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Abstract
It is a conventional wisdom that using large learning rates (LRs) early in training improves gen-
eralization. Following a line of research devoted to understanding this effect mechanistically, we
conduct an empirical study in a controlled setting focusing on the feature learning properties of
training with different initial LRs. We show that the range of initial LRs providing the best gener-
alization of the final solution results in a sparse set of learned features, with a clear focus on those
most relevant for the task. In contrast, training starting with too small LRs attempts to learn all
features simultaneously, resulting in poor generalization. Conversely, using initial LRs that are too
large fails to extract meaningful patterns from the data.
Keywords: learning rate, neural networks, feature learning

1. Introduction

In any gradient descent optimizer, the learning rate (LR) is probably the most important hyper-
parameter, especially in the context of deep learning [10]. LR controls the optimization step size
and, due to extreme non-convexity of the loss function with a manifold of qualitatively different
minima, it is primarily responsible for the type of solution we obtain after training [5, 6, 29, 34,
37, 47, 48, 51]. Using large learning rates, especially at the beginning of training, has become
a common practice [18, 32, 52]. Starting with large LR values is known to help avoid poor lo-
cal minima [12, 28, 33, 40] while the solutions obtained at the end of training often have favor-
able properties like good generalization and flatter loss landscape around the corresponding op-
tima [20, 29, 43, 47]. Prior work has attempted to explain the benefits of high learning rates mostly
from the optimization & loss landscape perspective [5, 9, 22–24, 45, 46, 48, 49]. While suggest-
ing possible mechanisms for why large LR values lead to good solutions, these works still lack
mechanistic characterization of these solutions as machine learning models.

Several studies have aimed to address this shortcoming. Some of them have found a tendency,
when training with a large LR, to give preference to more sparse solutions w.r.t. network weights
and/or activations [2, 6, 11]. For instance, Andriushchenko et al. [6] demonstrated that hover-
ing at some constant loss level when training with large LRs helps optimization to eventually find
modes with sparse features in terms of sparse activation patterns in hidden layers of deep neural
networks. Another line of research examined pattern learning with small and large learning rates.
Typically, in specific artificial settings, these works show that more complex patterns are learned
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with smaller LRs, thus, to avoid overfitting, it is beneficial to start training with a large LR and
then decay it to smaller values after learning all the “easy-to-fit” patterns from the data [34, 38, 51].
Recently, Rosenfeld and Risteski [44] suggested a possible mechanism for filtering out unreliable
spurious features when training with large LRs via so-called “opposing signals” in the data.

Following this research direction, we provide further clarity on what features in the data the
model captures after training with different initial LRs. We conduct a detailed empirical analysis
in a special setting that allows for precise control of the LR value. Inspired by a recent work
of Lobacheva et al. [37] who studied the generalization and geometrical properties of the final
solutions obtained after training with different initial LRs, we structure our analysis around the
three-regimes taxonomy of the LR values [29, 41] (Figure 1): 1) convergence for small LRs, 2)
chaotic equilibrium for medium LRs, and 3) divergence for large LRs. Lobacheva et al. [37] found
that the best choice is to start training in the second regime, with moderately high LRs that lead to
neither convergence nor divergence, but only a relatively narrow portion of that range, defined as
subregime 2A, provides consistent optimal results: training in this subregime locates a basin in the
loss landscape with well-generalizing solutions, which can be easily obtained by fine-tuning with
a small LR or weight averaging. We extend their study from a feature learning perspective. First,
we introduce a synthetic example with interpretable features and find that as LR increases up to
subregime 2A (including it), models become more specialized in the sense that they rely on fewer
features, while further increase in LR gradually impairs the ability to extract any features from the
data. Then, we show how our findings translate into a practical image classification setting via
Fourier analysis of the inputs and additionally reveal that the model puts more attention on the most
useful features for the task in subregime 2A.

2. Methodology

Figure 1: Three training regimes
(with subregimes 2A/2B): test ac-
curacy of the pre-trained (black)
and fine-tuned solutions (colored)
for SI ResNet-18 on CIFAR-10.

