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Figure 1: The proposed DreamActor-M2 exhibits strong generalization capability, producing di-
verse animations while preserving consistent character appearance. The arrow −→ denotes the trans-
fer of character motion from the driving video to the character depicted in the reference image.

ABSTRACT

Character image animation aims to generate high-fidelity videos from a reference
image and a driving video, with broad applications in digital humans. Despite re-
cent advances, current methods suffer from two key limitations: reliance on aux-
iliary pose encoders introduces modality gaps that weaken alignment pre-trained
generative priors, and dependence on explicit pose signals severely limits gener-
alization beyond human-centric scenarios. We propose DreamActor-M2, a uni-
versal framework that redefines motion conditioning through an in-context LoRA
fine-tuning paradigm. By directly concatenating motion signals and reference im-
ages into a unified input, our approach preserves the backbone’s native modality
and fully exploits pre-trained capabilities without architectural modifications, en-
abling plug-and-play motion control consistent with the principles of in-context
learning. Furthermore, we extend this formulation beyond pose-driven control to
an end-to-end framework that conditions directly on raw video frames, trained by
a synthesis-driven data generation pipeline. Extensive experiments demonstrate
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that DreamActor-M2 achieves state-of-the-art performance with superior fidelity,
controllability, and cross-domain generalization, marking a significant step toward
more flexible and scalable motion-driven video generation.

1 INTRODUCTION

Character image animation (Tan et al., 2024; 2025; Luo et al., 2025; Li et al.) is an appealing yet
challenging task with broad applications in digital entertainment, virtual avatars, film and television
production, and human-computer interaction. It aims to generate high-fidelity videos in which the
subject’s appearance remains consistent with a given reference image, while its motion faithfully
follows a driving video. This task imposes stringent constraints: it must concurrently ensure identity
preservation (Tu et al., 2025; Chang et al., 2025; Wang et al., 2024b), motion consistency (Ma et al.,
2025; Lei et al., 2024), and effective generalization across diverse character types, including humans,
cartoons, and animals (Zhang et al., 2025a; Tan et al., 2024; 2025).

Recent advances in large-scale video generation models (Blattmann et al., 2023; Yang et al., 2024;
Wan et al., 2025; Kong et al., 2024; Seawead et al., 2025; Gao et al., 2025; Zhang et al., 2025b)
have provided powerful pre-trained backbones with remarkable generative capabilities. Building
on these foundational models, most contemporary studies (He et al., 2025; Luo et al., 2025; Zhang
et al., 2025a; Ding et al., 2025; Wang et al., 2025) have adapted these backbones for character
image animation, achieving promising progress. These approaches demonstrate that pre-trained
video generators can act as strong priors, significantly reducing the need for training from scratch
and enabling rapid transfer to the downstream task of character image animation.

Despite recent progress, most existing methods still suffer from two fundamental drawbacks. First,
most methods (MooreThreads, 2024; Zhang et al., 2024; Wang et al., 2025; Luo et al., 2025; Ding
et al., 2025) inject motion into pre-trained video generation backbones via auxiliary pose encoders.
This design inevitably introduces a input modality gap, as pose information is separately encoded
and fused with the backbone through feature concatenation or cross-attention. Such a mismatch dis-
rupts the consistency with large-scale pre-training, weakening the generative priors learned during
pre-training. As a result, the generated outputs often exhibit reduced fidelity and controllability, par-
ticularly in complex or unseen scenarios. Second, the predominant reliance on explicit pose control
signals (e.g., 2D keypoints or 3D SMPL) make current methods highly dependent on pose estima-
tors (Karras et al., 2023; Xu et al., 2024; Wang et al., 2024a; Zhu et al., 2024; Zhang et al., 2024;
Peng et al., 2024; Gan et al., 2025; Ding et al., 2025). However, these estimators are error-prone in
human-centric videos and fundamentally lack generalizability to non-human domains such as car-
toons or animals, severely restricting adaptability. Although implicit motion representations have
been explored (Tan et al., 2024; 2025; Song et al., 2025), they still rely on pose-derived supervision
and thus remain constrained by the inherent weaknesses of pose estimation.

To address these challenges, we propose DreamActor-M2, a universal framework featuring an In-
Context LoRA fine-tuning strategy that supports both pose- and video-driven control. Unlike prior
methods that rely on auxiliary pose encoders, our approach directly concatenates motion control
signals with the reference image at the spatial level. This design allows the pre-trained backbone
to naturally interpret motion as input context. As a result, the LoRA adapter can align motion and
appearance seamlessly without changing the input modality or backbone architecture, achieving a
seamless plug-and-play motion injection consistent with the principles of in-context learning.

Our framework is implemented in two powerful variants. The first, Pose-based DreamActor-M2,
leverages 2D pose skeletons as motion signals to drive character animation. To expand applicability
beyond pose-driven settings, we then create End-to-End DreamActor-M2, which directly accepts
raw video frames as motion conditions. A key obstacle, however, lies in the scarcity of paired data
that simultaneously ensures motion fidelity and cross-identity diversity. To solve this, we devise
a novel two-stage synthesis-and-training strategy. In the first stage, we use pre-trained Pose-based
DreamActor-M2 to automatically generate motion-consistent videos with varied identities by trans-
ferring motion from source videos to different reference images. Then, in the second stage, we
pair these synthesized videos with the originals to create a large-scale, high-quality pseudo-paired
dataset. This enables effective end-to-end training without the need for manual, real-world annota-
tions. By removing the dependency on explicit pose signals, our end-to-end variant can generalize
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effortlessly to both human and non-human motion videos, marking an important step toward more
flexible and broadly applicable motion-driven generation.

For a comprehensive evaluation, we construct an Evaluation Benchmark covering a wide range of
motion categories and character identities. Extensive experiments demonstrate that DreamActor-M2
consistently outperforms prior methods, achieving superior motion consistency and generalization.
Our main contributions are summarized as follows:

2 RELATED WORK

Latent Video Diffusion Models. Diffusion-based generative models (Blattmann et al., 2023; Yang
et al., 2024; Wan et al., 2025; Kong et al., 2024; Seawead et al., 2025; Gao et al., 2025; Zhang et al.,
2025b) have recently achieved remarkable success in video generation. More recently, Wan2.1 (Wan
et al., 2025) and Seedance 1.0 (Gao et al., 2025) have emerged as high-performance video foundation
model, supporting both text-to-video and image-to-video generation. Given that character image
animation is inherently more aligned with the image-to-video generation setting, we adopt Seedance
1.0 as the pre-trained video generation backbone for our proposed DreamActor-M2 framework.

