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Abstract

Plasticity loss has become an active topic of interest in the continual learning
community. Over time, when faced with non-stationary data, standard gradient
descent loses its ability to learn. It comes in two forms, the inability of the network
to generalize and its inability to fit the training data. Several causes have been
proposed including ill-conditioning or the saturation of activation functions. In this
work we focus on the inability of neural networks to optimize due to saturating
activations, which particularly affects online reinforcement learning settings, where
the learning process itself creates a non-stationary setting even if the environment
is kept fixed. Recent works have proposed to answer this problem by relying on
dynamically resetting units that seem inactive, allowing them to be tuned further.
We explore an alternative approach to this based on stochastic linear dynamics in
parameters which allows to model non-stationarity and provides a mechanism to
adaptively and stochastically drift the parameters towards the prior, implementing
a mechanism of soft parameters reset.

1 Plasticity loss in Neural Networks

Learning algorithms for Neural Networks (NNs) such as Stochastic Gradient Descent (SGD) rely
on the iid training data assumption. This assumption, however, is violated in many scenarios such
as continual learning [13], reinforcement learning, non-stationary contextual bandits, supervised
learning with distribution shift, to name a few. When trained on non-stationary data, Neural Networks
tend to lose the ability to learn and adapt to new data, a phenomenon known as loss of plasticity [2, 8].

Addressing the loss of plasticity is an active area of research and many methods already have been
proposed to tackle it. We note that the phenomenon can take different forms. For example, [2, 4]
describe how in non-stationary settings, neural networks lose plasticity by becoming unable to
generalize. In contrast [8] highlights a slightly different phenomenon, which is more commonly
studied in follow up works, where the network is unable to minimize the training objective, the
causes of which could range from ill-conditioning to the prevalence of dead units [17]. To address
this, regularization based methods provide regularization techniques which mitigate plasticity loss,
some works include [2, 15, 17]. Architectural based methods are based on changing the architecture
to make it less pron to the plasticity loss such as [18, 3, 20, 1]. Methods based on changing the
optimization algorithm have also been proposed which essentially show that the optimizer and its
hyperparameters could have an impact on the plasticity loss, see [18]. Finally, a large body of work
focuses on the idea that some parameters of the Neural Network (NN) needs to be occasionally
reset when dealing with non-stationarity. A notable algorithm is Continual Backpropagation [8], a
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modification of the original backpropagation [19] which tracks the utility measure for each neuron
and resets the ones with utility below a certain threshold. Shrink and Perturb [2] is a method which
multiplies each parameter by a scalar λ ∈ [0, 1] and adds Gaussian noise with some variance σ ≥ 0.
This allows the network to maintain the plasticity and deal with [2] problem. Recently, a method
called Regenerative Regularization [16] was proposed which regularizes the parameters to their initial
values and could be interpreted as a form of a parameters reset.

Most of the approaches, however, do not explicitly model the non-stationarity in the data. Recently,
a few methods were proposed [6, 21] which explicitly take into account the non-stationarity by a
priori assuming that model parameters could drift. These methods are designed for non-stationary
online learning and are different implementations of Bayesian filtering principle. However, in [21]
the authors rely on strong assumption that the observational model is linear in the non-stationary
parameters, and in [6], the authors use Extended Kalman Filter (EKF) which scales quadratically
with the number of classes making it impractical for many large-scale classification settings.

In this work, we take inspiration from [6, 21] to explicitly model the drift in parameters and propose
a simple yet effective strategy which stochastically moves each Neural Network parameter back to
the prior (initialization), controlled by resetting parameters. These resetting parameters are learned
online using the same objective as in [21]. The overall method could be interpreted as adaptive
Shrink&Perturb [2] and a mechanism for adaptive parameter resetting, where the amount of reset is
captured from the non-stationarity in the data.

2 Our approach

Consider a stream of labelled data ST = (Dt)
T
t=1, where Dt = (xn

t , y
n
t )

Nt
n=1 and Nt is a size of each

chunk of data. Without loss of generality and to simplify the presentation, let us assume that Nt = 1.
The objective is to fit a model y = f(x|θ) with parameters θ ∈ RD in online fashion, assuming
that the data distribution may change over time. Most of the works on plasticity loss operate in this
setting. A stationary case when the data is i.i.d. is a special case of this framework.

