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ABSTRACT

Reinforcement learning has been central to recent advances in large language
model reasoning, but most algorithms rely on on-policy training that demands
fresh rollouts at every update, limiting efficiency and scalability. Asynchronous
RL systems alleviate this by decoupling rollout generation from training, yet their
effectiveness hinges on tolerating large staleness in rollout data, a setting where
existing methods either degrade in performance or collapse. We revisit this chal-
lenge and uncover a prosperity-before-collapse phenomenon: stale data can be as
informative as on-policy data if exploited properly. Building on this insight, we
introduce M2PO (Second-Moment Trust Policy Optimization), which constrains
the second moment of importance weights to suppress only extreme outliers while
preserving informative updates. Notably, M2PO sharply reduces the fraction of
clipped tokens under high staleness (from 1.22% to 0.06% over training), pre-
cisely masking high-variance tokens while maintaining stable optimization. Ex-
tensive evaluation across six model scales (from 1.7B to 32B) and eight reasoning
benchmarks shows that M2PO delivers stable off-policy training even with data
stale by at least 256 model updates and matches on-policy performance.

Figure 1: Comparison of on-policy GRPO and off-policy training under a staleness of 256 model
updates on Qwen-2.5-32B. Left: Standard GRPO suffers from degradation with stale rollouts, while
removing the trust region (GRPO no TR) reveals a clear prosperity-before-collapse phenomenon.
In contrast, M2PO achieves stable training and matches on-policy performance even under high
staleness. Right: Token clipping ratio comparison shows that M2PO dramatically reduces clipping
events compared to GRPO with the same staleness, while avoiding training collapse.

1 INTRODUCTION

Reinforcement learning (RL) has been central to recent advances in large language model (LLM)
reasoning, driving breakthroughs in systems like OpenAI’s o1 (OpenAI et al., 2024) and DeepSeek’s
R1 (DeepSeek-AI et al., 2025; Team et al., 2025). Most existing RL algorithms (Schulman et al.,
2017; Zheng et al., 2025b; Yu et al., 2025) for LLMs adopt an on-policy design, as it provides stable
training and reliable performance, but the strict requirement for fresh (or limited-staleness) rollouts
at every update. This constraint significantly limits scalability and becomes increasingly imprac-
tical as we move toward harder, more complex reasoning or agentic tasks, where rollouts involve
multi-step tool use, expensive program execution, and long reward computation. In such settings,
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rollout latency can easily range from minutes to hours, making substantial staleness not only com-
mon but often unavoidable. For example, SWE-bench Jimenez et al. (2023) with OpenHands Wang
et al. (2024), rollout latency can become extremely large. In a single run, even with a small batch
size, the end-to-end inference time (including tool call and code execution) can exceed 100 min-
utes, with more than 80 iterations in the environment, which makes on-policy training extremely
inefficient. To overcome this bottleneck, a growing line of RL systems (Fu et al., 2025; Zhu et al.,
2025; Noukhovitch et al., 2024; Zhong et al., 2025; He et al., 2025) have explored asynchronous
designs that decouple rollout from training. Such approaches improve resource utilization and en-
able training to scale more efficiently across large and heterogeneous clusters, but their effectiveness
fundamentally relies on the ability of RL algorithms to tolerate rollout staleness without sacrificing
stability or performance.

However, under large rollout staleness, existing RL algorithms struggle to strike the right balance.
Some methods (Schulman et al., 2017; Shao et al., 2024; Zheng et al., 2025a) can maintain stability,
but they often suffer from noticeable performance degradation. Conversely, approaches designed to
maximize performance (Fu et al., 2025; Chen et al., 2025; Su et al., 2025) tend to compromise sta-
bility, frequently leading to training collapse. On-policy methods provide both stability and strong
performance, but their reliance on fresh or only slightly stale rollouts at every update imposes rigid
constraints that hinder scalability. Consequently, an ideal off-policy RL algorithm for LLMs should
enable effective reuse of trajectories collected under outdated policies to preserve strong perfor-
mance under significant staleness, and ensure stable training that converges competitively with on-
policy methods. Meeting these requirements is key to realizing off-policy RL as a truly scalable
solution for aligning and fine-tuning large language models.

In this paper, we aim to investigate the underlying reasons for the limitations of off-policy RL in
LLMs and to design an effective algorithm that fully leverages stale data to unlock its potential.
We begin by revealing an intriguing Prosperity before Collapse phenomenon (Yellow curve in Fig-
ure 1 (left)): although RL training without a trust region eventually collapses on stale data, it initially
achieves substantially higher performance than vanilla GRPO with ϵ-clipping. In some cases, it even
matches the performance of the on-policy baseline. From this, we draw an important observation:
stale data can be as informative as data collected on-policy in RL for LLMs, but the key chal-
lenge lies in how existing algorithms exploit it. In particular, vanilla GRPO performs poorly under
staleness because stale-data training exhibits a substantially higher clipping rate, with many of the
clipped updates occurring on informative high-entropy tokens (see Figure 4). This disproportionate
clipping on crucial tokens hinders the full utilization of stale training data.

This pivotal token masking observation reveals that these high-entropy tokens play a dual role: they
provide the most informative training signal but also introduce the greatest instability under stale-
ness. Therefore, the key challenge is to retain as much learning signal from these tokens as possible
without risking training collapse. Motivated by this, we propose M2PO (Second-Moment Trust
Policy Optimization), a novel off-policy RL algorithm that constrains the second moment of impor-
tance weights. Unlike standard ϵ-clipping, which disproportionately suppresses high-entropy tokens
and discards valuable learning signals, M2PO leverages the second-moment metric M2. This metric
is both variance-sensitive, capturing instability introduced by high-entropy tokens, and statistically
stable, avoiding the cancellation issues inherent to KL-based measures. By regularizing training at
the batch level through M2, M2PO masks only extreme outliers while preserving the majority of
informative updates. As a result, M2PO enables stable off-policy reinforcement learning with stale
data, matching on-policy performance even under large staleness.

As illustrated in Figure 1 (left), even when trained exclusively on data stale by at least 256 model
updates, M2PO achieves accuracy comparable to the on-policy baseline (red curve), demonstrating
its ability to fully exploit stale data without sacrificing stability. M2PO achieves this through a more
accurate and adaptive clipping strategy that clips substantially fewer tokens while maintaining train-
ing stability. As shown in Figure 1 (right), M2PO dramatically reduces the fraction of clipped tokens
under high staleness (from 1.22% to 0.06% over the entire training process, see Figure 7b), thereby
preserving more useful training information in stale data. To further validate M2PO effectiveness,
we conduct an extensive evaluation of M2PO across six model scales (ranging from 1.7B to 32B)
and eight math reasoning benchmarks in Section 6. The results show that M2PO consistently deliv-
ers strong performance across all training settings. M2PO also shows insensitivity to the choice of
threshold, with a single value across all experiments, demonstrating its practicality and robustness.
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2 RELATED WORK

RLVR. Recent advances (DeepSeek-AI et al., 2025; Yu et al., 2025; Team et al., 2025; Gao et al.,
2024) in LLM reasoning show that Reinforcement Learning with Verifiable Reward (RLVR), which
relies on verifiable reward signals instead of model-generated scores, can effectively improve model
reasoning ability. These gains are achieved using various policy optimization methods such as
PPO (Ouyang et al., 2022) and GRPO (Shao et al., 2024). Encouraged by the success of RLVR,
a growing body of work (Kazemnejad et al., 2024; Yuan et al., 2025b;a; Yu et al., 2025; Liu et al.,
2025b; Luo et al., 2025a; Zhang et al., 2025; Hu, 2025; Xiong et al., 2025) has emerged to fur-
ther improve reinforcement learning methods for LLM reasoning. For instance, methods such as
VinePPO (Kazemnejad et al., 2024), VC-PPO (Yuan et al., 2025b), and VAPO (Yuan et al., 2025a)
aim to enhance LLM reasoning by optimizing the value function.