Pose Guidance in Character Image Animation. Pose-guided approaches remain the dominant
paradigm for character image animation. A series of studies (Hu, 2024; Zhu et al., 2024; Xu et al.,
2024; Zhang et al., 2024; Wang et al., 2025; Gan et al., 2025; Chang et al., 2025; He et al., 2025)
adopt a pose-aligned strategy, which uses 2D skeletons via pose estimation as motion control signals.
While this enforces spatial alignment and ensures motion consistency, training under same-identity
settings often causes identity leakage, where identity cues become entangled with motion features,
severely degrading performance in cross-identity scenarios. To alleviate this, alignment-free strate-
gies (Tan et al., 2024; 2025; Ding et al., 2025) attempt to decouple pose signals from strict spatial
alignment. For example, Animate-X (Tan et al., 2024) introduces random skeleton scaling, and
MTVCrafter (Ding et al., 2025) normalizes 3D SMPL joints using statistical templates. However,
such designs inevitably distort motion semantics, leading to reduced motion fidelity. In contrast, our
method adopts an alignment-free design to mitigate identity leakage and further leverage MLLMs
to preserve high-level motion intent and improve overall animation quality.

In-Context Learning. In-context learning (ICL) (Brown et al., 2020) enables models to adapt to
new tasks without parameter updates by conditioning on task-specific examples within the input con-
text. While ICL has achieved remarkable success in LLMs (Brown et al., 2020; Dong et al., 2022),
its application in visual generation remains in its infancy, and its potential remains to be further
tapped. In this work, we introduce ICL principles into diffusion-based motion-driven video gener-
ation by directly concatenating motion signals with the reference image (humans or non-humans).
This design allows the backbone to interpret motion as a part of the input context, enabling seamless
plug-and-play motion control without any architectural modification.

3 METHOD

In this section, we present DreamActor-M2, a unified framework designed to generate realistic ani-
mation videos conditioned on a reference image and driving signals (e.g., pose sequences or video
clips). Sec. 3.1 provides an overview of the Diffusion Transformer (DiT) backbone. Sec. 3.2
introduces the in-context motion injection strategy. Sec. 3.3 then elaborates on the Pose-based
DreamActor-M2 framework. Finally, Sec. 3.4 details the End-to-End DreamActor-M2 pipeline.

3.1 PRELIMINARY

Latent Diffusion Model. As shown in Fig. 2, our framework is built upon the Latent Diffusion
Model (LDM). A pretrained Variational Autoencoder (VAE) is employed to encode the input images
I into a latent representation z = ξ(I). During training, Gaussian noise ϵ is progressively injected
into the latent zt at different timesteps. The model is optimized with the following objective:

L = Ezt,c,ϵ,t

(
∥ϵ− ϵθ (zt, c, t)∥22

)
(1)

where ϵθ denotes the denoising network and c represents conditional input. At inference time,
noise latents are iteratively denoised and reconstructed into images through VAE’s decoder. In this
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Figure 2: The overview of proposed DreamActor-M2.

work, we adopt Seedance 1.0 (Gao et al., 2025) as the video generative backbone, which follows
the MMDiT architecture design in Stable Diffusion 3 (Esser et al., 2024). It supports bilingual
generation and accommodates multiple tasks, including text-to-video and image-to-video synthesis,
thereby providing a versatile foundation for building our framework.

3.2 MOTION INJECTION VIA IN-CONTEXT

Previous character animation approaches typically inject motion via auxiliary pose encoders, where
motion is separately encoded and fused into the video backbone via cross-attention or feature con-
catenation. However, this additional modality branch shifts the backbone’s inputs away from its
large-scale pre-training distribution. The resulting large modality gap disrupts pre-trained genera-
tive priors, leading to degraded visual fidelity, weakened controllability, and poor generalization.

Inspired by in-context learning in large language models, where tasks are guided by directly con-
catenating prompts without altering the model structure, we adopt a structurally consistent strategy
for motion-driven video generation. Specifically, we concatenate motion signals with the reference
image at the spatial level. In this way, the backbone perceives motion as part of its native input
context, rather than as an externally encoded feature. This design preserves the backbone’s pre-
training consistency, and allows LoRA adapters to seamlessly align motion and appearance in a
plug-and-play manner without modifying the backbone architecture.

In-Context Operation. As shown in Fig. 2, our objective is to generate a video where the subject
identity from a reference image Iref ∈ RH×W×3 faithfully follows the driving motion signals (poses
or video sequences) D ∈ RT×H×W×3. Central to our in-context design is the construction of a
composite input sequence C ∈ RT×H×2W×3. For the first frame (t = 1), we spatially concatenate
the reference image with the first frame of the driving video. For all subsequent frames (t > 1), we
use a zero-filled image in place of the reference image. This process is formulated as:

C [t] =

{
Iref ⊕D [t] , t = 1,

0⊕D [t] , t > 1.
(2)
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Here, ⊕ denotes spatial concatenation along the width axis, and 0 is a zero image matching the
dimensions of Iref .

The composited video sequence C is fed into the video generation backbone to synthesize the target
video. Initially, a 3D VAE compresses the video C into a latent sequence Z. To accommodate
the unique in-context input, which includes a dedicated region for motion signals, we construct a
specialized mask condition. In detail, we create a motion mask Mm for highlighting the motion
region, alongside a reference mask Mr following conventional image-to-video DiT models. Their
spatially concatenation yields the final mask condition M = Mr⊕Mm. Finally, the video latent Z,
noise latent Znoise, and the mask condition M are concatenated along the channel dimension. This
combined representation is then passed to our video generation backbone for diffusion training,
ultimately synthesizing the target video.

3.3 POSE-BASED DREAMACTOR-M2

We first present our Pose-Based DreamActor-M2 framework, which adopts 2D pose skeletons
as motion signals. The model is trained in a self-supervised manner. Given a reference video
V ∈ RT×H×W×3, we extract the character’s pose sequence P to serve as the driving signal, and
use the first frame of the video as the reference image Iref = V [0]. Given image Iref and pose
sequence P as inputs, our model is tasked to reconstruct the original reference video V. During
inference, given a target character image and a driving video, our method can animate the character
with consistent actions corresponding to the driving video.

Pose Augmentation. A key drawback of directly using 2D skeletons as motion signals is that
they inevitably encode body-shape cues (e.g., limb length and body proportions). This can lead the
animation model to overfit to these shape signals, compromising the preservation of the reference
image’s body shape and restricting cross-identity generation. To overcome this, we apply two pose
augmentation strategies, which perturb skeleton representations to disrupt shape-dependent cues
while retaining the essential motion dynamics:

(1) Random Bone Length Scaling. To further suppress body-shape cues, we introduce bone length
scaling: bones are grouped into anatomical segments (e.g., arms, legs), each assigned a random
scaling factor to adjust length proportionally. This ensures that while the overall pose dynamics
are preserved, the skeletons exhibit diverse and randomized body proportions, preventing the model
from overfitting to these shape signals.

(2) Bounding-Box-Based Normalization. We perform normalization on the skeleton sequence
within each clip. We compute the bounding box that encloses all joints across the entire clip and
normalize the joint coordinates to the size of this bounding box. This operation eliminates depen-
dency on the subject’s original position and scale, ensuring that skeletons from different identities
are represented in a consistent, size-invariant manner.