Our methodology is based on that of Lobacheva et al. [37].
They point out that in order to properly study the impact
of the initial LR on the final solution, it is required to fix it
at the beginning of training. However, this seemingly sim-
ple action turns out to be not so trivial due to scale invari-
ance induced by normalization layers, ubiquitously used
modern NN architectures, which makes the effective learn-
ing rate (ELR) of the model dependent on the parameters
norm [5, 7, 29, 35, 36, 41]. In order to eliminate this effect,
it was proposed to train normalized models in a fully scale-
invariant (SI) way [5, 29, 37, 41] ensuring that fixing an LR
leads to a fixed ELR as well. Following this, we make our
models fully SI by fixing the last layer and removing train-
able affine parameters of normalization layers, and we train them using projected SGD on a sphere
of fixed radius. We consider a more conventional setting in Section 4.

Lobacheva et al. [37] applied the same SI setup to study training with different initial LR values.
The structure of their analysis is based on the results of Kodryan et al. [29] who investigated training
of SI models on the sphere and showed that it typically happens in one of three regimes depending
on the LR value: 1) convergence, when the optimization simply converges to a minimum, 2) chaotic
equilibrium, when loss noisily stabilizes at some value, and 3) divergence, when a model remains
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Figure 2: A single 2D
“tick” synthetic feature.
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Figure 3: Feature sparsification in the synthetic example for pre-training
(left), and fine-tuning (right): single-feature test accuracy (colored) and
regular test accuracy (black).

at the random guess level. Lobacheva et al. [37] analyzed the points obtained after initial training
in different regimes from the perspective of their utility for subsequent training with small LRs or
weight averaging. We further analyze the final solutions in terms of their feature learning ability.
Following Lobacheva et al. [37], we divide training into two stages. The first stage is called pre-
training: we fix the LR, which at this stage we name PLR, and train a model for sufficient amount
of epochs to ensure stabilization of training dynamics. Then, at the second stage, we either 1)
change the learning rate and fine-tune the model, i.e., train with a small LR, or 2) continue training
with the same PLR and weight-average consequent checkpoints alike stochastic weight averaging
(SWA) [21].1 Small LRs for fine-tuning, called FLRs, are taken from regime 1 to ensure model
convergence. Further detail on the experimental setup are provided in Appendix A.

In Figure 1, we reproduce the main results of Lobacheva et al. [37] on fine-tuning from different
pre-trained points. We can indeed see that the lower part of regime 2, called subregime 2A, gives the
best test accuracy after fine-tuning. For ease of comparison, we similarly divide all plots into three
parts corresponding to the three pre-training regimes and also divide the second regime into two
subregimes. Below we present a synthetic example with adjustable features and use it to examine
feature learning in different regimes. Then, we shift to image classification with a SI ResNet-18 [18]
trained on CIFAR-10 [31]. Finally, we demonstrate that our findings remain valid for conventionally
trained networks as well. We consider other architectures and datasets in the appendix.

3. Feature learning perspective

Synthetic example We begin to study feature learning in models trained with different initial LRs
by introducing a synthetic example with precise control over how features affect the target variable.
We consider a binary classification setting with the following two conditions: 1) all three training
regimes are present, and 2) the data points contain multiple features, each of which is sufficient to
classify the data correctly. The first condition allows for comparison to prior work on training NNs
on the sphere [5, 29, 37, 41], while the second one allows for maximally pure feature learning study
when all features are equally useful for the task. We use 32-dimensional data vectors, where each
pair of coordinates represents a single 2D “tick” feature (Figure 2), all 16 features are sampled from
the same distribution. We use a 3-layer MLP with ReLU activation and Layer Norm [8] and make
it fully SI. We put further detail in Appendix A. The generalization and geometry properties in this
setup are similar to those described in Lobacheva et al. [37], see Appendix C.

