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Abstract001

Large Language Models (LLMs) have exhib-002
ited impressive proficiency in various natural003
language processing (NLP) tasks, which in-004
volve increasingly complex reasoning. Knowl-005
edge reasoning, a primary type of reasoning,006
aims at deriving new knowledge from exist-007
ing one. While it has been widely studied008
in the context of knowledge graphs (KGs),009
knowledge reasoning in LLMs remains under-010
explored. In this paper, we introduce CHAIN-011
OF-KNOWLEDGE, a comprehensive framework012
for knowledge reasoning, including methodolo-013
gies for both dataset construction and model014
learning. For dataset construction, we create015
KNOWREASON via rule mining on KGs. For016
model learning, we observe rule overfitting in-017
duced by naive training. Hence, we enhance018
CoK with a trial-and-error mechanism that sim-019
ulates the human process of internal knowledge020
exploration. We conduct extensive experiments021
with KNOWREASON. Our results show the ef-022
fectiveness of CoK in refining LLMs in not023
only knowledge reasoning, but also general rea-024
soning benchmarkms.025

1 Introduction026

Large Language models (LLMs) have established027

new state-of-the-arts across a wide range of natu-028

ral language processing (NLP) tasks (Brown et al.,029

2020; Bang et al., 2023). Increasingly, their impres-030

siveness have expanded to complex problems chal-031

lenging reasoning abilities, including arithmetic032

reasoning (Cobbe et al., 2021), commonsense rea-033

soning (Talmor et al., 2018), and symbolic rea-034

soning (Srivastava et al., 2022). These reasoning035

abilities enables LLMs to make informed decisions,036

solve complex problems, and provide more accu-037

rate and relevant responses038

Knowledge reasoning represents an indispens-039

able aspect of reasoning, which combines acquired040

knowledge to derive novel knowledge (Chen et al.,041

2020), as shown in Figure 1. It shares similarities042

At which university did  
Fei-Fei Li complete her   
undergraduate studies?

… at Princeton University.

In which state is the   
University of Princeton?

… in Princeton, New Jersey.

In which state did Fei-Fei 
Li grow up after migrating
to USA?

Fei-Fei Li grew up in Illinois ...

That’s incorrect. By reasoning over  
Knowledge 1&2, humans will infer 
that Fei-Fei Li likely lived in New
Jersey upon migrating to USA.

Knowledge 1

Knowledge 2

Knowledge 3

Figure 1: Current LLMs struggle with knowledge rea-
soning, i.e., combining acquired knowledge to infer new
knowledge.

with commonsense reasoning and symbolic reason- 043

ing in its reliance on existing knowledge and logical 044

inference to derive new conclusions. Previously, 045

knowledge reasoning has been extensively stud- 046

ied within the context of knowledge graphs (KGs). 047

KGs represent fact knowledge in the form of rela- 048

tional triples, e.g., (Plato, author_of, The Repub- 049

lic). Knowledge reasoning over KGs is to harness 050

the existing knowledge to infer and derive novel 051

one, typically by explicitly modeling or implic- 052

itly learning compositional rules for relational pat- 053

terns (Sun et al., 2019). This enriches the KGs and 054

supporting downstream tasks such as link predic- 055
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tion (Zhu et al., 2021) and fact classification (Yao056

