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ABSTRACT

Reinforcement learning has been central to recent advances in large language
model reasoning, but most algorithms rely on on-policy training that demands
fresh rollouts at every update, limiting efficiency and scalability. Asynchronous
RL systems alleviate this by decoupling rollout generation from training, yet their
effectiveness hinges on tolerating large staleness in rollout data, a setting where
existing methods either degrade in performance or collapse. We revisit this chal-
lenge and uncover a prosperity-before-collapse phenomenon: stale data can be as
informative as on-policy data if exploited properly. Building on this insight, we
introduce M2PO (Second-Moment Trust Policy Optimization), which constrains
the second moment of importance weights to suppress only extreme outliers while
preserving informative updates. Notably, M2PO sharply reduces the fraction of
clipped tokens under high staleness (from 1.22% to 0.06% over training), pre-
cisely masking high-variance tokens while maintaining stable optimization. Ex-
tensive evaluation across six model scales (from 1.7B to 32B) and eight reasoning
benchmarks shows that M2PO delivers stable off-policy training even with data
stale by at least 256 model updates and matches on-policy performance.

Figure 1: Comparison of on-policy GRPO and off-policy training under a staleness of 256 model
updates on Qwen-2.5-32B. Left: Standard GRPO suffers from degradation with stale rollouts, while
removing the trust region (GRPO no TR) reveals a clear prosperity-before-collapse phenomenon.
In contrast, M2PO achieves stable training and matches on-policy performance even under high
staleness. Right: Token clipping ratio comparison shows that M2PO dramatically reduces clipping
events compared to GRPO with the same staleness, while avoiding training collapse.

1 INTRODUCTION

Reinforcement learning (RL) has been central to recent advances in large language model (LLM)
reasoning, driving breakthroughs in systems like OpenAI’s o1 (OpenAI et al., 2024) and DeepSeek’s
R1 (DeepSeek-AI et al., 2025; Team et al., 2025). Most existing RL algorithms (Schulman et al.,
2017; Zheng et al., 2025b; Yu et al., 2025) for LLMs adopt an on-policy design, as it provides stable
training and reliable performance, but the strict requirement for fresh (or limited-staleness) rollouts
at every update leads to substantial inefficiency and limits scalability. To overcome this bottleneck, a
growing line of RL systems (Fu et al., 2025; Zhu et al., 2025; Noukhovitch et al., 2024; Zhong et al.,
2025; He et al., 2025) have explored asynchronous designs that decouple rollout from training. Such
approaches improve resource utilization and enable training to scale more efficiently across large and
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heterogeneous clusters, but their effectiveness fundamentally relies on the ability of RL algorithms
to tolerate rollout staleness without sacrificing stability or performance.

However, under large rollout staleness, existing RL algorithms struggle to strike the right balance.
Some methods (Schulman et al., 2017; Shao et al., 2024; Zheng et al., 2025a) can maintain stability,
but they often suffer from noticeable performance degradation. Conversely, approaches designed to
maximize performance (Fu et al., 2025; Chen et al., 2025; Su et al., 2025) tend to compromise sta-
bility, frequently leading to training collapse. On-policy methods provide both stability and strong
performance, but their reliance on fresh or only slightly stale rollouts at every update imposes rigid
constraints that hinder scalability. Consequently, an ideal off-policy RL algorithm for LLMs should
enable effective reuse of trajectories collected under outdated policies to preserve strong perfor-
mance under significant staleness, and ensure stable training that converges competitively with on-
policy methods. Meeting these requirements is key to realizing off-policy RL as a truly scalable
solution for aligning and fine-tuning large language models.

In this paper, we aim to investigate the underlying reasons for the limitations of off-policy RL in
LLMs and to design an effective algorithm that fully leverages stale data to unlock its potential.
We begin by revealing an intriguing Prosperity before Collapse phenomenon (Yellow curve in Fig-
ure 1 (left)): although RL training without a trust region eventually collapses on stale data, it initially
achieves substantially higher performance than vanilla GRPO with ϵ-clipping. In some cases, it even
matches the performance of the on-policy baseline. From this, we draw an important observation:
stale data can be as informative as data collected on-policy in RL for LLMs, but the key chal-
lenge lies in how existing algorithms exploit it. In particular, vanilla GRPO performs poorly under
staleness because stale-data training exhibits a substantially higher clipping rate, with many of the
clipped updates occurring on informative high-entropy tokens (see Figure 4). This disproportionate
clipping on crucial tokens hinders the full utilization of stale training data.

