Synthesis and Quality Filtering.** A fundamental obstacle to end-to-end training is the ab-
279 sence of large-scale paired data that simultaneously ensures motion consistency and cross-identity
280 diversity. To address this challenge, we introduce a **self-bootstrapped data synthesis pipeline** that
281 leverages the strong motion transfer capability of our pre-trained *Pose-based DreamActor-M2* to
282 automatically construct pseudo-paired supervision.

283 Formally, given a source driving video \mathbf{V}_{src} , we first extract its pose sequence \mathbf{P}_{src} to serve as the
284 motion control signals. This pose sequence, in conjunction with a different-identity image I_o , is
285 then fed into the pose-based DreamActor-M2 (denoted as $\mathcal{M}_{\text{pose}}$) to synthesize a motion-consistent
286 yet identity-diverse video \mathbf{V}_o :

$$287 \mathbf{V}_o = \mathcal{M}_{\text{pose}}(\mathbf{P}_{\text{src}}, I_o), \quad (3)$$

288 The synthesized \mathbf{V}_o retains the motion dynamics of \mathbf{V}_{src} while featuring a new identity, forming an
289 initial pseudo-pair $(\mathbf{V}_{\text{src}}, \mathbf{V}_o)$. Next, an MLLM assesses the quality and semantic alignment of the
290 synthesized pairs, filtering out samples with poor fidelity. This quality-control step ensures that only
291 reliable and semantically coherent pairs are retained for downstream training.

292 **Model Optimization.** With this curated pseudo-paired data, we repurpose \mathbf{V}_o as the driving video,
293 and use the first frame of \mathbf{V}_{src} as the reference image, denoted as $I_{\text{ref}} = \mathbf{V}_{\text{src}}[0]$. This process
294 yields a large-scale, high-quality pseudo-paired dataset:

$$295 \mathcal{D} = \{(\mathbf{V}_o, I_{\text{ref}}, \mathbf{V}_{\text{src}})\}. \quad (4)$$

296 Each triplet serves as a training instance where \mathbf{V}_o provides the motion context, I_{ref} specifies the
297 target identity, and \mathbf{V}_{src} acts as the ground-truth supervision. We then use this dataset \mathcal{D} to train our
298 end-to-end DreamActor-M2, optimizing it to reconstruct \mathbf{V}_{src} from the inputs $(\mathbf{V}_o, I_{\text{ref}})$.

300 This training paradigm enables the network to learn motion transfer directly from raw RGB in-
301 puts, thereby eliminating the reliance on explicit pose annotations. The scalable and annotation-free
302 supervision facilitates robust end-to-end training. To further accelerate convergence and stabilize
303 training, we warm-start the end-to-end framework using the pre-trained weights of the Pose-Based
304 DreamActor-M2. This initialization allows the model to inherit strong motion transfer priors, sig-
305 nificantly improving optimization efficiency and enhancing final performance.

306 Together, the End-to-End DreamActor-M2 and its pose-based counterpart constitute a unified frame-
307 work for character image animation, supporting both end-to-end training and inference. To the best
308 of our knowledge, this is the first fully end-to-end solution for this task, representing a substantial
309 step toward practical and scalable character animation systems.

310 4 EXPERIMENTS
311312 4.1 IMPLEMENTATIONS
313

314 **Implementation Details.** Following (Hu et al., 2023; Zhang et al., 2024), we use DWPose (Yang
315 et al., 2023) to extract pose sequences from videos and render them as OpenPose-style skeleton
316 images (Cao et al., 2017). We collect 100,000 human videos from the Internet for training, randomly
317 sampling 49–121 frames from each video. Given the strong multimodal understanding and language
318 integration capabilities of Gemini 2.5 (Comanici et al., 2025), we adopt it as both the MLLM and
319 LLM in our framework. All experiments are conducted on 16 H20 GPUs. The training involves
320 50,000 steps with a batch size of 2. Our generative backbone is the pretrained image-to-video DiT
321 model seedance 1.0 (Gao et al., 2025), with the LoRA rank set to 256. We use AdamW optimizer
322 with a learning rate of 5e-5 and a weight decay of 0.01. During inference, each generated video
323 segment contains 121 frames (about 5 seconds). The details regarding data synthesis and filtering
324 for training end-to-end DreamActor-M2 are provided in Appendix D.

324
325
326
327 Table 1: Quantitative comparisons with SOTAs on *AWBench*.
328
329
330
331
332
333
334
335

Method	Video-Bench↑					
	Imaging Quality	Aesthetic Quality	Temporal Consistency	Motion Smoothness	Background Consistency	Subject Consistency
MimicMotion (Zhang et al., 2024)	3.05	2.67	3.26	2.83	2.02	2.16
DisPose (Li et al.)	3.38	2.91	3.50	3.03	2.67	2.72
Animate-X (Tan et al., 2024)	4.03	3.48	3.84	3.69	3.25	3.01
Unianimate-DIT (Wang et al., 2025)	4.16	3.67	3.92	3.96	4.02	3.75
MTVCrafter (Ding et al., 2025)	4.21	3.50	4.02	4.11	3.91	3.83
Animate-X++ (Tan et al., 2025)	4.25	3.92	4.15	4.02	3.97	3.91
DreamActor-M1 (Luo et al., 2025)	4.57	4.28	4.31	4.29	4.38	4.21
Ours (Pose-based DreamActor-M2)	4.68	4.76	4.61	4.53	4.74	4.38
Ours (End-to-End DreamActor-M2)	4.72	4.78	4.69	4.56	4.68	4.35

336
337 **Evaluation Benchmark.** To comprehensively evaluate the efficacy and generalizability of our pro-
338 posed DreamActor-M2, we curated a dedicated benchmark *AWBench* encompassing a wide range
339 of motion types and reference identities. The benchmark consists of 100 driving videos and 200
340 reference images, where the driving corpus covers human as well as non-human motion categories
341 (see Appendix E for detailed dataset construction).

342 **Evaluation metrics.** Most evaluation metrics, such as FID-FVD (Balaji et al., 2019), FVD (Unterthiner et al., 2018), and CD-FVD (Ge et al., 2024), rely on comparisons with ground-truth videos,
343 which are unavailable in cross-identity animation scenarios. As a result, these metrics fail to ac-
344 curately reflect model performance. Moreover, prior studies have revealed that these metrics are
345 often inconsistent with human judgment (Huang et al., 2024). To address this, we adopt the **human-**
346 **aligned evaluation metrics** in Video-Bench (Han et al., 2025), which assesses generation quality
347 across six perceptual dimensions: **imaging quality, aesthetic quality, temporal consistency, motion**
348 **smoothness, background consistency, and subject consistency**. These dimensions offer a
349 more reliable and comprehensive evaluation of character animation models in real-world settings.
350 For each dimension, Video-Bench will automatically assign a score, with the scores and their corre-
351 sponding grades as follows: 1-very poor, 2-poor, 3-moderate, 4-good, 5-excellent.
352

353 4.2 QUANTITATIVE COMPARISON

355 We evaluate the model via *AWBench*. Given other SOTA methods only support human driving
356 videos, we select 60 human driving video-human reference image pairs and 40 human driving video-
357 cartoon reference image pairs from *AWBench* as the quantitative test set. Lacking ground-truth for
358 generated results, we adopt Video-Bench (Han et al., 2025) for evaluation, with results in Tab. 1. Our
359 method achieves the best performance across all dimensions, verifying its effectiveness in generation
360 quality and generalization. In Aesthetic Quality, End-to-End DreamActor-M2 scores the highest
361 (4.78), significantly outperforming other methods and highlighting its strength in subjective visual
362 appeal. For Subject Consistency, both Pose-based (4.38) and End-to-End (4.35) DreamActor-M2
363 rank top, with scores notably higher than MimicMotion (2.16), ensuring stable subject appearance
364 during animation generation.