Trust Region in RLVR. While RLVR has been widely adopted for fine-tuning LLMs, a key chal-
lenge lies in how to effectively constrain the trust region, not only to stabilize training but also to
achieve better learning efficiency and overall performance. To address this, a growing line of work
has proposed various strategies to control the policy update, ranging from ratio clipping (Yu et al.,
2025), approximate trust region (Fu et al., 2025), sequence-level clipping (Zheng et al., 2025a),
asymmetric trust region (Roux et al., 2025; Arnal et al., 2025), and gradient-preserving clipping (Su
et al., 2025; Chen et al., 2025). For instance, AREAL (Fu et al., 2025) uses a more recent approxi-
mate policy to decide the trust region rather than the behavior model. GSPO (Zheng et al., 2025a)
moves from token-level to sequence-level clipping by defining importance ratios on sequence like-
lihood. While these methods improve RLVR under moderate settings, most of them focus on rel-
atively limited intra-iteration staleness (e.g., 8 or 16) and have not been thoroughly studied under
larger off-policy gaps, like extreme staleness. In this work, our goal is to better understand the role
of staleness in RLVR and to seek more effective ways of constraining the trust region in RLVR.

3 BACKGROUND

3.1 GROUP RELATIVE POLICY OPTIMIZATION (GRPO)

Group Relative Policy Optimization (GRPO) (Shao et al., 2024) is a variant of Proximal Policy Opti-
mization (PPO) (Ouyang et al., 2022) tailored for language model fine-tuning. Instead of computing
advantages using a value function, GRPO normalizes reward scores within groups of responses sam-
pled for the same prompt, which largely improves the training efficiency, and aims to maximize the
following objective:

JGRPO(θ) = E[q ∼ P (Q), {oi}Gi=1 ∼ πθold(O|q)]

1

G

G∑
i=1

(
min

(
πθ(oi|q)

πθbehav
(oi|q)

Ai, clip
(

πθ(oi|q)
πθbehav

(oi|q)
, 1− ϵ, 1 + ϵ

)
Ai

))
,

(1)

where Ai is the advantage, computed using a group of rewards {r1, r2, . . . , rG} corresponding to
the outputs within each group:

Ai,t =
ri −mean({Ri}Gi=1)

std({Ri}Gi=1)
. (2)

Similar to PPO, GRPO employs a clipping mechanism to stabilize updates. The ratio ri =
πθ(oi|q)

πθold
(oi|q)

is clipped to [1− ϵ, 1 + ϵ], so that when Ai > 0 the policy cannot increase probability mass exces-
sively, and when Ai < 0 it cannot over-penalize. This prevents large, unstable updates while still
allowing normalized group advantages to guide learning.

3.2 PERFORMANCE DEGRADATION FROM TRAINING WITH STALE DATA

To investigate the impact of stale data on reinforcement learning for large language models, we
introduce Stale-k RL training, where the model is trained using data generated k model updates
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earlier in each training iteration. More specifically, in our training setup, each training step consists
of four model updates, a configuration commonly used in recent work (Zheng et al., 2025b; Wang
et al., 2025b; Yu et al., 2025; Chen et al., 2025; Zheng et al., 2025a). Thus, even stale-0 (s=0)
training has a staleness between 0 and 3. stale-256 (s=256) training has a staleness between 256 and
259). During the first k model updates, since no stale model is yet available, the model is trained
on data generated by the original base model, with different training data used in each iteration. In
this setup, all training data after the initial phase comes from stale models, allowing us to study how
stale data affects the dynamics and effectiveness of RL training.
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Figure 2: RL with stale data
on Qwen2.5-Math-7B, reporting
avg. accuracy on all benchmarks.

Stale-k RL training. In our “stale-k” setup, the training batch
at step t is collected k updates earlier, but we implement this by
storing the generated data rather than storing old checkpoints.
Concretely, at update step t − k we use the current policy to
generate rollouts and place them into a buffer, and after k fur-
ther updates, these trajectories are consumed once for training
at step t. Each sampled trajectory is used exactly once and is
never reused across multiple updates. More training details
can be found at Appendix B.

As shown in Figure 2, we train Qwen2.5-Math-7B (Yang et al.,
2024) with GRPO under varying staleness levels and report test
accuracy. The results reveal a clear trend: as staleness increases,
model performance degrades and convergence slows. In partic-
ular, low-staleness training achieves higher accuracy, whereas
high-staleness training converges more slowly to lower performance.

4 PROSPERITY BEFORE COLLAPSE: STALE DATA CONTAIN ENOUGH
TRAINING INFORMATION IN RL ON LLMS

Figure 3: Prosperity before Collapse. Training with-
out a trust region (TR) (ϵ = ∞) under stale data
(s = 256) initially achieves higher performance than
clipped training, sometimes even matching the on-
policy baseline (s = 0). However, it eventually col-
lapses due to uncontrolled variance.

In this section, we investigate why RL on
LLM deteriorates when trained on stale data
generated by earlier policies.

First, we reveal an intriguing prosperity-
before-collapse phenomenon: although off-
policy RL training without a trust re-
gion eventually collapses on stale data, it
achieves substantially higher performance
than GRPO with ϵ-clipping before collapse,
even matching on-policy results. Next, we
study the causes of GRPO’s inferior perfor-
mance when trained with stale data.

Prosperity before collapse: training with-
out a trust region. To disentangle whether
the performance drop stems from stale data
generated by highly shifted old policies or
from biases introduced by the training algo-
rithm, we remove the trust region entirely to remove bias from the training algorithm. Surprisingly,
we observe a distinct prosperity-before-collapse phenomenon. As shown in Figure 1 and Figure 3,
although training without a trust region eventually collapses, it achieves substantially better perfor-
mance prior to collapse. In fact, under stale data (s=256), the no-clipping setting initially outper-
forms clipped training, sometimes even matching on-policy baselines.

Pivotal token masking by ϵ-clipping when training with stale data. As also discussed in re-
cent work (Su et al., 2025; Chen et al., 2025), ϵ-clipping may inadvertently mask important tokens,
preventing them from contributing useful training signals. We extend this observation to the asyn-
chronous setting and show that the problem becomes substantially more severe when training with
stale data, since larger staleness induces a greater mismatch between the behavior and target poli-
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cies. As illustrated in Figure 4a, the clipping ratio increases sharply under large staleness (s = 256),
while remaining negligible in the on-policy baseline.
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Figure 4: (a) Clipping ratio dynamics during RL train-
ing on the Qwen-2.5-Math-7B model. (b) Relation-
ship between average token entropy and the distance
between the importance sampling ratio r and 1.

