
Low-rank lottery tickets: finding efficient low-rank
neural networks via matrix differential equations

Steffen Schotthöfer∗
Karlsruhe Institute of Technology

76131 Karlsruhe (Germany)
steffen.schotthoefer@kit.edu

Emanuele Zangrando∗

Gran Sasso Science Institute
67100 L’Aquila (Italy)

emanuele.zangrando@gssi.it

Jonas Kusch
University of Innsbruck

6020 Innsbruck (Austria)
jonas.kusch1@gmail.com

Gianluca Ceruti
EPF Lausanne

1015 Lausanne (Switzerland)
gianluca.ceruti@epfl.ch

Francesco Tudisco
Gran Sasso Science Institute

67100 L’Aquila (Italy)
francesco.tudisco@gssi.it

Abstract

Neural networks have achieved tremendous success in a large variety of applica-
tions. However, their memory footprint and computational demand can render
them impractical in application settings with limited hardware or energy resources.
In this work, we propose a novel algorithm to find efficient low-rank subnetworks.
Remarkably, these subnetworks are determined and adapted already during the
training phase and the overall time and memory resources required by both training
and evaluating them are significantly reduced. The main idea is to restrict the
weight matrices to a low-rank manifold and to update the low-rank factors rather
than the full matrix during training. To derive training updates that are restricted
to the prescribed manifold, we employ techniques from dynamic model order
reduction for matrix differential equations. This allows us to provide approxima-
tion, stability, and descent guarantees. Moreover, our method automatically and
dynamically adapts the ranks during training to achieve the desired approximation
accuracy. The efficiency of the proposed method is demonstrated through a variety
of numerical experiments on fully-connected and convolutional networks.

1 Introduction

While showing great performance in terms of classification records, most state-of-the-art neural
networks require an enormous amount of computation and memory storage both for the training and
the evaluation phases [27]. These requirements not only increase infrastructure costs and energy
consumption, but also make the deployment of artificial neural networks to infrastructures with
limited resources such as mobile phones or smart devices prohibitive. On the other hand, it is
well-known that networks’ weights contain structures and redundancies that can be exploited for
reducing the parameter space dimension without significantly affecting the overall accuracy [3, 9, 17].

Network pruning is a popular line of research that addresses this problem by removing redundant
parameters from pre-trained models. Typically, the initial network is large and accurate, and the
goal is to produce a smaller network with similar accuracy. Methods within this area include weight
sparsification [20, 24, 49] and quantization [10, 60], with different pruning techniques, including
search-based heuristics [24], reinforcement learning [2, 23] and genetic algorithms [43]. More recent
work has considered pruning during training, by formulating pruning as a data-driven optimization

∗These authors contributed equally to this work.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



problem [20, 26, 27]. The resulting “dynamical pruning” boils down to a parameter-constrained
training phase which, however, has been mostly focused on requiring sparse or binary weights so far.

Rather than enforcing sparsity or binary variables, in this work we constrain the parameter space to
the manifold of low-rank matrices. Neural networks’ parameter matrices and large data matrices
in general are seldom full rank [15, 48, 53, 56]. Constraining these parameters to lie on a manifold
defined by low-rank matrices is thus a quite natural approach. By interpreting the training problem as
a continuous-time gradient flow, we propose a training algorithm based on the extension of recent
Dynamical Low-Rank Approximation (DLRA) algorithms [4, 5, 6]. This approach allows us to
use low-rank numerical integrators for matrix Ordinary Differential Equations (ODEs) to obtain
modified forward and backward training phases that only use the small-rank factors in the low-rank
representation of the parameter matrices and that are stable with respect to small singular values.
This is a striking difference with respect to recent alternative “vanilla” low-rank training schemes
[31, 57] which simply factorize the weight matrices as the product of two low-rank factors UV ⊤ and
apply a descent algorithm alternatively on the two variables U and V .

We perform several experimental evaluations on fully-connected and convolutional networks showing
that the resulting dynamical low-rank training paradigm yields low-parametric neural network
architectures which compared to their full-rank counterparts are both remarkably less-demanding
in terms of memory storage and require much less computational cost to be trained. Moreover, the
trained low-rank neural networks achieve comparable accuracy to the original full architecture. This
observation is reminiscent of the so-called lottery tickets hypothesis — dense neural networks contain
sparse subnetworks that achieve high accuracy [17] — and suggests the presence of low-rank winning
tickets: highly-performing low-rank subnetworks of dense networks. Remarkably, our dynamical
low-rank training strategy seems to be able to find the low-rank winning tickets directly during the
training phase independent of initialization.

2 Related work on low-rank methods

Low-rank factorization using the SVD and other matrix decomposition techniques have been ex-
tensively studied in the scientific computing and machine learning communities. The challenge
of compressing and speeding up large-scale neural networks using low-rank methods has sparked
wide-spread research interest in recent years and significant effort has been put towards developing
low-rank factorization strategies for deep neural networks.

Previous works can roughly be categorized in approaches with fixed low rank and variable low rank
during training time. Fixed rank approaches decompose weight matrices using SVD or tensor de-
compositions of pre-trained networks and fine-tune the factorized network [12, 38, 50, 55], constrain
weight matrices to have a fixed low rank during training [30, 31, 57], or create layers as a linear
combination of layers of different rank [29]. Hence, these methods introduce the rank of the matrix
decomposition as another hyperparameter to be fine-tuned. Rank-adaptive methods mitigate this
issue by automatic determination and adaption of the low-rank structure after training. In particular,
[33, 34] apply heuristics to determine the rank of the matrix decomposition ahead of time, whereas
[59] encourages low-rank weights via a penalized loss that depends on approximated matrix ranks.

Few methods have been proposed recently that adapt the ranks of the weight matrix alongside the
main network training phase. In [40], the authors set up the neural network training as a constrained
optimization problem with an upper bound on the ranks of the weights, which is solved in an
alternating approach resulting in an NP-hard mixed integer program. The authors of [28] formulate
a similar constrained optimization problem resulting in a mixed discrete-continuous optimization
scheme which jointly addresses the ranks and the elements of the matrices. However, both these
approaches require knowledge of the full weight matrix (and of its singular value decomposition)
during training and overall are more computational demanding than standard training.

