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Abstract

Large Language Models (LLMs) have exhib-
ited impressive proficiency in various natural
language processing (NLP) tasks, which in-
volve increasingly complex reasoning. Knowl-
edge reasoning, a primary type of reasoning,
aims at deriving new knowledge from exist-
ing one. While it has been widely studied
in the context of knowledge graphs (KGs),
knowledge reasoning in LLMs remains under-
explored. In this paper, we introduce CHAIN-
OF-KNOWLEDGE, a comprehensive framework
for knowledge reasoning, including methodolo-
gies for both dataset construction and model
learning. For dataset construction, we create
KNOWREASON via rule mining on KGs. For
model learning, we observe rule overfitting in-
duced by naive training. Hence, we enhance
CoK with a trial-and-error mechanism that sim-
ulates the human process of internal knowledge
exploration. We conduct extensive experiments
with KNOWREASON. Our results show the ef-
fectiveness of CoK in refining LLMs in not
only knowledge reasoning, but also general rea-
soning benchmarkms.

1 Introduction

Large Language models (LLMs) have established
new state-of-the-arts across a wide range of natu-
ral language processing (NLP) tasks (Brown et al.,
2020; Bang et al., 2023). Increasingly, their impres-
siveness have expanded to complex problems chal-
lenging reasoning abilities, including arithmetic
reasoning (Cobbe et al., 2021), commonsense rea-
soning (Talmor et al., 2018), and symbolic rea-
soning (Srivastava et al., 2022). These reasoning
abilities enables LL.Ms to make informed decisions,
solve complex problems, and provide more accu-
rate and relevant responses

Knowledge reasoning represents an indispens-
able aspect of reasoning, which combines acquired
knowledge to derive novel knowledge (Chen et al.,
2020), as shown in Figure 1. It shares similarities
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Figure 1: Current LLMs struggle with knowledge rea-
soning, i.e., combining acquired knowledge to infer new
knowledge.

with commonsense reasoning and symbolic reason-
ing in its reliance on existing knowledge and logical
inference to derive new conclusions. Previously,
knowledge reasoning has been extensively stud-
ied within the context of knowledge graphs (KGs).
KGs represent fact knowledge in the form of rela-
tional triples, e.g., (Plato, author_of, The Repub-
lic). Knowledge reasoning over KGs is to harness
the existing knowledge to infer and derive novel
one, typically by explicitly modeling or implic-
itly learning compositional rules for relational pat-
terns (Sun et al., 2019). This enriches the KGs and
supporting downstream tasks such as link predic-



tion (Zhu et al., 2021) and fact classification (Yao
et al., 2019). Existing methods for KG reason-
ing could be distinguished into structured-based
methods such as TransE (Bordes et al., 2013) and
description-based methods such as LMKE (Wang
et al., 2022). However, knowledge reasoning in
LLMs remains significantly underexplored, which
could serve as a valuable complement to LLM rea-
soning.

In this paper, we propose to integrate this
knowledge reasoning ability into LLMs, leverag-
ing KGs. Specifically, we introduce CHAIN-OF-
KNOWLEDGE (CoK), a comprehensive learning
framework for knowledge reasoning. CoK includes
methodologies for both dataset construction and
model learning. The dataset construction is based
on KGs. As illustrated in Figure 2, it includes three
steps: 1) rule mining , which mines compositional
rules in KGs; 2) knowledge selection, which iden-
tifies interrelated triples matching those rules; and
3) sample generation, which transforms the triples
into natural language samples. For model learning,
we observe that training LLMs via behavior cloning
often leads to rule overfitting and consequent hal-
lucination. Hence, we further enhances CoK with
a trial-and-error mechanism, which simulates hu-
mans’ internal process of knowledge exploration
for improved generalizability.

We conduct extensive experiments to vali-
date the effectiveness of CoK, which covers
both anonymized and regular settings. In the
anonymized settings, we replace entity names to
ensure analysis uninfluenced by data leakage. In
the regular settings, we showcase the value of CoK
for not only real-word knowledge reasoning, but
also other reasoning benchmarks.

The contributions of this paper are mainly sum-
marized as follows:

* We introduce the knowledge reasoning task
to evaluating and enrich LLMs. Our curated
dataset, named KNOWREASON, will be re-
leased to facilitate future research in this di-
rection.

* We propose CHAIN-OF-KNOWLEDGE (CoK),
a comprehensive framework for advancing
LLMs’ knowledge reasoning ability. CoK
provides a detailed method for dataset con-
struction, as well as two learning methods in-
cluding behavior cloning and trial-and-error.

* We conduct extensive experiments across var-

ious settings, including anonymized ones and
regular ones. Our results validate the effective-
ness of CoK, with promising generalizability
to novel rules and upgraded challenges. More-
over, we showcase the broad utility of CoK via
its efficacy in improving other various tasks.

