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Abstract

Audio source separation is fundamental for machines to understand complex acous-
tic environments and underpins numerous audio applications. Current supervised
deep learning approaches, while powerful, are limited by the need for extensive,
task-specific labeled data and struggle to generalize to the immense variability and
open-set nature of real-world acoustic scenes. Inspired by the success of generative
foundation models, we investigate whether pre-trained text-guided audio diffusion
models can overcome these limitations. We make a surprising discovery: zero-shot
source separation can be achieved purely through a pre-trained text-guided audio
diffusion model under the right configuration. Our method, named ZeroSep, works
by inverting the mixed audio into the diffusion model’s latent space and then using
text conditioning to guide the denoising process to recover individual sources. With-
out any task-specific training or fine-tuning, ZeroSep repurposes the generative
diffusion model for a discriminative separation task and inherently supports open-
set scenarios through its rich textual priors. ZeroSep is compatible with a variety
of pre-trained text-guided audio diffusion backbones and delivers strong separa-
tion performance on multiple separation benchmarks, surpassing even supervised
methods. Our project page is here: https://wikichao.github.io/ZeroSep/.

1 Introduction

At the heart of acoustic scene perception lies the fundamental task of source separation, which aims
to isolate individual sound sources from a complex audio mixture. Accurate source separation is
crucial for a wide range of applications, including media production, surveillance systems, automatic
speech recognition in noisy environments, and analysis of complex soundscapes.

The dominant approach to audio separation in recent years has relied heavily on supervised learning:
deep neural networks are trained on large datasets of paired mixtures and clean sources [Luo and
Mesgarani, 2019, Subakan et al., 2021]. While these methods have achieved impressive performance
on specific, well-represented source types and datasets, they often fall short when faced with the open-
set variability of real-world acoustic scenes. Consequently, training a foundation-level separation
model becomes exceptionally challenging due to the need for vast amounts of labeled data, the
difficulty of defining training objectives and mixing strategies, and the design of effective conditioning
mechanisms.

Recent efforts, such as LASS-net Liu et al. [2022a], AudioSep Liu et al. [2023a], and FlowSep Yin
et al. [2024], have explored leveraging natural language queries for more flexible separation. Despite
these advances, they still contend with the same core challenges: vast data requirements, complex
task-specific training regimes, and limited generalization to unseen acoustic scenes. Inspired by the
transformative success of large language models in unifying diverse NLP tasks under a generative
framework [Brown et al., 2020], we pose a central question: Can a generative foundation model
similarly emerge for audio tasks? In this work, we explore this question by investigating the
capabilities of pre-trained text-guided audio diffusion models.
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We discover that a text-guided audio diffusion model can, out of the box, separate a mixture into its
sources – no training or fine-tuning, relying solely on latent inversion and conditioned denoising: (i)
Given a mixed audio signal, we can find a corresponding point in the diffusion model’s latent space
through an inversion process. This latent representation captures the composite information from
all the sound sources present in the mixture. (ii) Subsequently, by guiding the generative denoising
process from this latent state using text prompts corresponding to individual sources in the mixture,
the model can be steered to reconstruct each source in isolation. Surprisingly, even though this is a
generative process, the separated sources are highly faithful to the original sources, especially with
classifier-free guidance ≤ 1, which prevents hallucination. This effectively repurposes the generative
model for a discriminative task, offering a fundamentally different approach to separation.

Based on the above observations, we introduce ZeroSep, a zero-training framework for audio source
separation that repurposes pretrained text-guided diffusion models. By casting separation as a two-
step generative inference, latent inversion followed by text-conditioned denoising, ZeroSep offers
three key advantages:
Open-set Separation: As the core of ZeroSep is a pre-trained text-guided audio diffusion model,
which has learned to generate realistic audios from diverse, open-domain descriptions and mixing
styles, ZeroSep naturally handles open-set queries and is able to separate from diverse mixtures.
Model-agnostic Versatility: The inversion plus denoising pipeline is generic to diffusion architectures,
allowing ZeroSep to leverage different pre-trained audio diffusion backbones. Interestingly, we
observe a trend that the better the audio diffusion model can generate, the better it can separate, which
could suggest continuous improvement whenever there is a more advanced audio generation model
available.
Training-Free Efficacy: Without any fine-tuning or task-specific data, ZeroSep matches or exceeds
the performance of existing training-based generative separators, overturning the assumption that
high-quality separation requires dedicated training.