365 4.3 QUALITATIVE RESULTS

366 **Comparison with State-of-the-arts.** Fig. 3 presents qualitative comparisons on our benchmark,
367 focusing on cross-identity animation. The first row shows our DreamActor-M2 excels in image
368 quality, identity preservation, and motion alignment. The second row highlights its superior body
369 shape preservation and facial expression alignment with driving inputs, outperforming others in cap-
370 turing consistent expression details. The third row demonstrates its ability to accurately generate the
371 “heart gesture” (a feat other methods fail to achieve), validating superior motion semantic capture.
372 The fourth row underscores its advantage in multi-subject driving scenarios where competitors falter.
373 Overall, DreamActor-M2 outperforms SOTAs in identity preservation and motion consistency.
374

375 **Adaptability across Human and Portrait Images.** Fig. 4 (a) shows DreamActor-M2’s strong
376 adaptability in human-portrait motion transfer, excelling in human-to-portrait, portrait-to-portrait,
377 and portrait-to-human animations. For portrait-to-human cases, the far-right example maintains

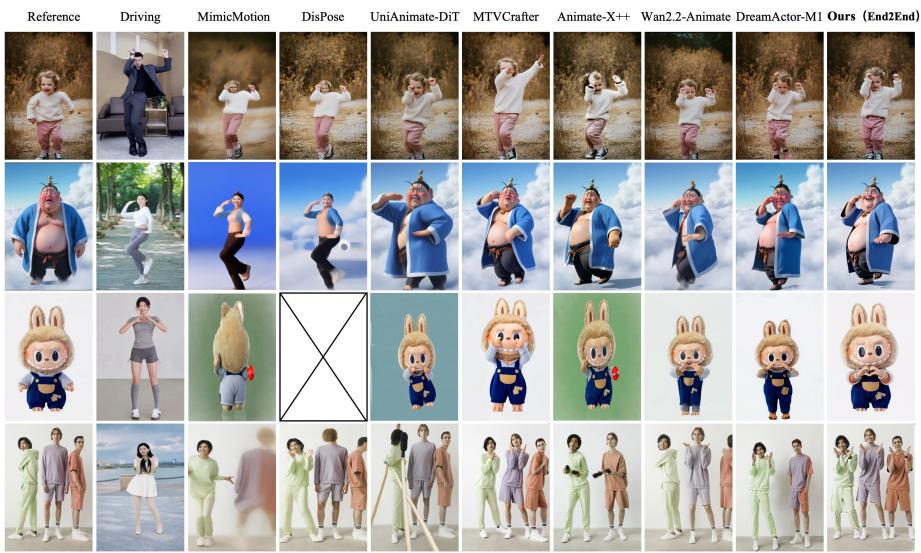


Figure 3: Qualitative comparisons between our method and state-of-the-art approaches on AWBench.

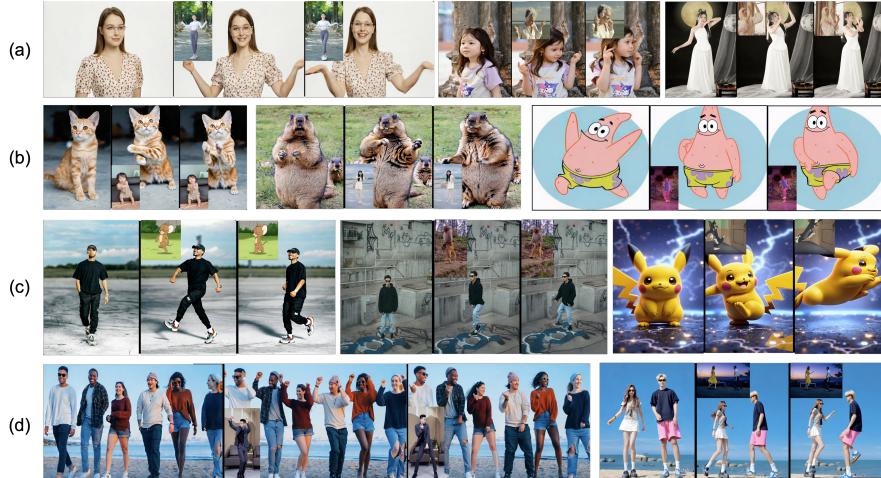


Figure 4: Qualitative visualization for various scenarios, such as various shot types (a), reference character types (b), driving character types (c), and multi-person settings (d).

coherence between the uncontrolled lower body and controlled upper body without visual distortions or artifacts.

Adaptability to Non-Human Reference Image. Unlike most methods limited to human animation, our approach adapts to diverse references (humans, animated characters, animals, non-humanoids). Fig. 3 shows effective animation of humans/humanoids with preserved body shape and appearance. Fig. 4 (b) further demonstrates precise animation of non-humans (cat, marmot) and non-humanoid anime characters, ensuring high-fidelity appearance and pose consistency with driving videos.

Adaptability to Non-Human Driving Videos. Unlike methods restricted to human driving videos (relying on explicit pose control), our end-to-end DreamActor-M2 directly conditions on video input, supporting non-human motion sources. Fig. 1 validates bird-to-bird animation, while Fig. 4 (c) shows effective handling of non-human animated/animal driving videos, enabling non-human-to-human and non-human-to-non-human scenarios, confirming broad generalization beyond human-centric settings.

Table 2: Ablation study on proposed DreamActor-M2 framework.

Model	Method	Video-Bench↑					
		Imaging Quality	Aesthetic Quality	Temporal Consistency	Motion Smoothness	Background Consistency	Subject Consistency
A	Temporal-level in-context	4.52	4.50	4.46	4.38	4.71	4.31
B	w/o pose normalization	4.58	4.64	4.57	4.46	4.66	4.27
C	w/o pose bone length rescale	4.57	4.66	4.55	4.63	4.58	4.11
D	w/o any pose augmentation	4.55	4.62	4.53	4.41	4.64	3.98
E	w/o target-oriented description	4.60	4.63	4.51	4.28	4.50	4.02
F	Text cat w/o LLM	4.65	4.70	4.56	4.41	4.66	4.27
G	Full Model (Pose-based DreamActor-M2)	4.68	4.76	4.61	4.53	4.74	4.38



Figure 5: Qualitative visualization for ablation study.

Adaptability to Multi-Person Driving. Fig. 3 confirms our superiority in single-to-multi-person animation. Fig. 4 (d) demonstrates precise motion control for six characters (left) and successful multi-to-multi animation (right, transferring distinct motions from two driving subjects to reference positions).

4.4 ABLATION STUDY

In this section, we conduct ablation studies to demonstrate the effectiveness of each component of DreamActor-M2. The results are summarized in Tab. 2 and Fig. 5. Firstly, we compare the original spatial injection approach (Model G) with the temporal in-context method (Model A). As shown in Tab. 2, spatial injection yielded better overall generation quality. Moreover, as illustrated in Fig. 5 (a), it preserves finer hand details, demonstrating its advantage in spatial fidelity. Method G also exhibits better performance in hand motion alignment than Method A. Next, by comparing Models B, C, D, and G in Tab. 2, we observe that pose augmentation leads to further quality improvements. Fig. 5 (b) can illustrate that models incorporating pose augmentation better maintain the body shape of the original reference image. Finally, by comparing Models E, F, and G in Tab. 2, we find that injecting target motion text information through the LLM yields superior results. Fig. 5 (c) further indicates that models guided by target-oriented descriptions exhibit a better balance between reference image character preservation and motion consistency.

5 CONCLUSION

We introduce DreamActor-M2, a universal framework designed for character image animation. A key innovation of our method is an align-free in-context LoRA strategy that unifies motion signals and reference images into a single input representation. This design not only preserves the powerful generative capabilities of the pretrained backbone, but also enables end-to-end motion transfer directly from raw driving videos, bypassing the need for explicit pose estimation. The versatility of the framework enables its application to a wide range of characters, encompassing both human and non-human subjects. Our extensive experiments confirm that DreamActor-M2 achieves high effectiveness, strong generalization, and exceptional versatility. These results collectively establish a unified and powerful paradigm for character animation across a variety of scenarios.

486 REFERENCES
487

488 Yogesh Balaji, Martin Renqiang Min, Bing Bai, Rama Chellappa, and Hans Peter Graf. Conditional
489 gan with discriminative filter generation for text-to-video synthesis. In *IJCAI*, volume 1, pp. 2,
490 2019.