2 Related Works

LLM reasoning LLMs have achieved significant
success in many NLP tasks and their capabilities
have been extended to complex reasoning tasks
such as common-sense reasoning (Talmor et al.,
2018), arithmetic reasoning (Cobbe et al., 2021),
and symbolic reasoning (Srivastava et al., 2022). It
has been observed that LLMs perform poorly on
reasoning tasks when using standard prompts (Wei
et al.,, 2022). To address this issue, Brown et
al. proposed few-shot prompting (Brown et al.,
2020), which provides the model with examples of
question-answer pairs and has proven effective in
reasoning tasks. To further enhance performance,
Wei et al. (2022) proposed Chain-of-Thought (CoT)
prompting (Wei et al., 2022), which provides the
model with input-output examples that include ex-
plicit reasoning steps. Different from CoT, Pro-
gram of Thoughts(PoT) uses language models to
express the reasoning process as a program, and
then executes the generated programs to derive the
answer (Chen et al., 2022). Tree-of-Thought (ToT)
extends the concept of CoT by incorporating a hier-
archical structure into the reasoning process (Yao
et al., 2024). This approach is particularly useful
for tasks requiring complex decision-making and
reasoning, where multiple pathways must be eval-
uated to reach the correct solution. Although ToT
is effective for decision-making and path selection,
it requires access to external information such as
context. In contrast, our work introduces the CoK
framework to enhance the knowledge reasoning
abilities of LLMs by utilizing their internal knowl-
edge base.

Knowledge Reasoning over KGs Knowledge
reasoning is the process of using known knowl-
edge to infer new knowledge (Chen et al., 2020),
which is widely used in knowledge graph com-
pletion (Zhang et al., 2020). Main approaches to
knowledge graph reasoning(KGR) can be broadly
classified into four main categories: embedding-
based reasoning captures the implicit association
between entities and relations through mapping
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a symbolic representation to a vector space for
numerical representation (Bordes et al., 2013);
symbolic-based reasoning uses logical rules to infer
new relationships in knowledge graphs, offering in-
terpretable, human-like reasoning (Galérraga et al.,
2013); neural-network-based reasoning uses neu-
ral architectures to predict relationships in knowl-
edge graphs, enabling complex and flexible reason-
ing (Socher et al., 2013; Schlichtkrull et al., 2018);
and mixed reasoning combines symbolic-based,
embedding-based, and neural network-based rea-
soning to enhance the accuracy and interpretability
of knowledge graph reasoning (Xiong et al., 2017;
Guo et al., 2018).

3 Methodology

3.1 Preliminaries and Task Formulation

Knowledge Graphs KGs store collections of
facts as triples, denoted as G = {(e,r,¢') | e, €’ €
E,r € R}, where £ and R represent the sets of
entities and relations, respectively.

Atoms and Rules KGs contain compositional
rules that can be extracted or modeled to infer new
knowledge. These rules consist of multiple rela-
tional atoms., where an atom can be expressed as
r(X,Y), where r is a relation and X, Y are vari-
ables for entities. A rule in the KGs can be ex-
pressed by the following formula:

’I”h(X,Y) — Tl(X, Zl) VARRAN ’r’n(anl, Y) (D)

Here, (X, Y') denotes the head atom and denotes
the rule head, while r1(X, Z1) ... Arp(Zp-1,Y)
denotes the rule body.

For example, in the rule Liveln(X,Y) <«
WorkFor(X, Z1) A Locateln(Z1y ) A Liveln(X,Y)
is the rule head and WorkFor(X,Z1) A
Locateln(Z1,Y) is the rule body.

Task Formulation Given an atom r,(X,Y),
where X is known and Y is unknown, we seek
to determine Y. Knowledge reasoning involves
identifying an appropriate rule, and then utilize the
facts that support the rule body to determine the
value of Y.

3.2 Chain-of-Knowledge Data Construction

In this section, we will introduce the idea of our
CoK method and how we construct the data.

Rule mining In this step, we begin by mining
2-hop rules and then combine them to create 3-hop
and 4-hop rules.

To derive rules for data construction from triples
in the knowledge graph, we utilize a breadth-first
approach to sample 2-hop atoms combinations that
connect the head entity to the tail entity. The algo-
rithm we use is shown in Appendix A.1 These com-
binations serve as instances for 2-hop rules. For
example, given an atom r3(el, e3), we can sample
the instance 71 (el, e3) < ra(el, e2) A r3(e2, e3).
The head and tail of this path correspond to the



head entity e; and the tail entity e3 of the atom re-
spectively. The corresponding rule is 71 (X, Y") «
TQ(X, Z) A T3(Z, Y)

After sampling across the entire knowledge
graph, we obtain a series of rule instances. First,
we count the number of instances corresponding
to each rule. Rules with fewer than 1000 instances
are considered atypical and are removed from the
list, serving as the first round of rule filtering.

Forarule ri(X,Y) < ro(X,Z) Ar3(Z,Y), if
the number of instance combinations in the graph
that satisfy the rule body is x, and the number of
combinations that also satisfy the rule head is vy,
then the confidence formula for the rule is y/z.
Using this formula, we calculate the confidence for
each rule and set a reasonable threshold of 0.6. If
the confidence is greater than 0.6, we consider the
rule to be valid and retain it; otherwise, we discard
it. After applying the above steps, we obtain 203
2-hop rules.

We combine 2-hop rules to create longer rules.
Given two rules, if the rule head of one rule is part
of the rule body of another rule, we replace that part
with the rule body of the first rule. For example,
consider the following two rules:

1) BornIn(X,Y) < HighSchool(X,Z) N
Locateln(Z1,Y);

2) CitizenOf(X,Y)
CityOf(Z1,Y).

The head of Rulel, Bornln(X,Y), is part
of the body of Rule2, so we replace it
with the body of Rulel to form a 3-hop
rule: CitizenOf(X,Y) < HighSchool(X, Z1) N
Locateln(Z1,Y) A CityOf(Z1,Y).