In summary, our contributions to the community includes

1. We introduce ZeroSep, a training-free audio source-separation framework that repurposes
pre-trained text-guided diffusion models, representing a fundamental shift away from super-
vised separation paradigms.

2. We demonstrate that pure generative inference—latent inversion followed by text-
conditioned denoising—yields state-of-the-art separation performance, outperforming exist-
ing training-based generative methods.

3. We establish ZeroSep ’s versatility and open-set capability: it seamlessly handles diverse
mixtures and textual queries and can be applied to many pre-trained audio diffusion back-
bones, improving separation quality as the underlying model’s generative fidelity increases.

2 Related Works

Audio Diffusion Models. Diffusion probabilistic models have rapidly emerged as a leading paradigm
for generating high-quality and diverse audio content. Early works like DiffWave [Kong et al., 2021]
and WaveGrad [Chen et al., 2021a] demonstrated the potential of applying denoising diffusion to
synthesize raw audio waveforms, achieving high-fidelity unconditional audio generation. Building on
this foundation, diffusion models were successfully extended to conditional audio generation tasks.
In text-to-speech (TTS), models such as Diff-TTS [Jeong et al., 2021] and Grad-TTS [Popov et al.,
2021] showed that diffusion processes could generate high-fidelity mel-spectrograms conditioned
on text input. Researchers also focused on improving the efficiency and controllability of diffusion
sampling; for instance, Guided-TTS Kim et al. [2022] introduced classifier guidance for TTS, and
PriorGrad [Lee et al., 2022] addressed sampling speed in vocoders through data-dependent priors.
Diffusion models have also been applied to other audio synthesis tasks, including singing voice
synthesis with DiffSinger [Liu et al., 2022b] and waveform super-resolution with NU-Wave [Lee
and Han, 2021]. More recently, the focus has shifted towards latent-space diffusion models and
text-conditioned generation of general audio. AudioLDM [Liu et al., 2023b] pioneered combining
diffusion with CLAP embeddings to enable text-conditioned generation of diverse sounds and music.
AudioLDM2 [Liu et al., 2024] and Tango [Ghosal et al., 2023] further advanced in this direction,
providing enhanced control and quality. These text-conditioned latent diffusion models [Evans et al.,
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2025a], capable of generating complex audio scenes from natural language, form the technological
foundation for our training-free separation method ZeroSep.

Audio Separation. The problem of source separation has long been tackled by both classic
signal-processing techniques and, more recently, deep learning. Traditional methods such as NMF-
MFCC [Stöter et al., 2021] decompose mixtures under assumptions about timbral or spectral structure.
While training-free, they often fail on complex or heavily overlapping sources that lack clear dis-
tinguishing features. Deep learning revolutionized the field by learning representations directly
from data. Deep Clustering [Hershey et al., 2016] trains embeddings for clustering source-specific
time–frequency bins, and Permutation-Invariant Training (PIT) [Yu et al., 2017] resolves the label-
permutation problem during training. Conv-TasNet [Luo and Mesgarani, 2019] further advanced
performance with end-to-end waveform separation, frequently surpassing traditional masking ap-
proaches. Diffusion-based approaches such as SepDiff [Chen et al., 2023] and DiffSep [Scheibler
et al., 2023] reformulate separations as a generative problem. However, these models remain “blind”
to user intent: once trained, they separate every detectable component rather than targeting a spe-
cific source. To introduce controllability, recent works condition separation on auxiliary modalities.
Video-guided methods [Huang et al., 2024a] use visual cues, while language-based frameworks,
such as LASS-Net [Liu et al., 2022a], AudioSep [Liu et al., 2023a], and FlowSep [Yin et al., 2024],
leverage text prompts to guide mask estimation. Although more flexible, they still require large
supervised corpora of synthetic mixtures, inheriting closed-world biases. Zero-shot diffusion editors
like AUDIT [Wang et al., 2023], DITTO [Novack et al., 2024], and AudioEdit [Manor and Michaeli,
2024] fine-tune or invert latent trajectories to delete components, but focus on editing rather than
explicit separation.

