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I. INTRODUCTION

Robots are increasingly deployed into applications where
safety plays a critical role, ranging from delivery [3], to
security [4] and even cinematography [2]. Safe navigation
remains a challenge due to uncertain vehicle dynamics and
imperfect trajectory controllers. Engineers often employ sim-
plified dynamics models to handle the high-dimensionality of
kinodynamic planning, and consequently leave the burden of
trajectory-following for the controller. Such scheme generates
large tracking errors, which can lead to crashes despite a
nominal collision-free path.

A common strategy to achieve safety is to inflate obstacles,
or to craft safety tubes around trajectories. Experts hand-
tune static safety margins for particular missions based on
previous experiences and costly trial-and-error [6]. However,
this handcrafted approach works only under low variability of
vehicle dynamics and environments. One can also use worst-
case margins by assuming high dynamics variation [7, 5, 8, 1],
but overly conservative approaches can lead to no feasible
planning solutions. Our work develops a middle ground: we
adapt margins on-the-fly to safely capture unknown varying
dynamics without overly sacrificing performance.

Our key insight to achieve real-time adaptive behavior is to
precompute safety tubes at discretized levels of dynamics vari-
ance. When planning, our system queries appropriate safety
margins based on vehicle dynamics uncertainty estimated
during flight. Our contributions are three-fold: (i) A mathemat-
ical formulation for designing probabilistic-safe safety tubes;
(ii) A tube library framework that leverages precomputation
to adapt margins online for safe real-time planning; (iii)
Validation through field experiments in challenging scenarios
showing improvements over baseline static margin methods.
Supplementary Video: https://youtu.be/nrcfQx3rJnw

II. PROBLEM DEFINITION

We wish to control a vehicle with unknown tracking perfor-
mance to stay probabilistically safe while navigating as close
as possible to a reference trajectory ξref, given a similarity
metric Jsim. Let ξ : [0, tf ] → R3 × SO(2), be a planned
trajectory as a mapping from time to a position and heading,
i.e., ξ(t) = (x(t), y(t), z(t), ψ(t))T . Let x ∈ X ⊆ Rn be
the vehicle state, and π : (x, ξ, t) 7→ u ∈ U ⊆ Rm be
a controller that maps the current state and trajectory to
a control command. Actual acceleration dynamics function
ftrue, is defined as the summation of a nominal model f̂ and

Fig. 1: Adaptive Tube Library: The proposed framework adapts safety
margins online for a trajectory library with dynamics uncertainties estimated
during flight to generate safe plans without overly sacrificing performance. To
enable real-time adaptation, the library queries from a safety margin lookup
table precomputed for each tube at discretized levels of dynamics variance.

a disturbance d. We define safety as a confidence bound 1− ε
that the vehicle’s actual state x(t) remains in free space Xfree

when following planned trajectory ξ. The overall problem is:

ξ∗ = argminξ Jsim(ξ, ξref), where ξ(0) = x0

s.t. P (x(t) ∈ Xfree) ≥ 1− ε, ẍ(t) = ftrue(x(t),u(t)),

u(t) = π(x(t), ξ(t)) (1)

III. APPROACH

We optimize Eq. 1 with a tube library that adapts with
uncertainty. Our key idea is to define the probabilistic safety
margin of Eq. 1 in terms of trajectory tracking error. We define
a safety tube Ωξ, relative to a planned trajectory ξ. Given a
stochastic disturbance function fd : t → Rn and a controller
π, we define Ωξ as the minimum volume in workspace that
encloses the vehicle states when tracking ξ, with a confidence
bound 1− ε. We can describe the shape of the tube by using
a center line ρ : [0, tf ] → R3 and a 2D cross-section St
centered at ρt and perpendicular to ρ̇t, with form parametrized
by θ : [0, tf ]→ Rp, where θ and ρ are Lipschitz-continuous.
For simplicity, disturbance mean is set to zero, tubes are set
to be centered along trajectory ρ = ξ, and St is set as a circle
with radius θt constant over entire trajectory.

https://youtu.be/nrcfQx3rJnw


Fig. 2: Exp. A - Higher performance with experience: Safety margins
adaptively decrease with lower uncertainty. At bottom-right corner, system
picked the faster trajectory in the second loop when turning. Actual odometry
(black) stays within tubes in both loops. Across two loops, average trajectory
cost decreased from 0.249 to 0.218, and completion time from 28.2s to 26.5s.