Using this approach, we generate 159 3-hop
rules and 158 4-hop rules.

<~ BornIn(X,Z;) A

Knowledge Selection In the process of knowl-
edge reasoning, if LLMs do not have access to the
facts that support the reasoning path, the reasoning
cannot be completed due to the lack of key infor-
mation. On the other hand, if the fact we query is
already embedded in the LLMs’ internal parame-
ters, the validity of the reasoning cannot be assured
due to potential data leakage. Therefore, it is essen-
tial to select knowledge that is appropriate for CoK
data construction.

We construct datasets in both anonymized set-
tings and regular settings, and different knowledge
selection processes are applied to the two settings.

For each rule obtained, we first identify all its
instances from the knowledge graph. To prevent

the model from overfitting to a particular rule dur-
ing training, which could lead to path dependency,
we ensure a balanced quantity of each rule in the
training data. We achieve this by sampling an equal
number of instances for each rule. Next, for each
instance, we gather the involved facts and use them
for knowledge selection.

In the anonymized setting, we replace all en-
tity names in the facts with random, non-existent
strings, making all entities new knowledge to the
LLMs. We then collect all the anonymized facts
and use them to generate knowledge data for knowl-
edge injection.

In the regular setting, the entities in the facts
represent real-world knowledge. For each instance,
we gather the relevant facts and use them to perform
knowledge probing on the LLM. If the LLM knows
all the facts supporting the body of the instance but
does not know the fact represented by the instance
head, we retain this instance for generating samples
in the subsequent step.

Sample Generation Finally, we apply advanced
LLMs ! to transform the knowledge into natural
language sentences.

For knowledge dataset, we generate a paragraph
of natural language description for each entity. For
CoK dataset, we generate a sample for each in-
stance obtained in the previous step . For the rule
head r, (X, Y"), we prompt advanced LLMs to gen-
erate a natural language question. Given the re-
lationships between entities, if multiple Y's corre-
spond to a single X, questioning Y will result in
multiple answers, complicating evaluation. There-
fore, we choose the unique entity between X and
Y to generate questions. For the rule body, we
combine all the facts to form a reasoning chain
that describes the reasoning process from X to Y,
which will be used as the answer to the question.
The details of sample generation are shown in Ap-
pendix A.3

Our experiments include both anonymized and
regular settings. In each setting, the CoK dataset
is used to fine-tune LL.Ms in a supervised manner.
Conversely, the knowledge dataset is employed
exclusively during the continuous pretraining stage
in anonymized settings to inject knowledge into
LLM:s.

'In this paper, we use GPT-3.5 for sample generation.



3.3 Chain-of-Knowledge Learning

Naive Training First, we directly train LLMs
on KNOWREASON in a behavior cloning manner.
However, we observe a phenomenon called rule
overfitting. In this situation, the trained models
tend to rely on rules encountered during training,
even in the absence of supporting facts.

Trial and Error Hence, we introduce a trial-and-
error (T&E) mechanism to CoK learning, which
simulates the human process of exploring over our
internal knowledge.

To simulate the human process of knowledge
reasoning, we humans initially select a plausible
rule and start reasoning based on it when presented
with a question. During this process, if we realize
that we lack a crucial fact required by the rule, we
switch to an alternative reasoning path instead of
continuing without the essential information.

Hence, we integrate the concept of trial and error
with our method, incorporating exploration of the
LLM’s internal knowledge base into the reasoning
process. This approach enables LLLMs to discern
when to apply a rule and when to backtrace it due to
a lack of supporting facts, subsequently switching
to a more appropriate rule.

We design a symbolic agent to work in conjunc-
tion with LLMs to generate exploration path, em-
ploying a trial-and-error approach. For each sam-
ple, the symbolic agent first selects a possible rule
as a candidate path and then searches for support-
ing facts for the rule in the internal knowledge base
of LLMs. If any part of the rule body lacks support-
ing facts, the process is recorded as an error, and
the symbolic agent switches to another rule as the
candidate path. This process repeats until a reason-
ing path with sufficient supporting facts is found,
leading to the desired result. The entire exploration
process is captured as a data sample, comprising at
least one error and the correct reasoning path. This
trial and error process is shown in Algorithm 1.

4 [Experiments

4.1 Settings

Datasets We select WikidataSm (Wang et al.,
2021) as our data source, which is a million-scale
knowledge graph dataset that is aligned with Wiki-
data, facilitating data processing and usage.

We construct a dataset KNOWREASON, which
includes a knowledge dataset and a CoK dataset.
The construction method is detailed in Section 3.

Algorithm 1: CoK (T&E)
Data: knowledge graph G, rule head
ri(X,Y), large language model M
Result: exploration process P
1t+1;
2 while True do
// Select candidate rule
3 R, < CandidateRule(r},);
// Search for supporting facts
for fact € Ri(rule_body) do
if not IsFactExist( fact, M) then
RecordError();
t+—t+1;
continue;

® N »n =

9 return P

Anonymized Settings and Regular Settings We
conduct experiments in both the anonymized set-
tings and the regular settings.