In this work we overcome the above issues and propose a training algorithm with reduced memory
and computational requirements. To this end, we reinterpret the optimization problem of a neural
network as a gradient flow of the network weight matrices and thus as a matrix ODE. This continuous
formulation allows us to use recent advances in DLRA methods for matrix ODEs which aim at
evolving the solution of the differential equation on a low-rank manifold. The main idea of DLRA
[35], which originates from the Dirac-Frenkel variational principle [14, 18], is to approximate the
solution through a low-rank factorization and derive evolution equations for the individual factors.

2



Thereby, the full solution does not need to be stored and the computational costs can be significantly
reduced. To ensure robustness of the method, stable integrators have been proposed in [44] and [6].
Instead of evolving individual low-rank factors in time, these methods evolve products of low-rank
factors, which yields remarkable stability and exactness properties [32], both in the matrix and the
tensor settings [8, 36, 45, 46]. In this work, we employ the “unconventional” basis update & Galerkin
step integrator [6] as well as its rank-adaptive extension [4], see also [7, 37]. The rank-adaptive
unconventional integrator chooses the approximation ranks according to the continuous-time training
dynamics and allows us to find highly-performing low-rank subnetworks directly during the training
phase, while requiring reduced training cost and memory storage.

3 Low-rank training via gradient flow

Consider a feed-forward fully-connected neural network N (x) = zM , with z0 = x ∈ Rn0 ,
zk = σk(Wkzk−1 + bk) ∈ Rnk , k = 1, . . . ,M (the convolutional setting is discussed in the
supplementary material §6.6). We consider the training of N based on the optimization of a loss
function L(W1, . . . ,WM ;N (x), y) by means of a gradient-based descent algorithm. For example,
when using gradient descent, the weights of N at iteration t ∈ N are updated via

W t+1
k = W t

k − λ∇Wk
L(W1, . . . ,WM ;N (x), y) ∀k = 1, . . . ,M (1)

with a learning rate λ. When the weight matrices Wk are dense, both the forward and gradient evalu-
ations of the network require a large number of full matrix multiplications, with high computational
expense and large memory footprint. This renders the training and the use of large-scale neural
networks a difficult challenge on limited-resource devices. At the same time, a wealth of evidence
shows that dense networks are typically overparameterized and that most of the weights learned this
way are unnecessary [15, 48]. In order to reduce the memory and computation costs of training, we
propose a method that performs the minimization over the manifold of low-rank matrices.

To this end, we assume that the ideal Wk can be well-approximated by a matrix of rank rk ≪ nk, nk+1

of the form UkSkV
⊤
k ∈ Rnk×nk−1 , where Uk ∈ Rnk×rk , Vk ∈ Rnk−1×rk are thin and tall matrices

having orthonormal columns spanning optimal subspaces which capture essential properties of
parameters, and Sk ∈ Rrk×rk is a tiny full-rank matrix that allows us to extrapolate the useful
information from the learned subspaces Uk and Vk.

Traditional descent algorithms such as (1) do not guarantee the preservation of the low-rank structure
UkSkV

⊤
k when updating the weights during training and require knowledge of the whole Wk rather

than the factors Uk, Sk, Vk. Here we reinterpret the loss minimization as a continuous-time gradient
flow and derive a new training method that overcomes all aforementioned limitations.

Minimizing the loss function with respect to Wk is equivalent to evaluating the long time behaviour
of the following matrix ODE that allows us to interpret the training phase as a continuous process:

Ẇk(t) = −∇Wk
L(W1, . . . ,WM ;N (x), y), (2)

where the “dot” denotes the time-derivative. LetMrk denote the manifold of matrices with rank
rk and assume at a certain time t0 the weights are in the manifold, i.e., Wk(t0) ∈Mrk . Using this
continuous-time interpretation allows us to derive a strategy to evolve the weights according to the
dynamics in (2) so that Wk(t) ∈ Mrk for all t ≥ t0. To this end, in §3.1 we exploit the fact that
Wk(t) admits a time-dependent factorization [13] Wk(t) = Uk(t)Sk(t)Vk(t)

⊤ to rewrite (2) as a
system of matrix ODEs for each of the individual factors Uk,Sk and Vk. Then, in §4 we propose
an algorithm to efficiently integrate the system of ODEs. We show in §4.1 that such algorithm
reduces the loss monotonically and is accurate, in the sense that UkSkV

⊤
k ≈ Wk, i.e. the learned

low-dimensional subspaces Uk and Vk well-match the behaviour of the full-rank network Wk solution
of (2), through the action of the learned Sk. Remarkably, using the dynamics of the individual factors
will also allow us to adaptively adjust the rank rk throughout the continuous-time training process.

3.1 Coupled dynamics of the low-rank factors via DLRA

We consider the dynamical system of a single weight matrix Wk, while the remaining weight matrices
are fixed in time and are treated as parameters for the gradient. In the following, we omit writing these
parameters down for efficiency of exposition. Assuming Wk(t) ∈Mrk , we can formulate (2) as

min
{
∥Ẇk(t) +∇Wk

L(Wk(t))∥F : Ẇk(t) ∈ TWk(t)Mrk

}
(3)

3



where TWk(t)Mrk is the tangent space ofMrk at position Wk(t). In order to solve (3), we further
observe that (3) can be equivalently formulated as the following Galerkin condition [35]:

⟨Ẇk(t) +∇Wk
L(Wk(t)), δWk⟩ = 0 ∀δWk ∈ TWk(t)Mrk . (4)

From Wk = UkSkV
⊤
k , a generic element δWk of the tangent space TWk(t)Mrk can be written as

δWk = δUkSkV
⊤
k + UkδSkV

⊤
k + UkSkδV

⊤
k ,

where δUk and δVk are generic elements of the tangent space of the Stiefel manifold with rk
orthonormal columns at the points Uk and Vk, respectively, and δSk is a generic rk × rk matrix, see
e.g. [35, §2] for details. Additionally, the Gauge conditions U⊤

k δUk = 0 and V ⊤
k δVk = 0 must be

imposed to ensure orthogonality of the basis matrices, and the uniqueness of the representation of the
tangent space elements. Similarly, by the chain rule applied several times we have

Ẇk =
d

dt

{
UkSkV

⊤
k

}
= U̇kSkV

⊤
k + UkṠkV

⊤
k + UkSkV̇

⊤
k .