A simple approach to this problem is Online Stochastic Gradient Descent (Online-SGD) described as
follows. Let θt be the parameter of the model after being trained on the data St up to the time t. Let
p(yt+1|xt+1, θ) be the likelihood of yt+1 given the parameters θ and xt+1. At time t+ 1, when we
observe new data (xt+1, yt+1), we update parameters θt as:

θt+1 = θt − α∇θt [− log p(yt+1, f(xt+1, θt))] (1)

In practice, instead of using SGD optimizer with the rule from eqn. 1, one might use a different
optimizer such as Adam [12]. Neural networks trained in this way may exhibit loss of plasticity [2, 17].

We propose an approach which explicitly takes into account the non-stationarity in the data. Let p(θ0)
be the prior (initialization) distribution of the parameters θ, which in practice is often a Gaussian
distribution p(θ0) = N (0, σ2

θ ◦ ID) with some variance vector σ2
θ = (σ2

θ0 , . . . , σ2
θD ), where ◦ is the

element-wise multiplication. In Neural Network training, a Gaussian distribution is typically used for
the weights whereas a zero initialisation is used for the biases. Throughout this presentation to keep
the notation consistent, we assume that the biases are initialised from a Gaussian with variance 0.

Our objective is to find new parameters θt+1 such that it fits well the new data by maximizing the
likelihood p(yt+1|xt+1, θt+1) in one gradient update. To account for non-stationarity, following [21],
at time t+ 1, before observing new data, we assume the model parameters drift as:

θ̂t+1 = γ ◦ θt +
(√

1− γ2
)
◦ θ0, θ0 ∼ N (0, σ2

θ ◦ ID) (2)

Here, p(θ̂t+1|θt, γ) = N (θ̂t+1; γ ◦ θt, (1− γ2) ◦ σ2
θ) represents the prior probability about a range

of possible values of the true parameter θt+1 could take at next time t+ 1 before observing the data.
Here, γ = (γ1, . . . , γD) is a per-parameter vector such that γi ∈ [0, 1]. Each γi can be interpreted as
forgetting factor (see [21]) or resetting parameter which controls the amount of drift to the prior. If
γi = 1 there is no drift and θ̂it+1 = θit. If γi = 0 then the corresponding parameter is re-initialized
from the prior θ̂it+1 = θi0 ∼ N (θi0; 0, σ

2
θi). Using a value of γi ∈ [0, 1) could be viewed as a

mechanism for a soft parameter reset.
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Let θ̃t+1 = γ ◦ θt be the mean of p(θ̂t+1|θt, γ). The likelihood of new data under θ̃t+1 is given as:

p(yt+1|xt+1, θ̃t+1) =

∫
p(yt+1|xt+1, θt+1)p(θt+1|θ̃t+1)dθt+1,

which can be written as following using reparameterisation trick:

p(yt+1|xt+1, θ̃t+1) =

∫
p(yt+1|xt+1, θ̃t+1 +

√
1− γ2 ◦ σθϵ)N (ϵ|0, ID)dϵ (3)

This gives us an objective function for learning new value of parameter θt+1 fitting new data as:

θt+1 = θ̃t+1 − α∇θ̃t+1

(
− log

∫
p(yt+1|xt+1, θ̃t+1 +

√
1− γ2 ◦ σθϵ)N (ϵ|0, ID)dϵ

)
(4)

The eqn. 4 could be interpreted as follows. At time t+ 1, before observing new data, we assume that
the parameter could drift accoring to the eqn. 2 and we take the mean of the underlying distribution as
the initial guess. After that we incorporate the uncertainty induced by the eqn. 2 about the parameter
drift, in the Online SGD style parameters update. When γi = 1,∀i, this is equivalent to Online SGD.