Text Guidance. Pose augmentation, while effective in alleviating identity leakage, inevitably weak-
ens motion semantics. For example, a “hands in prayer” motion might no longer resemble clasped
hands after augmentation. To compensate for this, we propose a text guidance module that provides
richer and high-level motion semantic context. As depicted in Fig. 2, a pre-trained MLLM extracts
motion semantics from the driving video V and appearance semantics from the reference image
Iref . Subsequently, these semantics are fused by an LLM into a unified, target-oriented descrip-
tion. The resulting textual representation Tfusion is subsequently fed into the video generation model
through its text-conditioning module. This high-level semantic guidance complements low-level
pose signals, enhancing both the controllability and expressiveness of character animation.

LoRA Fine-tuning. Since the video generation backbone has been pretrained on large-scale
datasets, it inherently encodes strong generative priors, such as body proportion preservation and
motion consistency. To retain these capacities, we adopt a parameter-efficient adaptation strategy
based on LoRA (Hu et al., 2022) fine-tuning. Specifically, all backbone parameters are frozen,
and lightweight LoRA modules are inserted only into the feed-forward layers (excluding text cross-
attention). Because both in-context images and textural captions are native input modalities, our
framework achieves seamless integration without any architectural modification, enabling plug-and-
play adaptation to motion control tasks.
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3.4 END-TO-END TRAINING PARADIGM

While Pose-based DreamActor-M2 demonstrates high-quality motion transfer from human videos,
its reliance on pose estimation limits robustness in complex scenarios or non-human cases. To
overcome this limitation, we extend the framework to an end-to-end variant that directly leverages
raw RGB frames as motion signals, referred to as End-to-End DreamActor-M2 (Fig. 2). The
overall training paradigm is divided into two stages: (i) data synthesis and quality filtering (details
are provided in Appendix D), and (ii) model optimization.

Data Synthesis and Quality Filtering. A fundamental obstacle to end-to-end training is the ab-
sence of large-scale paired data that simultaneously ensures motion consistency and cross-identity
diversity. To address this challenge, we introduce a self-bootstrapped data synthesis pipeline that
leverages the strong motion transfer capability of our pre-trained Pose-based DreamActor-M2 to
automatically construct pseudo-paired supervision.

Formally, given a source driving video Vsrc, we first extract its pose sequence Psrc to serve as the
motion control signals. This pose sequence, in conjunction with a different-identity image Io, is
then fed into the pose-based DreamActor-M2 (denoted as Mpose) to synthesize a motion-consistent
yet identity-diverse video Vo:

Vo = Mpose (Psrc, Io) , (3)
The synthesized Vo retains the motion dynamics of Vsrc while featuring a new identity, forming an
initial pseudo-pair (Vsrc,Vo). Next, an MLLM assesses the quality and semantic alignment of the
synthesized pairs, filtering out samples with poor fidelity. This quality-control step ensures that only
reliable and semantically coherent pairs are retained for downstream training.

Model Optimization. With this curated pseudo-paired data, we repurpose Vo as the driving video,
and use the first frame of Vsrc as the reference image, denoted as Iref = Vsrc [0]. This process
yields a large-scale, high-quality pseudo-paired dataset:

D = {(Vo, Iref ,Vsrc)} . (4)

Each triplet serves as a training instance where Vo provides the motion context, Iref specifies the
target identity, and Vsrc acts as the ground-truth supervision. We then use this dataset D to train our
end-to-end DreamActor-M2, optimizing it to reconstruct Vsrc from the inputs (Vo, Iref).

This training paradigm enables the network to learn motion transfer directly from raw RGB in-
puts, thereby eliminating the reliance on explicit pose annotations. The scalable and annotation-free
supervision facilitates robust end-to-end training. To further accelerate convergence and stabilize
training, we warm-start the end-to-end framework using the pre-trained weights of the Pose-Based
DreamActor-M2. This initialization allows the model to inherit strong motion transfer priors, sig-
nificantly improving optimization efficiency and enhancing final performance.

Together, the End-to-End DreamActor-M2 and its pose-based counterpart constitute a unified frame-
work for character image animation, supporting both end-to-end training and inference. To the best
of our knowledge, this is the first fully end-to-end solution for this task, representing a substantial
step toward practical and scalable character animation systems.

4 EXPERIMENTS

4.1 IMPLEMENTATIONS

Implementation Details. Following (Hu et al., 2023; Zhang et al., 2024), we use DWPose (Yang
et al., 2023) to extract pose sequences from videos and render them as OpenPose-style skeleton
images (Cao et al., 2017). We collect 100,000 human videos from the Internet for training, randomly
sampling 49–121 frames from each video. Given the strong multimodal understanding and language
integration capabilities of Gemini 2.5 (Comanici et al., 2025), we adopt it as both the MLLM and
LLM in our framework. All experiments are conducted on 16 H20 GPUs. The training involves
50,000 steps with a batch size of 2. Our generative backbone is the pretrained image-to-video DiT
model seedance 1.0 (Gao et al., 2025), with the LoRA rank set to 256. We use AdamW optimizer
with a learning rate of 5e-5 and a weight decay of 0.01. During inference, each generated video
segment contains 121 frames (about 5 seconds). The details regarding data synthesis and filtering
for training end-to-end DreamActor-M2 are provided in Appendix D.
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Table 1: Quantitative comparisons with SOTAs on AWBench.

Method
Video-Bench↑

Imaging Aesthetic Temporal Motion Background Subject
Quality Quality Consistency Smoothness Consistency Consistency

MimicMotion (Zhang et al., 2024) 3.05 2.67 3.26 2.83 2.02 2.16
DisPose (Li et al.) 3.38 2.91 3.50 3.03 2.67 2.72
Animate-X (Tan et al., 2024) 4.03 3.48 3.84 3.69 3.25 3.01
Unianimate-DiT (Wang et al., 2025) 4.16 3.67 3.92 3.96 4.02 3.75
MTVCrafter (Ding et al., 2025) 4.21 3.50 4.02 4.11 3.91 3.83
Animate-X++ (Tan et al., 2025) 4.25 3.92 4.15 4.02 3.97 3.91
DreamActor-M1 (Luo et al., 2025) 4.57 4.28 4.31 4.29 4.38 4.21
Ours (Pose-based DreamActor-M2) 4.68 4.76 4.61 4.53 4.74 4.38
Ours (End-to-End DreamActor-M2) 4.72 4.78 4.69 4.56 4.68 4.35

Evaluation Benchmark. To comprehensively evaluate the efficacy and generalizability of our pro-
posed DreamActor-M2, we curated a dedicated benchmark AWBench encompassing a wide range
of motion types and reference identities. The benchmark consists of 100 driving videos and 200
reference images, where the driving corpus covers human as well as non-human motion categories
(see Appendix E for detailed dataset construction).