1. We have placed the SWA results in the appendix, and in the main text we present only the fine-tuning results.
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Figure 4: Inverse 2D DFT of four
spectrum components.
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Figure 5: Frequency bands accuracy for pre-training and
fine-tuning. SI ResNet-18 on CIFAR-10.

To quantify how features are learned with different LRs, we generate 16 single-feature test sets,
each having only one of the 16 total features. The values of other features are distributed along
the decision boundary (gray dashed line in Figure 2) to represent missing features. We measure
the accuracy of the trained models on these single-feature test sets and relate the obtained values
to the importance of the respective features for the model: the higher the accuracy value, the more
important the feature. We analyze these values in sorted order for each PLR because models may
favor different features over different training runs due to the randomness in initialization [3].

The results are depicted in Figure 3. For small PLRs, there is no feature selection: we observe
similar accuracy w.r.t. different features resulting in poor overall generalization, since no target-
predicting feature is reliably learned by the model. Closer to the boundary between regimes 1 and 2
we begin to observe a kind of model specialization: the accuracy corresponding to a single feature
is significantly higher than for the rest. Moreover, such feature sparsity persists after fine-tuning,
indicating completely different feature learning behavior than training with the same FLR from
scratch: even in the setting of equally useful features, the model prefers to focus more on some
subset of features instead of trying to learn all features at once. The sparsity peak in subregime 2A
coincides with the peak of the fine-tuning test accuracy (Figure 8), confirming that a sparser set of
learned features improves model generalization. This may also be related to the fact that the basin
is determined exactly at this range of LRs (see discussion in Appendix B). When the PLR is further
increased, the ability to learn any useful patterns from the data is reduced, which manifests itself in
degraded accuracy on both regular and single-feature test sets.

Fourier features A similar feature selection effect can be observed in image classification set-
ting. Since for the real-world image data it is generally not clear how to define features [44], we use
frequency bands of the 2D Discrete Fourier Transform (DFT) as proxy for features [1]. We divide
the full 2D spectrum of an image into 4 components, each consisting of a range of frequency bands:
0 (constant background color), 1-8 (low), 9-24 (mid), and 25-32 (high). For each of the 4 compo-
nents, we zero out the rest of the spectrum and apply the inverse DFT to obtain images with only
one frequency component preserved (Figure 4) by analogy with the single-feature test sets in the
synthetic example. We repeat this procedure with every test image and measure the accuracy on the
resulting 4 new test sets corresponding to the spectrum components. A more detailed description of
the setup can be found in Appendix A. Also, see Appendix D for additional results.

Figure 5 shows the test accuracy w.r.t. each spectrum component after pre-training with differ-
ent PLRs. As in the synthetic example, small PLRs of regime 1 tend to treat all features approxi-
mately equally, paying slightly more attention to the background color and low-frequency features,
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Figure 6: Practical ResNet-18 on CIFAR-10: standard test accuracy of the pre-trained and fine-
tuned solutions (left) and accuracy w.r.t. different frequency bands for fine-tuning (right).

while increasing PLR introduces feature sparsity, making the mid-frequency features significantly
more important. The peak of the mid-frequency accuracy is achieved in subregime 2A, reaching
much higher absolute values than the 0 and 1-8 components in the first regime. Moreover, after
fine-tuning, the mid-frequency accuracy improves even further, showing the same bias towards a
subset of features as in the synthetic example. A further increase in the PLR reduces the feature
sparsity and the mid-frequencies importance. The mid-frequencies are known to play a key role in
model generalization and robustness in image classification [1, 50], so their apparent prevalence in
subregime 2A indicates that feature selection is not random but is biased towards the most useful
features for the task. Interestingly, prior work assumed that training with large LRs must prioritize
“easy-to-fit hard-to-generalize” features [34, 51] but our results suggest that the model may favor
more complex features if they are more helpful in predicting the target.

4. Practical setting

In this section, we validate our results in a more conventional training setting. We train a com-
mon ResNet-18 model without the sphere constraint using SGD with momentum, weight decay,
and data augmentation; the only deviation from the standard setup is a different LR schedule. As
in Lobacheva et al. [37], we can also see only regimes 1 and 2, since regime 3 is too unstable, and
draw the boundary between the regimes approximately at the PLR with max pre-train accuracy.