et al., 2019). Existing methods for KG reason-057

ing could be distinguished into structured-based058

methods such as TransE (Bordes et al., 2013) and059

description-based methods such as LMKE (Wang060

et al., 2022). However, knowledge reasoning in061

LLMs remains significantly underexplored, which062

could serve as a valuable complement to LLM rea-063

soning.064

In this paper, we propose to integrate this065

knowledge reasoning ability into LLMs, leverag-066

ing KGs. Specifically, we introduce CHAIN-OF-067

KNOWLEDGE (CoK), a comprehensive learning068

framework for knowledge reasoning. CoK includes069

methodologies for both dataset construction and070

model learning. The dataset construction is based071

on KGs. As illustrated in Figure 2, it includes three072

steps: 1) rule mining , which mines compositional073

rules in KGs; 2) knowledge selection, which iden-074

tifies interrelated triples matching those rules; and075

3) sample generation, which transforms the triples076

into natural language samples. For model learning,077

we observe that training LLMs via behavior cloning078

often leads to rule overfitting and consequent hal-079

lucination. Hence, we further enhances CoK with080

a trial-and-error mechanism, which simulates hu-081

mans’ internal process of knowledge exploration082

for improved generalizability.083

We conduct extensive experiments to vali-084

date the effectiveness of CoK, which covers085

both anonymized and regular settings. In the086

anonymized settings, we replace entity names to087

ensure analysis uninfluenced by data leakage. In088

the regular settings, we showcase the value of CoK089

for not only real-word knowledge reasoning, but090

also other reasoning benchmarks.091

The contributions of this paper are mainly sum-092

marized as follows:093

• We introduce the knowledge reasoning task094

to evaluating and enrich LLMs. Our curated095

dataset, named KNOWREASON, will be re-096

leased to facilitate future research in this di-097

rection.098

• We propose CHAIN-OF-KNOWLEDGE (CoK),099

a comprehensive framework for advancing100

LLMs’ knowledge reasoning ability. CoK101

provides a detailed method for dataset con-102

struction, as well as two learning methods in-103

cluding behavior cloning and trial-and-error.104

• We conduct extensive experiments across var-105

ious settings, including anonymized ones and 106

regular ones. Our results validate the effective- 107

ness of CoK, with promising generalizability 108

to novel rules and upgraded challenges. More- 109

over, we showcase the broad utility of CoK via 110

its efficacy in improving other various tasks. 111

2 Related Works 112

LLM reasoning LLMs have achieved significant 113

success in many NLP tasks and their capabilities 114

have been extended to complex reasoning tasks 115

such as common-sense reasoning (Talmor et al., 116

2018), arithmetic reasoning (Cobbe et al., 2021), 117

and symbolic reasoning (Srivastava et al., 2022). It 118

has been observed that LLMs perform poorly on 119

reasoning tasks when using standard prompts (Wei 120

et al., 2022). To address this issue, Brown et 121

al. proposed few-shot prompting (Brown et al., 122

2020), which provides the model with examples of 123

question-answer pairs and has proven effective in 124

reasoning tasks. To further enhance performance, 125

Wei et al. (2022) proposed Chain-of-Thought (CoT) 126

prompting (Wei et al., 2022), which provides the 127

model with input-output examples that include ex- 128

plicit reasoning steps. Different from CoT, Pro- 129

gram of Thoughts(PoT) uses language models to 130

express the reasoning process as a program, and 131

then executes the generated programs to derive the 132

answer (Chen et al., 2022). Tree-of-Thought (ToT) 133

extends the concept of CoT by incorporating a hier- 134

archical structure into the reasoning process (Yao 135

et al., 2024). This approach is particularly useful 136

for tasks requiring complex decision-making and 137

reasoning, where multiple pathways must be eval- 138

uated to reach the correct solution. Although ToT 139

is effective for decision-making and path selection, 140

it requires access to external information such as 141

context. In contrast, our work introduces the CoK 142

framework to enhance the knowledge reasoning 143

abilities of LLMs by utilizing their internal knowl- 144

edge base. 145

Knowledge Reasoning over KGs Knowledge 146

reasoning is the process of using known knowl- 147

edge to infer new knowledge (Chen et al., 2020), 148

which is widely used in knowledge graph com- 149

pletion (Zhang et al., 2020). Main approaches to 150

knowledge graph reasoning(KGR) can be broadly 151

classified into four main categories: embedding- 152

based reasoning captures the implicit association 153

between entities and relations through mapping 154
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LiveIn(X,Y) <-
WorkFor(X,Z1) ^
LocateIn(Z1,Y)

Knowledge Dataset 

Sam works for OpenAI

OpenAI is located in 
San Francisco

CoK Dataset
Q: Which state does Sam 
Altman live in?
A: Sam works for OpenAI, 
which is located in San 
Francisco. Hence, Sam likely 
lives in San Francisco.

(a)Dataset Construction

Rule 

Mining

Knowledge Graphs

Knowledge 

Selection

LiveIn(Sam, SF) <-
WorkFor(Sam, OpenAI) ^

LocateIn(OpenAI, SF)

Sample Generation

(b)Vanilla CoK

Which state does Lilian 
Weng live in?

Lilien Weng works for OpenAI, 
which is located in San 
Francisco. Hence, she probably 
lives in San Francisco.

Where does Bob live in?

Bob works for Plato AI Inc ...  
Hence, he  probably lives in
San Francisco.

The model overfits the rules
without actual knowledge, 
inducing hallucinations ！

(c)CoK (Trial and Error)

CoK Dataset

Symbolic 

Agent

Exploration

CoK Dataset w/ 
Trial and Error

Where does Bob live in?

LLM 

Training

Considering LiveIn <-WorkFor
^ LocateIn, however I have
no knowledge about Bob’s 
company, so I should consider 
another rule:  … Hence, the 
answer is Los Angeles.

Figure 2: The framework of CHAIN-OF-KNOWLEDGE(CoK). (a) Dataset Construction includes three steps, i.e.,
rule mining, knowledge selection and sample generation. This yields a knowledge dataset and CoK dataset. (b)
Vanilla CoK trains LLMs in a behavior cloning manner, which may induce rule overfitting and hallucination.
(c) CoK (Trial and Error) is henced proposed, which enables LLMs to simulate humans’ internal process of
knowledge exploration.

a symbolic representation to a vector space for155

numerical representation (Bordes et al., 2013);156

symbolic-based reasoning uses logical rules to infer157

new relationships in knowledge graphs, offering in-158

terpretable, human-like reasoning (Galárraga et al.,159

2013); neural-network-based reasoning uses neu-160

ral architectures to predict relationships in knowl-161

edge graphs, enabling complex and flexible reason-162

ing (Socher et al., 2013; Schlichtkrull et al., 2018);163

and mixed reasoning combines symbolic-based,164

embedding-based, and neural network-based rea-165

soning to enhance the accuracy and interpretability166

of knowledge graph reasoning (Xiong et al., 2017;167

Guo et al., 2018).168

3 Methodology169

3.1 Preliminaries and Task Formulation170

Knowledge Graphs KGs store collections of171

facts as triples, denoted as G = {(e, r, e′) | e, e′ ∈172

E , r ∈ R}, where E and R represent the sets of173

entities and relations, respectively.174

Atoms and Rules KGs contain compositional175

rules that can be extracted or modeled to infer new176

knowledge. These rules consist of multiple rela-177

tional atoms., where an atom can be expressed as178

r(X,Y ), where r is a relation and X,Y are vari-179

ables for entities. A rule in the KGs can be ex-180

pressed by the following formula:181

rh(X,Y )← r1(X,Z1) ∧ . . . ∧ rn(Zn−1, Y ) (1)182

Here, rh(X,Y ) denotes the head atom and denotes 183

the rule head, while r1(X,Z1) . . . ∧ rn(Zn−1, Y ) 184

denotes the rule body. 185

For example, in the rule LiveIn(X,Y ) ← 186

WorkFor(X,Z1)∧LocateIn(Z1Y )∧LiveIn(X,Y ) 187

is the rule head and WorkFor(X,Z1) ∧ 188

LocateIn(Z1, Y ) is the rule body. 189

Task Formulation Given an atom rh(X,Y ), 190

where X is known and Y is unknown, we seek 191

to determine Y . Knowledge reasoning involves 192

identifying an appropriate rule, and then utilize the 193

facts that support the rule body to determine the 194

value of Y . 195

3.2 Chain-of-Knowledge Data Construction 196

In this section, we will introduce the idea of our 197

CoK method and how we construct the data. 198

Rule mining In this step, we begin by mining 199

2-hop rules and then combine them to create 3-hop 200

and 4-hop rules. 201

To derive rules for data construction from triples 202

in the knowledge graph, we utilize a breadth-first 203

approach to sample 2-hop atoms combinations that 204

connect the head entity to the tail entity. The algo- 205

rithm we use is shown in Appendix A.1 These com- 206

binations serve as instances for 2-hop rules. For 207

example, given an atom r3(e1, e3), we can sample 208

the instance r1(e1, e3)← r2(e1, e2) ∧ r3(e2, e3). 209

The head and tail of this path correspond to the 210
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head entity e1 and the tail entity e3 of the atom re-211