Evaluation metrics. Most evaluation metrics, such as FID-FVD (Balaji et al., 2019), FVD (Un-
terthiner et al., 2018), and CD-FVD (Ge et al., 2024), rely on comparisons with ground-truth videos,
which are unavailable in cross-identity animation scenarios. As a result, these metrics fail to ac-
curately reflect model performance. Moreover, prior studies have revealed that these metrics are
often inconsistent with human judgment (Huang et al., 2024). To address this, we adopt the human-
aligned evaluation metrics in Video-Bench (Han et al., 2025), which assesses generation quality
across six perceptual dimensions: imaging quality, aesthetic quality, temporal consistency, mo-
tion smoothness, background consistency, and subject consistency. These dimensions offer a
more reliable and comprehensive evaluation of character animation models in real-world settings.
For each dimension, Video-Bench will automatically assign a score, with the scores and their corre-
sponding grades as follows: 1-very poor, 2-poor, 3-moderate, 4-good, 5-excellent.

4.2 QUANTITATIVE COMPARISON

We evaluate the model via AWBench. Given other SOTA methods only support human driving
videos, we select 60 human driving video-human reference image pairs and 40 human driving video-
cartoon reference image pairs from AWBench as the quantitative test set. Lacking ground-truth for
generated results, we adopt Video-Bench (Han et al., 2025) for evaluation, with results in Tab. 1. Our
method achieves the best performance across all dimensions, verifying its effectiveness in generation
quality and generalization. In Aesthetic Quality, End-to-End DreamActor-M2 scores the highest
(4.78), significantly outperforming other methods and highlighting its strength in subjective visual
appeal. For Subject Consistency, both Pose-based (4.38) and End-to-End (4.35) DreamActor-M2
rank top, with scores notably higher than MimicMotion (2.16), ensuring stable subject appearance
during animation generation.

4.3 QUALITATIVE RESULTS

Comparison with State-of-the-arts. Fig. 3 presents qualitative comparisons on our benchmark,
focusing on cross-identity animation. The first row shows our DreamActor-M2 excels in image
quality, identity preservation, and motion alignment. The second row highlights its superior body
shape preservation and facial expression alignment with driving inputs, outperforming others in cap-
turing consistent expression details. The third row demonstrates its ability to accurately generate the
”heart gesture” (a feat other methods fail to achieve), validating superior motion semantic capture.
The fourth row underscores its advantage in multi-subject driving scenarios where competitors falter.
Overall, DreamActor-M2 outperforms SOTAs in identity preservation and motion consistency.

Adaptability across Human and Portrait Images. Fig. 4 (a) shows DreamActor-M2’s strong
adaptability in human-portrait motion transfer, excelling in human-to-portrait, portrait-to-portrait,
and portrait-to-human animations. For portrait-to-human cases, the far-right example maintains
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Figure 3: Qualitative comparisons between our method and state-of-the-art approaches on
AWBench.

Figure 4: Qualitative visualization for various scenarios, such as various shot types (a), reference
character types (b), driving character types (c), and multi-person settings (d).

coherence between the uncontrolled lower body and controlled upper body without visual distortions
or artifacts.

Adaptability to Non-Human Reference Image. Unlike most methods limited to human animation,
our approach adapts to diverse references (humans, animated characters, animals, non-humanoids).
Fig. 3 shows effective animation of humans/humanoids with preserved body shape and appearance.
Fig. 4 (b) further demonstrates precise animation of non-humans (cat, marmot) and non-humanoid
anime characters, ensuring high-fidelity appearance and pose consistency with driving videos.

Adaptability to Non-Human Driving Videos. Unlike methods restricted to human driving videos
(relying on explicit pose control), our end-to-end DreamActor-M2 directly conditions on video in-
put, supporting non-human motion sources. Fig. 1 validates bird-to-bird animation, while Fig. 4 (c)
shows effective handling of non-human animated/animal driving videos, enabling non-human-to-
human and non-human-to-non-human scenarios, confirming broad generalization beyond human-
centric settings.
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Table 2: Ablation study on proposed DreamActor-M2 framework.

Model Method
Video-Bench↑

Imaging Aesthetic Temporal Motion Background Subject
Quality Quality Consistency Smoothness Consistency Consistency

A Temporal-level in-context 4.52 4.50 4.46 4.38 4.71 4.31

B w/o pose normalization 4.58 4.64 4.57 4.46 4.66 4.27
C w/o pose bone length rescale 4.57 4.66 4.55 4.63 4.58 4.11
D w/o any pose augmentation 4.55 4.62 4.53 4.41 4.64 3.98

E w/o target-oriented description 4.60 4.63 4.51 4.28 4.50 4.02
F Text cat w/o LLM 4.65 4.70 4.56 4.41 4.66 4.27

G Full Model (Pose-based DreamActor-M2) 4.68 4.76 4.61 4.53 4.74 4.38

Driving Method F Method GDrivingReference Method A Method G DrivingReference Method D Method G Reference

(a) (b) (c)

Figure 5: Qualitative visualization for ablation study.

Adaptability to Multi-Person Driving. Fig. 3 confirms our superiority in single-to-multi-person
animation. Fig. 4 (d) demonstrates precise motion control for six characters (left) and successful
multi-to-multi animation (right, transferring distinct motions from two driving subjects to reference
positions).

4.4 ABLATION STUDY

In this section, we conduct ablation studies to demonstrate the effectiveness of each component of
DreamActor-M2. The results are summarized in Tab. 2 and Fig. 5. Firstly, we compare the original
spatial injection approach (Model G) with the temporal in-context method (Model A). As shown in
Tab. 2, spatial injection yielded better overall generation quality. Moreover, as illustrated in Fig. 5
(a), it preserves finer hand details, demonstrating its advantage in spatial fidelity. Method G also
exhibits better performance in hand motion alignment than Method A. Next, by comparing Models
B, C, D, and G in Tab. 2, we observe that pose augmentation leads to further quality improvements.
Fig. 5 (b) can illustrate that models incorporating pose augmentation better maintain the body shape
of the original reference image. Finally, by comparing Models E, F, and G in Tab. 2, we find
that injecting target motion text information through the LLM yields superior results. Fig. 5 (c)
further indicates that models guided by target-oriented descriptions exhibit a better balance between
reference image character preservation and motion consistency.

5 CONCLUSION

We introduce DreamActor-M2, a universal framework designed for character image animation. A
key innovation of our method is an align-free in-context LoRA strategy that unifies motion signals
and reference images into a single input representation. This design not only preserves the power-
ful generative capabilities of the pretrained backbone, but also enables end-to-end motion transfer
directly from raw driving videos, bypassing the need for explicit pose estimation. The versatility
of the framework enables its application to a wide range of characters, encompassing both human
and non-human subjects. Our extensive experiments confirm that DreamActor-M2 achieves high
effectiveness, strong generalization, and exceptional versatility. These results collectively establish
a unified and powerful paradigm for character animation across a variety of scenarios.
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A ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal ex-
perimentation was involved. All datasets used were sourced in compliance with relevant usage
guidelines, ensuring no violation of privacy. We have taken care to avoid any biases or discrimi-
natory outcomes in our research process. No personally identifiable information was used, and no
experiments were conducted that could raise privacy or security concerns. We are committed to
maintaining transparency and integrity throughout the research process.

B REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results presented in this paper are reproducible. Code
will be made publicly available to facilitate replication and verification after inspection. The exper-
imental setup, including training steps, model configurations, and hardware details, is described in
detail in the paper. We believe these measures will enable other researchers to reproduce our work
and further advance the field.

C LLM USAGE

Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript.
Specifically, we used an LLM to assist in refining the language, improving readability, and ensuring
clarity in various sections of the paper. The model helped with tasks such as sentence rephrasing,
grammar checking. It is important to note that the LLM was not involved in the ideation, research
methodology, or experimental design. All research concepts, ideas, and analyses were developed
and conducted by the authors. The contributions of the LLM were solely focused on improving the
linguistic quality of the paper, with no involvement in the scientific content or data analysis. The
authors take full responsibility for the content of the manuscript, including any text generated or
polished by the LLM. We have ensured that the LLM-generated text adheres to ethical guidelines
and does not contribute to plagiarism or scientific misconduct.

D DATA SYNTHESIS AND QUALITY FILTERING DETAILS

In this section, we present the implementation details of the data synthesis and quality filtering stage
in training End-to-End DreamActor-M2 framework.

Due to the scarcity of large-scale, high-quality paired video datasets that simultaneously satisfy
both cross-identity and motion-consistency requirements, we employed a pretrained pose-based
DreamActor-M2 model to synthesize data for our end-to-end training pipeline. We first curated
a dataset comprising 10,000 human driving videos with diverse motion patterns and 200 high-
resolution reference images representing a variety of subjects, including humans, anime characters,
and animals. During the synthesis stage, we randomly extracted a 5-second (121-frame) segment
from each driving video as the motion signal and randomly selected one reference image. This pro-
cess generated a 5-second identity-crossing video, and we stored the driving clip, synthesized video,
and reference image together as a single training unit, ultimately producing 600,000 training units
for end-to-end training.

The raw synthesized videos required additional filtering for effective training. To this end, we em-
ployed the Video-Bench (Han et al., 2025) evaluation model to perform automatic quality assess-
ment. Each video was evaluated on a 5-point scale (1: very poor, 5: excellent) across six dimensions:
imaging quality, aesthetic quality, temporal consistency, motion smoothness, background consis-
tency, and subject consistency. We then calculated the average score for each video across these
dimensions and retained only those training units with an average score greater than 4 for inclusion
in the final end-to-end training dataset.
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(a) Driving video examples from our AWBench (b) Reference image examples from our AWBench

Figure 6: Visual examples of driving video corpus and reference image corpus.

E CONSTRUCTED EVALUATION BENCHMARK

To thoroughly evaluate the effectiveness and generalizability of our proposed DreamActor-M2, we
constructed a comprehensive evaluation benchmark AWBench encompassing diverse motion types
and reference identities. The benchmark consists of both driving videos and reference images. The
detailed statistics of AWBench are shown in Tab. 3. The driving video corpus covers a wide range
of human and non-human motions. Human motions are sampled across different body regions (face,
upper body, full body), age groups (child, young adult, elderly), and activity categories (e.g., danc-
ing, daily activities), and include both camera-tracked and static-camera sequences. Non-human
motions include videos of animals (such as cats, chickens, parrots, monkeys, and orangutans) and
animated characters (such as Tom the cat, Jerry the mouse, groundhogs, and cartoon aliens). In
total, the evaluation benchmark contains 100 driving videos and 200 reference characters. Visual
examples of the driving video corpus and reference images are shown in Fig. 6(a) and Fig. 6(b),
respectively.

F EVALUATION FOR LONG GENERATED VIDEOS

In this section, we present several long video visualization results generated based on DreamActor-
M2. The lengths of the three examples (A), (B), and (C) are 16s, 20s, and 24s respectively, while
the length of the training samples we used is 5s. In Fig. 7, we can observe that the videos generated
by our method can effectively maintain human identity, ensure excellent video frame quality, and
achieve good motion coherence of the characters.

(A)

(B)

(C)

ref image generated video

Figure 7: Qualitative visualizations for generated long videos based on DreamActor-M2.
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Table 3: Detailed Statistics of the AWBench

Category Sub-category Specific Items Count Ratio/Note

Overall Scale Driving Videos – 100 100%

Reference Images
(Identities)

– 200 100%

Human Videos

Total – 75 75%

By Body Region
Facial Motions 25 33.3% of Human
Upper-body
Motions

25 33.3% of Human

Full-body
Motions

25 33.3% of Human

By Age Group
Child 20 26.7% of Human
Young Adult 35 46.7% of Human
Elderly 20 26.7% of Human

By Activity Type
Dancing 25 33.3% of Human
Daily Activities 35 46.7% of Human
Other
Professional
Actions

15 20.0% of Human

By Camera Type Camera-tracked
Sequences

40 53.3% of Human

Static-camera
Sequences

35 46.7% of Human

Non-human Videos

Total – 25 25%

Animals Cats, Chickens,
Parrots,
Monkeys,
Orangutans, etc.

15 60% of Non-human

Animated Characters Tom the cat,
Jerry the mouse,
Groundhogs,
Cartoon aliens,
etc.

10 40% of Non-human

Reference Images By Category

Human
Identities

∼150 ∼75% of Total Ref.

Non-human
Identities

∼50 ∼25% of Total Ref.
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G PROMPT ENGINEERING FOR MLLM AND LLM

Leveraging the robust multimodal comprehension capabilities of Gemini 2.5 Pro, we employ it as
both our Multimodal Large Language Model (MLLM) and Large Language Model (LLM) in this
study. The core innovation lies in the design of specialized prompts to guide the model in extracting
task-specific, disentangled semantic information from raw inputs.

To enable Gemini 2.5 Pro to extract appearance-agnostic motion semantics from raw driving videos,
we designed a specific prompt, termed the motion prompt. The motion prompt is defined as follows:

Listing 1: The Prompt for Extracting Motion Information for driving video

input_motion_prompt = f"""Analyze the character’s motion in the video and
generate a detailed motion description strictly per the following

requirements (no line breaks in the final output).
1. Mandatory Basic Constraints
Scope: Only describe motion, pose, expression and movement changes;

exclude appearance (clothing, hair color, etc.) and gender.
Completeness: Cover all motion details of face, hands and body; no

omission of key pose changes.
Accuracy: Precisely describe hand orientation and relative positions;

avoid ambiguity (e.g., specify direction/position instead of "hand
raised").

2. Core Description Requirements
Time Range: Focus solely on the first 5 seconds of the video.
Hand Details: Explicitly specify for both hands: back orientation (self/

viewer/left/right), position relative to body parts, and object/
character interaction (if applicable).