The above procedure is somewhat similar to Shrink&Perturb method [2], which applies the following
transformation to the parameters before the gradient updates:

θ̂t+1 = λθt + σϵ, ϵ ∼ N (0, I), (5)

where λ ∈ (0, 1] is the shrinking parameter and σ > 0 the perturbation parameter. After the
transformation from eqn. 18, the method proceeds via Online SGD applied to the perturbed parameter
θ̂t+1. The authors of [2] argued that this allows parameters to escape the warmstarting problem and
gain plasticity. In our method, if we assume λ = γ and σ =

√
1− γ2σθ, where γ and σθ are scalars,

we recover a method very similar to Shrink&Perturb with an exception that the random perturbation
is only used in the gradient update in eqn. 4 and not in the initial guess θ̃t+1. The interpretation,
however, is a quite different from Shrink&Perturb. In our method, γ implements a trade-off between
previous parameter value and the prior, acting as a way of doing soft parameter reset. In Appendix 4.4
we provide an empirical comparison of our method with fixed γ and Shrink&Perturb.

There are a few alternatives to the objective in eqn. 3. One alternative is to first apply per-
turbation θ̃t+1 = γ ◦ θt +

√
1− γ2 ◦ σθϵ and then optimize noise-free Online-SGD objective

log p(yt+1|xt+1, θ̃t+1). This objective is closer to the Shrink&Perturb method and could be inter-
preted as one iteration of SGLD algorithm [22] with no additional noise. Second alternative is to initial-
ize θ̃t+1 = γ◦θt and then similarly, optimize noise-free Online-SGD objective log p(yt+1|xt+1, θ̃t+1).
This would correspond to finding MAP on the data (xt+1, yt+1) assuming a priorN (θ̃t+1; γ ◦ θt;λ2)

on parameters θ̂t+1 for some λ > 0.

Our approach could be viewed as the noisy version of this MAP procedure. Adding noise to the
gradient updates is a technique used in continuation methods [7, 10, 9] or in graduated optimization
[11]. These approaches are designed for non-convex optimization and inject noise at every iteration
of gradient update. Empirically, we found that our variant works the best. Comparison to other
variants is given in Appendix 4.3.

2.1 Learning dynamics parameter γ online

Following [21], at time t+ 1 before using perturbations from the eqn. 2, we update γ as follows:

γ ← γ − β∇γ

(
− log

∫
p(yt+1|xt+1, γ ◦ θt +

√
1− γ2 ◦ σθϵ)N (ϵ|0, ID)dϵ

)
(6)

The interpretation of the eqn. 6 is as following. Given current parameter θt and new data, we find new
γ such that it minimizes the loss on new data, assuming the drift from eqn. 2. This is corresponds to
an online model selection procedure which adapts γ to the non-stationarity of the data. In practice, as
in [21], we parameterise γ = exp{−0.5δ} for some δ ≥ 0 for numerical stability and we optimize
the objective from eqn. 6 wrt δ.
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Algorithm 1 Learned weight perturbation
Input: Data-stream ST = {(xt, yt)})Tt=1, hyperparameters δ0, σ2

θ , learning rates α, β
acc(y, ŷ) - accuracy function between ground truth y and prediction ŷ
p(θ0) = N (0, σ2

θID)(θ0) - prior distribution over NN parameters
N - number of NN parameters, T - number of iterations, K - number of Monte-Carlo samples
E = 0 - cumulative error,
Initialise: NN parameters θ0 ∼ N (0, σ2

θID), model dynamics parameters δi = δ0,∀i
for step t = 0, 1, 2, . . . , T do
(xt+1, yt+1), predict ŷt+1 = f(xt+1|θt), compute the model error et = 1− acc(yt+1, ŷt+1)
Update cumulative error E = E + et
Sample NN parameters from the prior θ0 ∼ p0(θ0|σ2

θ)
Let γ = exp{−0.5δ} and use it to update δ with eqn. 8
Use this new γ to find new parameters θt+1 using eqn. 7

end for

2.2 Monte-Carlo approximation

In practice the integrals from eqn. 4 and eqn. 6 cannot be computed in the closed form if the likelihood
p(yt+1|xt+1, θ) does not have a simple form (i.e., a linear function of θ as in [21]). Thus, we employ
a Monte-Carlo (MC) approximation. This would provide a modified update rule from eqn. 4:

θt+1 = θ̃t+1 − α∇θ̃t+1

(
− log

1

K

K∑
k=1

p(yt+1|xt+1, θ̃t+1 +
√

1− γ2 ◦ σθϵk)

)
, (7)

where ϵk ∼ N (0, ID). Similarly, the MC approximation for eqn. 6 is given as:

γ ← γ − β∇γ

(
− log

1

K

K∑
k=1

p(yt+1|xt+1, γ ◦ θt +
√
1− γ2 ◦ σθϵk)

)
(8)

The full algorithm is described in Algorithm 1. In practice we found that K = 1 works very well.
The appropriate ablation is provided in Appendix 4.1.