This pivotal token masking observation reveals that these high-entropy tokens play a dual role: they
provide the most informative training signal but also introduce the greatest instability under stale-
ness. Therefore, the key challenge is to retain as much learning signal from these tokens as possible
without risking training collapse. Motivated by this, we propose M2PO (Second-Moment Trust
Policy Optimization), a novel off-policy RL algorithm that constrains the second moment of impor-
tance weights. Unlike standard ϵ-clipping, which disproportionately suppresses high-entropy tokens
and discards valuable learning signals, M2PO leverages the second-moment metric M2. This metric
is both variance-sensitive, capturing instability introduced by high-entropy tokens, and statistically
stable, avoiding the cancellation issues inherent to KL-based measures. By regularizing training at
the batch level through M2, M2PO masks only extreme outliers while preserving the majority of
informative updates. As a result, M2PO enables stable off-policy reinforcement learning with stale
data, matching on-policy performance even under large staleness.

As illustrated in Figure 1 (left), even when trained exclusively on data stale by at least 256 model
updates, M2PO achieves accuracy comparable to the on-policy baseline (red curve), demonstrating
its ability to fully exploit stale data without sacrificing stability. M2PO achieves this through a more
accurate and adaptive clipping strategy that clips substantially fewer tokens while maintaining train-
ing stability. As shown in Figure 1 (right), M2PO dramatically reduces the fraction of clipped tokens
under high staleness (from 1.22% to 0.06% over the entire training process, see Figure 7b), thereby
preserving more useful training information in stale data. To further validate M2PO effectiveness,
we conduct an extensive evaluation of M2PO across six model scales (ranging from 1.7B to 32B)
and eight math reasoning benchmarks in Section 6. The results show that M2PO consistently deliv-
ers strong performance across all training settings. M2PO also shows insensitivity to the choice of
threshold, with a single value across all experiments, demonstrating its practicality and robustness.

2 RELATED WORK

RLVR. Recent advances (DeepSeek-AI et al., 2025; Yu et al., 2025; Team et al., 2025; Gao et al.,
2024) in LLM reasoning show that Reinforcement Learning with Verifiable Reward (RLVR), which
relies on verifiable reward signals instead of model-generated scores, can effectively improve model
reasoning ability. These gains are achieved using various policy optimization methods such as
PPO (Ouyang et al., 2022) and GRPO (Shao et al., 2024). Encouraged by the success of RLVR,
a growing body of work (Kazemnejad et al., 2024; Yuan et al., 2025b;a; Yu et al., 2025; Liu et al.,
2025; Luo et al., 2025a; Zhang et al., 2025; Hu, 2025; Xiong et al., 2025) has emerged to fur-
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ther improve reinforcement learning methods for LLM reasoning. For instance, methods such as
VinePPO (Kazemnejad et al., 2024), VC-PPO (Yuan et al., 2025b), and VAPO (Yuan et al., 2025a)
aim to enhance LLM reasoning by optimizing the value function.

Trust Region in RLVR. While RLVR has been widely adopted for fine-tuning LLMs, a key chal-
lenge lies in how to effectively constrain the trust region, not only to stabilize training but also to
achieve better learning efficiency and overall performance. To address this, a growing line of work
has proposed various strategies to control the policy update, ranging from ratio clipping (Yu et al.,
2025), approximate trust region (Fu et al., 2025), sequence-level clipping (Zheng et al., 2025a),
asymmetric trust region (Roux et al., 2025; Arnal et al., 2025), and gradient-preserving clipping (Su
et al., 2025; Chen et al., 2025). For instance, AREAL (Fu et al., 2025) uses a more recent approxi-
mate policy to decide the trust region rather than the behavior model. GSPO (Zheng et al., 2025a)
moves from token-level to sequence-level clipping by defining importance ratios on sequence like-
lihood. While these methods improve RLVR under moderate settings, most of them focus on rel-
atively limited intra-iteration staleness (e.g., 8 or 16) and have not been thoroughly studied under
larger off-policy gaps, like extreme staleness. In this work, our goal is to better understand the role
of staleness in RLVR and to seek more effective ways of constraining the trust region in RLVR.

3 BACKGROUND

3.1 GROUP RELATIVE POLICY OPTIMIZATION (GRPO)

Group Relative Policy Optimization (GRPO) (Shao et al., 2024) is a variant of Proximal Policy Opti-
mization (PPO) (Ouyang et al., 2022) tailored for language model fine-tuning. Instead of computing
advantages using a value function, GRPO normalizes reward scores within groups of responses sam-
pled for the same prompt, which largely improves the training efficiency, and aims to maximize the
following objective:

JGRPO(θ) = E[q ∼ P (Q), {oi}Gi=1 ∼ πθold(O|q)]

1

G

G∑
i=1

(
min

(
πθ(oi|q)

πθbehav
(oi|q)

Ai, clip
(

πθ(oi|q)
πθbehav

(oi|q)
, 1− ϵ, 1 + ϵ

)
Ai

))
,

(1)

where Ai is the advantage, computed using a group of rewards {r1, r2, . . . , rG} corresponding to
the outputs within each group:

Ai,t =
ri −mean({Ri}Gi=1)

std({Ri}Gi=1)
. (2)

Similar to PPO, GRPO employs a clipping mechanism to stabilize updates. The ratio ri =
πθ(oi|q)

πθold
(oi|q)

is clipped to [1− ϵ, 1 + ϵ], so that when Ai > 0 the policy cannot increase probability mass exces-
sively, and when Ai < 0 it cannot over-penalize. This prevents large, unstable updates while still
allowing normalized group advantages to guide learning.