In contrast, ZeroSep repurposes a pre-trained text-guided audio diffusion model as a universal,
training-free [Postolache et al., 2024] prior for open-set separation. By (i) inverting an audio mixture
into the model’s latent space and (ii) re-denoising under user-provided text prompts with unit classifier-
free guidance, ZeroSep generates one isolated waveform per prompt, achieving comprehensive,
zero-shot source separation without fine-tuning.

3 Method

In this section, we first review the foundational knowledge of text-guided diffusion models and
diffusion inversion techniques, which form the basis of our method. Next, we discuss the separation
task setup with generative diffusion models. Lastly, we introduce ZeroSep, a zero-shot separation
adaptation of existing text-guided audio diffusion models.

3.1 Preliminary: Text-Guided Audio Diffusion and Inversion

Text-guided audio diffusion models typically operate in a learned latent space: An initial audio signal
is first encoded into a latent representation, denoted as x0; the forward diffusion process progressively
adds Gaussian noise to this latent vector, transforming it into a pure noise vector xT . A neural
network, parameterized by a set of θ, learns to predict and remove the noise added at each step t,
effectively reversing the diffusion process and generating mel-spectrograms which are then converted
to waveforms using a vocoder1. In text-guided models, this denoising process is driven by a text
condition c, derived from a text encoder, ensuring the generated audio aligns with the text prompt.

DDIM Inversion. To enable manipulation of existing audio content, inversion techniques are used to
map a real audio sample back into the noisy latent space. A common approach is DDIM inversion,
which leverages the deterministic nature of DDIM sampling [Song et al., 2020]. The standard DDIM
sampling process iteratively denoises a noisy latent xt to produce a less noisy version xt−1:

xt−1 =
√

ᾱt−1

ᾱt
xt +

(√
1

ᾱt−1
− 1−

√
1
ᾱt

− 1
)
ϵθ
(
xt, c, t

)
, (1)

1This pipeline underlies many audio diffusion models, such as the AudioLDM family [Liu et al., 2024,
2023b] and Tango [Ghosal et al., 2023], but does not apply to architectures like Stable Audio Open [Evans et al.,
2025a].
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where {ᾱt}Tt=0 defines the noise schedule and ϵθ(·, c, t) is the model’s noise prediction conditioned
on c. DDIM inversion reverses this process, estimating the noisy latent xt+1 from xt:

xt+1 =
√

ᾱt+1

ᾱt
xt +

(√
1

ᾱt+1
− 1−

√
1
ᾱt

− 1
)
ϵθ
(
xt, c, t

)
, (2)

so that iterating from x0 recovers an estimate of the pure noise xT . Cumulative errors can, however,
cause deviations from the true noise trajectory.

DDPM Inversion. In contrast to DDIM inversion, DDPM inversion [Huberman-Spiegelglas et al.,
2024] leverages the probabilistic forward diffusion to obtain an exact noise path. Given a clean latent
x0, one constructs an auxiliary sequence of noisy latents

xt =
√
ᾱt x0 +

√
1− ᾱt ϵ̃t, ϵ̃t ∼ N (0, I), t = 1, . . . , T, (3)

and then extracts the per-step noise vectors

zt =
xt−1 − µt(xt)

σt
, t = T, . . . , 1, (4)

where µt(xt) and σt follow the DDPM [Ho et al., 2020] reverse-step definitions. Reconstruction
simply re-injects xT and {zt} via

xt−1 = µt(xt) + σt zt, (5)

exactly recovering x0. By scaling or replacing {zt} (e.g. using text embeddings c at select timesteps),
DDPM inversion offers a probabilistic framework for precise, text-guided edits.