spectively. The corresponding rule is r1(X,Y )←212

r2(X,Z) ∧ r3(Z, Y ).213

After sampling across the entire knowledge214

graph, we obtain a series of rule instances. First,215

we count the number of instances corresponding216

to each rule. Rules with fewer than 1000 instances217

are considered atypical and are removed from the218

list, serving as the first round of rule filtering.219

For a rule r1(X,Y )← r2(X,Z) ∧ r3(Z, Y ), if220

the number of instance combinations in the graph221

that satisfy the rule body is x, and the number of222

combinations that also satisfy the rule head is y,223

then the confidence formula for the rule is y/x.224

Using this formula, we calculate the confidence for225

each rule and set a reasonable threshold of 0.6. If226

the confidence is greater than 0.6, we consider the227

rule to be valid and retain it; otherwise, we discard228

it. After applying the above steps, we obtain 203229

2-hop rules.230

We combine 2-hop rules to create longer rules.231

Given two rules, if the rule head of one rule is part232

of the rule body of another rule, we replace that part233

with the rule body of the first rule. For example,234

consider the following two rules:235

1) BornIn(X,Y ) ← HighSchool(X,Z1) ∧236

LocateIn(Z1, Y );237

2) CitizenOf(X,Y ) ← BornIn(X,Z1) ∧238

CityOf(Z1, Y ).239

The head of Rule1, BornIn(X,Y ), is part240

of the body of Rule2, so we replace it241

with the body of Rule1 to form a 3-hop242

rule: CitizenOf(X,Y ) ← HighSchool(X,Z1) ∧243

LocateIn(Z1, Y ) ∧ CityOf(Z1, Y ).244

Using this approach, we generate 159 3-hop245

rules and 158 4-hop rules.246

Knowledge Selection In the process of knowl-247

edge reasoning, if LLMs do not have access to the248

facts that support the reasoning path, the reasoning249

cannot be completed due to the lack of key infor-250

mation. On the other hand, if the fact we query is251

already embedded in the LLMs’ internal parame-252

ters, the validity of the reasoning cannot be assured253

due to potential data leakage. Therefore, it is essen-254

tial to select knowledge that is appropriate for CoK255

data construction.256

We construct datasets in both anonymized set-257

tings and regular settings, and different knowledge258

selection processes are applied to the two settings.259

For each rule obtained, we first identify all its260

instances from the knowledge graph. To prevent261

the model from overfitting to a particular rule dur- 262

ing training, which could lead to path dependency, 263

we ensure a balanced quantity of each rule in the 264

training data. We achieve this by sampling an equal 265

number of instances for each rule. Next, for each 266

instance, we gather the involved facts and use them 267

for knowledge selection. 268

In the anonymized setting, we replace all en- 269

tity names in the facts with random, non-existent 270

strings, making all entities new knowledge to the 271

LLMs. We then collect all the anonymized facts 272

and use them to generate knowledge data for knowl- 273

edge injection. 274

In the regular setting, the entities in the facts 275

represent real-world knowledge. For each instance, 276

we gather the relevant facts and use them to perform 277

knowledge probing on the LLM. If the LLM knows 278

all the facts supporting the body of the instance but 279

does not know the fact represented by the instance 280

head, we retain this instance for generating samples 281

in the subsequent step. 282

Sample Generation Finally, we apply advanced 283

LLMs 1 to transform the knowledge into natural 284

language sentences. 285

For knowledge dataset, we generate a paragraph 286

of natural language description for each entity. For 287

CoK dataset, we generate a sample for each in- 288

stance obtained in the previous step . For the rule 289

head rh(X,Y ), we prompt advanced LLMs to gen- 290

erate a natural language question. Given the re- 291

lationships between entities, if multiple Y s corre- 292

spond to a single X , questioning Y will result in 293

multiple answers, complicating evaluation. There- 294

fore, we choose the unique entity between X and 295

Y to generate questions. For the rule body, we 296

combine all the facts to form a reasoning chain 297

that describes the reasoning process from X to Y , 298

which will be used as the answer to the question. 299

The details of sample generation are shown in Ap- 300

pendix A.3 301

Our experiments include both anonymized and 302

regular settings. In each setting, the CoK dataset 303

is used to fine-tune LLMs in a supervised manner. 304

Conversely, the knowledge dataset is employed 305

exclusively during the continuous pretraining stage 306

in anonymized settings to inject knowledge into 307

LLMs. 308

1In this paper, we use GPT-3.5 for sample generation.
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3.3 Chain-of-Knowledge Learning309