491 Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik
492 Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion: Scaling
493 latent video diffusion models to large datasets. *arXiv preprint arXiv:2311.15127*, 2023.

494 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
495 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
496 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

497 Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh. Realtime multi-person 2d pose estimation
498 using part affinity fields. In *Proceedings of the IEEE conference on computer vision and pattern
499 recognition*, pp. 7291–7299, 2017.

500 Di Chang, Hongyi Xu, You Xie, Yipeng Gao, Zhengfei Kuang, Shengqu Cai, Chenxu Zhang, Guox-
501 ian Song, Chao Wang, Yichun Shi, et al. X-dyna: Expressive dynamic human image animation. In
502 *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 5499–5509, 2025.

503 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit
504 Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
505 frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
506 bilities. *arXiv preprint arXiv:2507.06261*, 2025.

507 Yanbo Ding, Xirui Hu, Zhizhi Guo, Chi Zhang, and Yali Wang. Mtvrafter: 4d motion tokenization
508 for open-world human image animation. *arXiv preprint arXiv:2505.10238*, 2025.

509 Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming Xia, Jingjing Xu,
510 Zhiyong Wu, Tianyu Liu, et al. A survey on in-context learning. *arXiv preprint arXiv:2301.00234*,
511 2022.

512 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
513 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers
514 for high-resolution image synthesis. In *Forty-first international conference on machine learning*,
515 2024.

516 Qijun Gan, Yi Ren, Chen Zhang, Zhenhui Ye, Pan Xie, Xiang Yin, Zehuan Yuan, Bingyue Peng,
517 and Jianke Zhu. Humandit: Pose-guided diffusion transformer for long-form human motion video
518 generation. *arXiv preprint arXiv:2502.04847*, 2025.

519 Yu Gao, Haoyuan Guo, Tuyen Hoang, Weilin Huang, Lu Jiang, Fangyuan Kong, Huixia Li, Jiashi Li,
520 Liang Li, Xiaojie Li, et al. Seedance 1.0: Exploring the boundaries of video generation models.
521 *arXiv preprint arXiv:2506.09113*, 2025.

522 Songwei Ge, Aniruddha Mahapatra, Gaurav Parmar, Jun-Yan Zhu, and Jia-Bin Huang. On the
523 content bias in fréchet video distance. In *Proceedings of the IEEE/CVF Conference on Computer
524 Vision and Pattern Recognition*, pp. 7277–7288, 2024.

525 Hui Han, Siyuan Li, Jiaqi Chen, Yiwen Yuan, Yuling Wu, Yufan Deng, Chak Tou Leong, Hanwen
526 Du, Junchen Fu, Youhua Li, et al. Video-bench: Human-aligned video generation benchmark.
527 In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 18858–18868,
528 2025.

529 Jingxuan He, Busheng Su, and Finn Wong. Posegen: In-context lora finetuning for pose-controllable
530 long human video generation. *arXiv preprint arXiv:2508.05091*, 2025.

531 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
532 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

533 Li Hu. Animate anyone: Consistent and controllable image-to-video synthesis for character anima-
534 tion. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
535 pp. 8153–8163, 2024.

540 Li Hu, Xin Gao, Peng Zhang, Ke Sun, Bang Zhang, and Liefeng Bo. Animate anyone:
 541 Consistent and controllable image-to-video synthesis for character animation. *arXiv preprint*
 542 *arXiv:2311.17117*, 2023.

543

544 Ziqi Huang, Yinan He, Jiashuo Yu, Fan Zhang, Chenyang Si, Yuming Jiang, Yuanhan Zhang, Tianx-
 545 ing Wu, Qingyang Jin, Nattapol Chanpaisit, et al. Vbench: Comprehensive benchmark suite for
 546 video generative models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 547 *Pattern Recognition*, pp. 21807–21818, 2024.

548 Johanna Karras, Aleksander Holynski, Ting-Chun Wang, and Ira Kemelmacher-Shlizerman. Dream-
 549 pose: Fashion video synthesis with stable diffusion. In *Proceedings of the IEEE/CVF Interna-*
 550 *tional Conference on Computer Vision*, pp. 22680–22690, 2023.

551

552 Weijie Kong, Qi Tian, Zijian Zhang, Rox Min, Zuozhuo Dai, Jin Zhou, Jiangfeng Xiong, Xin Li,
 553 Bo Wu, Jianwei Zhang, et al. Hunyuandvideo: A systematic framework for large video generative
 554 models. *arXiv preprint arXiv:2412.03603*, 2024.

555 Wentao Lei, Jinting Wang, Fengji Ma, Guanjie Huang, and Li Liu. A comprehensive survey on
 556 human video generation: Challenges, methods, and insights. *arXiv preprint arXiv:2407.08428*,
 557 2024.

558

559 Hongxiang Li, Yaowei Li, Yuhang Yang, Junjie Cao, Zhihong Zhu, Xuxin Cheng, and Long Chen.
 560 Dispose: Disentangling pose guidance for controllable human image animation. In *The Thirteenth*
 561 *International Conference on Learning Representations*.

562

563 Yuxuan Luo, Zhengkun Rong, Lizhen Wang, Longhao Zhang, Tianshu Hu, and Yongming Zhu.
 564 Dreamactor-m1: Holistic, expressive and robust human image animation with hybrid guidance.
 565 *arXiv preprint arXiv:2504.01724*, 2025.

566

567 Yue Ma, Kunyu Feng, Zhongyuan Hu, Xinyu Wang, Yucheng Wang, Mingzhe Zheng, Xuanhua He,
 568 Chenyang Zhu, Hongyu Liu, Yingqing He, et al. Controllable video generation: A survey. *arXiv*
 569 *preprint arXiv:2507.16869*, 2025.

570

571 MooreThreads. *Moorethreads/moore-animateanyone*, 2024. URL <https://github.com/MooreThreads/Moore-AnimateAnyone>.

572

573 Bohao Peng, Jian Wang, Yuechen Zhang, Wenbo Li, Ming-Chang Yang, and Jiaya Jia. Controlnext:
 574 Powerful and efficient control for image and video generation. *arXiv preprint arXiv:2408.06070*,
 575 2024.

576

577 Team Seawead, Ceyuan Yang, Zhijie Lin, Yang Zhao, Shanchuan Lin, Zhibei Ma, Haoyuan Guo,
 578 Hao Chen, Lu Qi, Sen Wang, et al. Seaweed-7b: Cost-effective training of video generation
 579 foundation model. *arXiv preprint arXiv:2504.08685*, 2025.

580

581 Guoxian Song, Hongyi Xu, Xiaochen Zhao, You Xie, Tianpei Gu, Zenan Li, Chenxu Zhang, and
 582 Linjie Luo. X-unimotion: Animating human images with expressive, unified and identity-agnostic
 583 motion latents. *arXiv preprint arXiv:2508.09383*, 2025.

584

585 Shuai Tan, Biao Gong, Xiang Wang, Shiwei Zhang, Dandan Zheng, Ruobing Zheng, Kecheng
 586 Zheng, Jingdong Chen, and Ming Yang. Animate-x: Universal character image animation with
 587 enhanced motion representation. *arXiv preprint arXiv:2410.10306*, 2024.

588

589 Shuai Tan, Biao Gong, Zhuoxin Liu, Yan Wang, Xi Chen, Yifan Feng, and Hengshuang Zhao.
 590 Animate-x++: Universal character image animation with dynamic backgrounds. *arXiv preprint*
 591 *arXiv:2508.09454*, 2025.

592

593 Shuyuan Tu, Zhen Xing, Xintong Han, Zhi-Qi Cheng, Qi Dai, Chong Luo, and Zuxuan Wu. Sta-
 594 bleanimator: High-quality identity-preserving human image animation. In *Proceedings of the*
 595 *Computer Vision and Pattern Recognition Conference*, pp. 21096–21106, 2025.

596

Thomas Unterthiner, Sjoerd Van Steenkiste, Karol Kurach, Raphael Marinier, Marcin Michalski,
 597 and Sylvain Gelly. Towards accurate generative models of video: A new metric & challenges.
 598 *arXiv preprint arXiv:1812.01717*, 2018.