3.2 PERFORMANCE DEGRADATION FROM TRAINING WITH STALE DATA
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Figure 2: RL with stale data
on Qwen2.5-Math-7B, reporting
avg. accuracy on all benchmarks.

Stale-k RL training. To investigate the impact of stale data on
reinforcement learning for large language models, we introduce
Stale-k RL training, where the model is trained using data gen-
erated k model updates earlier in each training iteration. More
specifically, in our training setup, each training step consists of
four model updates, a configuration commonly used in recent
work (Zheng et al., 2025b; Wang et al., 2025b; Yu et al., 2025;
Chen et al., 2025; Zheng et al., 2025a). Thus, even stale-0 (s=0)
training has a staleness between 0 and 3. stale-256 (s=256)
training has a staleness between 256 and 259). During the first k
model updates, since no stale model is yet available, the model
is trained on data generated by the original base model, with
different training data used in each iteration. In this setup, all
training data after the initial phase comes from stale models,
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allowing us to study how stale data affects the dynamics and effectiveness of RL training. More
training details can be found at Appendix B.

As shown in Figure 2, we train Qwen2.5-Math-7B (Yang et al., 2024) with GRPO under varying
staleness levels and report test accuracy. The results reveal a clear trend: as staleness increases,
model performance degrades and convergence slows. In particular, low-staleness training achieves
higher accuracy, whereas high-staleness training converges more slowly to lower performance.

4 PROSPERITY BEFORE COLLAPSE: STALE DATA CONTAIN ENOUGH
TRAINING INFORMATION IN RL ON LLMS

In this section, we investigate why RL on LLM deteriorates when trained on stale data generated by
earlier policies. First, we reveal an intriguing prosperity-before-collapse phenomenon: although off-
policy RL training without a trust region eventually collapses on stale data, it achieves substantially
higher performance than GRPO with ϵ-clipping before collapse, even matching on-policy results.
Next, we study the causes of GRPO’s inferior performance when trained with stale data.

Figure 3: Prosperity before Collapse. Training with-
out a trust region (TR) (ϵ = ∞) under stale data
(s = 256) initially achieves higher performance than
clipped training, sometimes even matching the on-
policy baseline (s = 0). However, it eventually col-
lapses due to uncontrolled variance.

Prosperity before collapse: training with-
out a trust region. To disentangle whether
the performance drop stems from stale data
generated by highly shifted old policies or
from biases introduced by the training al-
gorithm, we remove the trust region en-
tirely to remove bias from the training al-
gorithm. Surprisingly, we observe a distinct
prosperity-before-collapse phenomenon. As
shown in Figure 1 and Figure 3, although
training without a trust region eventually
collapses, it achieves substantially better
performance prior to collapse. In fact, under
stale data (s=256), the no-clipping setting
initially outperforms clipped training, some-
times even matching on-policy baselines.

Pivotal token masking by ϵ-clipping when
training with stale data. As also discussed in recent work (Su et al., 2025; Chen et al., 2025), ϵ-
clipping may inadvertently mask important tokens, preventing them from contributing useful train-
ing signals. We extend this observation to the asynchronous setting and show that the problem
becomes substantially more severe when training with stale data, since larger staleness induces a
greater mismatch between the behavior and target policies. As illustrated in Figure 4a, the clipping
ratio increases sharply under large staleness (s = 256), while remaining negligible in the on-policy
baseline.
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Figure 4: (a) Clipping ratio dynamics during RL train-
ing on the Qwen-2.5-Math-7B model. (b) Relation-
ship between average token entropy and the distance
between the importance sampling ratio r and 1.

To better understand this phenomenon,
we conduct a quantitative analysis on 90
million training tokens collected during
Qwen2.5-Math-7B training with staleness
256. Specifically, we gather all training
tokens generated between 800 and 1200
model updates, ensuring the model is al-
ready in a stable training phase but be-
fore convergence. Figure 4b shows a clear
trend: as |r − 1| increases, the average
token entropy also rises. This indicates
that ϵ-clipping disproportionately prunes
high-entropy tokens, which are typically
the most informative for model improve-
ment (Wang et al., 2025a; Gao et al., 2025;
Cui et al., 2025). Consequently, clipping
under stale data leads to degraded performance.
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This observation reveals a dilemma: while high-entropy tokens are crucial for learning progress,
they also introduce instability in the off-policy setting, which motivates our key research question:

Can a more accurate and adaptive trust region strategy preserve the benefits of
stale data while ensuring stable training?