The frequency bands accuracies in Figure 6 (right) show a similar trend as described in Sec-
tion 3: in subregime 2A, the network captures significantly more mid-frequencies from the inputs
than other components, while no similar specification is observed for other PLR ranges. Thus, our
main claims remain valid in the practical setting. In Appendices E, F, we provide more practical
results.

5. Conclusion

In this work, we studied the influence of different initial LRs on the feature learning properties of
the final solution. We discover that using the initial LRs providing the best final generalization leads
to a sparse set of the most useful learned features. Using other LR values may lead to suboptimal
results: either attemptimg to capture all relevant features at once with smaller LRs or degraded
feature learning ability with large LRs. We conduct main experiments in a special setup allowing
for more accurate control of the learning rate and validate our key results in a practical setting.
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Figure 7: Inverse 2D DFT images (top) and corresponding masked spectra (bottom). When visual-
izing the low, mid, and high images, we scale each channel to the range 0-1. For the spectra, we plot
the logarithm of the absolute values of the amplitudes (log |Y [k, l]|), summed over 3 color channels.

Appendix A. Experimental setup details

Code Our implementation, including the used scale-invariant architectures and training on the
sphere, is based on the open-source code of Kodryan et al. [29]: https://github.com/
tipt0p/three_regimes_on_the_sphere.

Compute resources We use NVIDIA TESLA V100 and A100 GPUs for computations in our
experiments. The total amount of compute spent on all experiments is approximately 1500-2000
GPU hours, while the experiments included in the paper took ∼ 1000 GPU hours.

Datasets and architectures Following Lobacheva et al. [37], we conduct experiments with two
network architectures, a simple 3-layer convolutional neural network with Batch Normalization lay-
ers [19] (ConvNet) and a ResNet-18, on CIFAR-10 and CIFAR-100 datasets. In the scale-invariant
setup, we use ResNet models with width factor k = 32, and ConvNet models with width factor
k = 32 and 128 for CIFAR-10 and CIFAR-100, respectively. In the practical setup, we use ResNet
with a standard width factor k = 64.

Pre-training, fine-tuning, and SWA We train all networks using SGD with a batch size of 128.
Both the pre-training and the fine-tuning stages take 200 epochs. This training time is sufficient
to either reach a minimum or stabilize the loss in the pre-training stage and to achieve complete
convergence in the fine-tuning stage even with the smallest FLR. Fine-tuning is always done with
the first regime FLRs to ensure convergence to a minimum. When performing SWA of N models,
we continue training for N − 1 more epochs with the same PLR and average checkpoints from
epochs 200, . . . , 200 + N − 1. In the practical setting in Section 4, we use weight decay of 5 ·
10−4, momentum of 0.9, and standard CIFAR augmentations: random crops (size: 32, padding: 4),
random horizontal flips, and per-channel normalization.

Synthetic example We use a 3-layer MLP with ReLU activation and Layer Normalization [8]
after the first and the second linear layers to make the network scale-invariant. Additionally, we
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freeze the final linear layer and set its norm to 10. The size of hidden layers is 32. The trainable
weights are initialized with the standard normal distribution and projected to the unit sphere. We
take 512 training and 2000 testing samples. We use SGD with batch size 32. Pre-training and fine-
tuning stages take 40000 and 20000 iterations, respectively. We consider 10 data sampling seeds
and 5 model initialization + SGD batch order seeds, so a total of 50 training runs is done.