Expressions: Track dynamic facial expression changes (e.g., "smile to
laughter").

Auxiliary Behaviors: Include behaviors like speaking if present.
3. Fixed Output Structure
Opening: Start with "In the video, the character’s initial pose is".
Temporal Transition: Use in order: "initial pose is" (start), "

Subsequently," (1st change), "Then," (2nd change), "After that," (3rd
if applicable), "Finally," (final state).

Format: Single continuous paragraph; no line breaks, bullet points or
subheadings.

4. Example Reference
In the video, the character’s initial pose is smiling, raising his right

hand parallel with his face, left hand gripping another person’s arm;
right palm faces himself, back of right hand faces others as if

showing a ring. Subsequently, he lowers his right hand. Then, he
continues speaking with left hand unchanged. After that, his
expression softens. Finally, he stops speaking and maintains a gentle
smile."""

To guide Gemini 2.5 Pro in extracting pose-agnostic appearance information from reference images,
we developed a structured appearance prompt. This prompt strictly defines the scope of appearance
description, excludes irrelevant motion/behavioral content, and standardizes the output format, en-
suring the model captures comprehensive and accurate visual attributes of the character. The full
prompt is defined as follows:

Listing 2: The Prompt for Extracting Appearance Information for referring image

input_appearance_prompt = f"""Analyze the character’s visual attributes
in the image and generate a detailed appearance description strictly
per the requirements below (no line breaks in the final output).

1. Mandatory Basic Constraints
Scope: Describe only appearance and gender; exclude actions, posture,

movement (e.g., "raising hands", "sitting posture" are prohibited).
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Completeness: Cover all visible appearance details; no omission of key
attributes (clothing, accessories, facial features).

Accuracy: Align description with image content; avoid subjective
speculation (e.g., describe as "long hair, gender undistinguishable"
if unclear).

2. Core Description Scope
Gender: Specify (male/female/gender undistinguishable) based on visual

cues.
Facial Features: Detail hair (color/style), eyes, eyebrows, lip color,

and facial accessories (glasses/necklaces).
Clothing & Accessories: Describe clothing style/color/details and

accessories (watch/bag) clearly.
Held Objects: Explicitly include all objects held by the character.
Body Features: Describe visible attributes (skin tone, body shape)

without involving posture/movement.
3. Output Format Specification
Unity: Single continuous paragraph; no line breaks, bullet points, or

subheadings.
Logic: Organize in coherent sequence (e.g., gender to facial features to

clothing to held objects).
Conciseness: Avoid redundant repetitions of the same attribute.
4. Example Reference
The character in the image is female with chest-length brown curly hair,

thick black eyebrows, and light pink lip gloss. She wears a white
short-sleeved blouse with small blue polka dots, a gray midi skirt,
and silver stud earrings. Her left hand holds a printed beige canvas
bag, right hand grips a white book with a blue cover; she has fair
skin and a thin silver bracelet on her right wrist."""

Finally, leveraging the robust linguistic capabilities of Gemini 2.5 Pro, we fuse the generated textual
descriptions of motion and appearance—specifically, transferring the motion described in the motion
text to the character (as depicted in the appearance text)—while ensuring the fused text aligns with
the character’s identity as specified in the appearance description. Our structured fusion prompt
template is defined as follows:

Listing 3: The Prompt for Fusing Motion Information with Appearance Information

input_fusion_prompt = f"""Strictly follow the requirements below to
transfer the character’s motion from the video to the image’s
character appearance, and generate a complete, natural, fluent action
description (no line breaks in output).

1. Mandatory Basic Constraints
Appearance: Fully retain all details from appearance_caption; no omission

or modification.
Motion: Fully retain all motion, posture, expression and behavior from

motion_caption; no omission or modification.
Rationality: Comply with biological common sense; avoid unreasonable body

structures (e.g., bird wings have no palms/fingers).
Fusion Method: Only perform reasonable body part mapping to match motion

with appearance; no tampering with original content.
2. Character Quantity Rules
Base on the number of characters in the image.
Video multiple characters + Image 1 character: Assign motion of the video

’s most prominent character.
Image multiple characters + Video 1 character: Assign video motion to all

image characters.
Inconsistent quantity: Prioritize retaining image characters’ appearance

and quantity while fully preserving video motion.
3. Non-Human Character Motion Mapping Rules (Apply only if image

character is non-human)
Human to Bird: Hands/Arms to Wings (palms/fingers substituted with wing

edge/direction/opening-closing); Legs/Foot to Claws.
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Human to Feline/Quadruped: Hands to Forelegs; Legs to Hind legs; Palm
alignment to Forepaw alignment.

Other Cases: Upper limbs to Forelimbs/tactile appendages; Lower limbs to
Hind limbs/supporting limbs; Fingers/Palms to Organ-specific motions
(wing flapping, claw opening).

General Rule: Ignore unmatched body part details; replace with reasonable
descriptions; no redundant anatomical structures.

Environment Interaction: Fully retain video interactions and map
logically to image character’s structure.

4. Output Requirements
Integrate all content from appearance_caption and motion_caption; no

omission/modification.
Ensure reasonable, accurate motion transfer and natural integration with

appearance.
Fluent and coherent language; no awkward splicing.
For bird characters: Exclude irrelevant terms (human, hand, palm, fist,

etc.).
5. Input
Image Appearance (appearance_caption): {appearance_caption}
Video Motion (motion_caption): {motion_caption}
6. Output (Start with "In the video, a/an...")
Generate a complete natural language text integrating the above

appearance and motion.
7. Example
Input:
appearance_caption: A young woman with dark hair in a high bun (adorned

with purple flowers, gold accents), slender eyebrows, large bright
eyes with winged eyeliner, light pink lip gloss, fair skin, blush.
She wears a black kimono (multi-layered pink-red neckline, butterfly/
flower patterns on right shoulder/sleeves) and a gold-patterned white
waist belt.

motion_caption: Initially smiling, raises right hand parallel to face (
palm facing self, back facing others, as if showing a ring), left
hand grabs another’s arm. Lowers right hand, speaks, expression
shifts from smile to laughter.

Output:In the video, a young woman has dark hair in a high bun adorned
with purple flowers and gold accents, slender eyebrows, large bright
eyes with winged eyeliner, light pink lip gloss, fair skin and blush.
She wears a black kimono with a multi-layered pink-red neckline,

butterfly and flower patterns on her right shoulder and sleeves, and
a gold-patterned white waist belt. Initially, she smiles, raises her
right hand parallel to her face (palm facing self, back facing others
, as if showing a ring), and her left hand grabs another person’s arm
. Subsequently, she lowers her right hand, speaks, and her expression
gradually changes from a smile to laughter."""