5 SECOND-MOMENT TRUST POLICY OPTIMIZATION

In this section, we propose Second-Moment Trust Policy Optimization (M2PO), a novel policy
optimization algorithm providing a more effective trust region for off-policy training with stale data.
As discussed in Section 4, as high-entropy tokens are a double-edged sword, the key challenge in
designing an effective trust region algorithm is how to best harness the rich information in high-
entropy tokens without letting them destabilize training.

5.1 MEASURING DISTRIBUTION GAP WITH THE SECOND MOMENT

The main source of instability in off-policy RL lies in the distributional mismatch between the be-
havior policy that generates training data and the current policy being optimized (Schulman et al.,
2015; 2017). As the divergence between these two distributions grows, importance sampling cor-
rections produce high-variance gradient estimates, leading to noisy and unreliable updates. Our
motivation is therefore to constrain the distributional gap between πbehav and πθ at the batch level,
directly coupling the constraint with model updates while preventing over-constraining of token-
level variations.

A natural choice to measure distribution is the batch-level KL divergence, a metric widely adopted
to monitor stability in RL:

K̂L =
1

N

N∑
i=1

K̂Li = −
1

N

N∑
i=1

log ri = −
1

N

N∑
i=1

log
πθ(ai | si)

πbehav(ai | si)
, (3)

where N is the number of tokens in a batch.

However, batch-level KL suffers from two key limitations. First, because it is computed from single-
sample estimates, individual K̂Li can be positive or negative, leading to cancellation effects where
large deviations offset each other and produce deceptively small KL values. Second, tokens with
large ratios (ri > 1) are not properly constrained, as their negative K̂Li actually decreases the
estimated KL, even though such tokens can contribute to training instability (Schulman et al., 2017).

To overcome these limitations, we propose to use the second moment of the log-ratio to measure the
distribution gap between behavior and current policy. Formally, we define

M̂2 =
1

N

N∑
i=1

M̂2,i =
1

N

N∑
i=1

(log ri)
2 =

1

N

N∑
i=1

[log
πθ(ai | si)

πbehav(ai | si)
]2, (4)

This choice is motivated by two key advantages of M̂2 over the batch K̂L. First, each per-token
estimate M̂2,i = (log ri)

2 is always non-negative, so the constraint can be reliably applied even
when r > 1. Second, while the batch KL only measures the mean shift between policies, M2 also
reflects the variance of importance weights. This makes M̂2 more sensitive to outliers and noisy
tokens with extreme ratios ri1.

Furthermore, Theorem 1 shows that although M2 does not directly constrain r − 1 like ϵ clipping,
it nevertheless provides an upper bound on the Pearson chi-square divergence E[(r − 1)2] between
the new and behavior policies. The proof is provided in Appendix C.

1A potential alternative is to use
∑N

i=1 |K̂Li|/N . While this absolute KL estimate can also work empiri-
cally, it is less sensitive to variance compared to M2 Moreover, M2 provides an upper bound for this absolute
KL estimate, as E[|r|] ≤

√
E[r2]. Therefore, we adopt M2 in our method.

5
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Theorem 1 (Bounding χ2 by M2). Let r = πnew

πbehav
be the importance ratio and assume 1/R ≤ r ≤

R. Define the log-ratio second moment

M2 = Ea∼πbehav

[
(log r(a))2

]
.

Let the Pearson chi-square divergence between πnew and πbehav be

χ2(πnew ∥πbehav) = Ea∼πbehav

[(
πnew(a)

πbehav(a)
− 1

)2
]
= Eπbehav

[
(r − 1)2

]
.

Then
χ2(πnew ∥πbehav) ≤ R2 M2.

5.2 SECOND-MOMENT TRUST POLICY OPTIMIZATION

Algorithm 1: M2PO Masking

Input: {M̂2,i}Ni=1 for all training
tokens; threshold τM2

Output: mask M
1 M ← True for all tokens;
2 T ← all trust-region tokens;
3 while meani∈T M̂2,i > τM2

do
4 j ← argmaxi∈T M̂2,i;
5 Mj ← False;

T ← T \ {j};
6 end while
7 return M

As illustrated in Algorithm 1, to maintain training
stability, M2PO applies a masking strategy that se-
lectively excludes tokens until the batch-level M̂2 of
the remaining tokens falls below a predefined thresh-
old τM2

. Importantly, we observe that τM2
is not a

sensitive hyperparameter (see Figure 8). Across all
our experiments, we consistently set τM2

= 0.04,
and this single setting proved effective for stabiliz-
ing training in all training scenarios.