In the anonymized settings, we conduct the
primarily experiments to study knowledge reason-
ing in LL.Ms, avoiding the influence of LLMs’ in-
herent knowledge for this task. In these settings,
all entity names are replaced with random, non-
existent character names, ensuring that the model
parameters contain no prior knowledge of these
entities. Consequently, our training data comprises
knowledge dataset used during the continuous pre-
training stage, as well as CoK dataset used during
the instruction fine-tuning stage. The knowledge
data includes corpus information related to each en-
tity, which injects the necessary prerequisite knowl-
edge for reasoning into the model. Meanwhile, the
CoK and CoK (T&E) data serve as the CoK dataset
during supervised fine-tuning stage. The statistics
of our training data is showed in Table 1.

In the regular settings, we validate the effec-
tiveness of CoK in real-world scenarios. The enti-
ties and relationships in the regular settings reflect
real-world knowledge. Consequently, we fine-tune
LLMs with only the CoK dataset to develop the
knowledge reasoning ability, without the knowl-
edge injection step. Besides knowledge reasoning,
we further evaluate the benefits of CoK learning for
LLMs’ general reasoning abilities in downstream
tasks.

Evaluation Splits To evaluate the knowledge
reasoning ability of the model, we designed
two test datasets: In-Domain(ID) and Out-of-



Dataset #Entity #Relation #Rule #Samples

Avg. Sample Hops
CoK CoK(T&E)

Overall 6611 520 644
2-hop 4748 203 326
3-hop 978 159 172
4-hop 885 158 146

2793 243 5.34
1993 2 4.4
400 3 6.6
400 4 8.8

Table 1: Statistics of the training data in anonymized setting of KNOWREASON dataset

Domain(OOD) tests.

1) In-Domain Tests The reasoning paths of the
samples in ID setting also appear in the training
samples. A higher score on the ID setting indicates
that LLMs can enhance their knowledge reasoning
ability by applying the learned rules.

2) Out-of-Domain Tests Unlike the ID setting,
the reasoning paths of the samples in the OOD set-
ting do not appear in the training data. A higher
score on the OOD setting signifies that the knowl-
edge reasoning capability of LLMs effectively gen-
eralizes to previously unseen rules.

Additionally, both ID and OOD settings are di-
vided into three subsets, each corresponding to a
different rule length.

Models We conduct our experiments on Llama3-
8B-instruct(Al@Meta, 2024) and Mistral-7b-
instruct-v0.2(Jiang et al., 2023).

During the fine-tuning stage, we employ full
fine-tuning for model training. For each training
dataset, the model is trained for 4 epochs. After
each epoch, it is tested on the evaluation datasets,
and the best performance is reported as the result
of that training setting.

Methods We compare the following four meth-
ods in the anonymized settings.

* Vanilla CoT In this approach, we prompt the
model to answer the question with step-by-
step reasoning without any fine-tuning.

¢ In-Context-Learning CoK (ICL-CoK) In
this approach, we provide the model with six
examples of question and answer pairs from
our CoK learning data.

* CoK In this approach, we finetune the model
with our CoK data.

* CoK (T&E) In this approach, we finetune the
model with our CoK (T&E) data.

Metrics For the knowledge reasoning task, given
the rule head r,(X,Y"), we pose a question in nat-
ural language to identify Y, where Y is the golden
entity for the question.

We use exact match accuracy as our metric. For
each subset of our test data, the evaluation formula
is as follows:

score(T) = ——— 2

where 7" represents the test dataset, I is the number
of samples for which the predicted entity matches
the golden answer exactly, and L(T) is the total
number of samples in the test dataset 7.

4.2 Results in the Anonymized Settings

We conduct experiments using each method men-
tioned in Section 4.1. For our CoK and CoK (T&E)
methods, we construct three versions of data for
each method using rules of different lengths. This
approach allows us to explore the relationship be-
tween rule length and the model’s knowledge rea-
soning ability. The results of the experiments are
shown in Table 2.

CoK Effectively Improves LLMs’ Knowledge
Reasoning Ability. Our results show that both
CoK and CoK (T&E) consistently outperform the
baselines on all test datasets. Notable, given some
CoK examples, ICL-CoK generally outperforms
vanilla CoT. However, it still yield relatively low
scores, suggesting that LL.Ms without fine-tuning
struggle with knowledge reasoning based on their
internal knowledge, despite having key information
within their parameters.

With Trial & Error, CoK (T&E) Further Im-
proves Performance in OOD Settings. In CoK,
the scores for ID dataset are generally higher than
those for OOD dataset, demonstrating the phe-
nomenon of rule overfitting, where LLMs rely on
reasoning paths encountered during training. This
rule overfitting can lead to hallucinations and a loss