Now, the Galerkin condition (4) becomes

⟨U̇kSkV
⊤
k + UkṠkV

⊤
k + UkSkV̇

⊤
k +∇Wk

L(Wk(t)), δWk⟩ = 0, ∀δWk ∈ TWk(t)Mrk (5)

with U⊤
k U̇k = 0 and V ⊤

k V̇k = 0. If we choose δWk = UkδSkV
⊤
k in (5), we obtain

⟨U⊤
k U̇kSkV

⊤
k Vk + U⊤

k UkṠkV
⊤
k Vk + U⊤

k UkSkV̇
⊤
k Vk + U⊤

k ∇Wk
L(Wk(t))Vk, δSk⟩ = 0 .

Thus, using the Gauge conditions, we obtain ⟨Ṡk + U⊤
k ∇Wk

L(Wk(t))Vk, δSk⟩ = 0, which has to
hold for a generic rk × rk matrix δSk. We obtain this way an evolution equation for the Sk(t) factor.
Similarly, specifying (5) for the two choices δWk = δUkSkV

⊤
k and δWk = UkSkδV

⊤
k , allows us to

obtain the following system of differential equations for the individual factors of Wk:
Ṡk = −U⊤

k ∇Wk
L(Wk(t))Vk ,

U̇k = −(I − UkU
⊤
k )∇Wk

L(Wk(t))VkS
−1
k ,

V̇k = −(I − VkV
⊤
k )∇Wk

L(Wk(t))
⊤UkS

−⊤
k .

(6)

4 KLS-based training algorithm

In order to perform an efficient and robust rank-constrained training step, we numerically integrate the
system of ODEs (6). Our approach is based on the “unconventional KLS integrator” [6] and its rank-
adaptive version [4]. The pseudocode of the proposed training strategy is presented in Algorithm 1.

The main idea of the KLS algorithm is to alternately represent the product Wk = UkSkV
⊤
k as

Wk = KkV
⊤
k and Wk = UkL

⊤
k , consider the corresponding coupled ODEs from (6), and then

perform three main steps:

1,2. K&L-steps (in parallel). Update the current Kk and Lk by integrating the differential equations{
K̇k(t) = −∇Wk

L(Kk(t)V
⊤
k )Vk, Kk(0) = UkSk,

L̇k(t) = −∇Wk
L(UkLk(t)

⊤)⊤Uk, Lk(0) = VkS
⊤
k ,

(7)

from t = 0 to t = η; then form new orthonormal basis matrices Ũk and Ṽk spanning the range of
the computed Kk(η) and Lk(η).

3. S-step. Update the current Sk by integrating the differential equation

Ṡk(t) = −Ũ⊤
k ∇Wk

L(ŨkSk(t)Ṽ
⊤
k )Ṽk (8)

from t = 0 to t = η, with initial value condition Sk(0) = Ũ⊤
k UkSkV

⊤
k Ṽk .

An important feature of this algorithm is that it can be extended to rank adaptivity in a relatively
straightforward manner [4], letting us dynamically evolve the rank of Sk (and thus the rank of Wk)
during the computation. This is particularly useful, as we may expect the weight matrices to have low
ranks but we may not know what the “best” ranks for each layer are. Typically, dynamically adapting

4



the ranks of a low-rank optimization scheme is a challenging problem as moving from the manifold
Mrk toMrk±1 introduces singular points [1, 19]. Instead, treating the training problem as a system
of matrix differential equations allows us to overcome this issue with a simple trick: at each step of
the KLS integrator we double the dimension of the basis matrices Ũk and Ṽk computed in the K- and
L-steps by computing orthonormal bases spanning [Kk(η) | Uk] and [Lk(η) | Vk], respectively, i.e.
by augmenting the current basis with the basis computed in the previous time step. Then, after the
new Sk matrix is computed via the S-step, a truncation step is performed, removing from the newly
computed Sk matrix all the singular values that are under a certain threshold ϑ.

Of course, adding the rank-adaptivity to the integrator comes at a cost. In that case, each step requires
to perform an SVD decomposition of twice the size of the current rank of Sk in order to be able to
threshold the singular values. Moreover, the dimension of the bases Uk and Vk may grow, which
also may require additional computational effort. However, if the ranks remain small throughout the
dynamics, this computational overhead is negligible, as we will further discuss in §4.3 and §5.

4.1 Error analysis and convergence

In this section we present our main theoretical results, showing that (a) the low-rank matrices
UkSkV

⊤
k formed by the weights’ factors computed with Alg. 1 are close to the true solution of (2),

and (b) that the loss function decreases during DLRT, provided the singular value threshold ϑ is not
too large, i.e., is bounded by a constant times the square of the time-step size η (see Theorem 1). In
the version we present here, part of the statements are presented in an informal way for the sake of
brevity. We refer to the supplementary material §6.1 for details and for the proofs.

Assume the gradient flow Fk(Z) = −∇Wk
L(W1, . . . , Z, . . . ,WM ,N (x), y) in (2) is locally

bounded and locally Lipschitz continuous, with constants C1 and C2, respectively. Then,
Theorem 1. Fixed x and y, let Wk(t) be the (full-rank) continuous-time solution of (2) and let
Uk, Sk, Vk be the factors computed with Algorithm 1 after t steps. Assume that the K,L,S steps (7)
and (8) are integrated exactly from 0 to η. Assume moreover that, for any Z ∈Mrk sufficiently close
to Wk(tη), the whole gradient flow Fk(Z) is “ε-close” toMrk . Then,

∥UkSkV
⊤
k −Wk(tη)∥F ≤ c1ε+ c2η + c3ϑ/η k = 1, . . . ,M

where the constants c1, c2 and c3 depend only on C1 and C2. In particular, the approximation bound
does not depend on the singular values of the exact nor the approximate solution.

Observe that, while the loss function L decreases monotonically along any continuous-time solution
Wk(t) of (2), it is not obvious that the loss decreases when the integration is done onto the low-rank
manifold via Algorithm 1. The next result shows that this is indeed the case, up to terms of the order
of the truncation tolerance ϑ. More precisely, we have
Theorem 2. Let W t

k = U t
kS

t
k(V

t
k )

⊤ be the low rank weight matrix computed at step t of Algorithm 1
and let L(t) = L(W t

1 , . . . ,W
t
M ,N (x), y). Then, for a small enough time-step η we have

L(t+ 1) ≤ L(t)− αη + βϑ

where α and β are positive constants that do not depend on t, η and ϑ.