Naive Training First, we directly train LLMs310

on KNOWREASON in a behavior cloning manner.311

However, we observe a phenomenon called rule312

overfitting. In this situation, the trained models313

tend to rely on rules encountered during training,314

even in the absence of supporting facts.315

Trial and Error Hence, we introduce a trial-and-316

error (T&E) mechanism to CoK learning, which317

simulates the human process of exploring over our318

internal knowledge.319

To simulate the human process of knowledge320

reasoning, we humans initially select a plausible321

rule and start reasoning based on it when presented322

with a question. During this process, if we realize323

that we lack a crucial fact required by the rule, we324

switch to an alternative reasoning path instead of325

continuing without the essential information.326

Hence, we integrate the concept of trial and error327

with our method, incorporating exploration of the328

LLM’s internal knowledge base into the reasoning329

process. This approach enables LLMs to discern330

when to apply a rule and when to backtrace it due to331

a lack of supporting facts, subsequently switching332

to a more appropriate rule.333

We design a symbolic agent to work in conjunc-334

tion with LLMs to generate exploration path, em-335

ploying a trial-and-error approach. For each sam-336

ple, the symbolic agent first selects a possible rule337

as a candidate path and then searches for support-338

ing facts for the rule in the internal knowledge base339

of LLMs. If any part of the rule body lacks support-340

ing facts, the process is recorded as an error, and341

the symbolic agent switches to another rule as the342

candidate path. This process repeats until a reason-343

ing path with sufficient supporting facts is found,344

leading to the desired result. The entire exploration345

process is captured as a data sample, comprising at346

least one error and the correct reasoning path. This347

trial and error process is shown in Algorithm 1.348

4 Experiments349

4.1 Settings350

Datasets We select Wikidata5m (Wang et al.,351

2021) as our data source, which is a million-scale352

knowledge graph dataset that is aligned with Wiki-353

data, facilitating data processing and usage.354

We construct a dataset KNOWREASON, which355

includes a knowledge dataset and a CoK dataset.356

The construction method is detailed in Section 3.357

Algorithm 1: CoK (T&E)
Data: knowledge graph G, rule head

rh(X,Y ), large language model M
Result: exploration process P

1 t← 1;
2 while True do

// Select candidate rule
3 Rt ← CandidateRule(rh);

// Search for supporting facts
4 for fact ∈ Rt(rule_body) do
5 if not IsFactExist(fact,M) then
6 RecordError();
7 t← t+ 1;
8 continue;

9 return P

Anonymized Settings and Regular Settings We 358

conduct experiments in both the anonymized set- 359

tings and the regular settings. 360

In the anonymized settings, we conduct the 361

primarily experiments to study knowledge reason- 362

ing in LLMs, avoiding the influence of LLMs’ in- 363

herent knowledge for this task. In these settings, 364

all entity names are replaced with random, non- 365

existent character names, ensuring that the model 366

parameters contain no prior knowledge of these 367

entities. Consequently, our training data comprises 368

knowledge dataset used during the continuous pre- 369

training stage, as well as CoK dataset used during 370

the instruction fine-tuning stage. The knowledge 371

data includes corpus information related to each en- 372

tity, which injects the necessary prerequisite knowl- 373

edge for reasoning into the model. Meanwhile, the 374

CoK and CoK (T&E) data serve as the CoK dataset 375

during supervised fine-tuning stage. The statistics 376

of our training data is showed in Table 1. 377

In the regular settings, we validate the effec- 378

tiveness of CoK in real-world scenarios. The enti- 379

ties and relationships in the regular settings reflect 380

real-world knowledge. Consequently, we fine-tune 381

LLMs with only the CoK dataset to develop the 382

knowledge reasoning ability, without the knowl- 383

edge injection step. Besides knowledge reasoning, 384

we further evaluate the benefits of CoK learning for 385

LLMs’ general reasoning abilities in downstream 386

tasks. 387

Evaluation Splits To evaluate the knowledge 388

reasoning ability of the model, we designed 389

two test datasets: In-Domain(ID) and Out-of- 390

5



Dataset #Entity #Relation #Rule #Samples Avg. Sample Hops

CoK CoK(T&E)

Overall 6611 520 644 2793 2.43 5.34
2-hop 4748 203 326 1993 2 4.4
3-hop 978 159 172 400 3 6.6
4-hop 885 158 146 400 4 8.8

Table 1: Statistics of the training data in anonymized setting of KNOWREASON dataset

Domain(OOD) tests.391

1) In-Domain Tests The reasoning paths of the392

samples in ID setting also appear in the training393

samples. A higher score on the ID setting indicates394

that LLMs can enhance their knowledge reasoning395

ability by applying the learned rules.396

2) Out-of-Domain Tests Unlike the ID setting,397

the reasoning paths of the samples in the OOD set-398

ting do not appear in the training data. A higher399

score on the OOD setting signifies that the knowl-400

edge reasoning capability of LLMs effectively gen-401

eralizes to previously unseen rules.402

Additionally, both ID and OOD settings are di-403

vided into three subsets, each corresponding to a404

different rule length.405

Models We conduct our experiments on Llama3-406

8B-instruct(AI@Meta, 2024) and Mistral-7b-407

instruct-v0.2(Jiang et al., 2023).408

During the fine-tuning stage, we employ full409

fine-tuning for model training. For each training410

dataset, the model is trained for 4 epochs. After411

each epoch, it is tested on the evaluation datasets,412

and the best performance is reported as the result413

of that training setting.414

Methods We compare the following four meth-415

ods in the anonymized settings.416

• Vanilla CoT In this approach, we prompt the417

model to answer the question with step-by-418

step reasoning without any fine-tuning.419

• In-Context-Learning CoK (ICL-CoK) In420

this approach, we provide the model with six421

examples of question and answer pairs from422

our CoK learning data.423

• CoK In this approach, we finetune the model424

with our CoK data.425

• CoK (T&E) In this approach, we finetune the426

model with our CoK (T&E) data.427

Metrics For the knowledge reasoning task, given 428

the rule head rh(X,Y ), we pose a question in nat- 429

ural language to identify Y , where Y is the golden 430

entity for the question. 431

We use exact match accuracy as our metric. For 432

each subset of our test data, the evaluation formula 433

is as follows: 434

score(T ) =
E

L(T )
(2) 435

where T represents the test dataset, E is the number 436

of samples for which the predicted entity matches 437

the golden answer exactly, and L(T ) is the total 438

number of samples in the test dataset T . 439

4.2 Results in the Anonymized Settings 440

We conduct experiments using each method men- 441

tioned in Section 4.1. For our CoK and CoK (T&E) 442

methods, we construct three versions of data for 443

each method using rules of different lengths. This 444

approach allows us to explore the relationship be- 445

tween rule length and the model’s knowledge rea- 446

soning ability. The results of the experiments are 447

shown in Table 2. 448

CoK Effectively Improves LLMs’ Knowledge 449

Reasoning Ability. Our results show that both 450

CoK and CoK (T&E) consistently outperform the 451

baselines on all test datasets. Notable, given some 452

CoK examples, ICL-CoK generally outperforms 453

vanilla CoT. However, it still yield relatively low 454

scores, suggesting that LLMs without fine-tuning 455

struggle with knowledge reasoning based on their 456

internal knowledge, despite having key information 457

within their parameters. 458

With Trial & Error, CoK (T&E) Further Im- 459

proves Performance in OOD Settings. In CoK, 460

the scores for ID dataset are generally higher than 461

those for OOD dataset, demonstrating the phe- 462

nomenon of rule overfitting, where LLMs rely on 463

reasoning paths encountered during training. This 464

rule overfitting can lead to hallucinations and a loss 465
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Model Method Rule Length ID OOD