Only constrain trust-region tokens. Although the
PPO loss clips the ratio on both the upper and lower
sides, due to the use of the min operator, not all to-
kens are actually clipped. In practice, clipping only
occurs for tokens where A > 0 and r > 1, or A < 0
and r < 1. Following the PPO setting, we therefore
apply the M2 constraint exclusively to tokens that satisfy these conditions. Finally, with the result
mask M , we update the policy by maximizing the following objective2:

JM2PO(θ) =
1∑G

i=1 |oi|

G∑
i=1

|oi|∑
t=1

Mi,t
πθ(oi|q)
πθold(oi|q)

Ai,t, Mi,t ∈ {0, 1}, (5)

where Ai denotes the advantage, computed using the grouped advantage in Equation 2.

6 EXPERIMENTS

In this section, we present an extensive evaluation across six models (from 1.7B to 32B) on eight
benchmarks. The results demonstrate that, even when trained with extremely stale data, M2PO
achieves performance comparable to on-policy GRPO and significantly outperforms other baselines:

• In Section 6.2, we show that M2PO achieves accuracy on par with on-policy baselines under
large staleness (s = 256), and outperforms baselines by up to 11.2% in average accuracy.

• In Section 6.3, we provide a detailed analysis of how M2PO boosts off-policy RL performance
while preserving training stability. We also show that its sole threshold hyperparameter τM2

is insensitive to variation, ensuring ease of use in practice.

6.1 EXPERIMENTAL SETTINGS

Models & Datasets. To verify the effectiveness of our method, we extensively evaluate M2PO
on six models: Qwen2.5-Math-7B (Yang et al., 2024), Llama-3.2-3B-Instruct (Dubey et al., 2024),
Qwen3-Base-1.7B/4B/8B (Yang et al., 2025), and Qwen2.5-32B (Yang et al., 2024). For Qwen2.5-
Math-7B, we use a context length of 4k, which is the maximum for this series, while for all other

2In our loss, we average over all tokens rather than only the unmasked ones. This choice is intended to
better mimic the behavior of PPO-style clipping. However, since the masking ratio is typically very small (see
Section 6.3), the difference between the two averaging strategies is negligible in practice.

6
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Table 1: Performance (%) comparison across eight math reasoning benchmarks using models from
1.7B to 32B parameters. We report results for GRPO, GSPO, and M2PO under both on-policy
(s = 0) and off-policy (s = 256) settings. Underlined numbers denote the best average accuracy,
while bold numbers highlight the best average accuracy under stale rollouts (s = 256). M2PO
consistently improves stability under staleness and achieves higher average accuracy than GRPO.

Method S AIME24/25 AMC23/24 Math500 Gaokao Miner. Olymp. Avg.

Llama-3.2-3B-Instruct

GRPO 0 11.0 / 2.3 31.3 / 17.2 53.6 42.99 23.1 20.3 25.2
GRPO 256 9.6 / 0.4 25.0 / 13.9 52.4 42.08 17.6 18.8 22.5
GSPO 256 9.0 / 0.2 30.0 / 14.4 50.6 40.65 18.8 17.3 22.6

M2PO (Ours) 256 10.4 / 4.4 33.8 / 17.8 52.0 44.48 21.2 18.1 25.3

Qwen2.5-Math-7B

GRPO 0 39.6 / 17.5 63.8 / 46.7 82.3 64.1 36.7 43.6 49.3
GRPO 256 29.4 / 12.9 64.4 / 39.4 80.5 63.2 33.1 43.1 45.7
GSPO 256 27.3 / 13.1 63.8 / 36.7 79.0 62.2 33.5 41.9 44.7

M2PO (Ours) 256 33.3 / 17.5 63.8 / 40.6 84.0 66.4 38.1 47.1 48.8

Qwen3-Base-1.7B

GRPO 0 7.5 / 7.5 40.6 / 26.1 67.2 55.9 28.9 30.5 33.0
GRPO 256 8.5 / 4.8 34.4 / 25.0 64.3 52.7 26.0 27.6 30.4
GSPO 256 6.9 / 4.0 39.4 / 18.9 65.0 53.1 26.5 27.5 30.1

M2PO (Ours) 256 14.0 / 6.5 48.1 / 27.8 71.8 59.5 29.4 35.6 36.6

Qwen3-Base-4B

GRPO 0 22.9 / 20.2 63.8 / 53.9 84.6 69.8 40.2 50.5 50.7
GRPO 256 14.0 / 9.6 51.9 / 32.8 76.8 61.7 34.4 39.8 40.1
GSPO 256 17.9 / 15.4 55.6 / 38.3 76.8 62.3 35.1 44.3 43.2