To better understand this phenomenon,
we conduct a quantitative analysis on 90
million training tokens collected during
Qwen2.5-Math-7B training with staleness
256. Specifically, we gather all training
tokens generated between 800 and 1200
model updates, ensuring the model is al-
ready in a stable training phase but be-
fore convergence. Figure 4b shows a clear
trend: as |r − 1| increases, the average to-
ken entropy also rises.

This indicates that ϵ-clipping dispro-
portionately prunes high-entropy tokens,
which are typically the most informa-
tive for model improvement (Wang et al.,
2025a; Gao et al., 2025; Cui et al., 2025).
Consequently, clipping under stale data leads to degraded performance.

This observation reveals a dilemma: while high-entropy tokens are crucial for learning progress,
they also introduce instability in the off-policy setting, which motivates our key research question:

Can a more accurate and adaptive trust region strategy preserve the benefits of
stale data while ensuring stable training?

5 SECOND-MOMENT TRUST POLICY OPTIMIZATION

In this section, we propose Second-Moment Trust Policy Optimization (M2PO), a novel policy
optimization algorithm providing a more effective trust region for off-policy training with stale data.
As discussed in Section 4, as high-entropy tokens are a double-edged sword, the key challenge in
designing an effective trust region algorithm is how to best harness the rich information in high-
entropy tokens without letting them destabilize training.

5.1 MEASURING DISTRIBUTION GAP WITH THE SECOND MOMENT

The main source of instability in off-policy RL lies in the distributional mismatch between the be-
havior policy that generates training data and the current policy being optimized (Schulman et al.,
2015; 2017). As the divergence between these two distributions grows, importance sampling cor-
rections produce high-variance gradient estimates, leading to noisy and unreliable updates. Our
motivation is therefore to constrain the distributional gap between πbehav and πθ at the batch level,
directly coupling the constraint with model updates while preventing over-constraining of token-
level variations.

A natural choice to measure distribution is the batch-level KL divergence, a metric widely adopted
to monitor stability in RL:

K̂L =
1

N

N∑
i=1

K̂Li = −
1

N

N∑
i=1

log ri = −
1

N

N∑
i=1

log
πθ(ai | si)

πbehav(ai | si)
, (3)

where N is the number of tokens in a batch.

However, batch-level KL suffers from two key limitations. First, because it is computed from single-
sample estimates, individual K̂Li can be positive or negative, leading to cancellation effects where
large deviations offset each other and produce deceptively small KL values. Second, tokens with
large ratios (ri > 1) are not properly constrained, as their negative K̂Li actually decreases the
estimated KL, even though such tokens can contribute to training instability (Schulman et al., 2017).

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

To overcome these limitations, we propose to use the second moment of the log-ratio to measure the
distribution gap between behavior and current policy. Formally, we define

M̂2 =
1

N

N∑
i=1

M̂2,i =
1

N

N∑
i=1

(log ri)
2 =

1

N

N∑
i=1

[log
πθ(ai | si)

πbehav(ai | si)
]2, (4)

This choice is motivated by two key advantages of M̂2 over the batch K̂L. First, each per-token
estimate M̂2,i = (log ri)

2 is always non-negative, so the constraint can be reliably applied even
when r > 1. Second, while the batch KL only measures the mean shift between policies, M2 also
reflects the variance of importance weights. This makes M̂2 more sensitive to outliers and noisy
tokens with extreme ratios ri1.

Furthermore, Theorem 1 shows that although M2 does not directly constrain r − 1 like ϵ clipping,
it nevertheless provides an upper bound on the Pearson chi-square divergence E[(r − 1)2] between
the new and behavior policies. The proof is provided in Appendix D.
Theorem 1 (Bounding χ2 by M2). Let r = πnew

πbehav
be the importance ratio and assume 1/R ≤ r ≤

R. Define the log-ratio second moment
M2 = Ea∼πbehav

[
(log r(a))2

]
.

Let the Pearson chi-square divergence between πnew and πbehav be

χ2(πnew ∥πbehav) = Ea∼πbehav

[(
πnew(a)

πbehav(a)
− 1

)2
]
= Eπbehav

[
(r − 1)2

]
.

Then
χ2(πnew ∥πbehav) ≤ R2 M2.

5.2 SECOND-MOMENT TRUST POLICY OPTIMIZATION

Algorithm 1: M2PO Masking

Input: {M̂2,i}Ni=1 for all training
tokens; threshold τM2

Output: mask M
1 M ← True for all tokens;
2 T ← all trust-region tokens;
3 /* Sort: O(NlogN) */

4 Sort all tokens w.r.t. M̂2,i.
5 while meani∈T M̂2,i > τM2

do
6 /* Select: O(1) */

7 j ← argmaxi∈T M̂2,i;
8 Mj ← False;

T ← T \ {j};
9 end while

10 return M

As illustrated in Algorithm 1, to maintain training
stability, M2PO applies a masking strategy that se-
lectively excludes tokens until the batch-level M̂2 of
the remaining tokens falls below a predefined thresh-
old τM2

. Importantly, we observe that τM2
is not a

sensitive hyperparameter (see Figure 8). Across all
our experiments, we consistently set τM2

= 0.04,
and this single setting proved effective for stabiliz-
ing training in all training scenarios.

Only constrain trust-region tokens. Although the
PPO loss clips the ratio on both the upper and lower
sides, due to the use of the min operator, not all to-
kens are actually clipped. In practice, clipping only
occurs for tokens where A > 0 and r > 1, or A < 0
and r < 1. Following the PPO setting, we there-
fore apply the M2 constraint exclusively to tokens
that satisfy these conditions. Finally, with the result
mask M , we update the policy by maximizing the
following objective2:

JM2PO(θ) =
1∑G

i=1 |oi|

G∑
i=1

|oi|∑
t=1

Mi,t
πθ(oi|q)

πθbehav
(oi|q)

Ai,t, Mi,t ∈ {0, 1}, (5)

where Ai denotes the advantage, computed using the grouped advantage in Equation 2.
1A potential alternative is to use

∑N
i=1 |K̂Li|/N . While this absolute KL estimate can also work empiri-

cally, it is less sensitive to variance compared to M2 Moreover, M2 provides an upper bound for this absolute
KL estimate, as E[|r|] ≤

√
E[r2]. Therefore, we adopt M2 in our method.

2In our loss, we average over all tokens rather than only the unmasked ones. This choice is intended to
better mimic the behavior of PPO-style clipping. However, since the masking ratio is typically very small (see
Section 6.3), the difference between the two averaging strategies is negligible in practice.
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6 EXPERIMENTS

In this section, we present an extensive evaluation across six models (from 1.7B to 32B) on eight
benchmarks. The results demonstrate that, even when trained with extremely stale data, M2PO
achieves performance comparable to on-policy GRPO and significantly outperforms other baselines:

• In Section 6.2, we show that M2PO achieves accuracy on par with on-policy baselines under
large staleness (s = 256), and outperforms baselines by up to 11.2% in average accuracy.