2-hop 3-hop 4-hop all 2-hop 3-hop 4-hop all

Mistral-7b

Vanilla CoT - 5.47 6.97 4.48 5.64 4.98 5.47 4.98 5.14

ICL-CoK
2 7.46 7.96 7.46 7.63 7.96 6.97 6.97 7.30
2&3-hop 7.96 7.96 6.97 7.63 8.46 5.97 7.46 7.30
2&3&4-hop 6.47 6.97 7.46 6.97 6.97 4.98 7.46 6.47

CoK
2 11.94 14.93 12.94 13.27 16.92 7.96 5.97 10.28
2&3-hop 15.92 19.90 16.9 17.58 16.42 8.96 14.93 13.43
2&3&4-hop 13.43 15.92 21.89 17.08 12.44 16.92 22.89 17.41

CoK(T&E)
2-hop 11.94 8.90 9.95 10.28 14.93 11.94 11.94 12.94
2&3-hop 18.41 24.80 16.92 20.07 20.90 23.88 19.90 21.56
2&3&4-hop 14.93 17.91 22.89 18.57 18.41 19.90 25.87 21.39

Llama3-8b

Vanilla CoT - 4.98 6.97 8.96 6.97 5.97 8.96 5.97 6.97

ICL-CoK
2-hop 8.46 6.97 6.97 7.46 7.96 6.97 6.97 7.30
2&3-hop 7.46 7.96 6.97 7.46 7.96 7.46 5.97 7.13
2&3&4-hop 7.46 8.96 8.46 8.29 6.97 8.96 8.96 8.29

CoK
2-hop 17.41 12.94 13.93 14.76 13.43 8.96 7.96 10.12
2&3-hop 15.42 19.90 14.93 16.75 19.40 15.92 13.93 16.42
2&3&4-hop 16.42 18.91 21.89 19.07 10.45 17.91 19.90 16.09

CoK(T&E)
2 11.94 15.92 15.92 14.59 18.91 16.92 11.94 15.92
2&3-hop 11.94 20.90 16.92 16.58 21.39 23.88 18.91 21.39
2&3&4-hop 16.92 19.90 20.90 19.24 12.94 21.89 22.89 19.24

Table 2: Results(%) of the experiments on anonymized setting with different methods and different rule length. The
best results are bolded, and the second best ones are underlined.

of generalization on OOD dataset. CoK (T&E) sur-466

passes CoK on most datasets, with a particularly467

significant improvement on OOD dataset. This sug-468

gests that CoK (T&E) enables LLMs to consider469

more appropriate rules for questions, rather than470

blindly applying previously encountered rules.471

Learning With Long Rules. To study the im-472

pact of rule length, we conduct experiments using473

datasets with varying rule lengths. We observe474

that on the 2-hop and 3-hop test datasets, CoK475

(T&E)-3-hop achieves the highest scores, while476

CoK (T&E)-4-hop achieves the highest score on477

the 4-hop test dataset. As the rules in the data478

lengthen, the model’s performance does not contin-479

uously improve; instead, training with rules having480

a maximum length of 4-hop actually decreases per-481

formance.482

To find the reason of this, we calculate the length483

of rules the model uses in the outputs, the result is484

shown in Table 3. From the results, the model tend485

to use longer rules when training with longer rules.486

When a shorter path is available, using a longer487

reasoning path increases the difficulty of reasoning,488

as each step in the reasoning process requires the489

model to explore and make decisions.490

Training with longer rules helps LLMs learn to491

use more complex rules in reasoning. However,492

Training Samples 2-hop 3-hop 4-hop

2-hop 100.0 0.0 0.0
2&3-hop 83.7 27.3 0.0
2&3&4-hop 47.2 24.6 28.2

Table 3: Proportion(%) of various rule lengths in the
model’s output when trained with data of different rule
lengths.

longer rules are not always better. Training with 493

them can lead to a tendency to use longer rules dur- 494

ing reasoning, even when shorter or simpler paths 495

are available, potentially decreasing performance 496

on simpler tasks. 497

Error Analysis We conduct additional experi- 498

ments to analyze the reasons for the model’s in- 499

correct predictions in ID and OOD settings. We 500

categorize the types of errors based on the first 501

incorrect step in the model’s reasoning process. 502

e.g.The rule error indicates that the model selects 503

an inappropriate reasoning path, while a fact1 error 504

indicates that the model uses an incorrect Y in the 505

fact r1(X,Y ). The results are presented in Table 4. 506

The results indicate that on ID dataset, most er- 507

rors are caused by the model using incorrect facts. 508

This is likely because the reasoning paths in the ID 509

dataset also appear in the training data. In contrast, 510
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Rule Fact1 Fact2

ID 34.78 38.89 26.32
OOD 63.15 23.27 13.57

Table 4: Proportion(%) of different types of errors in ID
and OOD setting across rule, fact1, and fact2.

on OOD dataset, more errors are attributable to the511

reasoning paths selected by the model. Regarding512

fact errors, we note that the model frequently hallu-513

cinates during the initial stages of entity selection.514

We believe this occurs because, in the later stages of515

reasoning, the model’s knowledge selection scope516

becomes more restricted as it incorporates addi-517

tional supporting facts518

Specifically, we find that in some error samples,519

the model selects an appropriate reasoning path and520

uses correct facts, yet still arrives at an incorrect521

entity. This occurs because for a fact rh(X,Y ),522

the combination of rh and X can correspond to523

multiple Y s. Although the model deduces a re-524

sult different from the ground truth due to using525

different facts, the reasoning process remain valid.526

4.3 Results in the Regular Settings527

Downstream Tasks with Regular Settings In528

regular settings, we train the model with regular529

data that utilizes real-world entities for data con-530

struction, and further test the model on downstream531

tasks.532

The results of regular settings are shown in Ta-533

ble 5.534

Model Method ID OOD

Mistral-7b

Vanilla CoT 0.00 0.00
ICL-CoK 5.50 6.20
CoK 27.00 21.89
CoK (T&E) 21.33 22.22

Table 5: Performance(%) of different methods on regu-
lar setting.