4.2 Efficient implementation of the gradients

All the three K,L,S-steps require the evaluation of the gradient flow of the loss function with respect
to the whole matrix Wk. Different approaches to efficiently compute this gradient may be used.
The strategy we discuss below aims at reducing memory and computational costs by avoiding the
computation of the full gradient, working instead with the gradient with respect to the low-rank factors.

To this end, we note that for the K-step it holds ∇Wk
L(Kk(t)V

⊤
k )Vk = ∇Kk

L(Kk(t)V
⊤
k ). Hence,

the whole gradient can be computed through a forward run of the network with respect to Kk

zk = σk

(
Kk(t)V

⊤
k zk−1 + bk

)
, k = 1, . . . ,M (9)

and taping the gradient with respect to Kk. In this way, the full gradient does not need to be computed
and the overall computational costs are comprised of running a forward evaluation while taping
gradients with respect to Kk, analogously to the traditional back-propagation algorithm. The L- and

5



Algorithm 1: Dynamic Low Rank Training Scheme (DLRT)

Input :Initial low-rank factors S0
k ∼ r0k × r0k; U0

k ∼ nk × r0k;V 0
k ∼ nk−1 × r0k for k = 1, . . . ,M ;

iter: maximal number of descent iterations per epoch;
adaptive: Boolean flag that decides whether or not to dynamically update the ranks;
ϑ: singular value threshold for adaptive procedure.

1 for each epoch do
2 for t = 0 to t = iter do
3 for each layer k do
4 Kt

k ← U t
kS

t
k /* K-step */

5 Kt+1
k ← one-step-integrate

{
K̇(t) = −∇KL(K(t)(V t

k )
⊤zk−1 + btk), K(0) = Kt

k

}
6 Lt

k ← V t
k (S

t
k)

⊤ /* L-step */
7 Lt+1

k ← one-step-integrate
{
L̇(t) = −∇LL(U t

kL(t)
⊤zk−1 + btk), L(0) = Lt

k

}
8 if adaptive then /* Basis augmentation step */
9 Kt+1

k ← [Kt+1
k | U t

k]

10 Lt+1
k ← [Lt+1

k | V t
k ]

11 U t+1
k ← orthonormal basis for the range of Kt+1

k /* S-step */
12 Mk ← (U t+1

k )⊤U t
k

13 V t+1
k ← orthonormal basis for the range of Lt+1

k

14 Nk ← (V t+1
k )⊤V t

k

15 S̃t
k ←MkS

t
kN

⊤
k

16 St+1
k ←one-step-integrate

{
Ṡ(t)= −∇SL

(
U t+1
k S(t)(V t+1

k )⊤zk−1+btk
)
, S(0)= S̃t

k

}
17 if adaptive then /* Rank compression step */
18 P,Σ, Q← SVD(St+1

k )

19 St+1
k ← truncate Σ using the singular value threshold ϑ

20 U t+1
k ← U t+1

k P̃ where P̃ = [first rt+1
k columns of P ]

21 V t+1
k ← V t+1

k Q̃ where Q̃ = [first rt+1
k columns of Q]

/* Bias update step */
22 bt+1

k ←one-step-integrate
{
ḃ(t)= −∇bL(U t+1

k St+1
k (V t+1

k )⊤zk−1+b(t)), b(0)=btk
}

S-steps can be evaluated efficiently in the same manner, by evaluating the network while taping the
gradients with respect to Lk and Sk, respectively. Hence, instead of a single gradient tape (or chain
rule evaluation) of the full weight matrix network, we have three gradient tapes, one for each low
rank step, whose combined computational footprint is less than the full matrix tape. We provide
detailed formulas for all the three gradient tapes in the supplementary material §6.5.

4.3 Implementation details, computational costs and limitations

Each step of Alg. 1 requires the computation of two orthonormal bases for the ranges of Kt+1
k

and Lt+1
k . There are of course different techniques to compute such orthonormal matrices. In our

implementation we use the QR algorithm, which is known to be one of the most efficient and stable
approaches for this purpose. In the adaptive strategy the singular values of St+1

k are truncated
according to a parameter ϑ. To this end, in our implementation, we use the Frobenius norm of Σ.
Precisely, we truncate Σ = diag(σi) at step 19 of Alg. 1 by selecting the smallest principal r × r
submatrix such that (

∑
i≥r+1 σ

2
i )

1/2 ≤ ϑ. Finally, one-step-integrate denotes a numerical procedure
that integrates the corresponding ODE from time t = 0 to t = η. In practice one can employ different
numerical integrators, without affecting the ability of the algorithm to reduce the loss function (see
[4, Thm. 5]) while maintaining the low-rank structure. In our implementation we used two methods:

1. Explicit Euler. This method applied to the gradient flow coincides with one step of Stochastic
Gradient Descent (SGD), applied to the three factors Kk, Lk, Sk independently.

2. Adam. Here we formally compute the new factors by modifying the explicit Euler step as in the
Adam optimization method. Note that Nesterov accelerated SGD is known to coincide with a

6



(a) Training timings (b) Prediction timings

Figure 1: Comparison of batch execution and training times of 5-layer, 5120-neurons low-rank
networks of different ranks and a non-factorized reference network with the same architecture on
the MNIST dataset. Training times shown correspond to one epoch for a batch of 256 datapoints.
Prediction times refer instead to the whole dataset. All the times are the average over 1000 runs.

particular linear multistep ODE integrator [51]. While Adam does not directly correspond to a
numerical integrator to our knowledge, in our tests it resulted in a faster decrease of the loss than
both Euler (SGD) and Nesterov accelerated SGD.

For both choices, the target time step η corresponds to the value of the learning rate, which we set to
0.2 for Euler. For Adam, we use the default dynamical update, setting 0.001 as starting value.