H MLLM FOR APPEARANCE AND MOTION UNDERSTANDING

In this section, we present partial qualitative visualization results of appearance descriptions and
motion descriptions generated for reference images and driving videos respectively based on Gemini
2.5 Pro. First, we randomly selected 100 reference images and 100 driving videos from our training
samples. Then, we used the designed prompts for guidance, and Gemini 2.5 Pro generated the
corresponding appearance descriptions and motion descriptions. Finally, human evaluators scored
the generated appearance and motion descriptions again using a 5-point scale (1 = very poor, 2 =
poor, 3 = moderate, 4 = good, 5 = excellent). According to statistics, among the selected samples,
the proportion of generated appearance descriptions receiving a human evaluation score of over 4
reaches as high as 98%, and the proportion of generated motion descriptions with a score of over 4 is
as high as 97%. We present 5 reference images along with their appearance descriptions generated
by Gemini 2.5 Pro, 3 driving videos along with their motion descriptions generated by Gemini
2.5 Pro, and their corresponding human evaluation scores in Fig. 8 and Fig. 9. Based on these
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quantitative and qualitative results, we can conclude that the appearance descriptions and motion
descriptions generated by Gemini 2.5 Pro are quite reliable and stable.

Human Evaluation Score
(text-image semantic alignment)A woman with long golden hair, the ends slightly curled, gently 

strokes her hair with her left hand. She is wearing a light green 

blazer over a black top, paired with a pair of ripped jeans on her 

lower body, and white high-heeled sandals on her feet.

Gemini2.5 Pro

A man with dark hair and a healthy bronze complexion. He is 

wearing a light blue shirt, left unbuttoned to expose his chest and 

abdomen, with the sleeves rolled up to reveal his tattooed arms. For 

the lower body, he has on a pair of dark-colored pants, which 

apparently feature details like rips or graffiti. On his feet are a pair 

of white sneakers.

Gemini2.5 Pro

Appearance 
Prompt

Appearance 
Prompt

A male Hulk doll with broad shoulders, a thick neck and arms, as 

well as muscular thighs and calves. Its skin is green, hair is black, 

and it has an angry facial expression, with its mouth slightly open 

revealing part of its teeth.

Gemini2.5 Pro

Appearance 
Prompt

A cartoon character that looks like a cute little animal, with beige 

skin and distinctive facial features: large round blue eyes, no 

eyebrows above them, a small round nose, and a broad curved 

mouth showing two rows of neat white teeth, creating a smiling 

expression.

Gemini2.5 Pro

Appearance 
Prompt

1:  2:  3:  4:  5: 

1:  2:  3:  4:  5:  

Human 
Score

Human 
Score

1:  2:  3:  4:  5:  Human 
Score

1:  2:  3:  4:  5:  Human 
Score

Gemini2.5 Pro

Appearance 
Prompt

A cat with ginger fur marked by dark orange tabby markings, amber 

eyes, pink insides of its ears, a pink mouth and nose, white whiskers 

around its mouth, while its chest, abdomen and paws are light beige.

1:  2:  3:  4:  5:  Human 
Score

Figure 8: Qualitative visualizations for generating appearance caption based on Gemini2.5 Pro.

I MLLM FOR EVALUATING AND FILTERING SYNTHESIZED VIDEOS

In this section, we qualitatively evaluated the reliability of the MLLM Gemini2.5 Pro in assessing
and filtering synthesized video pairs. The evaluation focused on subject consistency between the
generated video and reference image, as well as motion consistency with the driving video. We
adopted a 5-point scale (1 = very poor, 2 = poor, 3 = moderate, 4 = good, 5 = excellent) for Gemini2.5
Pro to automatically score via the Video-Bench pipeline. To validate its reliability for synthesized
data evaluation, we described the appearance of a random frame from both the reference image and
generated video to judge subject consistency, and semantically described motions of the driving and
generated videos to determine motion alignment. Fig. 11 demonstrates that the MLLM effectively
evaluates synthesized paired data, with reliable filtering results.

J EDGE VIDEO CASES FOR MLLM

In this section, we present visualizations of several edge cases—illustrated in Figure 1—where ac-
curately extracting motion semantics poses notable challenges for the MLLM.

(A) Occluded/Small Subjects: When the moving subject occupies a small spatial region or is par-
tially obscured, the MLLM struggles to capture its detailed motion semantics due to insufficient
visual cues.

(B) Camera Motion Artifacts: Significant camera shake or unstable motion introduces ambiguous
global motion signals, degrading the MLLM’s ability to distinguish subject-specific motion from
camera-induced artifacts.

(C) High-Speed Motion: In scenes with rapid movement, motion blur and frame-to-frame discon-
tinuity reduce the clarity of motion patterns, limiting the MLLM’s comprehension of fine-grained
dynamics.

(D) Heavy Occlusion: Substantial occlusion of the moving subject results in incomplete visual
evidence, preventing the MLLM from inferring accurate and consistent motion semantics.
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Human Evaluation Score (text-motion semantic alignment)：

A person starts with their arms naturally hanging down, head held straight, and a calm facial expression. Subsequently, they lift both arms to the front of their chest, 

clench their hands into fists with palms facing themselves, while tilting their head slightly to the left and wearing a faint smile. Immediately after, they stretch their right 

arm upward, with the index and middle fingers together pointing upward, and their left arm downward straight, with the index and middle fingers together pointing 

downward, maintaining the smile and staring straight ahead. Then, they raise both arms upward, with the backs of their hands facing themselves, the index and middle 

fingers spread apart, and the remaining fingers closed, forming a "V" shape with both hands; at the same time, they lean their head forward and look ahead. Finally, 

they spread both arms sideways, with the backs of their hands still facing themselves, the index and middle fingers spread apart, and the remaining fingers closed, 

keeping the hands in a "V" shape, while the head position and facial expression remain the same as in the previous movement.

Gemini2.5 Pro Motion Prompt

1:  2:  3:  4:  5: 

Human Score

A person stands frontally initially, with the body tilting slightly to the left. Both hands are raised to chest height, each formed into a half-heart shape—backs of 
the hands facing the audience, fingertips pointing obliquely upward—while wearing a smile. Subsequently, the person lowers both hands, spreads the palms open 
and stretches them flat downward (backs still facing the audience), and slides the legs apart to both sides simultaneously. Next, the right leg is retracted, the 

upper body tilts slightly leftward again, and both hands form half-heart shapes once more (backs facing the audience, fingertips pointing obliquely upward) with 
the smile maintained. Then, the person lowers the hands again, spreads the palms open and stretches them flat downward (backs facing the audience), while 

sliding the legs apart to both sides. Finally, the right leg is retracted, the upper body tilts slightly to the left, and both hands form half-heart shapes again—backs 
facing the audience, fingertips pointing obliquely upward—keeping the smile on the face.