594 Team Wan, Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu,
 595 Haiming Zhao, Jianxiao Yang, et al. Wan: Open and advanced large-scale video generative
 596 models. *arXiv preprint arXiv:2503.20314*, 2025.

597

598 Tan Wang, Linjie Li, Kevin Lin, Yuanhao Zhai, Chung-Ching Lin, Zhengyuan Yang, Hanwang
 599 Zhang, Zicheng Liu, and Lijuan Wang. Disco: Disentangled control for realistic human dance
 600 generation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
 601 nition*, pp. 9326–9336, 2024a.

602 Xiang Wang, Shiwei Zhang, Changxin Gao, Jiayu Wang, Xiaoqiang Zhou, Yingya Zhang, Luxin
 603 Yan, and Nong Sang. Unianimate: Taming unified video diffusion models for consistent human
 604 image animation. *arXiv preprint arXiv:2406.01188*, 2024b.

605 Xiang Wang, Shiwei Zhang, Longxiang Tang, Yingya Zhang, Changxin Gao, Yuehuan Wang, and
 606 Nong Sang. Unianimate-dit: Human image animation with large-scale video diffusion trans-
 607 former. *arXiv preprint arXiv:2504.11289*, 2025.

608

609 Zhongcong Xu, Jianfeng Zhang, Jun Hao Liew, Hanshu Yan, Jia-Wei Liu, Chenxu Zhang, Jiashi
 610 Feng, and Mike Zheng Shou. Magicanimate: Temporally consistent human image animation
 611 using diffusion model. In *Proceedings of the IEEE/CVF Conference on Computer Vision and
 612 Pattern Recognition*, pp. 1481–1490, 2024.

613 Zhendong Yang, Ailing Zeng, Chun Yuan, and Yu Li. Effective whole-body pose estimation with
 614 two-stages distillation. In *Proceedings of the IEEE/CVF International Conference on Computer
 615 Vision*, pp. 4210–4220, 2023.

616

617 Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang,
 618 Wenyi Hong, Xiaohan Zhang, Guanyu Feng, et al. Cogvideox: Text-to-video diffusion models
 619 with an expert transformer. *arXiv preprint arXiv:2408.06072*, 2024.

620 Shiyi Zhang, Junhao Zhuang, Zhaoyang Zhang, Ying Shan, and Yansong Tang. Flexiact: Towards
 621 flexible action control in heterogeneous scenarios. In *Proceedings of the Special Interest Group on
 622 Computer Graphics and Interactive Techniques Conference Conference Papers*, pp. 1–11, 2025a.

623

624 Yifu Zhang, Hao Yang, Yuqi Zhang, Yifei Hu, Fengda Zhu, Chuang Lin, Xiaofeng Mei, Yi Jiang,
 625 Zehuan Yuan, and Bingyue Peng. Waver: Wave your way to lifelike video generation. *arXiv
 626 preprint arXiv:2508.15761*, 2025b.

627

628 Yuang Zhang, Jiaxi Gu, Li-Wen Wang, Han Wang, Junqi Cheng, Yuefeng Zhu, and Fangyuan Zou.
 629 Mimicmotion: High-quality human motion video generation with confidence-aware pose guid-
 630 ance. *arXiv preprint arXiv:2406.19680*, 2024.

631

632 Shenhao Zhu, Junming Leo Chen, Zuozhuo Dai, Yinghui Xu, Xun Cao, Yao Yao, Hao Zhu, and Siyu
 633 Zhu. Champ: Controllable and consistent human image animation with 3d parametric guidance.
 634 In *European Conference on Computer Vision (ECCV)*, 2024.

635

636

637

638

639

640

641

642

643

644

645

646

647

648 **A ETHICS STATEMENT**
649650
651 This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal ex-
652 perimentation was involved. All datasets used were sourced in compliance with relevant usage
653 guidelines, ensuring no violation of privacy. We have taken care to avoid any biases or discrimi-
654 natory outcomes in our research process. No personally identifiable information was used, and no
655 experiments were conducted that could raise privacy or security concerns. We are committed to
656 maintaining transparency and integrity throughout the research process.
657658 **B REPRODUCIBILITY STATEMENT**
659660
661 We have made every effort to ensure that the results presented in this paper are reproducible. Code
662 will be made publicly available to facilitate replication and verification after inspection. The ex-
663 perimental setup, including training steps, model configurations, and hardware details, is described in
664 detail in the paper. We believe these measures will enable other researchers to reproduce our work
665 and further advance the field.
666667 **C LLM USAGE**
668669
670 Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript.
671 Specifically, we used an LLM to assist in refining the language, improving readability, and ensuring
672 clarity in various sections of the paper. The model helped with tasks such as sentence rephrasing,
673 grammar checking. It is important to note that the LLM was not involved in the ideation, research
674 methodology, or experimental design. All research concepts, ideas, and analyses were developed
675 and conducted by the authors. The contributions of the LLM were solely focused on improving the
676 linguistic quality of the paper, with no involvement in the scientific content or data analysis. The
677 authors take full responsibility for the content of the manuscript, including any text generated or
678 polished by the LLM. We have ensured that the LLM-generated text adheres to ethical guidelines
679 and does not contribute to plagiarism or scientific misconduct.
680681 **D DATA SYNTHESIS AND QUALITY FILTERING DETAILS**
682683
684 In this section, we present the implementation details of the data synthesis and quality filtering stage
685 in training End-to-End DreamActor-M2 framework.
686687 Due to the scarcity of large-scale, high-quality paired video datasets that simultaneously satisfy
688 both cross-identity and motion-consistency requirements, we employed a pretrained pose-based
689 DreamActor-M2 model to synthesize data for our end-to-end training pipeline. We first curated
690 a dataset comprising 10,000 human driving videos with diverse motion patterns and 200 high-
691 resolution reference images representing a variety of subjects, including humans, anime characters,
692 and animals. During the synthesis stage, we randomly extracted a 5-second (121-frame) segment
693 from each driving video as the motion signal and randomly selected one reference image. This pro-
694 cess generated a 5-second identity-crossing video, and we stored the driving clip, synthesized video,
695 and reference image together as a single training unit, ultimately producing 600,000 training units
for end-to-end training.
696697 The raw synthesized videos required additional filtering for effective training. To this end, we em-
698 ployed the Video-Bench (Han et al., 2025) evaluation model to perform automatic quality assess-
699 ment. Each video was evaluated on a 5-point scale (1: very poor, 5: excellent) across six dimensions:
700 imaging quality, aesthetic quality, temporal consistency, motion smoothness, background consis-
701 tency, and subject consistency. We then calculated the average score for each video across these
dimensions and retained only those training units with an average score greater than 4 for inclusion
in the final end-to-end training dataset.
702

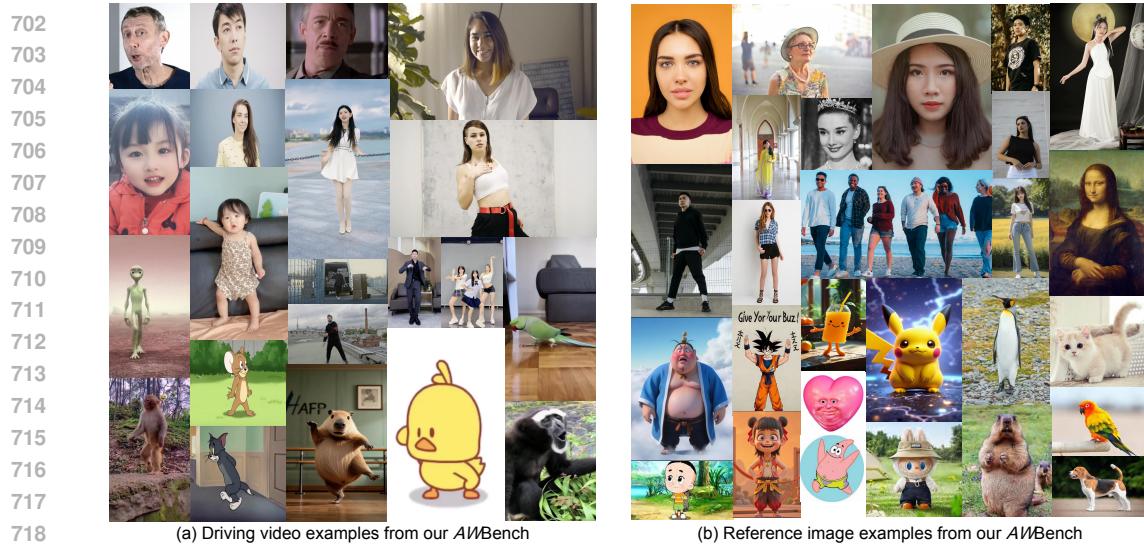


Figure 6: Visual examples of driving video corpus and reference image corpus.