• In Section 6.3, we provide a detailed analysis of how M2PO boosts off-policy RL performance
while preserving training stability. We also show that its sole threshold hyperparameter τM2

is insensitive to variation, ensuring ease of use in practice.

6.1 EXPERIMENTAL SETTINGS

Models & Datasets. To verify the effectiveness of our method, we extensively evaluate M2PO
on six models: Qwen2.5-Math-7B (Yang et al., 2024), Llama-3.2-3B-Instruct (Dubey et al., 2024),
Qwen3-Base-1.7B/4B/8B (Yang et al., 2025), and Qwen2.5-32B (Yang et al., 2024). For Qwen2.5-
Math-7B, we use a context length of 4k, which is the maximum for this series, while for all other
models the context length is set to 16k. For training, we adopt the DeepScaleR (Luo et al., 2025b)
math dataset.

Training & Evaluation. Our method is implemented based on verl (Sheng et al., 2024) pipeline and
uses vLLM (Kwon et al., 2023) for rollout. We use a mix of H100 and H200 servers for training, de-
pending on resource availability. For benchmark datasets, we use eight widely used complex mathe-
matical reasoning benchmarks to evaluate the performance of trained models: Math500 (Hendrycks
et al., 2021; Lightman et al., 2023), AIME24/25 (Art of Problem Solving, 2024a), AMC23/24 (Art
of Problem Solving, 2024b), Minerva Math (Lewkowycz et al., 2022), Gaokao (Zhang et al., 2023),
Olympiad Bench (He et al., 2024). Similar to (Wang et al., 2025b; Zheng et al., 2025b), we eval-
uate models on those benchmarks every 50 steps and report the performance of the checkpoint that
obtains the best average performance on eight benchmarks. For GRPO, we adopt the commonly
used clipping parameter ϵ = 0.2, while for the other baselines, we follow the recommended values
reported in their respective papers. We include more detailed experimental settings in Appendix B.

6.2 PERFORMANCE COMPARISON ON TRAINING WITH STALENESS

Prosperity without collapse: Stable off-policy training without performance degradation using
M2PO. To verify the effectiveness of M2PO, Table 1 presents a comprehensive comparison of
math reasoning performance across eight benchmarks using models from four different families and
scales, ranging from 1.7B to 32B parameters. We evaluate multiple reinforcement learning methods
under both on-policy and off-policy settings, including GRPO, GSPO, and our proposed M2PO.
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Figure 5: Training reward on
Qwen-2.5-32B.

The results show that while both GRPO and GSPO often suf-
fer significant performance drops under large staleness, M2PO
consistently achieves comparable accuracy to the on-policy
baseline in all training settings. Surprisingly, we notice that,
in some model settings, M2PO with s = 256 even achieves a
better performance than M2PO with s = 0. For instance, on the
Qwen3-Base-1.7B model, we observe that M2PO with s = 256
(36.6%) outperforms GRPO with s = 0 (33.0%). A potential
explanation is that small effective staleness (e.g., s = 0 corre-
sponding to delays between 0 and 3) can still adversely affect
training stability. Our further analysis in Figure 7 supports this
view, showing that M2PO with s = 256 exhibits an even lower
clipping ratio than GRPO with s = 0. Overall, these results
show that M2PO remains robust and effective, sustaining stable, high performance even under ex-
treme off-policy conditions.

In addition to the final accuracy comparison in Table 1, we also analyze the training dynamics of
accuracy and reward of Qwen-2.5-32B models. As shown in Figure 1, M2PO with s = 256 initially
falls behind the on-policy baseline but quickly catches up, eventually matching its performance,
while converging much faster and achieving higher accuracy than GRPO under the same staleness.
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Table 1: Performance (%) comparison across eight math reasoning benchmarks using models from
1.7B to 32B parameters. We report results for GRPO, GSPO, and M2PO under both on-policy
(s = 0) and off-policy (s = 256) settings. Underlined numbers denote the best average accuracy,
while bold numbers highlight the best average accuracy under stale rollouts (s = 256). M2PO
consistently improves stability under staleness and achieves higher average accuracy than GRPO.

Method S AIME24/25 AMC23/24 Math500 Gaokao Miner. Olymp. Avg.

Llama-3.2-3B-Instruct

GRPO 0 11.0 / 2.3 31.3 / 17.2 53.6 42.99 23.1 20.3 25.2
GRPO 256 9.6 / 0.4 25.0 / 13.9 52.4 42.08 17.6 18.8 22.5
GSPO 256 9.0 / 0.2 30.0 / 14.4 50.6 40.65 18.8 17.3 22.6

M2PO (Ours) 256 10.4 / 4.4 33.8 / 17.8 52.0 44.48 21.2 18.1 25.3

Qwen2.5-Math-7B

GRPO 0 39.6 / 17.5 63.8 / 46.7 82.3 64.1 36.7 43.6 49.3
GRPO 256 29.4 / 12.9 64.4 / 39.4 80.5 63.2 33.1 43.1 45.7
GSPO 256 27.3 / 13.1 63.8 / 36.7 79.0 62.2 33.5 41.9 44.7

M2PO (Ours) 256 33.3 / 17.5 63.8 / 40.6 84.0 66.4 38.1 47.1 48.8

Qwen3-Base-1.7B

GRPO 0 7.5 / 7.5 40.6 / 26.1 67.2 55.9 28.9 30.5 33.0
GRPO 256 8.5 / 4.8 34.4 / 25.0 64.3 52.7 26.0 27.6 30.4
GSPO 256 6.9 / 4.0 39.4 / 18.9 65.0 53.1 26.5 27.5 30.1

M2PO (Ours) 256 14.0 / 6.5 48.1 / 27.8 71.8 59.5 29.4 35.6 36.6

Qwen3-Base-4B

GRPO 0 22.9 / 20.2 63.8 / 53.9 84.6 69.8 40.2 50.5 50.7
GRPO 256 14.0 / 9.6 51.9 / 32.8 76.8 61.7 34.4 39.8 40.1
GSPO 256 17.9 / 15.4 55.6 / 38.3 76.8 62.3 35.1 44.3 43.2

M2PO (Ours) 256 26.7 / 21.0 64.4 / 49.4 85.8 70.3 40.5 52.3 51.3

Qwen3-Base-8B

GRPO 0 26.7 / 19.4 76.9 / 52.8 87.7 71.6 41.2 52.8 53.6
GRPO 256 21.0 / 13.1 63.8 / 40.0 81.8 67.8 38.5 47.4 46.7

M2PO (Ours) 256 30.2 / 23.1 71.3 / 56.7 87.2 75.1 42.6 54.8 55.1

Qwen2.5-32B

GRPO 0 24.4 / 18.3 71.9 / 46.7 85.4 71.9 41.4 52.9 51.6
GRPO 256 20.4 / 9.6 68.1 / 41.1 83.0 67.3 40.9 45.9 47.0

M2PO (Ours) 256 24.8 / 19.4 76.3 / 50.0 85.7 71.7 41.5 51.7 52.6
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Figure 6: Methods comparison
under staleness (s = 256) on
Llama3.2-Instruct-3B.