From a high-level perspective, both DDIM and DDPM inversion can be viewed as a single mapping,
which we denote by xT = Finv(x0, c). This operator Finv encapsulates the step-wise recovery of
the noise trajectory corresponding to a given clean latent. Whether implemented via the deterministic
updates of DDIM or the probabilistic steps of DDPM, Finv produces the pure noise xT that, when
re-injected into the standard diffusion sampler, exactly reconstructs the original sample x0.

3.2 Task Setup

In real-world scenarios, an audio stream a can be a mixture of N individual sound sources: a =∑N
i=1 s

(i), where each source s(i) can be of various categories. To work in the diffusion latent space,
we first convert a to a mel-spectrogram and encode it with a Variational Autoencoder (VAE), yielding
latent features x ∈ RC×T×F , where C is the number of channels, F the numbers of frequency bins,
and T the number of time frames. Let xmix denote the VAE encoding of the mixture and x(i) the
encoding of source i. Our goal is to find a separation mapping f

(
xmix, c(i)

)
−→ x(i), where c(i)

is a conditioning signal (e.g., text description) that specifies which source to extract. x(i) is then fed
to the VAE decoder and Vocoder to convert latent features back to waveform level to obtain ŝ(i).

3.3 From Generation to Separation: The ZeroSep Principle

The core of ZeroSep lies in repurposing a pre-trained text-guided audio diffusion model, originally
designed for generating audio from text, to perform the task of audio source separation.

Let cinv be the text prompt used during the inversion process (mapping the mixed audio xmix to a
noisy latent xT ), and crev be the text prompt used during the subsequent reverse denoising process
(reconstructing a clean source from the noisy latent).

Diffusion models typically employ classifier-free guidance during denoising, where the noise predic-
tion ϵt at step t is a combination of an unconditional prediction and a conditional prediction guided
by crev:

ϵt = ϵθ(xt,∅, t) + ω · (ϵθ(xt, crev, t)− ϵθ(xt,∅, t)). (6)
Here, ϵθ(xt,∅, t) is the unconditional noise prediction, ϵθ(xt, crev, t) is the prediction guided by crev,
and ω is the classifier-free guidance weight controlling the influence of the text condition crev.

While this formulation is typically used to amplify the presence of the desired content during
generation, we discover that specific choices of cinv, crev, and ω, enable effective source separation.
This shifts the model’s function from synthesizing new audio to dissecting existing mixtures. Here
are the key principles for transforming the generative process into a separation tool:
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Figure 1: The overview of ZeroSep, which includes (a) an inversion process to obtain a latent
representation for the mixture, and (b) a separation denoising process to effectively extract the target
source with text conditions. We show the choice of inversion prompt cinv and reverse prompt crev in
(c), and demonstrate the valid separation region defined by ω in (d).

– The Reverse Prompt crev: To isolate a specific source i, the reverse denoising prompt crev must
explicitly describe that target source:

crev := c(i), if separating source i. (7)

This directs the denoising process to reconstruct the audio components associated with the target
source described by c(i). Using any other prompt would result in guided generation, not separation.

– The Inversion Prompt cinv: The inversion prompt cinv influences how the mixed audio is mapped
to the noisy latent space. We found flexibility here, with effective choices including a null prompt
∅ or prompts describing the other sources present in the mixture (c(j) for j ̸= i). While describing
other sources can potentially refine the latent representation by emphasizing non-target components,
it requires prior knowledge of the mixture’s contents, yet can be achieved with user query or by
prompting Vision-Language Models or Audio Language Models (as shown in Fig. 1(c)). A simpler
and often effective approach is to use a null prompt (cinv = ∅) as the default. This inverts the
mixed signal based on the model’s general audio understanding without imposing specific content
constraints during the inversion phase. The effect of cinv and crev can be found in Tab. 9.