E CONSTRUCTED EVALUATION BENCHMARK

To thoroughly evaluate the effectiveness and generalizability of our proposed DreamActor-M2, we constructed a comprehensive evaluation benchmark *AWBench* encompassing diverse motion types and reference identities. The benchmark consists of both driving videos and reference images. The detailed statistics of *AWBench* are shown in Tab. 3. The driving video corpus covers a wide range of human and non-human motions. Human motions are sampled across different body regions (face, upper body, full body), age groups (child, young adult, elderly), and activity categories (e.g., dancing, daily activities), and include both camera-tracked and static-camera sequences. Non-human motions include videos of animals (such as cats, chickens, parrots, monkeys, and orangutans) and animated characters (such as Tom the cat, Jerry the mouse, groundhogs, and cartoon aliens). In total, the evaluation benchmark contains 100 driving videos and 200 reference characters. Visual examples of the driving video corpus and reference images are shown in Fig. 6(a) and Fig. 6(b), respectively.

F EVALUATION FOR LONG GENERATED VIDEOS

In this section, we present several long video visualization results generated based on DreamActor-M2. The lengths of the three examples (A), (B), and (C) are 16s, 20s, and 24s respectively, while the length of the training samples we used is 5s. In Fig. 7, we can observe that the videos generated by our method can effectively maintain human identity, ensure excellent video frame quality, and achieve good motion coherence of the characters.

Figure 7: Qualitative visualizations for generated long videos based on DreamActor-M2.

Table 3: Detailed Statistics of the AWBench

Category	Sub-category	Specific Items	Count	Ratio/Note
Overall Scale	Driving Videos	–	100	100%
	Reference Images (Identities)	–	200	100%
	Total	–	75	75%
Human Videos	By Body Region	Facial Motions	25	33.3% of Human
		Upper-body Motions	25	33.3% of Human
		Full-body Motions	25	33.3% of Human
	By Age Group	Child	20	26.7% of Human
		Young Adult	35	46.7% of Human
		Elderly	20	26.7% of Human
	By Activity Type	Dancing	25	33.3% of Human
		Daily Activities	35	46.7% of Human
		Other Professional Actions	15	20.0% of Human
	By Camera Type	Camera-tracked Sequences	40	53.3% of Human
		Static-camera Sequences	35	46.7% of Human
	Total	–	25	25%
Non-human Videos	Animals	Cats, Chickens, Parrots, Monkeys, Orangutans, etc.	15	60% of Non-human
	Animated Characters	Tom the cat, Jerry the mouse, Groundhogs, Cartoon aliens, etc.	10	40% of Non-human
		Human Identities	~150	~75% of Total Ref.
		Non-human Identities	~50	~25% of Total Ref.
	Reference Images	By Category		

810 G PROMPT ENGINEERING FOR MLLM AND LLM
811812 Leveraging the robust multimodal comprehension capabilities of Gemini 2.5 Pro, we employ it as
813 both our Multimodal Large Language Model (MLLM) and Large Language Model (LLM) in this
814 study. The core innovation lies in the design of specialized prompts to guide the model in extracting
815 task-specific, disentangled semantic information from raw inputs.816 To enable Gemini 2.5 Pro to extract *appearance-agnostic motion semantics* from raw driving videos,
817 we designed a specific prompt, termed the *motion prompt*. The motion prompt is defined as follows:
818819 Listing 1: The Prompt for Extracting Motion Information for driving video
820

```

821 input_motion_prompt = f"""
822     Analyze the character's motion in the video and
823     generate a detailed motion description strictly per the following
824     requirements (no line breaks in the final output).
825     1. Mandatory Basic Constraints
826         Scope: Only describe motion, pose, expression and movement changes;
827             exclude appearance (clothing, hair color, etc.) and gender.
828         Completeness: Cover all motion details of face, hands and body; no
829             omission of key pose changes.
830         Accuracy: Precisely describe hand orientation and relative positions;
831             avoid ambiguity (e.g., specify direction/position instead of "hand
832             raised").
833     2. Core Description Requirements
834         Time Range: Focus solely on the first 5 seconds of the video.
835         Hand Details: Explicitly specify for both hands: back orientation (self/
836             viewer/left/right), position relative to body parts, and object/
837             character interaction (if applicable).
838         Expressions: Track dynamic facial expression changes (e.g., "smile to
839             laughter").
840         Auxiliary Behaviors: Include behaviors like speaking if present.
841     3. Fixed Output Structure
842         Opening: Start with "In the video, the character's initial pose is".
843         Temporal Transition: Use in order: "initial pose is" (start), "
844             Subsequently," (1st change), "Then," (2nd change), "After that," (3rd
845             if applicable), "Finally," (final state).
846         Format: Single continuous paragraph; no line breaks, bullet points or
847             subheadings.
848     4. Example Reference
849         In the video, the character's initial pose is smiling, raising his right
850             hand parallel with his face, left hand gripping another person's arm;
851             right palm faces himself, back of right hand faces others as if
852             showing a ring. Subsequently, he lowers his right hand. Then, he
853             continues speaking with left hand unchanged. After that, his
854             expression softens. Finally, he stops speaking and maintains a gentle
855             smile."""
856

```

857 To guide Gemini 2.5 Pro in extracting *pose-agnostic appearance information* from reference images,
858 we developed a structured appearance prompt. This prompt strictly defines the scope of appearance
859 description, excludes irrelevant motion/behavioral content, and standardizes the output format, en-
860 suring the model captures comprehensive and accurate visual attributes of the character. The full
861 prompt is defined as follows:
862

863 Listing 2: The Prompt for Extracting Appearance Information for referring image

```

859 input_appearance_prompt = f"""
860     Analyze the character's visual attributes
861     in the image and generate a detailed appearance description strictly
862     per the requirements below (no line breaks in the final output).
863     1. Mandatory Basic Constraints
864         Scope: Describe only appearance and gender; exclude actions, posture,
865             movement (e.g., "raising hands", "sitting posture" are prohibited).