This highlights that M2PO not only maintains comparable final
accuracy but also accelerates convergence when training with
stale data. Figure 5 shows a similar trend in the reward curves.
M2PO with s = 256 also starts off behind the on-policy base-
line due to the initial plateau caused by using data generated
from the base model, but it quickly catches up and aligns closely
with the s = 0 trajectory. In contrast, GRPO with s = 256 con-
sistently underperforms across the entire training trajectory.

Performance of other baselines under staleness. A number
of prior works have proposed alternative trust region strate-
gies beyond ϵ-clipping, including GSPO (Zheng et al., 2025a),
AREAL (Fu et al., 2025), TOPR (Roux et al., 2025), GPPO (Su
et al., 2025), and CISPO (Chen et al., 2025). Despite not being
designed to handle the extreme staleness studied in this paper,
we also evaluate these methods under our setting with s = 256 for completeness and comparison.
Among these methods, GSPO is the only one that preserves training stability, though it still exhibits
a noticeable performance drop under high staleness (see Table 1). For the other methods, as shown
in Figure 6, most encounter substantial difficulties in maintaining training stability and tend to break
down early in training. These observations suggest that while existing approaches can be effective
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under moderately stale settings, they face significant challenges when extended to larger staleness,
highlighting the need for a more robust and effective solution.

6.3 ANALYSIS AND ABLATION STUDY
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Figure 7: (a) Clipping ratio dynamics during RL on
the Qwen-3-Base-1.7B model. (b) Comparison of the
average clipping ratio across models and methods.

Stable training with reduced clipping.
Figure 7(a)(b) illustrates the clipping dy-
namics of GRPO and our proposed M2PO
under different staleness settings. In Fig-
ure 7a, we report results on Qwen-3-Base-
1.7B. Under large staleness (s = 256),
GRPO exhibits frequent clipping events,
with the ratio increasing sharply and re-
maining high during most of the training.
In contrast, M2PO under the same stale-
ness maintains an exceptionally low clip-
ping ratio, comparable to or even lower
than the on-policy GRPO baseline (s = 0).
Notably, M2PO with s = 256 exhibits less
clipping than GRPO with s = 0, which explains why M2PO with s = 256 achieves higher accuracy
than GRPO with s = 0 in Table 1. Figure 1 shows the same comparison on Qwen-2.5-32B. A sim-
ilar trend holds: GRPO with s = 256 suffers from substantial clipping, whereas M2PO effectively
suppresses unnecessary clipping, remaining close to the on-policy baseline.

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
M *

2

0.25

0.30

0.35

0.40

0.45

0.50

Ac
cu

ra
cy

Llama3.2-Instruct-3B
Qwen2.5-Math-7B
Collapse

Figure 8: Ablation study of
the τM2

threshold on Llama-
3.2-3B-Instruct and Qwen2.5-
Math-7B.

Figure 7b summarizes the average clipping ratio across the entire
training process. On Qwen-3-Base-1.7B, GRPO with s = 256
reaches an average clipping ratio of 0.66%, compared to 0.07%
for GRPO with s = 0 and only 0.02% for M2PO with s = 256.
On Qwen-2.5-32B, GRPO with s = 256 averages 1.22%, while
GRPO with s = 0 records 0.05% and M2PO with s = 256
maintains a similarly low ratio of 0.06%. These results show that
M2PO reduces clipping by over an order of magnitude compared
to GRPO, thereby enabling stable and efficient training by clip-
ping only when necessary.

Robustness to the choice of τM2
. Figure 8 shows that perfor-

mance is not highly sensitive to the choice of τM2
. Accuracy re-

mains stable across a broad range, only dropping when τM2
is set

extremely small (overly restrictive constraint) or very large (train-
ing collapse). This explains why a single setting of τM2

= 0.04
works robustly across all training settings in our paper.
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Figure 9: (a) Average M2 in each model updates with
and without M2PO masking on Qwen-2.5-32B, show-
ing that masking effectively suppresses spikes and sta-
bilizes the M2 throughout training. (b) Average KL
divergence in each model updates on Qwen-2.5-32B
under different methods.

Training dynamics on KL and M2. Fig-
ure 9 shows the impact of M2PO mask-
ing on training stability. Figure 9a shows
that the average M2 without masking ex-
hibits frequent spikes throughout train-
ing, indicating instability in the second-
moment estimates (blue curve). Apply-
ing M2PO masking effectively suppresses
these fluctuations and maintains consis-
tently low M2 values, leading to more sta-
ble updates (red curve). Figure 9b com-
pares the KL divergence across different
methods. Although M2PO with s = 256
involves substantially less clipping than
GRPO (shown in Figure 7), it maintains
a more stable divergence than GRPO with
s = 256. These results indicate that
M2PO performs clipping in a more precise and adaptive manner, ensuring training stability with
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substantially less reliance on clipping. These results demonstrate that M2PO enables more pre-
cise and adaptive clipping, achieving training stability while relying on significantly fewer clipping
operations, and thereby attaining better performance without risking training collapse.

7 CONCLUSION

In this work, we investigated why off-policy RL for LLMs often fails under stale data and uncov-
ered the prosperity-before-collapse phenomenon: training without a trust region initially outper-
forms standard methods, showing that stale data can be as informative as on-policy trajectories,
but eventually collapses due to instability. Motivated by this observation, we proposed M2PO,
which constrains the second moment of importance weights to provide a variance-sensitive and sta-
ble trust region. This design suppresses extreme outliers while preserving informative high-entropy
tokens, enabling stable training that matches on-policy performance even under extreme staleness.
Extensive experiments further demonstrate that M2PO significantly reduces clipping and is highly
insensitive to its threshold, highlighting its practicality and scalability for efficient RL with LLMs.
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This work focuses on developing reinforcement learning algorithms for large language models. Our
research does not involve human subjects, personally identifiable information, or sensitive data.
All datasets used are publicly available and widely adopted in the community. We acknowledge that
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or harmful content. To mitigate these risks, our study is confined to controlled academic settings,
and our primary goal is to improve the stability and efficiency of training methods.
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A OVERVIEW

In this appendix, we provide additional details to complement the main text. Appendix B de-
scribes the experimental setup in full, including datasets, models, and training hyperparameters.
Appendix D presents theoretical proofs supporting our method and analysis.

B DETAILED EXPERIMENTAL SETTING

Models & Datasets. To verify the effectiveness of our method, we extensively evaluate M2PO
on six models from four model series: Qwen2.5-Math-7B (Yang et al., 2024), Llama-3.2-3B-
Instruct (Dubey et al., 2024), Qwen3-Base-1.7B/4B/8B (Yang et al., 2025), and Qwen2.5-32B (Yang
et al., 2024). For Qwen2.5-Math-7B, we use a context length of 4k, which is the maximum for this
series. while for all other models the context length is set to 16k. For training, we adopt the Deep-
ScaleR (Luo et al., 2025b) math dataset.