Offline Tube Shape Lookup Table (LUT) Generation:
Simulating Possible Trajectories: Given a set of disturbance
standard deviations σ = {σg}Gg=0 and a trajectory library
L = {ξk}Kk=0 , we run Nmc×K×G Monte Carlo simulations
to collect a set of possible vehicle trajectories DL,σ . The
simulated vehicle follows trajectory ξk with controller π whilst
under nominal model dynamics f̂ with a disturbance at every
timestep sampled from N (0, σg) and an initial state from an
user-defined distribution Nmc times to generate a set Dξk,σg .
Tube Fitting: We find optimal ρk,g and θk,g that define a
minimum-volume tube that encloses predicted states in Dξk,σg

.
We discretize trajectory to segments by time and fit a zero-
mean normal distribution to cross-track error of collected
points in each segment. For each segment, we fit an interval
(e.g., 2σ) that corresponds to desired confidence bound 1− ε.
The maximum fitted interval over all segments is then added
to LUT, which can be queried by lookup(ξk, σg) 7→ (ρξ,θξ).
Online Planning with Adaptive Tube Library:
Disturbance Modeling: We estimate the current disturbance
term dt by learning a disturbance model ḡ(ξ) 7→ (µḡ, σḡ).
Disturbance is the difference between predicted and actual
acceleration ḡ = ẍt − f̂(xt−1,ut−1). In this paper, we set
µḡ as 0, σ2

ḡ as a moving variance on observed disturbance,
and assume all trajectories share the same time-varying dis-
turbance. However, any disturbance modeling method that
provides disturbance mean and variance can be used.
Trajectory Selection: Given estimated disturbance variance σ2

ḡ ,
we query the associated safety margins for each trajectory
ξk in the library by using the disturbance σg = dσḡe. The
collision-free (given respective safety margin) trajectory with
minimum trajectory cost, here using L2 norm, is then chosen.

IV. EXPERIMENTS

Setup: We set up an indoor maze environment with tight
corridors (1.5m) and 180◦ hairpin turns. The configuration
is difficult to navigate with potential crashes around turns
due to undercutting or overshooting. An offline map and a
collision-free 1m/s global plan are given. We use a custom-

TABLE I: Exp. B - Baseline Comparisons: Over 10 trials, our method
computes more optimal plans while remaining safe. Square brackets in first
column show margin width for each speed used in static margin experiments.
∗ indicates over successful trials

Margin Type
[0.5m/s, 1m/s]

Success %
10 Trials

Comp. Time (s)
Nominal: 18.4s Avg. Cost

Ours -
Adaptive Tubes 100% 26.5 ± 0.6 0.222 ± 0.006

Conservative
[40cm, 2m] 100% 39.9± 0.3 0.391± 0.002

Handtuned
[15cm, 15cm] 30% 24.5 ± 0.3∗ 0.193 ± 0.005∗

Handtuned
[20cm, 20cm] 90% 24.9± 0.4∗ 0.195 ±0.002∗

built platform with onboard state estimation and computing.
Implementation: We precompute a margin LUT for a
library of 16 2-second trajectories of constant angular velocity
(0:15:90◦/s) and two linear speeds (0.5, 1.0m/s) with yaw
tangent to trajectory. The LUT is discretized at σ = [0.0 : 0.5 :
3.0]m/s2 with Nmc = 1000 and desired confidence of 95%.
Initial state is picked from: {x, y : N (0, 0.1)m, z : 0m, vx :
N (0.75, 0.25)m/s, vy, vz : 0m/s}. Online, we estimate body-x
and y disturbance (gx, gy) with a moving variance window
of 20 seconds. The larger between σḡx and σḡy is used for
lookup. We replan at 5Hz.
Real-World Experiments:
(a) Comparison with experience: To show the effects of
varying disturbance uncertainty, we initialize the first loop
with a high disturbance standard deviation of σḡ = 3.0m/s2,
and the second loop with the first loop’s final disturbance
standard deviation. Fig. 2 compares the two loops, with nar-
rower margins, lower completion time and cost as disturbance
uncertainty decreases.
(b) Comparison to baseline static margins: We evaluated
our approach for a vehicle with pre-existing model mis-
match and imperfect controller. We use three sets of static
margins as baselines: one conservative using high bounded
disturbances from [5], two handcrafted static margins tuned
with other global plans. Our adaptive tubes are hot-started
at σḡ = 0.45m/s2 from Exp. A. Table I shows comparisons
over 10 trials. Our method remains safe across all trials, with
comparable completion time (within 7%) and average cost
(within 15%) to the most competitive handcrafted baseline,
which was safe in 90% of trials. The experiment also shows
the difficulty in handtuning margins, as a small decrease in
width (20cm vs. 15cm) can significantly reduce success rate.

V. CONCLUSION

In this paper, we present a method that adapts safety margins
on-the-fly to safely capture unknown varying dynamics without
overly sacrificing performance. We validated with flight tests
that our method computes more optimal plans while remain-
ing safe compared to baseline static margins. Future work
include conducting simulated ablation studies under varying
disturbances, connecting our Monte Carlo-based framework
to reachability analysis, and extending our framework for safe
learning-based systems (e.g., Safe Sim2Real).
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