Fourier features We use 2D Discrete Fourier Transform (DFT) and frequency masking to create
images similar to the single-feature samples in the synthetic example. Let X ∈ RN×M denote an
image in the spatial domain (for CIFAR-10/CIFAR-100 we have N = M = 32). 2D DFT is defined
as:

Y [k, l] =
1

NM

N−1∑
n=0

M−1∑
m=0

X[n,m]e−2πi( kn
N

+ lm
M

),

{
−⌊N2 ⌋ ≤ k ≤ ⌈N2 ⌉ − 1

−⌊M2 ⌋ ≤ l ≤ ⌈M2 ⌉ − 1

In our case, −16 ≤ k, l ≤ 15. The frequency band b is defined as {(k, l) : |k| + |l| = b},
corresponding to a diamond around the spectrum center k = l = 0. This band matches the Fourier
basis vectors, which have b oscillations (b “black and white” stripes) rotated at different angles.
Then, we apply frequency masking, preserving a range of frequency bands, a ≤ b ≤ c:

Ya-c[k, l] =

{
Y [k, l], a ≤ |k|+ |l| ≤ c

0, otherwise

Finally, we use the inverse 2D DFT and obtain the resulting frequency band images:

Xa-c[m,n] =

⌈N/2⌉−1∑
k=−⌊N/2⌋

⌈M/2⌉−1∑
l=−⌊M/2⌋

Ya-c[k, l]e
2πi( kn

N
+ lm

M
)

We use 0-0 (constant background color), 1-8 (low), 9-24 (mid), and 25-32 (high) groups of fre-
quency bands. Each of the RGB color channels is processed independently. An example of the
application of the described procedure is shown in Figure 7. We omit the per-channel image nor-
malization used during training when evaluating accuracy on low, mid, and high samples (since
removing the 0 band centers the resulting images). However, it is still used for the 0-0 sample.

Appendix B. Discussion and future research directions

Loss landscape and feature learning Among other things, Lobacheva et al. [37] have shown
that the best LRs for pre-training identify a basin with good solutions, which can be reached via
fine-tuning or weight averaging. Complementary to these results, we have found that these LRs
also sparsify the learned features, focusing on the most useful ones. A very intriguing question is
how exactly are these observations related? Based on the results concerning subregime 2A, it can
be assumed that learning some subset of features corresponds to localizing a certain region in the
loss landscape, all solutions within which rely to a greater extent on these learned features. In this
regard, what features were learned during the pre-training stage can determine the quality of the
localized basin of solutions. This conjecture gives rise to a number of very nontrivial but interesting
questions. For instance, can we somehow connect the properties of the learned features with cer-
tain characteristics of the basin and minima within it, e.g., some notion of sharpness? According
to Kodryan et al. [29], the solutions obtained with higher PLRs of the first regime have both better

12
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Figure 8: Syntetic example. Test accuracy of different fine-tuned (left) and SWA (right) solutions.
Test accuracy after pre-training is depicted with the black line. Dashed lines denote boundaries
between the first and second pre-training regimes, dotted line divides the second regime into two
subregimes. Mean and standard deviation over 50 seeds are shown.

generalization and lower sharpness, however this trend is more complex for the fine-tuned solutions
in regime 2 (see Appendix G). Next, how exactly does feature sparsity affect the properties of the
found basin: does it only pre-define a specific set of shared features or can it act as some sort of a
regularizer for the solutions inside the basin, e.g., by leading to simpler models [6, 11], which in
fact can be represented by smaller networks? The study of the described issues opens an important
direction for future research of the neural networks training process, as it may draw links between
the optimization perspective and the final model properties.

More complex scenarios We have shown that the choice of the initial LR can lead to different
feature learning behavior. In our setting, sparse features and mid-frequency bias were associated
with optimal generalization. However, in practice this may not always be the case. For example,
some features useful for the training data classification can be spurious for the test data [27]. Or
memorization, in general affecting a very small subset of data, is less likely to happen when training
with large LRs, while some works show that memorization in neural networks can be useful [16].
Thus, the properties of training with different LRs in more complex practical scenarios with spurious
features/benign memorization may lead to more complex relationships between LRs and general-
ization. We believe this direction is significant for future research to more broadly understand the
impact of learning rate on trained models.