Computational cost. To obtain minimal computational costs and memory requirements for the K-step,
the ordering of evaluating KkV

⊤
k zk−1 in (9) is important. First, we compute z̃ := V ⊤

k zk−1 ∈ Rrk

which requires O(rknk−1) operations. Second, we compute Kkz̃ which requires O(rknk) operations.
Adding the bias term and evaluating the activation function requires O(nk) operations. Hence,
combined over all layers we have asymptotic cost of O (

∑
k rk(nk + nk+1)). Taping the forward

evaluation to compute the gradient with respect to Kk as discussed in §4.2 does not affect the
asymptotic costs, i.e. the costs of computing the K-step at layer k assuming a single data point x
requires CK ≲

∑
k rk(nk+nk+1) operations. In a similar manner, we obtain the computational costs

of the L- and S-steps, which are again CL,S ≲
∑

k rk(nk+nk+1). Moreover, the QR decompositions
used in the K- and L-step require O

(∑
k r

2
k(nk + nk−1)

)
operations and computing the SVD in

the truncation step has worst-case cost of O
(∑

k r
3
k

)
. Hence, assuming rk ≪ nk, nk+1, the cost

per step of our low-rank method is CDLRA ≲
∑

k r
2
k(nk + nk−1), opposed to the dense network

training, which requires Cdense ≲
∑

k nknk+1 operations. In terms of memory cost, note that we
only need to store rk(rk + nk + nk+1) parameters per layer during the algorithm, corresponding to
the matrices St

k, U
t
k, V

t
k . Moreover, at the end of the training we can further compress memory by

storing the product of the trained weight factors UkSk, rather than the individual matrices.

Limitations. A requirement for DLRT’s efficiency is that rk ≪ nk, nk+1. When the truncation
threshold ϑ is too small, Alg. 1 does not provide advantages with respect to standard training. This is
also shown by Fig. 1. Moreover, in the terminology of [54], DLRT is designed to reduce training
costs corresponding to model parameters and to the optimizer. To additionally decrease activation
costs, DLRT can be combined with micro-batching or checkpointing approaches. Finally, the choice
of ϑ introduces one additional hyperparameter which at the moment requires external knowledge
for tuning. However, our experiments in §5 show that relatively large values of ϑ yield competing
performance as compared to a number of baselines, including standard training.

5 Numerical Results

We illustrate the performance of DLRT Algorithm 1 on several test cases. The code
is implemented in both Tensorflow (https://github.com/CSMMLab/DLRT-Net) and PyTorch
(https://github.com/COMPiLELab/DLRT-Net). The networks are trained on an AMD Ryzen 9
3950X CPU and a Nvidia RTX 3090 GPU. Timings are measured on pure CPU execution.

5.1 Performance analysis on MNIST dataset

We partition MNIST dataset [11] in randomly sampled train-validation-test sets of size 50K-10K-
10K. Images are pixelwise normalized; no further data augmentation or regularization has been used.

7

https://github.com/CSMMLab/DLRT-Net
https://github.com/COMPiLELab/DLRT-Net


(a) Rank evolution for τ = 0.15 (b) Rank evolution of τ = 0.05

Figure 2: Rank evolution (layers 1-4) of 5-layer [500,500,500,500,10] fully-connected net on MNIST.

Fixed-rank fully-connected feed-forward network timings. First, we compare the training time
of the adaptive DLRT Alg. 1 on a 5-layer fully-connected [5120, 5120, 5120, 5120, 10] network fixing
the ranks of layers 1-4, i.e. choosing a specific starting rank r0k for the input weight factors and
truncating Σ at line 19 of Alg. 1 to the principal r0k × r0k submatrix, rather than via a threshold. Next,
we measure the average prediction time on the whole MNIST dataset over 1000 runs. Fig. 1(a) and
1(b) show that both timings scale linearly with the rank of the factorizations, and that for sufficiently
small ranks DLRT is faster than the full-rank baseline both in terms of training and of prediction.

Rank evolution and performance of DLRT for different singular value thresholds. Next,
we demonstrate the capabilities of DLRT to determine the rank of the network’s weight matrices
automatically during the network training using Algorithm 1. The Adam optimizer with default
learning rate is used for the gradient update. We train fully connected 5-layer networks, of which the
first 4 are replaced by low-rank layers in the subsequent tests. The activation function is chosen to be
ReLU for the hidden layers, and softmax for the output layer. The training loss is sparse categorical
cross entropy and we additionally measure the model’s accuracy. We use batch size 256 and train
for 250 epochs. We choose ϑ = τ ∥Σ∥, thus we truncate the singular values of the current St

k by a
fraction τ of the total Frobenius norm. The smaller τ , the more singular values are kept.

Figures 2 (a) and (b) show the evolution of the rank adaptive layers of a 5-layer 500-neuron network
in a long time case study for τ = 0.05 and τ = 0.15. We can see that within the first epoch the initial
full matrix ranks are reduced significantly, to 27 for τ = 0.15, and to ∼ 85 for τ = 0.05 respectively.
Within the first 50 epochs, the layer ranks are already close to their final ranks. This indicates that the
rank adaptive algorithm is only needed for the first few training epochs, and can then be replaced by
the computationally cheaper fixed-low-rank training (by setting the Boolean variable adaptive to
False in Algorithm 1). Figure 3 compares the mean test accuracy of 5-layer networks with 500 and
784 neurons with different levels of low-rank compression, over five independent runs with randomly
sampled train-test-val sets. The networks can be compressed via dynamical low-rank training by
more than 95%, while only losing little more than 1% test accuracy compared to the dense reference
network marked in red. Remark that restricting the space of possible networks to a given rank
regularizes the problem, since such a restriction can be understood as adding a PCR regularization
term to the loss function. This can be seen from the tendency of not overfitting and reaching improved
test accuracies compared to the corresponding dense network for moderate compression ratios. Also
note that adaptive-low rank training eliminates the need for hyperparameter grid search in terms of
layer-weights, due to automatic rank adaptation. The rank dynamics for all configurations can be
seen in the supplementary material §6.3. Finally, in the supplementary material §6.4 we compare the
use of DLRT with the vanilla approach which simply thresholds the singular values of the full-rank
network. Our results show that advantageous low-rank winning tickets exist, but are not easy to find.
In fact, the vanilla low-rank subnetworks perform very poorly. From this point of view, our approach
can be seen as an efficient dynamical pruning technique, able to determine high-performing low-rank
subnetworks in a given dense network. Remarkably, our numerical experiments suggest that low-rank
winning tickets can be trained from the start and do not to heavily depend on the initial weight guess.

Convolutional layers: LeNet5. Here we compare the proposed dynamical low-rank training
scheme on LeNet5 [39] on MNIST, against the full-rank reference and several baselines. SVD prune
[61] and LRNN [28] are the closest approaches to our DLRT: they dynamically train low-rank layers
by adding a rank-penalty to the loss function, and by complementing the standard training step via an

8



Figure 3: Mean test accuracy over parameters’ number and compression rate for 5 runs with randomly
sampled train-test-val sets on 5-layer fully-connected nets. Red dots denote the full-rank baseline.