```

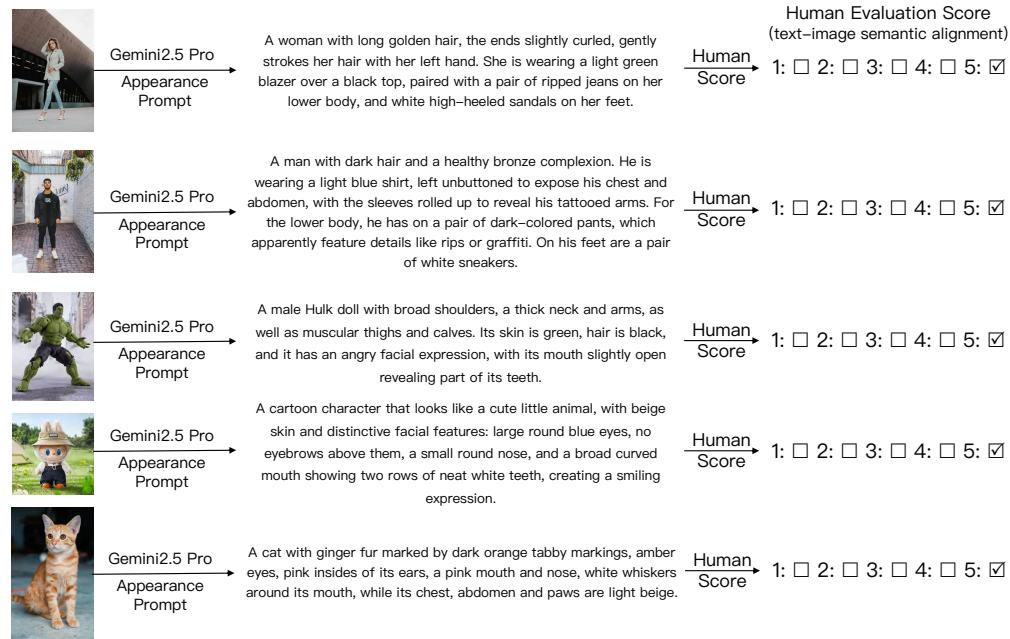
864 Completeness: Cover all visible appearance details; no omission of key
 865 attributes (clothing, accessories, facial features).
 866 Accuracy: Align description with image content; avoid subjective
 867 speculation (e.g., describe as "long hair, gender undistinguishable"
 868 if unclear).
 869 2. Core Description Scope
 870 Gender: Specify (male/female/gender undistinguishable) based on visual
 871 cues.
 872 Facial Features: Detail hair (color/style), eyes, eyebrows, lip color,
 873 and facial accessories (glasses/necklaces).
 874 Clothing & Accessories: Describe clothing style/color/details and
 875 accessories (watch/bag) clearly.
 876 Held Objects: Explicitly include all objects held by the character.
 877 Body Features: Describe visible attributes (skin tone, body shape)
 878 without involving posture/movement.
 879 3. Output Format Specification
 880 Unity: Single continuous paragraph; no line breaks, bullet points, or
 881 subheadings.
 882 Logic: Organize in coherent sequence (e.g., gender to facial features to
 883 clothing to held objects).
 884 Conciseness: Avoid redundant repetitions of the same attribute.
 885 4. Example Reference
 886 The character in the image is female with chest-length brown curly hair,
 887 thick black eyebrows, and light pink lip gloss. She wears a white
 888 short-sleeved blouse with small blue polka dots, a gray midi skirt,
 889 and silver stud earrings. Her left hand holds a printed beige canvas
 890 bag, right hand grips a white book with a blue cover; she has fair
 891 skin and a thin silver bracelet on her right wrist. """

892
 893 Finally, leveraging the robust linguistic capabilities of Gemini 2.5 Pro, we fuse the generated textual
 894 descriptions of motion and appearance—specifically, transferring the motion described in the motion
 895 text to the character (as depicted in the appearance text)—while ensuring the fused text aligns with
 896 the character’s identity as specified in the appearance description. Our structured fusion prompt
 897 template is defined as follows:

898 Listing 3: The Prompt for Fusing Motion Information with Appearance Information

899
 900 input_fusion_prompt = f"""Strictly follow the requirements below to
 901 transfer the character’s motion from the video to the image’s
 902 character appearance, and generate a complete, natural, fluent action
 903 description (no line breaks in output).
 904 1. Mandatory Basic Constraints
 905 Appearance: Fully retain all details from appearance_caption; no omission
 906 or modification.
 907 Motion: Fully retain all motion, posture, expression and behavior from
 908 motion_caption; no omission or modification.
 909 Rationality: Comply with biological common sense; avoid unreasonable body
 910 structures (e.g., bird wings have no palms/fingers).
 911 Fusion Method: Only perform reasonable body part mapping to match motion
 912 with appearance; no tampering with original content.
 913 2. Character Quantity Rules
 914 Base on the number of characters in the image.
 915 Video multiple characters + Image 1 character: Assign motion of the video
 916 ’s most prominent character.
 917 Image multiple characters + Video 1 character: Assign video motion to all
 918 image characters.
 919 Inconsistent quantity: Prioritize retaining image characters’ appearance
 920 and quantity while fully preserving video motion.
 921 3. Non-Human Character Motion Mapping Rules (Apply only if image
 922 character is non-human)
 923 Human to Bird: Hands/Arms to Wings (palms/fingers substituted with wing
 924 edge/direction/opening-closing); Legs/Foot to Claws.

```


918 Human to Feline/Quadruped: Hands to Forelegs; Legs to Hind legs; Palm
919 alignment to Forepaw alignment.
920 Other Cases: Upper limbs to Forelimbs/tactile appendages; Lower limbs to
921 Hind limbs/supporting limbs; Fingers/Palms to Organ-specific motions
922 (wing flapping, claw opening).
923 General Rule: Ignore unmatched body part details; replace with reasonable
924 descriptions; no redundant anatomical structures.
925 Environment Interaction: Fully retain video interactions and map
926 logically to image character's structure.
927 4. Output Requirements
928 Integrate all content from appearance_caption and motion_caption; no
929 omission/modification.
930 Ensure reasonable, accurate motion transfer and natural integration with
931 appearance.
932 Fluent and coherent language; no awkward splicing.
933 For bird characters: Exclude irrelevant terms (human, hand, palm, fist,
934 etc.).
935 5. Input
936 Image Appearance (appearance_caption): {appearance_caption}
937 Video Motion (motion_caption): {motion_caption}
938 6. Output (Start with "In the video, a/an...")
939 Generate a complete natural language text integrating the above
940 appearance and motion.
941 7. Example
942 Input:
943 appearance_caption: A young woman with dark hair in a high bun (adorned
944 with purple flowers, gold accents), slender eyebrows, large bright
945 eyes with winged eyeliner, light pink lip gloss, fair skin, blush.
946 She wears a black kimono (multi-layered pink-red neckline, butterfly/
947 flower patterns on right shoulder/sleeves) and a gold-patterned white
948 waist belt.
949 motion_caption: Initially smiling, raises right hand parallel to face (
950 palm facing self, back facing others, as if showing a ring), left
951 hand grabs another's arm. Lowers right hand, speaks, expression
952 shifts from smile to laughter.
953 Output: In the video, a young woman has dark hair in a high bun adorned
954 with purple flowers and gold accents, slender eyebrows, large bright
955 eyes with winged eyeliner, light pink lip gloss, fair skin and blush.
956 She wears a black kimono with a multi-layered pink-red neckline,
957 butterfly and flower patterns on her right shoulder and sleeves, and
958 a gold-patterned white waist belt. Initially, she smiles, raises her
959 right hand parallel to her face (palm facing self, back facing others
960 , as if showing a ring), and her left hand grabs another person's arm
961 . Subsequently, she lowers her right hand, speaks, and her expression
962 gradually changes from a smile to laughter.""
963
964
965
966
967
968
969
970
971

```

H MLLM FOR APPEARANCE AND MOTION UNDERSTANDING

In this section, we present partial qualitative visualization results of appearance descriptions and motion descriptions generated for reference images and driving videos respectively based on Gemini 2.5 Pro. First, we randomly selected 100 reference images and 100 driving videos from our training samples. Then, we used the designed prompts for guidance, and Gemini 2.5 Pro generated the corresponding appearance descriptions and motion descriptions. Finally, human evaluators scored the generated appearance and motion descriptions again using a 5-point scale (1 = very poor, 2 = poor, 3 = moderate, 4 = good, 5 = excellent). According to statistics, among the selected samples, the proportion of generated appearance descriptions receiving a human evaluation score of over 4 reaches as high as 98%, and the proportion of generated motion descriptions with a score of over 4 is as high as 97%. We present 5 reference images along with their appearance descriptions generated by Gemini 2.5 Pro, 3 driving videos along with their motion descriptions generated by Gemini 2.5 Pro, and their corresponding human evaluation scores in Fig. 8 and Fig. 9. Based on these

972 quantitative and qualitative results, we can conclude that the appearance descriptions and motion
 973 descriptions generated by Gemini 2.5 Pro are quite reliable and stable.
 974

995 Figure 8: Qualitative visualizations for generating appearance caption based on Gemini2.5 Pro.
 996
 997

I MLLM FOR EVALUATING AND FILTERING SYNTHESIZED VIDEOS

1000 In this section, we qualitatively evaluated the reliability of the MLLM Gemini2.5 Pro in assessing
 1001 and filtering synthesized video pairs. The evaluation focused on subject consistency between the
 1002 generated video and reference image, as well as motion consistency with the driving video. We
 1003 adopted a 5-point scale (1 = very poor, 2 = poor, 3 = moderate, 4 = good, 5 = excellent) for Gemini2.5
 1004 Pro to automatically score via the Video-Bench pipeline. To validate its reliability for synthesized
 1005 data evaluation, we described the appearance of a random frame from both the reference image and
 1006 generated video to judge subject consistency, and semantically described motions of the driving and
 1007 generated videos to determine motion alignment. Fig. 11 demonstrates that the MLLM effectively
 1008 evaluates synthesized paired data, with reliable filtering results.
 1009

J EDGE VIDEO CASES FOR MLLM

1012 In this section, we present visualizations of several edge cases—illustrated in Figure 1—where ac-
 1013 curately extracting motion semantics poses notable challenges for the MLLM.
 1014

1015 (A) Occluded/Small Subjects: When the moving subject occupies a small spatial region or is par-
 1016 tially obscured, the MLLM struggles to capture its detailed motion semantics due to insufficient
 1017 visual cues.