The results from the regular setting validate the535

conclusions drawn from the anonymized experi-536

ments: When prompted with CoK examples, ICL-537

CoK outperforms vanilla CoT on both ID and OOD538

dataset. Both CoK and CoK (T&E) enhance the539

LLM’s Chain-of-Knowledge capabilities. Further-540

more, CoK (T&E) further reduces the LLM’s rule541

dependency, leading to improved performance on542

OOD dataset.543

To further investigate the generalization of CoK,544

we tested our CoK exploration method on other 545

popular benchmarks. The results of the down- 546

stream tasks are shown in Table 6. The results 547

indicate that CoK (T&E) outperforms the baseline 548

on three commonsense reasoning benchmarks, sug- 549

gesting that CoK generalizes well to other reason- 550

ing tasks that require various types of knowledge, 551

such as world knowledge. 552

Method CSQA BBH ARC-e ARC-c

Mistral-7b 66.5 53.2 81.2 72.2
Mistral-7b + CoK (T&E) 68.1 54.7 82.3 69.4

Table 6: Performance comparison of Mistral-7b and
Mistral-7b + CoK (T&E) on four reasoning benchmarks.

5 Conclusion 553

In this paper, we propose CHAIN-OF- 554

KNOWLEDGE, a comprehensive learning 555

framework designed to integrate knowledge 556

reasoning abilities into LLMs, encompassing 557

methodologies for both data construction and 558

model learning. We construct the KNOWREASON 559

dataset for model training. While CoK effectively 560

enhances LLM performance on knowledge 561

reasoning tasks, it may also lead to rule overfitting. 562

By employing a trial-and-error approach, CoK 563

(T&E) addresses this issue and further improves 564

model performance. Extensive experiments 565

on two reasoning benchmarks demonstrate the 566

generalization of CoK to other reasoning tasks. 567

Limitations 568

Evaluation of the Knowledge Reasoning Ability 569

Because knowledge reasoning in LLMs remains 570

underexplored in previous studies and no public 571

datasets or benchmarks are suitable for our task, 572

the training and testing of the model’s knowledge 573

reasoning ability are conducted using the dataset 574

KNOWREASON that we constructed. To address 575

this concern, we strive to ensure the diversity of 576

our dataset. 577

Data of the Regular Setting is Model-Specific 578

In the regular setting, the entities in the data repre- 579

sent real-world knowledge. To prevent data leak- 580

age, we perform knowledge probing on each model, 581

making the regular setting data model-specific. In 582

contrast, for the anonymized setting, we construct 583

data that requires knowledge injection during the 584

continuous pretraining stage but is applicable to all 585

models. 586
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Ethics Statements587

In this paper, we propose the CHAIN-OF-588

KNOWLEDGE framework, which includes both589

data construction and a model learning method to590

enhance the knowledge reasoning ability of LLMs.591

Our data construction is based on compositional592

rules from KGs. First, to ensure the reasonableness593

of our data, we filter the rules based on their con-594

fidence. However, there remains a possibility that595

some rules may still be unreasonable, leading to596

flawed samples. Second, since we utilize advanced597

LLMs for sample generation, it is inevitable that bi-598

ases present in the LLMs may influence the knowl-599

edge. To address these ethical concerns, we will600

optimize the rule mining method and better align601

the model’s output with human cognition.602
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A Details of CoK data construction734

A.1 Rule minig735

In the rule mining step, we first use a breadth-first736

search algorithm to find composite rule instances737

from raw KGs, the algorithm we use is as Algo-738

rithm 2.739

Algorithm 2: BFS for rule instances

1 for each triple (A, r1, B) do
2 if B is in triplets then
3 for each (r2, C) for the value of B

do
4 if A is in triplets then
5 for each (r3, C ′) for the

value of A do
6 if C ′ == C then
7 return combination

A.2 Knowledge Selection740

In the anonymized setting, after identifying the741

supporting facts for the rules, additional processing742

of the data is required. If the head of one instance is743

part of another instance’s body, using this instance744

for sample generation and model training can lead745

to data leakage, resulting in an unfair evaluation.746

To address this issue, we separate the head and747

body parts within the instances. By traversing all748

instances, we create a set for the body facts. If an749

instance’s head fact appears in this set, the instance750

is at risk of data leakage and is therefore discarded.751

A.3 Sample Generation752

Knowledge Dataset The knowledge dataset is753

used to inject knowledge into LLMs exclusively in754

anonymized settings. It is employed during the con-755

tinuous pretraining stage and, as such, is presented756

in the form of a corpus.757

For each entity in our knowledge base, we es-758

tablish a mapping to all related facts. Using these759

facts, we prompt advanced LLMs to generate a de-760

scriptive paragraph, encapsulating the knowledge761

about the entity. The prompt we use is Prompt A.3762

Prompt 1: prompt for knowledge corpus generation

Rewrite the following sentence as a paragraph de-
scribing {{entity}}, taking care not to change the
original meaning of the sentence or lose information:
{{fact1}} {{fact2}} ... {{factn}}