3 Experiments

In this section, we provide empirical evidence of the effectiveness of this approach to deal with
plasticity loss. Similar to [16], we construct a sequence of tasks based on CIFAR-10 [14], where
each task corresponds to a subset of data where for each example the labels are randomly permuted.
For more details, see [18] and [16]. The task identity or the task change points are unknown to the
method. We consider two settings, easy and hard, where in the easy setting we subsample 1200 data
points from CIFAR-10 [14], and construct 50 tasks, each having a duration of 1875 steps with batch
size of 16, which corresponds to 400 epochs. This is equivalent to "Random-label CIFAR-10" from
[16]. In the hard variant, we consider the full set of CIFAR-10 [14], and construct 10 tasks, each
having a duration of 7500 steps with batch size 128, which corresponds to 19.2 epochs. The main
difference between two settings consists in the amount of data a method sees within each of the task
and in the amount of epochs per task. Arguably, the hard variant of the task would highlight the
data-efficiency aspect of addressing plasticity loss for each of the methods. On top of that, we also
report results on Random Label MNIST, which is the same task as the easy variant of Random Label
CIFAR-10. For more details, see [18] and [16]. Moreover, we added more details on the benchmarks
and model architectures in Appendix 4.

As baselines, we consider Online SGD, Shrink&Perturb [2], L2 init [16] and Hard reset at task
boundaries. L2 init adds L2-regularisation towards initial parameters ||θ − θ0||2 to the loss and as
argued in [16], acts as a way of resetting parameters. Hard reset re-initialises the parameters at task
boundaries, which is a strong baseline but requires the knowledge of these boundaries. As optimizer
for all methods we use Adam [12]. For our method, we use K = 1 number of Monte-Carlo samples.
We select hyperparameters which minimize the cumulative error at the end of the training. For more
details, see Appendix 4.
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Figure 1: Learning on random label CIFAR-10 and MNIST. The red lines correspond to the task
changes. The plot on the top shows cumulative error metric with X-axis corresponding to training
steps. The plot on the bottom shows the average per-task online accuracy and the X-axis indicates the
task id. Columns correspond to the task variant.

For evaluation, we use two metrics. First, we use cumulative (across training) error computed for
each training step. Second, we use average per-task online accuracy. These metrics highlight different
aspects of the problem. Cumulative error highlights the data efficiency of the method, whereas the
average per-task online accuracy highlights the final performance per task of each of the method. See
Appendix 4 for more details about each of the metrics.

The results are given in Figure 1. We observe that our method is able to achieve similar final
performance to the Hard Reset but also is more data-efficient. On easy task variant of Random label
CIFAR-10, Figure 1, left, we observe that the method performs very closely to L2 init, and both
methods are very close to hard reset and slightly outperform it. On Figure 1, center, however, for the
hard task variant of Random label CIFAR-10, we see that our method is very close to the hard reset,
whereas L2 init is much worse. Finally, we also observe that our seems to even slightly outperform
the Hard Reset on Random label MNIST, Figure 1, right, whereas L2 init method has slightly worse
performance. This last result is interesting, because the only reason one could outperform Hard
Reset on this benchmark would be in implementing a form of knowledge transfer. This highlights the
soft-reset property of our method. Since, the parameters γ are learned per-parameter, in principle,
it could have γ ∼ 1 for some parameters and γ << 1 for others. This would allow to in one hand,
adapt to the non-stationarity, and on the other hand, transfer knowledge. See Appendix 4.6 for
visualizations of γ learning dynamics. Overall, the experiments suggest that our method maintains
plasticity better than baseline variants. In Appendix 4 we provide more ablations for our method.