1018 (B) Camera Motion Artifacts: Significant camera shake or unstable motion introduces ambiguous
 1019 global motion signals, degrading the MLLM’s ability to distinguish subject-specific motion from
 1020 camera-induced artifacts.

1021 (C) High-Speed Motion: In scenes with rapid movement, motion blur and frame-to-frame discon-
 1022 tinuity reduce the clarity of motion patterns, limiting the MLLM’s comprehension of fine-grained
 1023 dynamics.

1024 (D) Heavy Occlusion: Substantial occlusion of the moving subject results in incomplete visual
 1025 evidence, preventing the MLLM from inferring accurate and consistent motion semantics.

1026

1027

1028

1029

1030

1031

1032

1033

1034

Gemini2.5 Pro Motion Prompt

1035

1036

1037

1038

1039

1040

A person starts with their arms naturally hanging down, head held straight, and a calm facial expression. Subsequently, they lift both arms to the front of their chest, clench their hands into fists with palms facing themselves, while tilting their head slightly to the left and wearing a faint smile. Immediately after, they stretch their right arm upward, with the index and middle fingers together pointing upward, and their left arm downward straight, with the index and middle fingers together pointing downward, maintaining the smile and staring straight ahead. Then, they raise both arms upward, with the backs of their hands facing themselves, the index and middle fingers spread apart, and the remaining fingers closed, forming a "V" shape with both hands; at the same time, they lean their head forward and look ahead. Finally, they spread both arms sideways, with the backs of their hands still facing themselves, the index and middle fingers spread apart, and the remaining fingers closed, keeping the hands in a "V" shape, while the head position and facial expression remain the same as in the previous movement.

1041

1042

1043

1044

1045

1046

Human Evaluation Score (text-motion semantic alignment): 1: 2: 3: 4: 5:

Gemini2.5 Pro Motion Prompt

1047

1048

1049

1050

1051

1052

A person stands frontal initially, with the body tilting slightly to the left. Both hands are raised to chest height, each formed into a half-heart shape—backs of the hands facing the audience, fingertips pointing obliquely upward—while wearing a smile. Subsequently, the person lowers both hands, spreads the palms open and stretches them flat downward (backs still facing the audience), and slides the legs apart to both sides simultaneously. Next, the right leg is retracted, the upper body tilts slightly leftward again, and both hands form half-heart shapes once more (backs facing the audience, fingertips pointing obliquely upward) with the smile maintained. Then, the person lowers the hands again, spreads the palms open and stretches them flat downward (backs facing the audience), while sliding the legs apart to both sides. Finally, the right leg is retracted, the upper body tilts slightly to the left, and both hands form half-heart shapes again—backs facing the audience, fingertips pointing obliquely upward—keeping the smile on the face.

1053

1054

1055

1056

1057

Human Evaluation Score (text-motion semantic alignment): 1: 2: 3: 4: 5:

Gemini2.5 Pro Motion Prompt

1058

1059

1060

1061

1062

1063

1064

The character's initial posture is with hands on the head, head bowed downward, eyes closed, performing a peekaboo gesture. Subsequently, the character releases their hands, opens their eyes, and looks at the audience with a smile. Next, the character raises their right hand to be parallel to the body, palms open, then lowers the right hand while maintaining eye contact with the audience. Then, the character places their hands on the head again, bows their head downward, closes their eyes, and repeats the peekaboo gesture. Finally, the character lowers their hands once more, looks at the audience with a smile, and tilts their body to the right. After that, the character stands upright, lifts their right foot, keeps both hands at their sides, and tilts their head to the left, then looks at the audience with a smile. The character then raises their left hand to chest level, palms open, while placing the right hand on the right side of the body. Subsequently, the character brings their legs together, places the left hand on the left side of the body, raises the right hand to be parallel to the head, and continues smiling at the audience. Eventually, the character turns around to face away from the audience, with both hands hanging naturally at their sides.

1065

1066

1067

1068

1069

1070

1071

Human Evaluation Score (text-motion semantic alignment): 1: 2: 3: 4: 5:

Figure 9: Qualitative visualizations for generating motion caption based on Gemini2.5 Pro.