M2PO (Ours) 256 26.7 / 21.0 64.4 / 49.4 85.8 70.3 40.5 52.3 51.3

Qwen3-Base-8B

GRPO 0 26.7 / 19.4 76.9 / 52.8 87.7 71.6 41.2 52.8 53.6
GRPO 256 21.0 / 13.1 63.8 / 40.0 81.8 67.8 38.5 47.4 46.7

M2PO (Ours) 256 30.2 / 23.1 71.3 / 56.7 87.2 75.1 42.6 54.8 55.1

Qwen2.5-32B

GRPO 0 24.4 / 18.3 71.9 / 46.7 85.4 71.9 41.4 52.9 51.6
GRPO 256 20.4 / 9.6 68.1 / 41.1 83.0 67.3 40.9 45.9 47.0

M2PO (Ours) 256 24.8 / 19.4 76.3 / 50.0 85.7 71.7 41.5 51.7 52.6

models the context length is set to 16k. For training, we adopt the DeepScaleR (Luo et al., 2025b)
math dataset.

Training & Evaluation. Our method is implemented based on verl (Sheng et al., 2024) pipeline and
uses vLLM (Kwon et al., 2023) for rollout. We use a mix of H100 and H200 servers for training, de-
pending on resource availability. For benchmark datasets, we use eight widely used complex mathe-
matical reasoning benchmarks to evaluate the performance of trained models: Math500 (Hendrycks
et al., 2021; Lightman et al., 2023), AIME24/25 (Art of Problem Solving, 2024a), AMC23/24 (Art
of Problem Solving, 2024b), Minerva Math (Lewkowycz et al., 2022), Gaokao (Zhang et al., 2023),
Olympiad Bench (He et al., 2024). Similar to (Wang et al., 2025b; Zheng et al., 2025b), we eval-
uate models on those benchmarks every 50 steps and report the performance of the checkpoint that
obtains the best average performance on eight benchmarks. For GRPO, we adopt the commonly
used clipping parameter ϵ = 0.2, while for the other baselines, we follow the recommended values
reported in their respective papers. We include more detailed experimental settings in Appendix B.

6.2 PERFORMANCE COMPARISON ON TRAINING WITH STALENESS

Prosperity without collapse: Stable off-policy training without performance degradation using
M2PO. To verify the effectiveness of M2PO, Table 1 presents a comprehensive comparison of
math reasoning performance across eight benchmarks using models from four different families and
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scales, ranging from 1.7B to 32B parameters. We evaluate multiple reinforcement learning methods
under both on-policy and off-policy settings, including GRPO, GSPO, and our proposed M2PO.
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Figure 5: Training reward on
Qwen-2.5-32B.

The results show that while both GRPO and GSPO often suf-
fer significant performance drops under large staleness, M2PO
consistently achieves comparable accuracy to the on-policy
baseline in all training settings. Surprisingly, we notice that,
in some model settings, M2PO with s = 256 even achieves a
better performance than M2PO with s = 0. For instance, on the
Qwen3-Base-1.7B model, we observe that M2PO with s = 256
(36.6%) outperforms GRPO with s = 0 (33.0%). A potential
explanation is that small effective staleness (e.g., s = 0 corre-
sponding to delays between 0 and 3) can still adversely affect
training stability. Our further analysis in Figure 7 supports this
view, showing that M2PO with s = 256 exhibits an even lower
clipping ratio than GRPO with s = 0. Overall, these results
show that M2PO remains robust and effective, sustaining stable, high performance even under ex-
treme off-policy conditions.
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Figure 6: Methods comparison
under staleness (s = 256) on
Llama-Instruct-3B.

In addition to the final accuracy comparison in Table 1, we
also analyze the training dynamics of accuracy and reward of
Qwen-2.5-32B models. As shown in Figure 1, M2PO with
s = 256 initially falls behind the on-policy baseline but quickly
catches up, eventually matching its performance, while con-
verging much faster and achieving higher accuracy than GRPO
under the same staleness. This highlights that M2PO not only
maintains comparable final accuracy but also accelerates con-
vergence when training with stale data. Figure 5 shows a similar
trend in the reward curves. M2PO with s = 256 also starts off
behind the on-policy baseline due to the initial plateau caused
by using data generated from the base model, but it quickly
catches up and aligns closely with the s = 0 trajectory. In con-
trast, GRPO with s = 256 consistently underperforms across
the entire training trajectory.

Performance of other baselines under staleness. A number of prior works have proposed alter-
native trust region strategies beyond ϵ-clipping, including GSPO (Zheng et al., 2025a), AREAL (Fu
et al., 2025), TOPR (Roux et al., 2025), GPPO (Su et al., 2025), and CISPO (Chen et al.,
2025). Despite not being designed to handle the extreme staleness studied in this paper, we
also evaluate these methods under our setting with s = 256 for completeness and comparison.
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Figure 7: (a) Clipping ratio dynamics during RL on
the Qwen-3-Base-1.7B model. (b) Comparison of the
average clipping ratio across models and methods.