– The Crucial Role of Guidance Weight ω: A key discovery is that achieving separation hinges
on setting the classifier-free guidance weight ω appropriately, specifically ω ≤ 1. This is counter-
intuitive to typical generative usage where high ω values (e.g., ω = 3.5 for AudioLDM2 [Liu et al.,
2024]) amplify the conditional signal for a strong generation. In our context, when using cinv = ∅:

– Setting ω = 0 removes the conditional influence, effectively leading to a reconstruction of the
original mixed audio.

– Setting ω = 1 removes the unconditional noise estimation from the combined prediction in
Eq. (6), leaving only the component aligned with the target source described by crev. This
effectively isolates the target source during denoising.

– Setting ω > 1, as in standard generation, overly amplifies the conditional signal, leading to
the synthesis of new content rather than the separation of existing audio components.

We empirically find that ω = 1 yields the best separation results (as shown in Fig. 3(a)). This
finding reveals that controlling the balance between conditional and unconditional predictions via
ω is critical for steering the diffusion process from generation towards faithful separation.

By carefully selecting cinv, crev, and setting ω (in practice, we set ω = 1), we effectively repurpose the
pre-trained audio diffusion model’s generative capabilities to perform high-quality source separation
without requiring any task-specific training.
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3.4 Why Do T2A Diffusion Models Exhibit Zero-Shot Separation Ability?

The emergent source separation capability in Text-to-Audio (T2A) diffusion models is rooted in two
core pillars: the latent disentanglement achieved during polyphonic training, and the repurposing
of the score function via Classifier-Free Guidance (CFG) for an inverse problem.

Latent Disentanglement via Data Compositionality. T2A diffusion models are trained to estimate
the probability density of multi-label, polyphonic audio (e.g., AudioSet [Gemmeke et al., 2017], with
an average of ∼ 2.7 concurrent labels per clip). To accurately generate a complex mixture, the model
must implicitly learn the compositional structure of the acoustic environment. The model is forced
to encode disentangled latent factors corresponding to individual sources (s(1), . . . , s(N)) such
that their superposition correctly predicts the mixture xmix. This compositional training establishes
an inherent, semantically-aligned structure in the latent space, where the representation of the
mixture xmix is a combination of the latent representations of its individual sources. This prerequisite
knowledge makes the inverse task of decomposition feasible.

The Score Function View and Guided Filtering. The separation task is realized by repurposing the
score-based generative process. The T2A model estimates the conditional score function via the noise
prediction ϵθ, which is typically combined using Classifier-Free Guidance (illustrated in Eq. (6)).
The procedure for separation involves two steps: first, the mixture audio xmix is mapped into the
noisy latent space via DDIM Inversion. Second, the key to separation is setting the guidance weight
to ω = 1. This condition simplifies the guidance to ϵ̂θ(xt, c) = ϵθ(xt, c), effectively removing the
unconditional score component ϵθ(xt,∅) (which models the mixture’s density) from the denoising
process. By solely following the conditional score estimate, the model’s reverse process is steered to
follow the gradient direction leading to the data distribution consistent only with the target source
defined by the text prompt c. This mechanism thus transforms the generative model into a zero-shot
guided filtering tool for source extraction.

4 Experiments

4.1 Experimental Settings

Baselines. To evaluate our training-free diffusion-based separation method, we compare it against two
categories of existing approaches: (i) Training-based methods. These methods rely on large-scale
supervised training and leverage text queries for targeted separation. We include: LASS-Net [Liu et al.,
2022a], which conditions a mask estimator on text queries; AudioSep [Liu et al., 2023a], a scaled-up
version of LASS-Net trained on massive multimodal data for zero-shot capabilities across diverse
sources; and FlowSep [Yin et al., 2024], which enhances query-based separation using rectified
continuous normalizing flows. We note that AUDIT [Wang et al., 2023] also uses audio diffusion
models for instruction-guided audio editing (including source manipulation) but is not included as
a direct baseline due to the lack of public code and data release for comparison. (ii) Training-free
methods. These methods perform separation without requiring task-specific training data. We
compare against: NMF-MFCC [Stöter et al., 2021], a classical non-negative matrix factorization
approach operating on MFCC features for blind source separation; and AudioEditor [Manor and
Michaeli, 2024], which achieves unsupervised separation by discovering principal components
within the denoising process of a pre-trained diffusion model. In summary, training-based baselines
require extensive annotated data for training, whereas other training-free baselines employ different
underlying principles from our generative diffusion-based approach.