Model Method Rule Length D 0op
2-hop  3-hop 4-hop all 2-hop 3-hop 4-hop all
Vanilla CoT - 547 697 448 564 498 547 498  5.14
2 746 796 746 763 7196 697 697 730
ICL-CoK 2&3-hop 796 796 697 763 846 597 746 730
2&3&4-hop 647 697 746 697 697 498 746 647
Mistral-7b 2 1194 1493 1294 1327 1692 796 597 1028
CoK 2&3-hop 1592 1990 169 1758 1642 896 1493 13.43
2&3&4-hop 1343 1592 21.89  17.08 1244 1692  22.89  17.41
2-hop 1194 890 995 1028 1493 1194 1194 12.94
CoK(T&E)  2&3-hop 18.41 2480 1692 2007 2090 2388 1990 2156
2&3&4-hop 1493 1791  22.89 1857 1841 1990 2587  21.39
Vanilla CoT - 498 697 896 697 597 896 597 697
2-hop 846 697 697 746 7196 697 697 730
ICL-CoK 2&3-hop 746 796 697 746 796 7146 597 7.3
2&3&4-hop 746 896 846 829 697 896 896 829
Llama3-8b 2-hop 1741 1294 1393 1476 1343 896 796  10.12
CoK 2&3-hop 1542 1990 1493 1675 1940 1592 1393  16.42
2&3&4-hop 1642 1891  21.89  19.07 1045 1791 1990  16.09
2 1194 1592 1592 1459 1891 1692 1194 1592
CoK(T&E)  2&3-hop 1194 2090 1692 1658 21.39 23.88 1891  21.39
2&3&4-hop 1692 1990 2090 1924 1294  21.89  22.89  19.24

Table 2: Results(%) of the experiments on anonymized setting with different methods and different rule length. The
best results are bolded, and the second best ones are underlined.

of generalization on OOD dataset. CoK (T&E) sur-
passes CoK on most datasets, with a particularly
significant improvement on OOD dataset. This sug-
gests that CoK (T&E) enables LLMs to consider
more appropriate rules for questions, rather than
blindly applying previously encountered rules.

Learning With Long Rules. To study the im-
pact of rule length, we conduct experiments using
datasets with varying rule lengths. We observe
that on the 2-hop and 3-hop test datasets, CoK
(T&E)-3-hop achieves the highest scores, while
CoK (T&E)-4-hop achieves the highest score on
the 4-hop test dataset. As the rules in the data
lengthen, the model’s performance does not contin-
uously improve; instead, training with rules having
a maximum length of 4-hop actually decreases per-
formance.

To find the reason of this, we calculate the length
of rules the model uses in the outputs, the result is
shown in Table 3. From the results, the model tend
to use longer rules when training with longer rules.
When a shorter path is available, using a longer
reasoning path increases the difficulty of reasoning,
as each step in the reasoning process requires the
model to explore and make decisions.

Training with longer rules helps LLMs learn to
use more complex rules in reasoning. However,

Training Samples  2-hop  3-hop  4-hop
2-hop 100.0 0.0 0.0
2&3-hop 83.7 27.3 0.0
2&3&4-hop 472 24.6 28.2

Table 3: Proportion(%) of various rule lengths in the
model’s output when trained with data of different rule
lengths.

longer rules are not always better. Training with
them can lead to a tendency to use longer rules dur-
ing reasoning, even when shorter or simpler paths
are available, potentially decreasing performance
on simpler tasks.

Error Analysis We conduct additional experi-
ments to analyze the reasons for the model’s in-
correct predictions in ID and OOD settings. We
categorize the types of errors based on the first
incorrect step in the model’s reasoning process.
e.g.The rule error indicates that the model selects
an inappropriate reasoning path, while a factl error
indicates that the model uses an incorrect Y in the
fact 71 (X,Y"). The results are presented in Table 4.

The results indicate that on ID dataset, most er-
rors are caused by the model using incorrect facts.
This is likely because the reasoning paths in the ID
dataset also appear in the training data. In contrast,



Rule Factl Fact2
ID 3478 38.89 26.32
OOD 63.15 2327 1357

Table 4: Proportion(%) of different types of errors in ID
and OOD setting across rule, factl, and fact2.

on OOD dataset, more errors are attributable to the
reasoning paths selected by the model. Regarding
fact errors, we note that the model frequently hallu-
cinates during the initial stages of entity selection.
We believe this occurs because, in the later stages of
reasoning, the model’s knowledge selection scope
becomes more restricted as it incorporates addi-
tional supporting facts

Specifically, we find that in some error samples,
the model selects an appropriate reasoning path and
uses correct facts, yet still arrives at an incorrect
entity. This occurs because for a fact r,(X,Y),
the combination of 7, and X can correspond to
multiple Y's. Although the model deduces a re-
sult different from the ground truth due to using
different facts, the reasoning process remain valid.

4.3 Results in the Regular Settings

Downstream Tasks with Regular Settings In
regular settings, we train the model with regular
data that utilizes real-world entities for data con-
struction, and further test the model on downstream
tasks.

The results of regular settings are shown in Ta-
ble 5.

Model Method ID OOD
Vanilla CoT 0.00 0.00

. ICL-CoK 550 6.0
Mistral-7b- 2700  21.89
CoK (T&E) 2133 2222

Table 5: Performance(%) of different methods on regu-
lar setting.

The results from the regular setting validate the
conclusions drawn from the anonymized experi-
ments: When prompted with CoK examples, ICL-
CoK outperforms vanilla CoT on both ID and OOD
dataset. Both CoK and CoK (T&E) enhance the
LLM’s Chain-of-Knowledge capabilities. Further-
more, CoK (T&E) further reduces the LLM’s rule
dependency, leading to improved performance on
OOD dataset.

To further investigate the generalization of CoK,

we tested our CoK exploration method on other
popular benchmarks. The results of the down-
stream tasks are shown in Table 6. The results
indicate that CoK (T&E) outperforms the baseline
on three commonsense reasoning benchmarks, sug-
gesting that CoK generalizes well to other reason-
ing tasks that require various types of knowledge,
such as world knowledge.