4 Conclusion

We have presented a simple method for mitigating the plasticity loss which explicitly takes into
account the non-stationarity in the data. The method implements a mechanism of adaptively drifting
parameters towards the prior therefore implementing a soft resetting mechanim. Empirically, we
found this method performs well on the studied benchmarks compared to the baselines. In the future
work, we will validate this method in the general non-stationary learning setting and will study
in-depth the connection to other online learning approaches.
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Benchmarks and model architectures

We define a task as learning on CIFAR-10 [14] such that the labels are randomly permuted. The task
identity nor the task change point are unknown to the method. We consider two settings, easy and
hard. The easy setting is exactly the one considered in [16], where we initially subsample CIFAR-
10 [14] to 1200 data points and each task corresponds to 30000 timesteps (400 epochs with batch
size of 16). The total number of tasks is 50. As a model f(y|x, θ), we take a simple convolutional
neural network with 2 convolutional layer with kernel size 5 for the first layer and kernel size 3 of
the second one. Number of channels is equal to 64. The convolutional layers are then followed by
1 fully connected layer with size 256 and one output layer. The hard setting corresponds to a full
CIFAR-10 [14], where each task involves training on it for 7500 timesteps (19.2 epochs with batch
size of 128). The backbone model is 4 layers CNN, with the first layer having kernel size of 5 and
subsequent layers have a kernel size of 3. The number of channels is equal to 64. The convolutional
layers are then followed by 1 fully connected layer with size 256 and one output layer. On top of that,
we consider a random label variant of MNIST task, which we call Random label MNIST, similarly to
the one considered in [16]. The setting on MNIST task is the same as the easy variant of Random
label CIFAR-10 in terms number of data points, number of tasks, number of steps per task, batch size
and the architecture. Note that unlike [16], we use CNN for MNIST.

Metrics

When evaluating the performance of the methods, we used two different metrics. The average online
accuracy metric was introduced in [5] and is defined as:

A =
1

T

T∑
t=1

acc(yt, ŷt), (9)

where T is the number of steps per task, yt is the ground truth at time t and ŷt is the prediction at time
t. This metric measures how well a method could adapt to the changes in the distribution. Following
the presentation from [16], we use the per-task average online accuracy, which is defined as follows
for the task Ti:

ATi
=

1

M

ti+M−1∑
j=ti

acc(yt, ŷt), (10)

where ti is the starting time step of task Ti, M is the number of steps in the task Ti. This metric
captures how quickly we are able to learn to do well on the task, which is a measure of its plasticity.
If this accuracy goes down over time, we say that there is a plasticity loss, assuming that all tasks are
of equal difficulty.

Other metric we use is training cumulative error, which at time T is defined as:

ET =
1

T

T∑
t=1

(1− acc(yt, ŷt)) (11)

Higher the training cumulative error is, worse the model trains. Compared to the per-task average
online accuracy, this metric also highlights each method’s data efficiency, i.e., how fast each method
can adapt to a non-stationarity. We report the results in Figure 1. We see that these metrics indeed
highlight different aspects of the problem.

Hyperparameters

For every hyperparameter for every method, we ran experiment with 3 different seeds. The best
hyperparameter for each method was selected by minimizing the cumulative error at the end of the
training.

For all the methods we did a sweep over learning rates α for the θ parameters which included the
following values: 1e− 3, 5e− 4, 1e− 4, 5e− 5, 1e− 5.

For L2 init, we considered the following values for the regularisation parameter λ ∈ {10.0, 1.0, 1e−
1, 1e− 2, 1e− 3, 1e− 4, 1e− 5, 1e− 6, 1e− 7, 1e− 8, 1e− 9, 1e− 10}.