763

To enhance the model’s ability to memorize 764

knowledge, we group related facts of each entity 765

into sets of 10 and input them into the LLMs to gen- 766

erate a corpus. For each entity, we prompt the LLM 767

to generate four different versions of the knowledge 768

corpus. Furthermore, to improve the model’s ex- 769

traction of knowledge from its internal knowledge 770

base, we integrate the corresponding CoK data into 771

the pretraining corpus. Thus, each subset of the 772

CoK dataset with different rule lengths has a corre- 773

sponding knowledge dataset for pretraining. 774

CoK dataset The CoK dataset is used for model 775

learning in the supervise finetuning stage, and has 776

both anonymized and regular setting. We have 3 777

steps to generate samples for CoK dataset: 778

1) Relation Template Generation For each rela- 779

tion, we generate a template sentence which de- 780

scribes the relation of the two entites in the atom. 781

e.g., having an atom CitizenOf(X,Y ), the template 782

is {{X is a citizen of Y }}. The prompt we use to 783

generate the relation templates is as follows: 784

Prompt 2: prompt for relation template generation

You will be given a triple and you should output a
sentence which describes the relation between the
two entities in the triple, here are some examples:
Triple: (<ENT1>, citizen of, <ENT2>)
Output: <ENT1> is a citizen of <ENT2>.
...
Triple: {{triple}}
Output:

785

2)Question Template Generation For each rela- 786

tion in the rule head, we generate a question tem- 787

plate for it. Considering the sufficiency and non- 788

necessity of the rules, and to ensure that each posed 789

question has only one correct answer, we prompt 790

the LLMs to generate a question with possible tone 791

and only question for the unique entity in the atom. 792

The prompt we use to generate question template 793

is as follows: 794

Prompt 3: prompt for question template generation

You will be provided with a triple, and you should
formulate a question that queries the relationship be-
tween the two entities. Ensure that the question you
generate is in possible tone and has only one correct
answer. Here are some examples:
Triple: (<ENT1>, citizen of, <ENT2>)
Output: Which country may <ENT1> be a citizen of?
...
Triple: {{triple}}
Output:

795

3)Sample Generation The sample of CoK dataset 796
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is in the form of question-answer pairs, so for a797

sample, we generate question and answer respec-798

tively.799

For question generation, we substitute the rule800

head into the corresponding template. For answer801

generation, we replace each fact in the rule body802

and rule head, connecting all resulting sentences803

into a template answer. We then prompt the LLM to804

polish these sentences into natural language, which805

serves as the answer for this sample. The prompt806

we use to generate the natural language answer is807

as follows:808

Prompt 3: prompt for answer generation

Rewrite the following sentence into natural language,
take care not to change the original meaning or lose
information: {{sentence}}

809

B Experiment Settings810

B.1 Details of Datasets811

Test Dataset of KNOWREASON The statistic812

of the test dataset of KNOWREASON is shown in813

Table 7814

Benchmarks in Downstream Tasks815

• CommonsenseQA(CSQA) (Talmor et al.,816

2019) CommonsenseQA is a new multiple-817

choice question answering dataset that re-818

quires different types of commonsense knowl-819

edge to predict the correct answers . It con-820

tains 12,102 questions with one correct an-821

swer and four distractor answers.822

• AI2 Reasoning Challenge (ARC) (Clark823

et al., 2018) ARC is a dataset of 7,787 genuine824

grade-school level, multiple-choice science825

questions, assembled to encourage research in826

advanced question-answering. The dataset is827

partitioned into a Challenge Set(ARC-c) and828

an Easy Set(ARC-e).829

• BIG-Bench Hard(BBH) (Suzgun et al.,830

2022) BBH is a diverse evaluation suite that831

focuses on tasks believed to be beyond the ca-832

pabilities of current language models. It focus833

on a suite of 23 challenging BIG-Bench tasks834

for which prior language model evaluations835

did not outperform the average human-rater.836

B.2 Details of Methods837

Vanilla CoT In vanilla CoT, we prompt the838

model simply with {{let’s think step by step}}.839

The prompt we use in as follows:840

Prompt 4: prompt for Vanilla CoT

Instruction: Knowledge reasoning is the process
of using known knowledge to infer new knowledge.
You will be given a question of knowledge reasoning
task, use you internal knowledge to reason out the
answer. Let’s think step by step.
Question: Which state may Lily live in?

841

ICL-CoK In ICL-CoK, we prompt the model 842

with 6 examples from the CoK dataset. In different 843

rule length setting, we use examples with different 844

rule length, the detail is shown in Table 8 845

The prompt we use is as follows: 846

Prompt 5: prompt for ICL-CoK

Instruction: Knowledge reasoning is the process
of using known knowledge to infer new knowledge.
You will be given a question of knowledge reasoning
task, use you internal knowledge to reason out the
answer.
Here are some examples:
{{Example1}}
...
{{Example6}}
Question: {{question}}

847

CoK The prompt we use for CoK is as follows: 848

Prompt 6: prompt for CoK

Instruction: Knowledge reasoning is the process
of using known knowledge to infer new knowledge.
You will be given a question of knowledge reasoning
task, use you internal knowledge to reason out the
answer.
Question: {{question}}

849

CoK (T&K) The prompt we use for CoK (T&E) 850

is as follows: 851

Prompt 7: prompt for CoK (T&E)

Instruction: Knowledge reasoning is the process of
using known knowledge to infer new knowledge. You
will be given a question of knowledge reasoning task,
use you internal knowledge to reason out the answer.
If you don’t have the knowledge of the supporting fact
during reasoning, you should backtrace and change
to another path until you can get the answer.
Question: {{question}}

852

C Case Study 853

C.1 Examples of Rules 854

Table 9 shows examples of the rules we mine from 855

KGs. 856

C.2 Examples of Knowledge Dataset 857

Table 10 shows examples of the knowledge dataset 858

we use in continuous pretraining stage. 859
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Setting Rule Length #Entity #Relation #Rule #Sample

ID
2-hop 460 135 147 201
3-hop 307 96 70 201
4-hop 360 118 73 201

OOD
2-hop 446 43 28 201
3-hop 267 66 36 201
4-hop 353 94 41 201

Table 7: Statistics of the test dataset of KNOWREASON

Rule Length # Example

2-hop 2&3-hop 2&3&4-hop

2 6 0 0
3 3 3 0
4 2 2 2

Table 8: #Examples in ICL-CoK’s prompting

C.3 Examples of CoK Dataset860

Table 11 shows examples of data in CoK setting.861

Table 12 shows examples of data in CoK (T&E)862

setting.863

C.4 Cases of Different Types of Errors864

Table 13 shows different types of errors in error865

analysis, including rule error, fact1 error and fact2866

error.867
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Rule Length Rules

2-hop
Country(X,Y)←PlaceOfBirth(Z,X)∧CountryOfCitizenship(Z,Y)
Contry(X,Y)←MemeberOfSportsTeam(Z,X)∧CountryOfCitizenship(Z,Y)
CastMember(X,Y)←OriginalLanguageOfFilm(X,Z)∧LanguagesSpoken(Y,Z)