Training. Our method is implemented based on verl (Sheng et al., 2024) pipeline and uses
vLLM (Kwon et al., 2023) for rollout. We use a mix of H100 and H200 servers for training, de-
pending on resource availability. We set the rollout temperature to 1 for vLLM (Kwon et al., 2023).
The training batch size is set to 256 prompts, and the mini-batch size to 64 prompts. We sample 8
responses per prompt. We train all models for 1000 steps, and we optimize the actor model using
the AdamW (Loshchilov & Hutter, 2019) optimizer with a constant learning rate of 1e-6. We use
β1 = 0.9, β2 = 0.999, and apply a weight decay of 0.01. We use the following question template to
prompt the LLM. For reward assignment, we give a score of 0.1 for successfully extracting an an-
swer and a score of 1.0 if the extracted answer is correct. Similar to (Yu et al., 2025), we remove the
KL-divergence term. The optimization is performed on the parameters of the actor module wrapped
with Fully Sharded Data Parallel (FSDP) (Zhao et al., 2023) for efficient distributed training. We set
the M2PO threshold to 0.04 for all training runs.

Evaluation. For benchmark datasets, we use eight widely used complex mathematical reason-
ing benchmarks to evaluate the performance of trained models: Math500 (Hendrycks et al., 2021;
Lightman et al., 2023), AIME24/25 (Art of Problem Solving, 2024a), AMC23/24 (Art of Problem
Solving, 2024b), Minerva Math (Lewkowycz et al., 2022), Gaokao (Zhang et al., 2023), Olympiad
Bench (He et al., 2024). Same as the training setting, For Qwen2.5-Math-7B models, we use 4k
as the context length. For other models, we set the context length to 16k. Similar to (Wang et al.,
2025b; Zheng et al., 2025b), we evaluate models on those benchmarks every 50 steps and report the
performance of the checkpoint that obtains the best average performance on eight benchmarks. We
evaluate all models with temperature = 1. For AIME24/25, we report the pass@1(avg@16), for
other benchmarks, we report the pass@1(avg@4).

Baselines. For all baseline methods, we adopt exactly the same training setup and evaluation proto-
col to ensure a fair comparison. For trust-region settings, we follow the recommended hyperparam-
eters reported in the original papers whenever available. Specifically, for GSPO, we use 3e−4 and
4e−4 as the lower and upper bounds. For CISPO, we use a clipping threshold of 0.2, as the original
paper does not specify a particular value; we also experimented with a looser bound, but found that
it makes training significantly more prone to collapse. For AREAL, we use a clipping threshold of
0.2. For GPPO, we set the lower and upper clipping bounds to 0.2 and 0.28, respectively. TOPR
does not contain any trust-region hyperparameters.

Question Template

Please solve the following math problem: {{Question Description}}. The assistant first thinks
about the reasoning process step by step and then provides the user with the answer. Return
the final answer in \boxed{} tags, for example \boxed{1}. Let’s solve this step by step.

C THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models (LLMs) as general-purpose assistants in two limited ways: (1) for
writing polish, including improving grammar, readability, and presentation of the manuscript, and
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(2) as code assistants (e.g., Cursor, GitHub Copilot) to accelerate routine coding tasks such as de-
bugging syntax errors and refactoring simple functions. LLMs were not used for research ideation,
algorithm design, experimental analysis, or drawing conclusions. All conceptual and scientific con-
tributions are entirely the work of the authors.

D THEORETICAL PROOF

Proof of Theorem 1.

Proof. Let z = log r, so that r = eZ . Since 1/R < r ≤ R, we have |z| ≤ logR.

For z ≥ 0, observe that
ez − 1

z
=

∫ 1

0

etz dt ≤
∫ 1

0

ez dt = ez,

which implies (ez − 1)2 ≤ (zez)2 = z2e2z .

For z ≤ 0, set u = −z ≥ 0. Then

(ez − 1)2 = (1− e−u)2 ≤ u2 = z2 ≤ z2e2|z|.

Combining both cases, for all z ∈ R we obtain

(ez − 1)2 ≤ z2e2|z|.

Substituting Z = log r, this yields

(r − 1)2 ≤ (log r)2e2| log r| ≤ R2(log r)2.

Taking expectation under πbehav gives

χ2(πnew ∥ πbehav) = Eπbehav
[(r − 1)2] ≤ R2 Eπbehav

[(log r)2] = R2M2.

E THEORETICAL INSIGHTS ON PROSPERITY BEFORE COLLAPSE AND M2PO

In this section, we analyze why the unclipped objective is unbiased, while the ε-clipped PPO ob-
jective introduces bias by construction. This explains the observed prosperity-before-collapse phe-
nomenon.

Unclipped gradient is unbiased. Let the importance ratio be

rt(θ) =
πθ(at | st)

πbehav(at | st)
.

The true policy gradient under off-policy sampling from πbehav is

∇θJ(θ) = Et∼πbehav [rt(θ)At∇θ log πθ(at | st)] .
The surrogate objective without clipping is

Lunclip(θ) = Et [rt(θ)At] ,

whose gradient matches the true policy gradient,

∇θLunclip(θ) = Et[rt(θ)At∇θ log πθ(at | st)] ,
and is therefore strictly unbiased:

E[∇θLunclip(θ)] = ∇θJ(θ).

PPO ε-clipping introduces bias. The clipped surrogate is

Lclip(θ) = Et[min(rt(θ)At, clip(rt(θ), 1− ε, 1 + ε)At)] .
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Consider the set of samples where (At > 0, rt(θ) > 1 + ε). For these samples PPO replaces rt(θ)
with a constant (1 + ε):

min(rtAt, (1 + ε)At) = (1 + ε)At,

whose gradient is zero:
∇θ

[
(1 + ε)At

]
= 0.

However, the true gradient contribution from these same samples is

∇θ(rtAt) = rt(θ)At∇θ log πθ(at | st) ̸= 0.

Thus the gradient contribution over this region is removed. Let Ω+ ∪ Ω− denote the set of clipped
samples. Then,

∇θLclip(θ) = Et/∈(Ω+∪Ω−)[rtAt∇θ log πθ] ,

whereas the true gradient is
∇θJ(θ) = Et[rtAt∇θ log πθ] .

We denote by Ω+ and Ω− the sets of timesteps where ε-clipping becomes active:

Ω+ = {t | At > 0, rt(θ) > 1 + ε} ,
Ω− = {t | At < 0, rt(θ) < 1− ε} .

Then the difference introduced by clipping is

∆g(θ) = −Et∈(Ω+∪Ω−)[rt(θ)At∇θ log πθ(at | st)] ̸= 0,

which shows that PPO’s clipped gradient is biased by construction whenever clipping occurs.

Combining these properties yields the observed prosperity-before-collapse phenomenon: When
the clipping is removed, the surrogate gradient becomes the unbiased policy gradient, enabling faster
early-stage improvement. However, without a trust region, the importance ratios under off-policy
rollouts quickly become heavy-tailed, causing the gradient variance to grow rapidly, eventually lead-
ing to training collapse.

The reason M2PO achieves a better trade-off between performance and stability is that its masking
strategy is more adaptive. By using the second moment to quantify batch-level distribution shift,
M2PO automatically adjusts the effective trust region: when variance is small, it keeps the clipping
region wide; when variance grows, it tightens the region accordingly. As a result, the measure of
clipped samples, |Ω+ ∪ Ω−|, is significantly reduced compared to fixed ε-clipping, leading to a
smaller bias while still preventing variance explosion.