Limitations We wish to highlight several limitations of our work. First, our study is primarily
empirical in nature; our conclusions do not have direct theoretical support (perhaps only indirect
via related work partly mentioned in Section 1). Second, we are limited to a specific setup involving
particular datasets and NN architectures and, generally speaking, cannot guarantee that all of our
findings will consistently generalize to other settings. Third, although we account for the impact
of scale invariance on LR in our main experiments, we may overlook similar effects of other NN
invariances, like rescale invariance of homogeneous activations (e.g., ReLU) [17, 39]. Addressing
these and other possible limitations is future work.

Appendix C. Additional result for the synthetic example

In this section, we provide additional results for the synthetic example. Figure 8 shows the test
accuracy of the fine-tuning with different FLRs and SWA. The overall behavior for different PLRs
is similar to that reported by Lobacheva et al. [37], all 3 regimes are clearly observed. In regime 1,
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plotted.

10−4 10−3 10−2 10−1 100

PLR

50

60

70

80

Si
ng

le
-fe

at
ur

e 
ac

cu
ra

cy
, %

Pre-training
full test
accuracy

10−4 10−3 10−2 10−1 100

PLR

50

60

70

80

Si
ng

le
-fe

at
ur

e 
ac

cu
ra

cy
, %

SWA
full test
accuracy

1

4

7

10

13

16

so
rte

d 
fe

at
ur

e

10−4 10−3 10−2 10−1 100

PLR

50

60

70

80

Si
ng

le
-fe

at
ur

e 
ac

cu
ra

cy
, %

Fine-tuning with FLR=3.2e-5
full test
accuracy

10−4 10−3 10−2 10−1 100

PLR

50

60

70

80

Si
ng

le
-fe

at
ur

e 
ac

cu
ra

cy
, %

Fine-tuning with FLR=7.5e-3
full test
accuracy

1

4

7

10

13

16

so
rte

d 
fe

at
ur

e

Figure 10: Feature sparsification in the synthetic example for pre-training (top, left), SWA (over
5 models; top, right), and fine-tuning with low FLR = 3.2 · 10−5 (bottom, left) and high FLR =
7.5 · 10−5 (bottom, right). Mean and standard deviation over 50 seeds are shown.

14



WHERE DO LARGE LEARNING RATES LEAD US?

the pre-training quality is monotonically increased with PLR. Subsequent fine-tuning with smaller,
equal, or slightly larger FLRs leads to the same quality, while a significantly larger FLR improves
test accuracy. Fine-tuning in subregime 2A gives a slight improvement over training models in
regime 1, and all FLRs have the same optimal quality (except for higher FLRs, which experience
overfitting given a fixed number of fine-tuning iterations). Fine-tuning with different FLRs in sub-
regime 2B leads to solutions with different accuracy, which is lower compared to 2A. Finally, SWA
in subregime 2A produces models with good performance, while averaging models in subregime 2B
does not.

Figure 9 shows angular distances and error barriers for the synthetic example. Similarly to
Lobacheva et al. [37], we observe the catapult effect for FLR ≫ PLR. Although both train and test
error barriers emerge in subregime 2A, the barrier values are significantly higher in subregime 2B.
It is noteworthy that the angular distance and the error barriers between SWA and low FLR are
much smaller than those to the high FLR (at least up to the boundary between subregime 2B and
regime 3). Overall, most claims from Lobacheva et al. [37] hold.

Lastly, Figure 10 complements Figure 3 from the main text. We observe that SWA and fine-
tuning with a low FLR preserve feature sparsity obtained from pre-training in subregime 2A. Pre-
traning with other initial LR values does not allow the model to focus on a single feature. However,
fine-tuning with a high FLR restores feature sparsity by either the catapults (when FLR ≫ PLR,
regime 1) or convergence (when FLR < PLR, regimes 2 and 3).

Appendix D. Additional results on Fourier features

In Figure 11 we present the accuracy of different frequency bands for the rest of scale-invariant
setups. Considering SI ResNet-18 on both datasets, the mid-frequency features have higher absolute
accuracy values in subregime 2A compared to background and low-frequency features (both in
regimes 1 and 2). The specialization on mid frequencies is even more pronounced after weight
averaging and fine-tuning. Moreover, the behavior of mid-frequency line after fine-tuning is highly
correlated with the test accuracy of the corresponding FLRs in Figure 1.