Among these methods, GSPO is the
only one that preserves training stability,
though it still exhibits a noticeable perfor-
mance drop under high staleness (see Ta-
ble 1). For the other methods, as shown in
Figure 6, most encounter substantial dif-
ficulties in maintaining training stability
and tend to break down early in training.
These observations suggest that while ex-
isting approaches can be effective under
moderately stale settings, they face signif-
icant challenges when extended to larger
staleness, highlighting the need for a more
robust and effective solution.

6.3 ANALYSIS AND ABLATION STUDY

Stable training with reduced clipping. Figure 7(a)(b) illustrates the clipping dynamics of GRPO
and our proposed M2PO under different staleness settings. In Figure 7a, we report results on Qwen-
3-Base-1.7B. Under large staleness (s = 256), GRPO exhibits frequent clipping events, with the
ratio increasing sharply and remaining high during most of the training. In contrast, M2PO under
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the same staleness maintains an exceptionally low clipping ratio, comparable to or even lower than
the on-policy GRPO baseline (s = 0). Notably, M2PO with s = 256 exhibits less clipping than
GRPO with s = 0, which explains why M2PO with s = 256 achieves higher accuracy than GRPO
with s = 0 in Table 1. Figure 1 shows the same comparison on Qwen-2.5-32B. A similar trend
holds: GRPO with s = 256 suffers from substantial clipping, whereas M2PO effectively suppresses
unnecessary clipping, remaining close to the on-policy baseline.
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Figure 8: Ablation study of
the τM2

threshold on Llama-
3.2-3B-Instruct and Qwen2.5-
Math-7B.

Figure 7b summarizes the average clipping ratio across the entire
training process. On Qwen-3-Base-1.7B, GRPO with s = 256
reaches an average clipping ratio of 0.66%, compared to 0.07%
for GRPO with s = 0 and only 0.02% for M2PO with s = 256.
On Qwen-2.5-32B, GRPO with s = 256 averages 1.22%, while
GRPO with s = 0 records 0.05% and M2PO with s = 256
maintains a similarly low ratio of 0.06%. These results show that
M2PO reduces clipping by over an order of magnitude compared
to GRPO, thereby enabling stable and efficient training by clip-
ping only when necessary.

Robustness to the choice of τM2
. Figure 8 shows that perfor-

mance is not highly sensitive to the choice of τM2
. Accuracy re-

mains stable across a broad range, only dropping when τM2 is set
extremely small (overly restrictive constraint) or very large (train-
ing collapse). This explains why a single setting of τM2 = 0.04
works robustly across all training settings in our paper.
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Figure 9: (a) Average M2 in each model updates with
and without M2PO masking on Qwen-2.5-32B, show-
ing that masking effectively suppresses spikes and sta-
bilizes the M2 throughout training. (b) Average KL
divergence in each model updates on Qwen-2.5-32B
under different methods.

Training dynamics on KL and M2. Fig-
ure 9 shows the impact of M2PO mask-
ing on training stability. Figure 9a shows
that the average M2 without masking ex-
hibits frequent spikes throughout train-
ing, indicating instability in the second-
moment estimates (blue curve). Apply-
ing M2PO masking effectively suppresses
these fluctuations and maintains consis-
tently low M2 values, leading to more sta-
ble updates (red curve). Figure 9b com-
pares the KL divergence across different
methods. Although M2PO with s = 256
involves substantially less clipping than
GRPO (shown in Figure 7), it maintains
a more stable divergence than GRPO with
s = 256. These results indicate that
M2PO performs clipping in a more precise and adaptive manner, ensuring training stability with
substantially less reliance on clipping. These results demonstrate that M2PO enables more pre-
cise and adaptive clipping, achieving training stability while relying on significantly fewer clipping
operations, and thereby attaining better performance without risking training collapse.

7 CONCLUSION

In this work, we investigated why off-policy RL for LLMs often fails under stale data and uncov-
ered the prosperity-before-collapse phenomenon: training without a trust region initially outper-
forms standard methods, showing that stale data can be as informative as on-policy trajectories,
but eventually collapses due to instability. Motivated by this observation, we proposed M2PO,
which constrains the second moment of importance weights to provide a variance-sensitive and sta-
ble trust region. This design suppresses extreme outliers while preserving informative high-entropy
tokens, enabling stable training that matches on-policy performance even under extreme staleness.
Extensive experiments further demonstrate that M2PO significantly reduces clipping and is highly
insensitive to its threshold, highlighting its practicality and scalability for efficient RL with LLMs.
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8 ETHICS STATEMENT

This work focuses on developing reinforcement learning algorithms for large language models. Our
research does not involve human subjects, personally identifiable information, or sensitive data.
All datasets used are publicly available and widely adopted in the community. We acknowledge that
more capable LLMs may have potential societal impacts, including misuse for generating misleading
or harmful content. To mitigate these risks, our study is confined to controlled academic settings,
and our primary goal is to improve the stability and efficiency of training methods.