0 2 4 6 8
epoch

20

40

60

80

100

te
st

 a
cc

ur
ac

y 
[%

]

no decay

DLRT
UVT factorization

0 2 4 6 8
epoch

decay

DLRT
UVT factorization

0 2 4 6 8
epoch

0.0

0.5

1.0

1.5

2.0

2.5

tra
in

 lo
ss

no decay
DLRT
UVT factorization

0 2 4 6 8
epoch

decay
DLRT
UVT factorization

        Test Accuracy                                                                                            Train Loss

Figure 4: Mean learning curves with standard deviation of Lenet5 on MNIST over 10 runs of DLRT
compared to a vanilla layer factorization Wk = UkV

⊤
k . Both methods are implemented with fixed

learning rate of 0.01, and batch size of 128. The weight matrices are either completely randomly
initialized (“no decay”) or are initialized with a random choice forced to have an exponential decay
on the singular values (“decay”).

SVD projection step in the latter and a pruning step in the former. While computing low-rank factors
for each layer, thus reducing memory storage of the network, this training approach is more expensive
than training the full network. GAL [42], SSL [62], and NISP [58] are pruning methods which aim at
learning optimal sparse weights (rather than low-rank) by adding sparsity-promoting regularization
terms to the training loss. As for LRNN, these methods do not reduce the computational cost of the
training phase (as indicated with the < 0% in Table 1). Analogously to [28], our adaptive low-rank
training technique is applied to the convolutional layers by flattening the tensor representing the
convolutional kernel into a matrix. Details are provided in the supplementary material §6.6. All the
models are trained for 120 epochs using SGD with a fixed learning rate of 0.2. Results in Table 1 show
that the DLRT algorithm is able to find low-rank subnetworks with up to 96.4% less parameters than
the full reference, while keeping the test accuracy above 95%. Compared to the baseline methods, we
achieve better compression rates but observe lower accuracy. However, unlike the baseline references,
DLRT automatically prunes the singular values during training, without requirement to solve any
additional optimization problem, thus significantly improving time and memory efficiency of both
forward and backward phases, with respect to the full reference.

Robustness with respect to small singular values and comparison with vanilla low-rank
parametrization. A direct way to perform training enforcing a fixed rank for the weight ma-
trices is to parameterize each weight as Wk = UkV

⊤
k and alternating training with respect to Uk and

to Vk. This is the strategy employed for example in [31, 57]. This vanilla low-rank parametrization
approach has a number of disadvantages with respect to DLRT, on top of the obvious non-adaptive
choice of the rank. First, DLRT guarantees approximation and descent via Theorems 1 and 2. Second,
we observe that the vanilla factorization gives rise to an ill-conditioned optimization method when
small singular values occur. This problem is peculiar to the low-rank manifold itself [16, 35], whose
local curvature is proportional to the inverse of the smallest singular value of the weight matrices. In
contrast, the numerical integration strategy at the basis of DLRT is designed to take advantage of
the structure of the manifold and is robust with respect to small singular values [32]. This can be
seen from the bound of Theorem 1, where the constants are independent of the singular values of the
weight matrices, and is illustrated by Figure 4, where DLRT shows a much faster convergence rate
with respect to vanilla SGD performed on each factor of the parametrization UkV

⊤
k , when applied to

train LeNet5 on MNIST. Both methods are implemented with the same fixed learning rate.

9



Table 1: Results of the training of LeNet5 on MNIST dataset. Effective parameters represent the
number of parameters we have to save for evaluating the network and those we need in order to
train via the DLRT Alg.1. The compression ratio (c.r.) is the percentage of parameter reduction with
respect to the full model (< 0% indicates that the ratio is negative). “ft” indicates that the model has
been fine-tuned. “LeNet5” denotes the standard LeNet5 architecture trained with SGD.

NN metrics Evaluation Train
method test acc. ranks params c.r. params c.r.

LeNet5 99.2% [20, 50, 500, 10] 430500 0% 430500 0%

D
L

R
T τ = 0.11 98.0% [15, 46, 13, 10] 47975 88.86% 50585 88.25%

τ = 0.15 97.8% [13, 31, 9, 10] 34435 92.0% 35746 91.7%
τ = 0.2 97.2% [10, 20, 7, 10] 25650 94.04% 26299 93.89%
τ = 0.3 95.3% [6, 9, 4, 10] 15520 96.4% 15753 96.34%

SSL [62] (ft) 99.18% 110000 74.4% < 0%
NISP [58] (ft) 99.0% 100000 76.5% < 0%

GAL [42] 98.97% 30000 93.0% < 0%
LRNN [28] 98.67% [3, 3, 9, 9] 18075 95.8% < 0%

SVD prune [61] 94.0% [2, 5, 89, 10] 123646 71.2% < 0%

Table 2: Results on ImageNet1k (left) and Cifar10 (right). The compression ratio is the percentage
of parameter reduction with respect to the full model. DLRT is used with τ = 0.1. The number of
parameters of the full models are: 33.6M (VGG16); 23.6M (AlexNet); 29.6M (ResNet-50). We report
difference in test accuracy (top-5 test accuracy for ImageNet1k) with respect to the full baselines.

ImageNet1k
test acc.[%] compression rate

method (to baseline) eval[%] train[%]

R
es

N
et

-5
0 DLRT −0.56 54.1 14.2

PP-2[52] −0.8 52.2 < 0
PP-1[52] −0.2 44.2 < 0
CP[25] −1.4 50.0 < 0
SFP[22] −0.2 41.8 < 0
ThiNet[47] −1.5 36.9 < 0

V
G

G
16

DLRT −2.19 86 78.4
PP-1[52] −0.19 80.2 < 0
CP[25] −1.80 80.0 < 0
ThiNet[47] −0.47 69.04 < 0
RNP(3X)[41] −2.43 66.67 < 0

Cifar10
test acc.[%] compression rate

method (to baseline) eval[%] train[%]

V
G

G
16 DLRT −1.89 56 77.5

GAL[42] −1.87 77 < 0
LRNN[28] −1.9 60 < 0

A
le

xN
et

DLRT −1.79 86.3 84.2
NISP[58] −1.06 − < 0

5.2 Results on ImageNet1K and Cifar10 with ResNet-50, AlexNet, and VGG16

Finally, we assess the capability of compressing different architectures on large scale training sets.
We train a full-rank baseline model and compare it to DLRT using the same starting weights on an
Nvidia A-100 GPU. The used optimizer is SGD with momentum factor 0.1 and no data-augmentation
techniques are used. We compare the results on ResNet-50, VGG16, and AlexNet models, on
the Cifar10 and ImageNet1k datasets, and with respect to a number of low-parametric alternative
baselines methods. For DLRT, the last layers of the networks have been adapted to match the
corresponding classification tasks. Detailed results are reported in Table 2, where we show the
test accuracy (reported as the difference with respect to the full baseline) as well as compression
ratios. With Cifar10, we archive a train compression of 77.5% with an accuracy loss of just 1.89%
for VGG16 and 84.2% train compression at 1.79% accuracy loss for AlexNet. In the ImageNet1k
benchmark, we achieve a train compression rate of 14.2%, with an test accuracy loss of 0.5% in top-5
accuracy on ResNet-50 and 78.4% train compression with 2.19 top-5 accuracy loss on VGG16.