As for the SI ConvNet architecture, feature specialization is less obvious: we do not observe
significant focus on mid frequencies in subregime 2A, perhaps because a combination of 3 convo-
lutional layers is not enough to learn fine-grained image details. This lack of sparsity may be also
related to less pronounced effects of the second regime for this architecture, discussed in Lobacheva
et al. [37]. Nevertheless, we see a peak of mid-frequency accuracy in subregime 2A for both CIFAR-
10 and CIFAR-100, indicating that pre-training with larger PLRs is beneficial for this setup too.

Appendix E. Additional results for the practical setup

In this section, we provide additional results for the practical setup of our experiments: additional
plots for the ResNet-18 on CIFAR-10 and ablation on the CIFAR-100 dataset.

Figure 12 depicts the generalization results for the fine-tuned (left plots) and SWA (right plots)
solutions in the practical setup on both datasets. SWA follows the same trend as fine-tuning, con-
firming that the best solutions are obtained in the lower part of the second regime, i.e., subregime 2A.
At larger PLRs of the second regime SWA quality rapidly deteriorates. In the first regime, both SWA
and fine-tuning are able to improve the accuracy due to incomplete convergence issues discussed
in Lobacheva et al. [37]. The results on both datasets are similar.
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SI ResNet-18 on CIFAR-10
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SI ResNet-18 on CIFAR-100
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Figure 11: Accuracy of different frequency bands for pre-training (column 1), SWA (over 5 models;
column 2), and fine-tuning with low FLR (column 3) and high FLR (column 4). SI ConvNet and SI
ResNet-18 on CIFAR-10/CIFAR-100.
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Practical ResNet-18 on CIFAR-10

Practical ResNet-18 on CIFAR-100

Figure 12: Practical setting. Test accuracy of different fine-tuned (left) and SWA (right) solutions.
Test accuracy after pre-training is depicted with the black line. Dashed lines denote boundaries
between the pre-training regimes, dotted line divides the second regime into two subregimes. Full
version of the results for CIFAR-10 complementing Figure 6 and similar results for CIFAR-100.
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Practical ResNet-18 on CIFAR-100
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Figure 13: Practical setting. Accuracy of different frequency bands for pre-training (column 1),
SWA (over 5 models; column 2), and fine-tuning with low FLR (column 3) and high FLR (column
4). Full version of the results for CIFAR-10 complementing Figure 6 and similar results for CIFAR-
100.
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Figure 14: Practical setting on ViT. Test accuracy of different fine-tuned (left) and SWA (right)
solutions. Test accuracy after pre-training is depicted with the black line. Dashed lines denote
boundaries between the pre-training regimes, dotted line divides the second regime into two sub-
regimes.

Figure 13 shows the full panel of results on frequency bands analysis for the practical setting.
The mid-frequency bias in subregime 2A and the induced feature sparsity is especially pronounced
after fine-tuning or SWA, however it still can be clearly seen already after the pre-training stage
on CIFAR-100. Other PLR ranges show no such bias towards a particular spectrum component,
however, fine-tuning with a high FLR can partly restore it. Overall, the mid-frequency bias is
more consistent on CIFAR-100, possibly due to the complexity of the dataset, resulting in a higher
usefulness of this band for classification.

Appendix F. Practical setup on Vision Transformer

In this section, we verify our findings on the Vision Transformer (ViT) architecture [15]. We train
the ViT-Small variant of the model on the CIFAR-10 dataset, using the implementation by Kentaro
Yoshioka2. Moreover, we add Layer Normalization [8] after the linear layers in the Transformer’s
Feed-Forward Networks to increase the proportion of scale-invariant parameters and ensure that
regime 2 is observed in this experimental setup. We train the ViT model with Adam [26] optimizer,
using patch size 4, batch size 512, weight decay 10−4 and no mixed precision training. Besides
the regular CIFAR-10 augmentations mentioned in Appendix A, we use RandAugment [14] with
parameters N = 2,M = 14. We pre-train and fine-tune both for 500 epochs.