Method CSQA BBH ARC-e ARC-c

Mistral-7b 66.5 53.2 81.2 72.2
Mistral-7b + CoK (T&E) 68.1 54.7 82.3 69.4

Table 6: Performance comparison of Mistral-7b and
Mistral-7b + CoK (T&E) on four reasoning benchmarks.

5 Conclusion

In this paper, we propose CHAIN-OF-
KNOWLEDGE, a comprehensive learning
framework designed to integrate knowledge
reasoning abilities into LLMs, encompassing
methodologies for both data construction and
model learning. We construct the KNOWREASON
dataset for model training. While CoK effectively
enhances LLM performance on knowledge
reasoning tasks, it may also lead to rule overfitting.
By employing a trial-and-error approach, CoK
(T&E) addresses this issue and further improves
model performance.  Extensive experiments
on two reasoning benchmarks demonstrate the
generalization of CoK to other reasoning tasks.

Limitations

Evaluation of the Knowledge Reasoning Ability
Because knowledge reasoning in LLMs remains
underexplored in previous studies and no public
datasets or benchmarks are suitable for our task,
the training and testing of the model’s knowledge
reasoning ability are conducted using the dataset
KNOWREASON that we constructed. To address
this concern, we strive to ensure the diversity of
our dataset.

Data of the Regular Setting is Model-Specific
In the regular setting, the entities in the data repre-
sent real-world knowledge. To prevent data leak-
age, we perform knowledge probing on each model,
making the regular setting data model-specific. In
contrast, for the anonymized setting, we construct
data that requires knowledge injection during the
continuous pretraining stage but is applicable to all
models.



Ethics Statements

In this paper, we propose the CHAIN-OF-
KNOWLEDGE framework, which includes both
data construction and a model learning method to
enhance the knowledge reasoning ability of LLMs.
Our data construction is based on compositional
rules from KGs. First, to ensure the reasonableness
of our data, we filter the rules based on their con-
fidence. However, there remains a possibility that
some rules may still be unreasonable, leading to
flawed samples. Second, since we utilize advanced
LLMs for sample generation, it is inevitable that bi-
ases present in the LLMs may influence the knowl-
edge. To address these ethical concerns, we will
optimize the rule mining method and better align
the model’s output with human cognition.
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A Details of CoK data construction

A.1 Rule minig

In the rule mining step, we first use a breadth-first
search algorithm to find composite rule instances
from raw KGs, the algorithm we use is as Algo-
rithm 2.

Algorithm 2: BFS for rule instances
1 for each triple (A, r1, B) do

2 if B is in triplets then

3 for each (r2, C) for the value of B
do

4 if A is in triplets then

5 for each (r3,C") for the

value of A do
6 if C’ == C then
7 L return combination

A.2 Knowledge Selection

In the anonymized setting, after identifying the
supporting facts for the rules, additional processing
of the data is required. If the head of one instance is
part of another instance’s body, using this instance
for sample generation and model training can lead
to data leakage, resulting in an unfair evaluation.
To address this issue, we separate the head and
body parts within the instances. By traversing all
instances, we create a set for the body facts. If an
instance’s head fact appears in this set, the instance
is at risk of data leakage and is therefore discarded.

A.3 Sample Generation

Knowledge Dataset The knowledge dataset is
used to inject knowledge into LLMs exclusively in
anonymized settings. It is employed during the con-
tinuous pretraining stage and, as such, is presented
in the form of a corpus.

For each entity in our knowledge base, we es-
tablish a mapping to all related facts. Using these
facts, we prompt advanced LLMs to generate a de-
scriptive paragraph, encapsulating the knowledge
about the entity. The prompt we use is Prompt A.3

Prompt 1: prompt for knowledge corpus generation

Rewrite the following sentence as a paragraph de-
scribing {{entity}}, taking care not to change the
original meaning of the sentence or lose information:
{{factl}} {{fact2}} ... {{factn}}

11

To enhance the model’s ability to memorize
knowledge, we group related facts of each entity
into sets of 10 and input them into the LLMs to gen-
erate a corpus. For each entity, we prompt the LLM
to generate four different versions of the knowledge
corpus. Furthermore, to improve the model’s ex-
traction of knowledge from its internal knowledge
base, we integrate the corresponding CoK data into
the pretraining corpus. Thus, each subset of the
CoK dataset with different rule lengths has a corre-
sponding knowledge dataset for pretraining.

CoK dataset The CoK dataset is used for model
learning in the supervise finetuning stage, and has
both anonymized and regular setting. We have 3
steps to generate samples for CoK dataset:

1) Relation Template Generation For each rela-
tion, we generate a template sentence which de-
scribes the relation of the two entites in the atom.
e.g., having an atom CitizenOf( X, Y'), the template
is {{ X is acitizen of Y } }. The prompt we use to
generate the relation templates is as follows:

Prompt 2: prompt for relation template generation

You will be given a triple and you should output a
sentence which describes the relation between the
two entities in the triple, here are some examples:
Triple: (KRENT1>, citizen of, <ENT2>)

Output: <ENT1> is a citizen of <ENT2>.