3-hop
Country(X,Y)← PlaceOfBirth(Z,X) ∧ ResidentOf(Z,W) ∧ Country(W,Y)
Country(X,Y)← PlaceOfBirth(Z,X) ∧ EducatedIn(Z,W) ∧ Country(W,Y)

4-hop
Country(X,Y)← PlaceOfBirth(Z,X) ∧ Spouse(Z,W) ∧ PlaceOfBirth(W,V) ∧ CountryOfCitizenship(W,Y)
DistantRelative(A,B)← PlaceOfBirth(A,X) ∧ ParentOf(Y,A) ∧ CountryOfCitizenship(Y,Z) ∧ Spouse(A,W) ∧ ChildOf(B,W)

Table 9: Examples of different length of rules we mine

Knowledge

Excn, a company known for its innovative approach and cutting-edge solutions, has its headquarters
situated in Dyxeti. This strategic location serves as the central hub for Excn’s operations, allowing
the company to efficiently coordinate its various departments and teams. Dyxeti’s vibrant business
environment and access to top talent make it an ideal setting for Excn to thrive and continue its mission
of driving progress and success in the industry.

Ccmr is the location where the headquarters of Bplx is situated. The presence of Bplx’s headquarters in
Ccmr is significant as it serves as the central hub for the organization’s operations and decision-making.
Ccmr, with its strategic position, provides Bplx with easy accessibility to its stakeholders and allows for
efficient management of the business. This centralized location in Ccmr ensures effective coordination
among various departments and facilitates seamless communication between Bplx and its global
network.

Nryxg is the official language of Gexdzjp, serving as the primary means of communication within
the region. It is the designated language used for official documents, government proceedings, and
educational instruction, reflecting the cultural and linguistic identity of the people of Gexdzjp. Through
the use of Nryxg, individuals in Gexdzjp are able to effectively communicate and connect with one
another, fostering a sense of unity and shared understanding among its inhabitants.

Table 10: Examples of the knowledge dataset

Rule
Length

Question Answer

2-hop Which country
might Anykid be a
citizen of?

Cckqlvy has Anykid as a part of their team. Cckqlvy is from the
country Vevedgta. Therefore, Anykid may be a citizen of
Vevedgta. Consequently, Vevedgta is the correct answer.

3-hop Which country
may Pzdazwi
belong to?

Mjzk is a citizen of Pzdazwi and is a cast member of Kqts, who is
from the country Vevedgta. Therefore, it is possible that Pzdazwi
is also from the country Vevedgta.

4-hop What may be the
original language
of Yvag?

Brq is fluent in speaking, writing, or signing Owiyxpqf languages.
Brq is a actor in Vffdgv, which is produced by Lmljpgzx. Yvag is
directed by Lmljpgzx. Therefore, it is possible that the original
language of Yvag is Owiyxpqf.

Table 11: Examples of CoK method in CoK dataset
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Rule
Length

Question Answer

2-hop To which country
does Qzdhsdq be-
long?

To find the answer, we can follow the reasoning path:
official_language(Y, X)← language_of_work_or_name(A, X),
country_of_origin(A, Y). Lzdxfzxw is from Vevedgta, but since
we are unsure of Lzdxfzxw’s military branch, this path is not
applicable. Let’s consider a different path: country(X, Y)←
military_branch(A, X), country_of_citizenship(A, Y). Bmezedu
serves in the military branch Qzdhsdq, which is linked to
Vevedgta. Therefore, we can conclude that Qzdhsdq is associated
with Vevedgta. Hence, the answer is Vevedgta.

3-hop What might be
the language of
Yjuphmb?

If a person has a work X and is an author of a book Y, then the
language of book Y could be the same as the language of work X.
In this case, Yjuphmb is a work of Kvyps, Kvyps is the author of
Tkbz, and the language of Tkbz is Xsbfi. Therefore, it is possible
that the language of Yjuphmb is Xsbfi.

4-hop Which country
might Liose from?

To find the answer, we can use the reasoning path: Country(X,Y)
← PlaceOfBirth(Z,X) ∧ EducatedIn(Z,W) ∧ Country(W,Y).
However, since we are unsure of where Liose was educated, this
path is not viable. Let’s consider an alternative path:
Country(X,Y)← PlaceOfBirth(Z,X) ∧ Spouse(Z,W) ∧
PlaceOfBirth(W,V) ∧ LocateIn(W,Y). Since Liose is born is Bhsz
and Ari is her spouse, Ari was born in Zhww which locates in
Vevegde, it is plausible that Liose is a citizen of Vevegde

Table 12: Examples of CoK (T&E) method in CoK dataset

Error
Type

Question Model Output Explain

Rule Can you
tell me the
country where
Nzwscwm is
from?

Nzwscwm is the country that the author of Wcsa is a
citizen of. Wcsa is from the country Vevedgta, so it’s
possible that Nzwscwm is also from Vevedgta. So
the answer is Vevedgta.

The reasoning
path is not rea-
sonable.

Fact1 To which
country does
Ztgl possibly
belong?

Ztgl is the head coach of Mfqep. Mfqep is from the
country Zxdxcgh. Therefore, it is possible that Ztgl
also belongs to the country Zxdxcgh. Thus, Zxdxcgh
is the answer.

Ztgl is not a
coach, the first
fact is wrong.

Fact2 What is the
language Ar-
stkb use?

Arstkb has cast member Qoztebgc, who speaks the
language Crbzovw. This means that Arstkb use
Crbzovw language. Thus, Crbzovw is the answer.

Qoztebgc
does not speak
Crbzovw, the
second fact is
wrong.

Table 13: Examples of three types of errors
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