7



For Shrink&Perturb, we considered the following values for the shirnkage parameter λ ∈
{1.0, 0.99999, 0.9999, 0.999, 0.99, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1}. We have considered the
following values for the perturbation parameter σ ∈ {0.5, 1.0, 0.5, 1e−1, 1e−2, 1e−3, 1e−4, 1e−
5, 1e− 6, 1e− 7, 1e− 8, 1e− 9, 1e− 10}.
For Our method, we had 2 hyperparameters, the variance σθ and the learning rate β for updating γ.
For the variance we have considered the following values σθ ∈ {0.01, 0.1, 0.2, 0.5, 1.0, 10.0}. For
the learning rate β we have considered the following values β ∈ {1e− 6, 5e− 6, 1e− 5, 5e− 5, 5e−
4, 1e− 4}. We use K = 1 number of Monte-Carlo samples.

Additional ablations

In this section we provide ablations which motivate the design decisions behind our method.

4.1 Number of Monte Carlo samples and stochasticity

In this section, we ablate the number of Monte-Carlo samples we use in eqn. 7 and in eqn. 8. The
results are given in Figure 2. We observe that it is beneficial for this method to keep the number of
samples K to be low. We believe it is due to the fact that having too many samples K would smooth
out the perturbation introduced by the linear dynamics from eqn. 2, and the method would revert
closer to Online SGD. The experiment is run on Random Label CIFAR-10: easy task.

0 20 40 60 80 100
Number of Monte-Carlo samples

220

240

260

280

300

320

Cu
m

ul
at

iv
e 

Er
ro

r

Figure 2: The impact of number of Monte-Carlo samples on the performance. The experiment is run
on Random Label CIFAR-10: easy task.

On top of that, we check whether it is important to use the same Monte-Carlo samples ϵk for eqn. 7
and eqn. 8, or it is beneficial to resample ϵk for each of the objective. The Figure 3 shows that it
is slightly more beneficial to keep the same noise among two objectives. The experiment is run on
Random Label CIFAR-10: easy task.
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Figure 3: The impact of noise for Monte-Carlo approximations, on the performance. The experiment
is run on Random Label CIFAR-10: easy task.

4.2 Order of learning γ

In this section we ablate whether the order of whether we learn γ before or after learning θ is
important. Figure 4. We see that learning γ before learning θ is more important. We believe that the
opposite order would lead to more overfitting.
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Figure 4: Impact of the order of gamma learning on the performance. The experiment is run on
Random Label CIFAR-10: easy task.

4.3 Alternatives of our method

As discussed in Section 2, our method could have multiple alternatives. The alternatives only define
the learning rule for the parameters θt+1 and modify the objective function in eqn. 4. Below, we list
possible alternatives.

Stochastic transition + noise-free SGD alternative operates as following. First, it does the
stochastic transition:

θ̃t+1 = γθt +
√
1− γ2σθϵ, ϵ ∼ N (0, ID) (12)

then it applies one SGD update on the likelihood without the noise:

θt+1 = θ̃t+1 − α∇θ̃t+1

(
− log p(yt+1|xt+1, θ̃t+1)

)
(13)

This variant is essentially a version of Shrink&Perturb with specific parameterisation of λ = γ and
σ =

√
1− γ2σθ in the eqn. 18. It is a bit more expressive since we have γ per parameter in our

model, and we learn these γ online. The procedure described by eqn. 12 and eqn. 13 could also be
interpreted as one step of the SGLD [22] algorithm without additional noise.

Deterministic transition + noise-free SGD alternative does the deterministic transition (as our
method):

θ̃t+1 = γθt (14)
and does the gradient update noise-free:

θt+1 = θ̃t+1 − α∇θ̃t+1

(
− log p(yt+1|xt+1, θ̃t+1)

)
(15)

This procedure could be interpreted as doing MAP inference on the following distribution:

θt+1 = argmax
θ

p(yt+1|xt+1, θ)N (θ; γθt, λ), (16)

with some λ > 0 constant depending on α. This comes from the implicit parameterisation of SGD
due to the initialization.

Deterministic transition + noisy SGD is our method and we described it in detail in Section 2.