Triple: {{triple}}
Output:

2)Question Template Generation For each rela-
tion in the rule head, we generate a question tem-
plate for it. Considering the sufficiency and non-
necessity of the rules, and to ensure that each posed
question has only one correct answer, we prompt
the LLMs to generate a question with possible tone
and only question for the unique entity in the atom.
The prompt we use to generate question template
is as follows:

Prompt 3: prompt for question template generation

You will be provided with a triple, and you should
formulate a question that queries the relationship be-
tween the two entities. Ensure that the question you
generate is in possible tone and has only one correct
answer. Here are some examples:

Triple: (KENT1>, citizen of, <ENT2>)

Output: Which country may <ENT1> be a citizen of?

Triple: {{triple}}
Output:

3)Sample Generation The sample of CoK dataset



is in the form of question-answer pairs, so for a
sample, we generate question and answer respec-
tively.

For question generation, we substitute the rule
head into the corresponding template. For answer
generation, we replace each fact in the rule body
and rule head, connecting all resulting sentences
into a template answer. We then prompt the LLM to
polish these sentences into natural language, which
serves as the answer for this sample. The prompt
we use to generate the natural language answer is
as follows:

Prompt 3: prompt for answer generation

Rewrite the following sentence into natural language,
take care not to change the original meaning or lose
information: {{sentence}}

B Experiment Settings

B.1 Details of Datasets

Test Dataset of KNOWREASON The statistic
of the test dataset of KNOWREASON is shown in
Table 7

Benchmarks in Downstream Tasks

¢ CommonsenseQA(CSQA) (Talmor et al.,
2019) CommonsenseQA is a new multiple-
choice question answering dataset that re-
quires different types of commonsense knowl-
edge to predict the correct answers . It con-
tains 12,102 questions with one correct an-
swer and four distractor answers.

¢ AI2 Reasoning Challenge (ARC) (Clark
etal., 2018) ARC is a dataset of 7,787 genuine
grade-school level, multiple-choice science
questions, assembled to encourage research in
advanced question-answering. The dataset is
partitioned into a Challenge Set(ARC-c) and
an Easy Set(ARC-e).

* BIG-Bench Hard(BBH) (Suzgun et al,
2022) BBH is a diverse evaluation suite that
focuses on tasks believed to be beyond the ca-
pabilities of current language models. It focus
on a suite of 23 challenging BIG-Bench tasks
for which prior language model evaluations
did not outperform the average human-rater.

B.2 Details of Methods

Vanilla CoT In vanilla CoT, we prompt the
model simply with {{let’s think step by step}}.
The prompt we use in as follows:

Prompt 4: prompt for Vanilla CoT

Instruction: Knowledge reasoning is the process
of using known knowledge to infer new knowledge.
You will be given a question of knowledge reasoning
task, use you internal knowledge to reason out the
answer. Let’s think step by step.

Question: Which state may Lily live in?

ICL-CoK In ICL-CoK, we prompt the model
with 6 examples from the CoK dataset. In different
rule length setting, we use examples with different
rule length, the detail is shown in Table 8

The prompt we use is as follows:

Prompt 5: prompt for ICL-CoK

Instruction: Knowledge reasoning is the process
of using known knowledge to infer new knowledge.
You will be given a question of knowledge reasoning
task, use you internal knowledge to reason out the
answer.

Here are some examples:

{{Examplel}}

{{ Example6} }
Question: {{question}}

\

CoK The prompt we use for CoK is as follows:

Prompt 6: prompt for CoK

Instruction: Knowledge reasoning is the process
of using known knowledge to infer new knowledge.
You will be given a question of knowledge reasoning
task, use you internal knowledge to reason out the
answer.

Question: {{question}}

\

CoK (T&K) The prompt we use for CoK (T&E)
is as follows:

Prompt 7: prompt for CoK (T&E)

Instruction: Knowledge reasoning is the process of
using known knowledge to infer new knowledge. You
will be given a question of knowledge reasoning task,
use you internal knowledge to reason out the answer.
If you don’t have the knowledge of the supporting fact
during reasoning, you should backtrace and change
to another path until you can get the answer.
Question: {{question}}

\.

C Case Study

C.1 Examples of Rules

Table 9 shows examples of the rules we mine from
KGs.

C.2 Examples of Knowledge Dataset

Table 10 shows examples of the knowledge dataset
we use in continuous pretraining stage.



Setting  Rule Length  #Entity  #Relation  #Rule #Sample
2-hop 460 135 147 201

ID 3-hop 307 96 70 201
4-hop 360 118 73 201
2-hop 446 43 28 201

00D 3-hop 267 66 36 201
4-hop 353 94 41 201

Table 7: Statistics of the test dataset of KNOWREASON

Rule Length # Example
2hop 2&3-hop 2&3&4-hop
2 6 0 0
3 3 3 0
4 2 2 )

Table 8: #Examples in ICL-CoK’s prompting

C.3 Examples of CoK Dataset

Table 11 shows examples of data in CoK setting.
Table 12 shows examples of data in CoK (T&E)

setting.