F DISCUSSION AND ANALYSIS

F.1 WHY DOES TOLERANCE TO HIGH STALENESS MATTER FOR RL ON LLMS?

High staleness tolerance is both practical and increasingly unavoidable for future RL for LLMs and
for scalable RL system designs. Here are two key reasons:

1. High staleness tolerance enables training on more complex tasks. Complex tasks can substantially
increase rollout latency. This is especially true for coding and agent environments, where tool
calls and reward computation can be expensive, as both may require executing external programs,
interacting with third-party APIs, or running large numbers of test cases to verify correctness.

In realistic settings, such as SWE-bench Jimenez et al. (2023) with OpenHands Wang et al. (2024),
rollout latency can become extremely large. A single run, even with a small batch size, the end-
to-end inference time (including tool call and code execution) can exceed 100 minutes, with more
than 80 iterations with the environment. For reward calculation, verifying correctness against tens
or hundreds of test cases also requires repeatedly compiling and running programs, adding another
5–20 minutes of reward computation depending on code and test-case complexity.

As a result, the combined rollout + reward latency can easily reach 120 minutes or more. In contrast,
policy updates in LLM RL, especially with sufficient parallelism, can be as fast as 60 seconds per
update. Even without any additional system-induced delays, this already corresponds to up to 120
model updates of staleness, and the staleness can be even larger for more complex tasks.
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Figure 10: Combining TIS with GRPO and M2PO on Qwen2.5-Math-7B with s = 256. Combined
with TIS, M2PO shows a slight performance improvement, as TIS better mitigates the distribution
gap between FSDP and VLLM. However, TIS alone cannot address the off-policy caused by stale-
ness.

To enable future RL to support increasingly complex LLM agents, especially those involving fre-
quent tool calls and substantial code execution, training under large staleness is practically necessary.

2. High staleness tolerance enables flexible and scalable system design. Modern LLM RL training
systems increasingly adopt decoupled and asynchronous designs to improve throughput and reduce
cost. In such architectures, the ability to tolerate high staleness directly enables more flexible and
scalable RL pipelines for LLMs Fu et al. (2025); Zhu et al. (2025); Wu et al. (2025); Yan et al.
(2025), like heterogeneous computing and disaggregated computing systems.

1) Heterogeneous Computing. As demonstrated in a recent work Yan et al. (2025), offloading roll-
outs to slower but cost-efficient machines can substantially reduce the overall training expense.
However, this will significantly increase the rollout latency, leading to larger staleness.

2) Disaggregated Computing. In large-scale RL training systems, rollout generation and policy
updates can run on physically separated clusters or even across different data centers. Network
bandwidth and latency can become a huge bottleneck: synchronizing model weights and transferring
rollout trajectories can further amplify staleness as the system scales.

To sum up, these factors make high staleness a realistic and sometimes unavoidable operating regime
in modern RL for LLMs. Tolerance to high staleness is therefore crucial not only for cost-efficient
and flexible system design, but also for enabling RL on complex long-latency tasks without sacrific-
ing throughput.

Motivated by this, we use a clean and controlled stale-k abstraction to isolate the effect of data
staleness on RL algorithms. Within this controlled but representative setup, we show the limitation
of GRPO under high staleness, while M2PO remains stable and approaches on-policy performance.
We believe this work provides algorithmic understandings of RL under high staleness and lays the
foundation for future system-level integration.

F.2 HOW IS M2PO RELATED TO TIS (TRUNCATED IMPORTANCE SAMPLING)?

Another off-policy RL technique, TIS (Liu et al., 2025a), addresses a different source of off-policy
drift: the mismatch between the inference engine used for rollouts (e.g., vLLM, SGLang, or quan-
tized engines) and the training engine (e.g., FSDP or Megatron). Despite that the weights are exactly
the same, the engine difference on training and inference can introduce sampling differences and
cause potential mismatch issues. This form of off-policy discrepancy is orthogonal to the source we
study: data staleness.

More specifically, the optimization objective for TIS in (Liu et al., 2025a) is:

Eπvllm(θbehav)

[
min

(
πfsdp(a, θbehav)

πvllm(a, θbehav)
, C

)
·∇θ min

(
πfsdp(a, θ)

πfsdp(a, θbehav)
Â, clip

(
πfsdp(a, θ)

πfsdp(a, θbehav)
, 1− ϵ, 1 + ϵ

)
Â

)]
We can see that the TIS objective introduces a truncated (or scaled) importance ratio to prevent
excessively large ratios and stabilize training under inference-engine mismatch. However, for the
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off-policy drift caused by staleness, TIS still relies on a fixed ϵ-based clipping region to form a
trust region. In contrast, the primary goal of M2PO is to provide an adaptive, variance-sensitive
mechanism to determine the trust region based on the second-moment statistics of importance ratios,
without relying on a hand-chosen ϵ. In this sense, TIS and M2PO are complementary: TIS mitigates
inference-engine mismatch; M2PO stabilizes training under stale data and large-degree off-policy
drift. Here is a formula combining TIS and M2PO:

JM2PO(θ) =
1∑G

i=1 |oi|

G∑
i=1

|oi|∑
t=1

min

(
πθbehav,fsdp(oi|q)
πθbehav,vllm(oi|q)

, C

)
Mi,t

πθ,fsdp(oi|q)
πθbehav,fsdp(oi|q)

Ai,t, (6)

where Mi,t is the mask generated by Algorithm 1.

In Figure 10, we evaluate the combination of TIS with both GRPO and M2PO on Qwen2.5-Math-
7B under a high-staleness setting (s = 256). When integrated with TIS, M2PO achieves a slight
performance improvement, as TIS helps reduce the distribution gap between the FSDP training
engine and the VLLM rollout engine. (That said, the gain is modest because both training and
rollout are performed in FP16, which keeps the engine-induced distribution shift relatively small.)
However, TIS alone is insufficient to address the distribution shift introduced by large staleness.

F.3 COMPARE M2PO WITH ASYMMETRIC CLIPPING
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Figure 11: The performanace compari-
son between M2PO and GRPO on cod-
ing tasks.

We have conducted an additional experiment using the
asymmetric clipping ratio (0.2, 0.28) used in DAPO for
our setting and report the results in Figure 11. Despite
the asymmetric clipping ratio improving the GRPO per-
formance, it still underperforms M2PO.

The fundamental distinction between M2PO and asym-
metric clipping is twofold:

1) M2PO adaptively determines the trust region based
on the actual distribution shift of each training batch.
The second-moment statistic automatically tightens the
trust region when the shift becomes large, and relaxes it
when the shift is small, thereby preserving more infor-
mative gradients. This per-batch adaptivity cannot be re-
produced by any static ϵ-clipping threshold: a fixed up-
per/lower bound does not respond to the evolving off-
policy drift during training.

2) Tuning clipping ratios is highly brittle and fundamentally impractical for different settings.
The optimal asymmetric bounds vary across model sizes, staleness levels, and even across different
phases of training. The tuning complexity of asymmetric clipping becomes even higher because
both upper and lower bounds must be selected jointly (quadratic complexity). In contrast, the M2PO
threshold directly reflects the current batch’s distribution shift, which is the reason that the M2PO
threshold is not sensitive, and we can use the same threshold in all our experiments.