9 REPRODUCIBILITY STATEMENT

All implementation details, hyperparameters, and experimental setups are thoroughly documented
in the paper and appendix, providing sufficient information for independent reproduction of our
results.
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A OVERVIEW

In this appendix, we provide additional details to complement the main text. Appendix B de-
scribes the experimental setup in full, including datasets, models, and training hyperparameters.
Appendix C presents theoretical proofs supporting our method and analysis.

B DETAILED EXPERIMENTAL SETTING

Models & Datasets. To verify the effectiveness of our method, we extensively evaluate M2PO
on six models from four model series: Qwen2.5-Math-7B (Yang et al., 2024), Llama-3.2-3B-
Instruct (Dubey et al., 2024), Qwen3-Base-1.7B/4B/8B (Yang et al., 2025), and Qwen2.5-32B (Yang
et al., 2024). For Qwen2.5-Math-7B, we use a context length of 4k, which is the maximum for this
series. while for all other models the context length is set to 16k. For training, we adopt the Deep-
ScaleR (Luo et al., 2025b) math dataset.

Training. Our method is implemented based on verl (Sheng et al., 2024) pipeline and uses
vLLM (Kwon et al., 2023) for rollout. We use a mix of H100 and H200 servers for training, depend-
ing on resource availability. We set the rollout temperature to 1 for vLLM (Kwon et al., 2023). The
training batch size is set to 256, and the mini-batch size to 512. We sample 8 responses per prompt.
We train all models for 1000 steps, and we optimize the actor model using the AdamW (Loshchilov
& Hutter, 2019) optimizer with a constant learning rate of 1e-6. We use β1 = 0.9, β2 = 0.999,
and apply a weight decay of 0.01. We use the following question template to prompt the LLM. For
reward assignment, we give a score of 0.1 for successfully extracting an answer and a score of 1.0 if
the extracted answer is correct. Similar to (Yu et al., 2025), we remove the KL-divergence term. The
optimization is performed on the parameters of the actor module wrapped with Fully Sharded Data
Parallel (FSDP) (Zhao et al., 2023) for efficient distributed training. We set the M2PO threshold to
0.04 for all training runs.

Evaluation. For benchmark datasets, we use eight widely used complex mathematical reason-
ing benchmarks to evaluate the performance of trained models: Math500 (Hendrycks et al., 2021;
Lightman et al., 2023), AIME24/25 (Art of Problem Solving, 2024a), AMC23/24 (Art of Problem
Solving, 2024b), Minerva Math (Lewkowycz et al., 2022), Gaokao (Zhang et al., 2023), Olympiad
Bench (He et al., 2024). Same as the training setting, For Qwen2.5-Math-7B models, we use 4k
as the context length. For other models, we set the context length to 16k. Similar to (Wang et al.,
2025b; Zheng et al., 2025b), we evaluate models on those benchmarks every 50 steps and report the
performance of the checkpoint that obtains the best average performance on eight benchmarks. We
evaluate all models with temperature = 1. For AIME24/25, we report the pass@1(avg@16), for
other benchmarks, we report the pass@1(avg@4).

Question Template

Please solve the following math problem: {{Question Description}}. The assistant first thinks
about the reasoning process step by step and then provides the user with the answer. Return
the final answer in \boxed{} tags, for example \boxed{1}. Let’s solve this step by step.

C THEORETICAL PROOF

Proof of Theorem 1.

Proof. Let z = log r, so that r = eZ . Since 1/R < r ≤ R, we have |z| ≤ logR.

For z ≥ 0, observe that
ez − 1

z
=

∫ 1

0

etz dt ≤
∫ 1

0

ez dt = ez,

which implies (ez − 1)2 ≤ (zez)2 = z2e2z .

For z ≤ 0, set u = −z ≥ 0. Then

(ez − 1)2 = (1− e−u)2 ≤ u2 = z2 ≤ z2e2|z|.
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Combining both cases, for all z ∈ R we obtain

(ez − 1)2 ≤ z2e2|z|.

Substituting Z = log r, this yields

(r − 1)2 ≤ (log r)2e2| log r| ≤ R2(log r)2.

Taking expectation under πbehav gives

χ2(πnew ∥ πbehav) = Eπbehav
[(r − 1)2] ≤ R2 Eπbehav

[(log r)2] = R2M2.

D THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models (LLMs) as general-purpose assistants in two limited ways: (1) for
writing polish, including improving grammar, readability, and presentation of the manuscript, and
(2) as code assistants (e.g., Cursor, GitHub Copilot) to accelerate routine coding tasks such as de-
bugging syntax errors and refactoring simple functions. LLMs were not used for research ideation,
algorithm design, experimental analysis, or drawing conclusions. All conceptual and scientific con-
tributions are entirely the work of the authors.
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