Detereministic transition + noisy SGD + perturbation at the end is a variant of our method
where we add an additional perturbation step after the gradient update in eqn. 4:

θt+1 ← θt+1 +
√
1− γ2σθϵ, ϵ ∼ N (0, ID) (17)

The ablation results are provided in Figure 5. First of all, we see that the stochastic transition
before noise-free SGD is much worse than variants with deterministic transition. Second, we see
that deterministic transition + noisy SGD + pertubation at the end is worse than other variants.
Interestingly, we see that determinisitc transition with noisy SGD performs similarly well as the
deterministic transition without the noise.
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Figure 5: Algorithm variants ablation. The top row shows results on easy variant of Random label
CIFAR-10, whereas the bottom row shows results on hard variant of this task.

4.4 Connection to Shrink and Perturb

As discussed in the Section 2, our method could is somewhat similar to Shrink&Perturb [2]. In
Shrink&Perturb method, we change the parameters as follows before the gradient updates:

θ̂t+1 = λθt + σϵ, ϵ ∼ N (0, I), (18)

where λ ∈ (0, 1] is the shrinking parameter and σ > 0 the perturbation parameter. After the
transformation from eqn. 18, the method proceeds via Online SGD applied to the perturbed parameter
θ̂t+1. The authors of [2] argued that this allows parameters to escape the warmstarting problem and
gain plasticity. In our method, if we assume λ = γ and σ =

√
1− γ2σθ, where γ and σθ are scalars,

we recover a method very similar to Shrink&Perturb with an exception that the random perturbation
is only used in the gradient update in eqn. 4 and not in the initial guess θ̃t+1. Moreover, in our method
we learn γ per parameter and therefore the overall method is much more expressive.

Nevertheless, we ran an ablation of our method, where we fix γ to be a scalar over which we sweep.
We also do the sweep over the parameters for the Shrink&Perturb. The results are given in Figure . We
see that even with a fixed value of γ, our method achieves better performance than Shrink&Perturb.

4.5 Impact of noise in learning γ

In this section we study the impact of noise in eqn. 6 together with eqn. 4. In particular, we study
whether it is important to use the noise ϵ in these updates, or we can put ϵ = 0 and use noise-free
update. The noise-free updates for θ are given by:

θt+1 = θ̃t+1 − α∇θ̃t+1
(− log p(yt+1|xt+1, θ̃t+1)) (19)

The noise-free update in γ is given by:

γ ← γ − β∇γ (− log p(yt+1|xt+1, γ ◦ θt)) (20)

Compare these updates to eqn. 6 for γ and to eqn. 4 for θ.

The results of this ablation are given in Figure 7. We see clearly that using noise in γ updates is very
important, however using noise in θ update is marginally important.
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Figure 6: Comparison to Shrink&Perturb.
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Figure 7: Impact of noise in learning γ and θ. The top row shows results on easy variant of Random
label CIFAR-10, whereas the bottom row shows results on hard variant of this task.

4.6 Expressivity of γ

In this section we study the impact of different expressivity of γ on the performance. A normal
version of our method is phrased in a way that γ is learned for each parameter. Nevertheless, we
study the performance of our method where γ could be learned per layer or as a global scalar. The
results are given in Figure 8. We see generally that as expressivity of γ increases, the cumulative
error decreases. This makes sense since the neural networks are complex non-linear mappings and
finding one scalar might not perform very well.
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Figure 8: Impact of the how expressive the γ on the performance. The experiment is run on Random
Label CIFAR-10: easy task.
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Figure 9: Learning of γ when it is learned as a scalar. The experiment is run on Random Label
CIFAR-10: easy task.

Moreover, in Figure 9 we show the dynamics of learning γ parameter when it is learned as a scalar.
On top of that, in Figure 10 and in Figure 11 we show the different γ for different layers of the neural
network. Overall, we see that learning parameter γ captures the non-stationarity of the data, we
see that γ generally decreases at task boundaries and increases withing the task. This is exactly the
behaviour we would ancitipate. Moreover, when we look at the dynamics of γ for different layers,
we see that it is much more complex, especially for biases. This suggests that this mechanism could
be interesting when applied to complex non-stationary problems.
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Figure 10: Learning of γ when it is learned per layer. Here we show the γ corresponding to the
weight matrices. The experiment is run on Random Label CIFAR-10: easy task.
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Figure 11: Learning of γ when it is learned per layer. Here we show the γ corresponding to the biases.
The experiment is run on Random Label CIFAR-10: easy task.
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