We believe that these two reasons illustrate why simply adjusting clipping boundaries is not suffi-
cient for stabilizing stale off-policy training and why the community continues to develop principled
trust-region algorithms rather than relying on hand-tuned clipping thresholds.

F.4 M2PO COMPUTATION COST ANALYSIS

Although we use per-token second-moment (M2) estimates to compute the batch-level M2 statistic,
we do not require logits or probabilities over the entire vocabulary. Instead, M2 is computed
only from the sampled token at each position (i.e., a single-sample Monte Carlo estimate). Thus,
M2 estimation adds no additional forward-pass computation and no additional tensor storage, avoid-
ing the O(VocabularySize) cost.
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Figure 12: Training time (i.e., update policy) comparison between GRPO and M2PO. M2PO mask-
ing does not introduce a noticeable overhead in training stage.

Table 2: Comparison of computation time between GRPO and M2PO. Loss computation contributes
a negligible portion of the total training time.

Loss Compute Time (s) Other Training Time (s)
GRPO 0.038 (0.11%) 34.86 (99.89%)
M2PO (Ours) 0.065 (0.19%) 34.43 (99.81%)

Besides, for the masking procedure, our implementation sorts tokens by their M2 values once and
iteratively masks those with the largest M2 until the remaining tokens’ average M2 falls below the
threshold τM2

. This procedure has a time complexity of O(N logN), where N is the number of
tokens in a batch. In practice, N is typically a few thousand, and this sorting step is negligible
compared to the forward/backward passes of large language models. As we illustrated in Figure 12,
GRPO and M2PO show a similar training time, which indicates that M2PO masking does not intro-
duce a noticeable overhead in the training stage.

We further provide a breakdown of the loss-computation overhead (including masking computation)
during the entire training process. Table 2 below reports the average loss-computation time and
the remaining training time (including forward and backward passes) for RL training on Qwen2.5-
Math-7B. As shown, M2PO introduces a slightly higher computational cost than GRPO due to the
additional sorting required to select tokens with the highest M2 values. However, this overhead is
extremely small relative to the full training step and is far from the bottleneck. For instance, M2PO
spends only 0.19% of total time on loss computation and does not slow down the overall training
process.

Overall, both M2 estimation and the M2PO masking procedure incur minimal computational and
memory overhead, and do not slow down training or increase storage requirements in our experi-
ments.

F.5 HOW IS M2PO RELATED TO KL CONSTRAINT/LOSS?

The KL-divergence loss calculated in the Deepseek R1 (DeepSeek-AI et al., 2025) is a low-variance
approximation of the true KL divergence between the old and new policies (Schulman, 2015), which
can partially mitigate off-policy drift.

In our early exploration, we also experimented with adding a KL loss. While this regularizer does
enhance stability, we found that a trust region is still required to prevent collapse. Once a trust
region is introduced, however, we immediately encounter the same challenge discussed in Q3: how
to select an adaptive and effective trust region boundary that balances stability and performance.
Simply tuning a KL penalty or fixed KL target does not adequately address the dynamic distribution
shift introduced by stale data.

Moreover, the KL constraint and M2PO are complementary. The KL penalty controls global devi-
ation between the new and old policies, whereas M2PO adaptively masks high-shift tokens based
on per-batch second-moment statistics. Combining the two is straightforward and can potentially
further improve stability. In this work, we intentionally did not include a KL penalty in our main
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Figure 13: The performance comparison between M2PO and GRPO on coding tasks.
experiments. Our goal is to isolate and understand the role of the trust-region mechanism itself un-
der stale off-policy training. We will explore the combination of KL regularization and M2PO as a
promising future direction.

G ADDITIONAL EXPERIMENTS

G.1 EVALUATION RESULTS ON CODING TASKS.

We further evaluate M2PO on coding tasks beyond the math domain. Specifically, we train
DeepSeek-R1-Distill-Qwen-1.5B DeepSeek-AI et al. (2025) on the code contests dataset (Li
et al., 2022) and evaluate on LiveCodeBench (Jain et al., 2024). We follow a training setup simi-
lar to that used for math tasks, except that each training iteration samples a batch of 128 prompts for
rollout and 32 prompts for each model updates. We report avg@4 accuracy as the evaluation metric.

As shown in Figure 13, M2PO with staleness s = 256 outperforms GRPO at the same staleness
level and achieves performance comparable to GRPO with s = 0, consistent with our observations
on math reasoning tasks. This further demonstrates the generality of M2PO on other tasks beyond
math.

G.2 COMMONLY CLIPPED TOKENS IN GRPO.

Figure 14: Word clouds of frequently
clipped tokens with ϵ clipping.

Figure 14 shows the specific tokens that are most fre-
quently clipped by ϵ-clipping. The word cloud of com-
monly clipped tokens is highly aligned with high-entropy
tokens shown in (Wang et al., 2025a): these tokens are not
random or unimportant, but rather belong to the most se-
mantically and structurally critical elements in reasoning
traces. Many of them (e.g., First, simplify, determine, To
def, Thus, verify, break) are precisely the high-entropy
“pivotal tokens” that initiate, connect, or conclude key
reasoning steps. Others (e.g., assistant, user, code mark-
ers like ### or $$) serve as structural anchors in the dialogue or mathematical formatting. This
observation aligns with Figure 4b: as the importance weight ratio |r− 1| grows, clipped tokens tend
to exhibit higher entropy.

G.3 M2PO UNDER DIFFERENT STALENESS.

In Table 1, we compare the performance between M2PO and other baselines under s = 256. To
further study the robustness of M2PO across different staleness levels, we train Qwen2.5-Math-7B
with M2PO under s = 0, 32, 64, 128, 256, as shown in Figure 15. We observe that larger staleness
slightly slows down the initial accuracy gain during the very early phase of training, reflecting the
expected delay when using outdated rollouts. However, this effect quickly diminishes: all curves
steadily improve and converge to nearly the same accuracy. Notably, even under extreme staleness
(s = 256), M2PO achieves performance on par with the on-policy case (s = 0), without signs of
collapse or degradation. These results highlight that M2PO effectively preserves the learning signal
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Figure 15: The performance of M2PO and GRPO under different staleness on Qwen2.5-Math-7B.

contained in stale data, enabling stable training and strong generalization across a wide range of
staleness values.

G.4 TRAINING COLLAPSE ANALYSIS

Figure 16: Qwen2.5-32B training dynamics comparison on M2PO and collapse training of GRPO
without a trust region. Left: Test accuracy across eight math benchmarks. Middle: KL divergence
between current policy and reference policy. Right: Graident norm.

In our evaluation, we deem training to have collapsed when we observe a pronounced drop in test
accuracy accompanied by abnormalities in stability metrics such as KL divergence and gradient
norms. In practice, accuracy degradation is typically paired with sharp KL spikes and gradient-
norm blow-ups. As shown in Figure 16, test accuracy drops at the same time that KL divergence
and gradient norms exhibit consistent spikes.
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