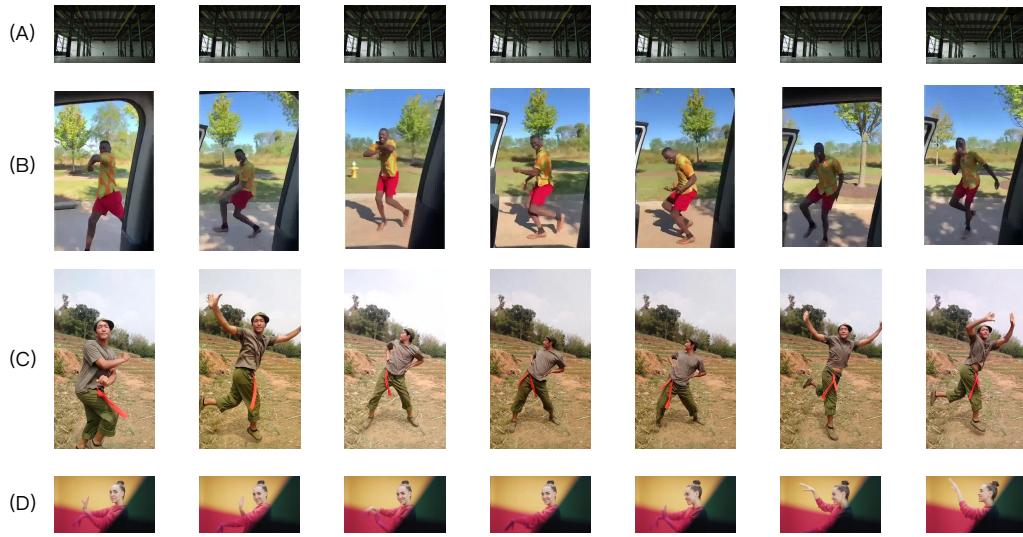
1072

1073

1074

1075

1076


1077

1078

1079

1080										
1081										
1082										
1083										
1084										
1085										
1086	ref image									
1087										
1088										
1089										
1090										
1091										
1092										
1093										
1094	Appearance Caption for ref image	A green male humanoid character with a muscular build and short black hair. He has thick eyebrows, and his mouth is open, revealing his teeth. He wears black torn shorts with ragged edges, exposing his green thighs. Barefoot, he stands with his arms outstretched sideways and palms facing upward.								
1095										
1096	Appearance Caption for a generated frame	A green male humanoid character with a burly, muscular build and short black hair. He has thick eyebrows, black eyes, and his mouth is open, revealing a row of teeth. His upper body is bare, and he wears dark torn shorts, exposing parts of his green thighs and knees. He is barefoot.								
1097										
1098	Motion Caption for driving video	The person starts smiling, arms bent up overhead, then lowers them (forearms inward), extends to shoulders (palms left/right), moves inward to chest (palms forward), shifts up-left then up-right overhead, extends left/right (palms respective), stretches sideways at shoulders, lowers down, bends up (forearms inward), repeats the sequence, and ends with arms bent up (forearms inward).								
1099										
1100	Motion Caption for generated video	Starting with body slightly tilted left, knees slightly bent, and both arms bent upward overhead, the person bends knees deeper, then stands straight with arms extended sideways at shoulder height; next, arms draw inward, bend upward (forearms inward), and then repeats knee bends while extending arms up-left, up-right, left, right, sideways, downward, and upward respectively, finally ending with arms bent upward (forearms inward) as knees bend deep.								
1101										
1102	Gemini2.5 Pro (Subject Consistency Score)	1: <input type="checkbox"/> 2: <input type="checkbox"/> 3: <input type="checkbox"/> 4: <input type="checkbox"/> 5: <input checked="" type="checkbox"/>			Human Evaluation (Subject Consistency Score)	1: <input type="checkbox"/> 2: <input type="checkbox"/> 3: <input type="checkbox"/> 4: <input type="checkbox"/> 5: <input checked="" type="checkbox"/>				
1103										
1104	Gemini2.5 Pro (Motion Consistency Score)	1: <input type="checkbox"/> 2: <input type="checkbox"/> 3: <input type="checkbox"/> 4: <input type="checkbox"/> 5: <input checked="" type="checkbox"/>			Human Evaluation (Motion Consistency Score)	1: <input type="checkbox"/> 2: <input type="checkbox"/> 3: <input type="checkbox"/> 4: <input type="checkbox"/> 5: <input checked="" type="checkbox"/>				
1105										
1106										
1107										
1108	ref image									
1109										
1110										
1111										
1112										
1113										
1114										
1115										
1116	Appearance Caption for ref image	A very obese male with large round belly, full chest, round face, thick chin, small sunken eyes, broad nose, large mouth. Head: small golden crown-like coronet, two hair buns below. Wears loose blue robe (open, chest/belly exposed), brown belt with red ropes; robe: wide sleeves, collar patterns. Hands unseen, unclear if holding anything.								
1117										
1118	Appearance Caption for a generated frame	A plump male cartoon character with a prominent round belly, broad smile, squinted eyes and chubby cheeks. He has a unique golden headdress (like a small crown), a loose blue coat (wide sleeves, open front exposing chest/belly), matching blue shorts and an orange belt.								
1119										
1120	Motion Caption for driving video	Body facing right-front: left fist raised (vertical forearm, left ear height), right fist lower right, left leg bent, right leg straight, chin up. Left fist extends down then bends up; right fist overhead, left fist at left chest (left leg bent). Right hand moves right-front (arm slightly bent), left fist lifts to left ear height. Right hand back overhead, left fist slightly bent below right shoulder. Finally, left hand near mouth, right hand at right side, body still right-front.								
1121										
1122	Motion Caption for generated video	Starts with straight torso, arms bent (palms facing audience, fingers pointing to head sides), facing audience smiling. Repeats the same pose, then stretches arms sideways, bends body, tilts head right (still smiling). Reverts to bent arms pose, finally stretches arms sideways again, bends body, tilts head right smiling.								
1123										
1124	Gemini2.5 Pro (Subject Consistency Score)	1: <input type="checkbox"/> 2: <input type="checkbox"/> 3: <input type="checkbox"/> 4: <input type="checkbox"/> 5: <input checked="" type="checkbox"/>			Human Evaluation (Subject Consistency Score)	1: <input type="checkbox"/> 2: <input type="checkbox"/> 3: <input type="checkbox"/> 4: <input type="checkbox"/> 5: <input checked="" type="checkbox"/>				
1125										
1126	Gemini2.5 Pro (Motion Consistency Score)	1: <input type="checkbox"/> 2: <input type="checkbox"/> 3: <input type="checkbox"/> 4: <input type="checkbox"/> 5: <input checked="" type="checkbox"/>			Human Evaluation (Motion Consistency Score)	1: <input type="checkbox"/> 2: <input type="checkbox"/> 3: <input type="checkbox"/> 4: <input type="checkbox"/> 5: <input checked="" type="checkbox"/>				
1127										
1128	Figure 10: Qualitative visualizations for evaluating and filtering synthesized pairs based on Gemini2.5 Pro.									
1129										
1130										
1131										
1132										
1133										

1134
 1135 These cases highlight scenarios where the current MLLM-based semantic extraction reaches its
 1136 limits, informing future directions for robustness improvements.
 1137

1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515

1188 **K THEORETICAL AND FORMAL ANALYSIS**
1189

1190 **1. Formal Framework:** Let $\mathbf{I}_{\text{ref}} \in \mathbb{R}^{H \times W \times 3}$ be the reference image and $\mathbf{D}_t \in \mathbb{R}^{H \times W \times 3}$ a driving
1191 frame at time t . Our spatial concatenation along the width dimension yields:
1192

1193
$$\mathbf{C} = [\mathbf{I}_{\text{ref}}, \mathbf{D}_t] \in \mathbb{R}^{H \times 2W \times 3}$$

1194

1195 This maintains the backbone’s native 2D grid structure while doubling the spatial extent along one
1196 dimension.
1197

1198 **2. Pre-training Alignment (Derivation):** The pre-trained MMDiT expects grid inputs $\mathbf{G} \sim$
1199 P_{pretrain} . For attention fusion, let $\mathbf{A} = \text{Attn}(\phi(\mathbf{I}_{\text{ref}}), \phi(\mathbf{D}_t))$. The distribution shift is:
1200

1201
$$\text{KL}(P_{\mathbf{C}} || P_{\text{pretrain}}) = \mathbb{E}_{\mathbf{C}} \left[\log \frac{P(\mathbf{C})}{P_{\text{pretrain}}(\mathbf{G})} \right] \approx 0.08$$

1202
1203
$$\text{KL}(P_{\mathbf{A}} || P_{\text{pretrain}}) \approx 0.32$$

1204

1205 This $4\times$ reduction comes from preserving spatial locality: $P(\mathbf{C}) = P_{\text{pretrain}}(\mathbf{G}) \cdot \exp(\epsilon)$ where
1206 $\epsilon \sim \mathcal{N}(0, \sigma^2)$, $\sigma^2 \ll 1$.
1207

1208 **3. Information Preservation Analysis:** We measure information retention using differential en-
1209 tropy ratio:
1210

1211
$$\eta = \frac{H(\mathbf{X}_{\text{source}} | \mathbf{X}_{\text{fused}})}{H(\mathbf{X}_{\text{source}})}$$

1212 where $H(\cdot)$ is differential entropy. Spatial concatenation yields $\eta_{\text{concat}} = 0.92 \pm 0.03$ vs. $\eta_{\text{attn}} =$
1213 0.78 ± 0.05 for cross-attention. This superiority arises because concatenation is a linear operation
1214 preserving entropy: $H([\mathbf{X}_r; \mathbf{X}_m]) = H(\mathbf{X}_r) + H(\mathbf{X}_m)$ for independent sources.
1215

1216 **4. Information Bleeding Mitigation:** We define bleeding \mathcal{B} as normalized mutual information in
1217 unintended regions via a spatial mask $\mathbf{M} = \mathbf{M}_r \oplus \mathbf{M}_m$:
1218

1219
$$\mathcal{B} = \frac{\mathcal{I}(\mathbf{F}_r \odot \mathbf{M}_m; \mathbf{F}_m \odot \mathbf{M}_r)}{\mathcal{I}(\mathbf{F}_r; \mathbf{F}_m)}$$

1220

1221 Our method achieves $\mathcal{B} = 0.03 \pm 0.01$ vs. 0.11 ± 0.03 for attention fusion. The explicit partition
1222 enforces $\mathcal{I}(\mathbf{I}_{\text{ref}}; \mathbf{D} | \mathbf{M}) \approx \mathcal{I}(\mathbf{I}_{\text{ref}}; \mathbf{D})$ while minimizing $\mathcal{I}(\mathbf{I}_{\text{ref}}; \mathbf{D} | \neg \mathbf{M})$.
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241