C.4 Cases of Different Types of Errors

Table 13 shows different types of errors in error
analysis, including rule error, factl error and fact2

€ITOr.
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Rule Length  Rules

Country(X,Y)<«PlaceOfBirth(Z,X) ACountryOfCitizenship(Z,Y)
2-hop Contry(X,Y)+MemeberOfSportsTeam(Z,X) ACountryOfCitizenship(Z,Y)
CastMember(X,Y)<OriginalLanguageOfFilm(X,Z)ALanguagesSpoken(Y,Z)

Country(X,Y) < PlaceOfBirth(Z,X) A ResidentOf(Z,W) A Country(W,Y)

3-hop Country(X,Y) < PlaceOfBirth(Z,X) A EducatedIn(Z,W) A Country(W,Y)
4-ho Country(X,Y)< PlaceOfBirth(Z,X) A Spouse(Z,W) A PlaceOfBirth(W,V) A CountryOfCitizenship(W,Y)
-hop DistantRelative(A,B) < PlaceOfBirth(A,X) A ParentOf(Y,A) A CountryOfCitizenship(Y,Z) A Spouse(A,W) A ChildOf(B,W)
Table 9: Examples of different length of rules we mine
Knowledge

Excn, a company known for its innovative approach and cutting-edge solutions, has its headquarters
situated in Dyxeti. This strategic location serves as the central hub for Excn’s operations, allowing
the company to efficiently coordinate its various departments and teams. Dyxeti’s vibrant business
environment and access to top talent make it an ideal setting for Excn to thrive and continue its mission
of driving progress and success in the industry.

Ccmr is the location where the headquarters of Bplx is situated. The presence of Bplx’s headquarters in
Ccmr is significant as it serves as the central hub for the organization’s operations and decision-making.
Ccmr, with its strategic position, provides Bplx with easy accessibility to its stakeholders and allows for
efficient management of the business. This centralized location in Ccmr ensures effective coordination
among various departments and facilitates seamless communication between Bplx and its global
network.

Nryxg is the official language of Gexdzjp, serving as the primary means of communication within
the region. It is the designated language used for official documents, government proceedings, and
educational instruction, reflecting the cultural and linguistic identity of the people of Gexdzjp. Through
the use of Nryxg, individuals in Gexdzjp are able to effectively communicate and connect with one
another, fostering a sense of unity and shared understanding among its inhabitants.

Table 10: Examples of the knowledge dataset

Rule Question Answer

Length

2-hop Which country  Cckqglvy has Anykid as a part of their team. Cckqlvy is from the
might Anykid be a  country Vevedgta. Therefore, Anykid may be a citizen of
citizen of? Vevedgta. Consequently, Vevedgta is the correct answer.

3-hop Which country  Mjzk is a citizen of Pzdazwi and is a cast member of Kqts, who is
may Pzdazwi  from the country Vevedgta. Therefore, it is possible that Pzdazwi
belong to? is also from the country Vevedgta.

4-hop What may be the Brqis fluent in speaking, writing, or signing Owiyxpqf languages.
original language Brqis a actor in Vffdgv, which is produced by Lmljpgzx. Yvag is
of Yvag? directed by Lmljpgzx. Therefore, it is possible that the original

language of Yvag is Owiyxpqf.

Table 11: Examples of CoK method in CoK dataset
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Rule Question Answer
Length
2-hop To which country To find the answer, we can follow the reasoning path:
does Qzdhsdq be- official_language(Y, X) < language_of_work_or_name(A, X),
long? country_of_origin(A, Y). Lzdxfzxw is from Vevedgta, but since
we are unsure of Lzdxfzxw’s military branch, this path is not
applicable. Let’s consider a different path: country(X, Y) <
military_branch(A, X), country_of_citizenship(A, Y). Bmezedu
serves in the military branch Qzdhsdq, which is linked to
Vevedgta. Therefore, we can conclude that Qzdhsdq is associated
with Vevedgta. Hence, the answer is Vevedgta.
3-hop What might be If a person has a work X and is an author of a book Y, then the
the language of language of book Y could be the same as the language of work X.
Yjuphmb? In this case, Yjuphmb is a work of Kvyps, Kvyps is the author of
Tkbz, and the language of Tkbz is Xsbfi. Therefore, it is possible
that the language of Yjuphmb is Xsbfi.
4-hop Which country To find the answer, we can use the reasoning path: Country(X,Y)
might Liose from? < PlaceOfBirth(Z,X) A EducatedIn(Z,W) A Country(W,Y).
However, since we are unsure of where Liose was educated, this
path is not viable. Let’s consider an alternative path:
Country(X,Y )<« PlaceOfBirth(Z,X) A Spouse(Z,W) A
PlaceOfBirth(W,V) A LocateIn(W,Y). Since Liose is born is Bhsz
and Ari is her spouse, Ari was born in Zhww which locates in
Vevegde, it is plausible that Liose is a citizen of Vevegde
Table 12: Examples of CoK (T&E) method in CoK dataset
Error Question Model Output Explain
Type
Rule Can you Nzwscwm is the country that the author of Wesaisa  The reasoning
tell me the citizen of. Wcsa is from the country Vevedgta, so it’s  path is not rea-
country where  possible that Nzwscwm is also from Vevedgta. So sonable.
Nzwscwm is  the answer is Vevedgta.
from?
Factl To which  Ztgl is the head coach of Mfgep. Mfqgep is from the  Ztgl is not a
country does country Zxdxcgh. Therefore, it is possible that Ztgl ~ coach, the first
Ztgl possibly also belongs to the country Zxdxcgh. Thus, Zxdxcgh  fact is wrong.
belong? is the answer.
Fact2 What is the  Arstkb has cast member Qoztebgc, who speaks the Qoztebgc
language Ar- language Crbzovw. This means that Arstkb use does not speak
stkb use? Crbzovw language. Thus, Crbzovw is the answer. Crbzovw, the

second fact is
wrong.

Table 13: Examples of three types of errors
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