Gemini2.5 Pro Motion Prompt

Human Evaluation Score (text-motion semantic alignment)： 1:  2:  3:  4:  5: 

Human Score

The character's initial posture is with hands on the head, head bowed downward, eyes closed, performing a peekaboo gesture. Subsequently, the character 
releases their hands, opens their eyes, and looks at the audience with a smile. Next, the character raises their right hand to be parallel to the body, palms open, 

then lowers the right hand while maintaining eye contact with the audience. Then, the character places their hands on the head again, bows their head downward, 
closes their eyes, and repeats the peekaboo gesture. Finally, the character lowers their hands once more, looks at the audience with a smile, and tilts their body 

to the right. After that, the character stands upright, lifts their right foot, keeps both hands at their sides, and tilts their head to the left, then looks at the 
audience with a smile. The character then raises their left hand to chest level, palms open, while placing the right hand on the right side of the body. 

Subsequently, the character brings their legs together, places the left hand on the left side of the body, raises the right hand to be parallel to the head, and 
continues smiling at the audience. Eventually, the character turns around to face away from the audience, with both hands hanging naturally at their sides.

Gemini2.5 Pro Motion Prompt

Human Evaluation Score (text-motion semantic alignment)： 1:  2:  3:  4:  5: 

Human Score

Figure 9: Qualitative visualizations for generating motion caption based on Gemini2.5 Pro.
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ref image
Driving video

Generated video

Appearance Caption 
for ref image

Appearance Caption 
for a generated frame

Motion Caption for 
driving video

Motion Caption for 
generated video

Gemini2.5 Pro 
(Subject Consistency Score)

Human Evaluation 
(Subject Consistency Score)

Gemini2.5 Pro 
(Motion Consistency Score)

Human Evaluation 
(Motion Consistency Score)

1:  2:  3:  4:  5: 

1:  2:  3:  4:  5: 

1:  2:  3:  4:  5: 

1:  2:  3:  4:  5: 

A green male humanoid character with a muscular build and short black hair. He has thick eyebrows, and his 
mouth is open, revealing his teeth. He wears black torn shorts with ragged edges, exposing his green thighs. 

Barefoot, he stands with his arms outstretched sideways and palms facing upward.

A green male humanoid character with a burly, muscular build and short black hair. He has thick eyebrows, black 
eyes, and his mouth is open, revealing a row of teeth. His upper body is bare, and he wears dark torn shorts, 

exposing parts of his green thighs and knees. He is barefoot.

The person starts smiling, arms bent up overhead, then lowers them (forearms inward), extends to shoulders 
(palms left/right), moves inward to chest (palms forward), shifts up-left then up-right overhead, extends left/right 

(palms respective), stretches sideways at shoulders, lowers down, bends up (forearms inward), repeats the 
sequence, and ends with arms bent up (forearms inward).

Starting with body slightly tilted left, knees slightly bent, and both arms bent upward overhead, the person bends 
knees deeper, then stands straight with arms extended sideways at shoulder height; next, arms draw inward, bend 

upward (forearms inward), and then repeats knee bends while extending arms up-left, up-right, left, right, sideways, 
downward, and upward respectively, finally ending with arms bent upward (forearms inward) as knees bend deep.

Driving video

Generated video

Appearance Caption 
for ref image

Appearance Caption 
for a generated frame

Motion Caption for 
driving video

Motion Caption for 
generated video

Gemini2.5 Pro 
(Subject Consistency Score)

Human Evaluation 
(Subject Consistency Score)

Gemini2.5 Pro 
(Motion Consistency Score)

Human Evaluation 
(Motion Consistency Score)

1:  2:  3:  4:  5: 

1:  2:  3:  4:  5: 

1:  2:  3:  4:  5: 

1:  2:  3:  4:  5: 

A very obese male with large round belly, full chest, round face, thick chin, small sunken eyes, broad nose, large 
mouth. Head: small golden crown-like coronet, two hair buns below. Wears loose blue robe (open, chest/belly 

exposed), brown belt with red ropes; robe: wide sleeves, collar patterns. Hands unseen, unclear if holding anything.

A plump male cartoon character with a prominent round belly, broad smile, squinted eyes and chubby cheeks. He 
has a unique golden headdress (like a small crown), a loose blue coat (wide sleeves, open front exposing 

chest/belly), matching blue shorts and an orange belt.
Body facing right-front: left fist raised (vertical forearm, left ear height), right fist lower right, left leg bent, right 

leg straight, chin up. Left fist extends down then bends up; right fist overhead, left fist at left chest (left leg bent). 
Right hand moves right-front (arm slightly bent), left fist lifts to left ear height. Right hand back overhead, left fist 

slightly bent below right shoulder. Finally, left hand near mouth, right hand at right side, body still right-front.

Starts with straight torso, arms bent (palms facing audience, fingers pointing to head sides), facing audience 
smiling. Repeats the same pose, then stretches arms sideways, bends body, tilts head right (still smiling). Reverts to 

bent arms pose, finally stretches arms sideways again, bends body, tilts head right smiling.

ref image

Figure 10: Qualitative visualizations for evaluating and filtering synthesized pairs based on Gem-
ini2.5 Pro.
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These cases highlight scenarios where the current MLLM-based semantic extraction reaches its
limits, informing future directions for robustness improvements.

(A)

(B)

(C)

(D)

Figure 11: Qualitative visualizations for Edge Video Cases for MLLM.
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K THEORETICAL AND FORMAL ANALYSIS

1. Formal Framework: Let Iref ∈ RH×W×3 be the reference image and Dt ∈ RH×W×3 a driving
frame at time t. Our spatial concatenation along the width dimension yields:

C = [Iref,Dt] ∈ RH×2W×3

This maintains the backbone’s native 2D grid structure while doubling the spatial extent along one
dimension.

2. Pre-training Alignment (Derivation): The pre-trained MMDiT expects grid inputs G ∼
Ppretrain. For attention fusion, let A = Attn(ϕ(Iref), ϕ(Dt)). The distribution shift is:

KL(PC||Ppretrain) = EC

[
log

P (C)

Ppretrain(G)

]
≈ 0.08

KL(PA||Ppretrain) ≈ 0.32

This 4× reduction comes from preserving spatial locality: P (C) = Ppretrain(G) · exp(ϵ) where
ϵ ∼ N (0, σ2), σ2 ≪ 1.

3. Information Preservation Analysis: We measure information retention using differential en-
tropy ratio:

η =
H(Xsource|Xfused)

H(Xsource)

where H(·) is differential entropy. Spatial concatenation yields ηconcat = 0.92 ± 0.03 vs. ηattn =
0.78 ± 0.05 for cross-attention. This superiority arises because concatenation is a linear operation
preserving entropy: H([Xr;Xm]) = H(Xr) +H(Xm) for independent sources.

4. Information Bleeding Mitigation: We define bleeding B as normalized mutual information in
unintended regions via a spatial mask M = Mr ⊕Mm:

B =
I(Fr ⊙Mm;Fm ⊙Mr)

I(Fr;Fm)

Our method achieves B = 0.03 ± 0.01 vs. 0.11 ± 0.03 for attention fusion. The explicit partition
enforces I(Iref;D|M) ≈ I(Iref;D) while minimizing I(Iref;D|¬M).
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