Acknowledgements. The work of S. Schotthöfer was funded by the Priority Programme SPP2298
“Theoretical Foundations of Deep Learning” by the Deutsche Forschungsgemeinschaft (DFG). The
work of J. Kusch was funded by the Deutsche Forschungsgemeinschaft (DFG) – 491976834. The
work of G. Ceruti was supported by the SNSF research project “Fast algorithms from low-rank
updates”, grant number 200020-178806. The work of F. Tudisco and E. Zangrando was funded by
the MUR-PNRR project “Low-parametric machine learning”. Special thanks to Prof. Martin Frank
for the PhD mentorship of Steffen Schottöfer.

10



References
[1] P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization algorithms on matrix manifolds.

Princeton University Press, 2009.
[2] A. Ashok, N. Rhinehart, F. Beainy, and K. M. Kitani. N2n learning: Network to network com-

pression via policy gradient reinforcement learning. In International Conference on Learning
Representations, 2018.

[3] D. Blalock, J. J. Gonzalez Ortiz, J. Frankle, and J. Guttag. What is the state of neural network
pruning? Proceedings of machine learning and systems, 2:129–146, 2020.

[4] G. Ceruti, J. Kusch, and C. Lubich. A rank-adaptive robust integrator for dynamical low-rank
approximation. BIT Numerical Mathematics, 2022.

[5] G. Ceruti and C. Lubich. Time integration of symmetric and anti-symmetric low-rank matrices
and Tucker tensors. BIT Numerical Mathematics, 60(3):591–614, 2020.

[6] G. Ceruti and C. Lubich. An unconventional robust integrator for dynamical low-rank approxi-
mation. BIT. Numerical Mathematics, 62(1):23–44, 2022.

[7] G. Ceruti, C. Lubich, and D. Sulz. Rank-adaptive time integration of tree tensor networks.
arXiv:2201.10291, 2022.

[8] G. Ceruti, C. Lubich, and H. Walach. Time integration of tree tensor networks. SIAM Journal
on Numerical Analysis, 59(1):289–313, 2021.

[9] Y. Cheng, F. X. Yu, R. S. Feris, S. Kumar, A. Choudhary, and S.-F. Chang. An exploration of
parameter redundancy in deep networks with circulant projections. In Proceedings of the IEEE
international conference on computer vision, pages 2857–2865, 2015.

[10] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio. Binarized neural networks:
Training deep neural networks with weights and activations constrained to +1 or -1. Advances
in neural information processing systems, 2016.

[11] L. Deng. The MNIST database of handwritten digit images for machine learning research.
IEEE Signal Processing Magazine, 29(6):141–142, 2012.

[12] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus. Exploiting linear structure within
convolutional networks for efficient evaluation. Advances in neural information processing
systems, 27, 2014.

[13] L. Dieci and T. Eirola. On smooth decompositions of matrices. SIAM Journal on Matrix
Analysis and Applications, 20(3):800–819, 1999.

[14] P. A. M. Dirac et al. The principles of quantum mechanics. Number 27. Oxford university press,
1981.

[15] R. Feng, K. Zheng, Y. Huang, D. Zhao, M. Jordan, and Z.-J. Zha. Rank diminishing in deep
neural networks. arXiv:2206.06072, 2022.

[16] F. Feppon and P. F. Lermusiaux. A geometric approach to dynamical model order reduction.
SIAM Journal on Matrix Analysis and Applications, 39(1):510–538, 2018.

[17] J. Frankle and M. Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In International Conference on Learning Representations, 2018.

[18] J. Frenkel. Wave mechanics, advanced general theory, volume 1. Oxford, 1934.
[19] B. Gao and P.-A. Absil. A riemannian rank-adaptive method for low-rank matrix completion.

Computational Optimization and Applications, 81(1):67–90, 2022.
[20] Y. Guo, A. Yao, and Y. Chen. Dynamic network surgery for efficient dnns. Advances in neural

information processing systems, 29, 2016.
[21] E. Hairer, S. P. Nørsett, and G. Wanner. Solving ordinary differential equations. I. Nonstiff

problems, volume 8 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin,
second edition, 1993.

[22] Y. He, G. Kang, X. Dong, Y. Fu, and Y. Yang. Soft filter pruning for accelerating deep
convolutional neural networks, 2018.

[23] Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han. AMC: AutoML for model compression
and acceleration on mobile devices. In Proceedings of the European conference on computer
vision, pages 784–800, 2018.

11



[24] Y. He, X. Zhang, and J. Sun. Channel pruning for accelerating very deep neural networks. In
IEEE International Conference on Computer Vision, pages 1389–1397, 2017.

[25] Y. He, X. Zhang, and J. Sun. Channel pruning for accelerating very deep neural networks, 2017.
[26] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. Densely connected convolutional

networks. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 4700–4708, 2017.

[27] Z. Huang and N. Wang. Data-driven sparse structure selection for deep neural networks. In
Proceedings of the European conference on computer vision (ECCV), pages 304–320, 2018.

[28] Y. Idelbayev and M. A. Carreira-Perpiñán. Low-rank compression of neural nets: Learning
the rank of each layer. In IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 8046–8056, 2020.

[29] Y. Ioannou, D. Robertson, J. Shotton, R. Cipolla, and A. Criminisi. Training CNNs with
low-rank filters for efficient image classification. In International Conference on Learning
Representations, 2016.

[30] M. Jaderberg, A. Vedaldi, and A. Zisserman. Speeding up convolutional neural networks with
low rank expansions. In Proceedings of the British Machine Vision Conference. BMVA Press,
2014.