Datasets. We evaluate the open-set separation capabilities of our training-free method on two bench-
mark multimodal datasets with paired audio and text labels: The Audio–Visual Event (AVE) [Tian
et al., 2018] dataset contains 4,143 video clips, each 10 seconds long, covering 28 distinct sound
categories (e.g., church bell, barking, frying). AVE is valuable for evaluating separation in complex,
real-world scenarios due to the presence of background noise, off-screen sounds, and varying event
durations. The MUSIC dataset [Zhao et al., 2018] consists of clean solo performances from 11
musical instruments, thereby offering a controlled environment to assess the separation of individual,
isolated sources with minimal interference. To facilitate comparison with prior research and ensure
reproducibility, we use the official separation data splits for both AVE and MUSIC as provided by the
DAVIS repository [Huang et al., 2024a].
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Table 1: Main audio separation results comparing ZeroSep with training-based and training-free
baselines on the AVE [Tian et al., 2018] and MUSIC [Zhao et al., 2018] datasets. Metrics are reported
on the test sets. ↑ indicates higher is better, ↓ indicates lower is better. The best results are bold.
More metrics can be found in Appendix A.

Method MUSIC AVE

FAD ↓ LPAPS ↓ C-A ↑ C-T ↑ FAD ↓ LPAPS ↓ C-A ↑ C-T ↑
Require Separation Training

LASS-Net 1.039 5.602 0.204 0.014 0.626 6.062 0.232 0.011
AudioSep 0.725 5.209 0.450 0.204 0.446 5.733 0.457 0.167
FlowSep 0.402 5.578 0.564 0.245 0.258 4.719 0.493 0.082

Separation Training Free

NMF-MFCC 1.286 5.618 0.239 −0.055 1.246 5.851 0.174 0.211
AudioEdit 0.568 4.869 0.453 0.196 0.372 4.959 0.341 0.074
ZeroSep (Ours) 0.377 4.669 0.615 0.271 0.269 4.537 0.442 −0.001

Mixture

AudioSep

GT ZeroSep (Ours)

LASS-Net

FlowSep

AudioEdit

Separation Prompt: “dog bark”

Figure 2: Qualitative visualization of audio separation results. The figure shows the input mixture
(containing speech and dog barking) and the separated “dog barking” source produced by different
baselines and ZeroSep. ZeroSep, guided by the text prompt “dog bark”, successfully isolates the
target sound, demonstrating its effectiveness compared to baseline methods. More separation results
can be found in the appendix.

Method SDR SIR SAR

Original 0.31 0.31 149.90
VAE + Vcoder −23.07 −0.79 −19.09

Table 2: Breakdown of SDR/SIR/SAR (with re-
spect to the individual target source), for a gen-
erative reconstruction of the mixture versus the
original mixture.

Evaluation Metrics. Traditional separa-
tion metrics–Signal-to-Distortion Ratio (SDR),
Signal-to-Interference Ra tio (SIR), and Signal-
to-Artifact Ratio (SAR) [Raffel et al., 2014]–
quantify sample-level differences between a sep-
arated output ŝ and the ground truth s. These
metrics assume the output lies on the same wave-
form manifold as s, an assumption violated by
generative models that may produce perceptu-
ally accurate but sample-wise divergent signals. Tab. 2 demonstrates how a VAE–Vocoder reconstruc-
tion of the mixture yields misleadingly poor SDR/SIR/SAR scores. Such an issue was previously
studied in [Jayaram and Thickstun, 2020].