Figure 14 shows the generalization results for both fine-tuning and SWA. Using intensive aug-
mentations requires many more epochs for complete convergence, so fine-tuning with a low FLR
still provides an improvement over the pre-training in regime 1. However, fine-tuning with a high
FLR gives even higher test accuracy, which is independent of the PLR value. Considering subregime
2A, both FLRs lead to the same optimal quality. SWA also leads to higher accuracy in subregime
2A, which is consistent with Lobacheva et al. [37].

Figure 15 shows the Fourier features analysis for the ViT setup. Contrary to the results for
convolutional networks, ViT tends to focus on low-frequency features, which is consistent with
findings of Park and Kim [42]. To understand whether ViT prefers learning low-frequency part of
the spectrum or it simply has a different boundary between low and mid-frequencies, we evaluate

2. https://github.com/kentaroy47/vision-transformers-cifar10/tree/main
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Figure 15: Practical setting on ViT. Accuracy of different frequency bands for pre-training (left),
SWA (over 5 models; center left), and fine-tuning with low FLR (center right) and high FLR (right).
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Figure 16: Practical setting on ViT. Accuracy of different frequency bands when varying the bound-
ary between low and mid-frequencies for fine-tuning with low FLR.

the feature band accuracy on different splits of bands into low and mid-frequency groups. The re-
sults are presented in Figure 16. Indeed, when switching from the split 1-8 / 9-24 to the split 1-6
/ 7-24, we observe that mid-frequencies are more important in the latter case. Moreover, moving
the boundary to even smaller values further reduces the importance of the low-frequency features.
Thus, the lowest components of the spectrum are still primarily ignored by ViT, but the range of
important frequency bands starts at smaller values compared to convolutional networks. Neverthe-
less, considering the initial 1-8 / 9-24 split, pre-training with large PLRs increases the accuracy of
low and mid-frequencies, allowing the transformer to specialize on the parts of the spectrum most
relevant to the classification task.

Appendix G. Generalization and sharpness of the fine-tuned solutions

In this section, we extend the results of Kodryan et al. [29], who state that in the first regime higher
LRs lead to both better generalizing and less sharp minima, to fine-tuning in the second regime.
We adopt their measure of sharpness, which is the mean stochastic gradient norm over batches of
the data. For fairness of comparison, since lower loss may naturally lead to lower gradients, we

19



WHERE DO LARGE LEARNING RATES LEAD US?

SI ResNet-18 on CIFAR-10

Figure 17: Scatter plot of sharpness vs. test error for the fine-tuned solutions at the same level of
the training loss. Points of the same color represent fine-tuned solutions with different FLRs from
the same pre-trained point. Different colors denote different PLRs of the second regime: from low
(purple) to high (red). Black dots correspond to the pre-trained points of the first regime, replicating
the results of Kodryan et al. [29]. SI ResNet-18 on CIFAR-10.

decided to fix the training loss of all fine-tuned solutions at 6 · 10−4 before calculating test error and
sharpness for them. We do this by taking an appropriate weighted average of these values calculated
for the fine-tuning checkpoints just before and right after crossing the loss threshold.

The results are presented in Figure 17. At first sight, the picture shows an overall positively
correlated trend in the relationship between test error and sharpness. The same trend applies to
fine-tuning checkpoints obtained from the same initialization, i.e., from the same pre-trained check-
point. However, by taking the fine-tuned solutions obtained from different pre-trains we can easily
break and even reverse this correlation. Compare, e.g., blue and light green points of the fine-tuned
solutions obtained from two different PLRs: with similar test error, their sharpness values differ on
average by almost a factor of two.

In sum, we see no direct correlation between sharpness and generalization across fine-tuning
runs from different pre-trained points, which accords with recent works in this area [4, 25].
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