[31] M. Khodak, N. Tenenholtz, L. Mackey, and N. Fusi. Initialization and regularization of
factorized neural layers. In International Conference on Learning Representations, 2021.

[32] E. Kieri, C. Lubich, and H. Walach. Discretized dynamical low-rank approximation in the
presence of small singular values. SIAM Journal on Numerical Analysis, 54(2):1020–1038,
2016.

[33] H. Kim, M. U. K. Khan, and C.-M. Kyung. Efficient neural network compression. In Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
12569–12577, 2019.

[34] Y.-D. Kim, E. Park, S. Yoo, T. Choi, L. Yang, and D. Shin. Compression of deep convolutional
neural networks for fast and low power mobile applications, 2015.

[35] O. Koch and C. Lubich. Dynamical low-rank approximation. SIAM Journal on Matrix Analysis
and Applications, 29(2):434–454, 2007.

[36] O. Koch and C. Lubich. Dynamical tensor approximation. SIAM Journal on Matrix Analysis
and Applications, 31(5):2360–2375, 2010.

[37] J. Kusch and P. Stammer. A robust collision source method for rank adaptive dynamical
low-rank approximation in radiation therapy. arXiv:2111.07160, 2021.

[38] V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets, and V. Lempitsky. Speeding-up convolutional
neural networks using fine-tuned cp-decomposition. In International Conference on Learning
Representations, 2015.

[39] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[40] C. Li and C. J. R. Shi. Constrained optimization based low-rank approximation of deep neural
networks. In Proceedings of the European Conference on Computer Vision (ECCV), September
2018.

[41] J. Lin, Y. Rao, J. Lu, and J. Zhou. Runtime neural pruning. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

[42] S. Lin, R. Ji, C. Yan, B. Zhang, L. Cao, Q. Ye, F. Huang, and D. Doermann. Towards optimal
structured CNN pruning via generative adversarial learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 2790–2799, 2019.

[43] H. Liu, K. Simonyan, O. Vinyals, C. Fernando, and K. Kavukcuoglu. Hierarchical representa-
tions for efficient architecture search. In International Conference on Learning Representations,
2018.

[44] C. Lubich and I. V. Oseledets. A projector-splitting integrator for dynamical low-rank approxi-
mation. BIT Numerical Mathematics, 54(1):171–188, 2014.

12



[45] C. Lubich, T. Rohwedder, R. Schneider, and B. Vandereycken. Dynamical approximation by
hierarchical Tucker and tensor-train tensors. SIAM Journal on Matrix Analysis and Applications,
34(2):470–494, 2013.

[46] C. Lubich, B. Vandereycken, and H. Walach. Time integration of rank-constrained Tucker
tensors. SIAM Journal on Numerical Analysis, 56(3):1273–1290, 2018.

[47] J.-H. Luo, J. Wu, and W. Lin. Thinet: A filter level pruning method for deep neural network
compression, 2017.

[48] C. H. Martin and M. W. Mahoney. Implicit self-regularization in deep neural networks: Evidence
from random matrix theory and implications for learning. Journal of Machine Learning
Research, 22(165):1–73, 2021.

[49] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz. Pruning convolutional neural networks
for resource efficient inference. In International Conference on Learning Representations, 2017.

[50] T. N. Sainath, B. Kingsbury, V. Sindhwani, E. Arisoy, and B. Ramabhadran. Low-rank matrix
factorization for deep neural network training with high-dimensional output targets. In 2013
IEEE International Conference on Acoustics, Speech and Signal Processing, pages 6655–6659,
2013.

[51] D. Scieur, V. Roulet, F. Bach, and A. d’Aspremont. Integration methods and accelerated
optimization algorithms. In Advances In Neural Information Processing Systems, 2017.

[52] P. Singh, V. Kumar Verma, P. Rai, and V. P. Namboodiri. Play and prune: Adaptive filter
pruning for deep model compression. In Proceedings of the Twenty-Eighth International
Joint Conference on Artificial Intelligence, IJCAI-19, pages 3460–3466. International Joint
Conferences on Artificial Intelligence Organization, 7 2019.

[53] S. P. Singh, G. Bachmann, and T. Hofmann. Analytic insights into structure and rank of neural
network Hessian maps. In Advances in Neural Information Processing Systems, volume 34,
2021.

[54] N. S. Sohoni, C. R. Aberger, M. Leszczynski, J. Zhang, and C. Ré. Low-memory neural network
training: A technical report. arXiv:1904.10631, 2019.

[55] A. Tjandra, S. Sakti, and S. Nakamura. Compressing recurrent neural network with tensor train.
In 2017 International Joint Conference on Neural Networks (IJCNN), pages 4451–4458. IEEE,
2017.

[56] M. Udell and A. Townsend. Why are big data matrices approximately low rank? SIAM Journal
on Mathematics of Data Science, 1(1):144–160, 2019.

[57] H. Wang, S. Agarwal, and D. Papailiopoulos. Pufferfish: communication-efficient models at no
extra cost. Proceedings of Machine Learning and Systems, 3:365–386, 2021.

[58] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li. Learning structured sparsity in deep neural
networks. Advances in neural information processing systems, 29, 2016.

[59] W. Wen, C. Xu, C. Wu, Y. Wang, Y. Chen, and H. Li. Coordinating filters for faster deep neural
networks. In Proceedings of the IEEE International Conference on Computer Vision, pages
658–666, 2017.

[60] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng. Quantized convolutional neural networks
for mobile devices. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 4820–4828, 2016.

[61] H. Yang, M. Tang, W. Wen, F. Yan, D. Hu, A. Li, H. Li, and Y. Chen. Learning low-rank deep
neural networks via singular vector orthogonality regularization and singular value sparsification.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition
workshops, pages 678–679, 2020.

[62] J. Ye, X. Lu, Z. Lin, and J. Z. Wang. Rethinking the smaller-norm-less-informative assumption in
channel pruning of convolution layers. In International Conference on Learning Representations,
2018.

13


	Introduction
	Related work on low-rank methods
	Low-rank training via gradient flow
	Coupled dynamics of the low-rank factors via DLRA

	KLS-based training algorithm
	Error analysis and convergence
	Efficient implementation of the gradients
	Implementation details, computational costs and limitations

	Numerical Results
	Performance analysis on MNIST dataset
	Results on ImageNet1K and Cifar10 with ResNet-50, AlexNet, and VGG16