To capture perceptual and semantic fidelity of generative separation, we adopt metrics in embedding
spaces: Frechét Audio Distance (FAD) [Kilgour et al., 2018]: measures the distance between
embedding distributions of separated and ground-truth audio. Learned Perceptual Audio Patch
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Table 3: Evaluation of AudioLDM [Liu et al., 2024], AudioLDM2 [Liu et al., 2024], and
Tango [Ghosal et al., 2023] on the MUSIC and AVE benchmarks. We compare two U-Net sizes for
each AudioLDM variant-S (181 M) / L (739 M) and AudioLDM2-S (350 M) / AudioLDM2-L (750
M), and Tango’s 866 M-parameter U-Net. Results are reported for both DDIM and DDPM inversion
methods, and for AudioLDM2 we include full vs. music-only training data.

Model Size Data MUSIC AVE

FAD↓ LPAPS↓ C-A↑ C-T↑ FAD↓ LPAPS↓ C-A↑ C-T↑
DDIM Inversion

AudioLDM S Full 0.460 4.690 0.562 0.284 0.275 4.821 0.484 0.114
L Full 0.470 4.625 0.577 0.260 0.253 4.742 0.490 0.102

AudioLDM2
S Full 0.421 4.630 0.575 0.261 0.251 4.560 0.477 0.039
S Music 0.439 4.620 0.584 0.259 0.325 4.666 0.424 0.106
L Full 0.377 4.669 0.615 0.271 0.269 4.537 0.442 −0.001

Tango L Full 0.606 4.511 0.544 0.204 0.724 4.451 0.437 0.077

DDPM Inversion

AudioLDM S Full 0.417 4.580 0.605 0.300 0.239 4.681 0.504 0.133
L Full 0.388 4.536 0.626 0.283 0.266 4.629 0.496 0.108

AudioLDM2
S Full 0.390 4.586 0.595 0.238 0.272 4.546 0.488 0.041
S Music 0.384 4.596 0.609 0.259 0.238 4.628 0.467 0.126
L Full 0.397 4.581 0.598 0.239 0.267 4.523 0.445 −0.008

Tango L Full 0.539 4.474 0.581 0.189 0.723 4.471 0.451 0.032

Similarity (LPAPS) [Manor and Michaeli, 2024]: evaluates perceptual audio similarity in a learned
embedding space. CLAP-A and CLAP-T [Yin et al., 2024]: CLAP-A is the cosine similarity
between audio embeddings of the separation output and the ground-truth source; CLAP-T is the
cosine similarity between audio embeddings and the text embedding of the target class. These feature-
based metrics better reflect perceptual quality and semantic alignment, addressing the shortcomings
of waveform-level reference metrics for generative audio separation. We further assess whether the
model truly separates the original source content or merely generates audio with similar semantic
qualities that may not remain consistent with the ground-truth mixture (Appendix A).

4.2 Main Comparison

Tab. 1 presents the core results of our evaluation, comparing the performance of our training-free
method, ZeroSep, against representative training-based and other training-free baselines on the
AVE and MUSIC datasets. Remarkably, ZeroSep demonstrates performance that surpasses the
leading supervised methods, effectively challenging the necessity of large-scale supervised training
for state-of-the-art audio separation. On the MUSIC dataset, ZeroSep outperforms the strongest
training-based baseline FlowSep across all metrics. On the more complex and open-domain AVE
dataset, ZeroSep achieves performance comparable to FlowSep.

The training-based baselines show a clear improvement trend with increasing model size and data:
LASS-Net is surpassed by AudioSep, which in turn is surpassed by FlowSep, underscoring the benefits
of extensive supervised training data and better models. The other training-free methods evaluated,
NMF-MFCC and AudioEditor, yield substantially lower performance than the top supervised methods,
highlighting the difficulty of achieving high-quality separation without leveraging separation training,
which ZeroSep has addressed.

Beyond quantitative scores, the qualitative visualization in Fig. 2 provides further evidence of
ZeroSep’s effectiveness, illustrating the successful separation of a target sound (e.g., “dog barking”)
from a complex mixture containing other sources like human speech. These results collectively
indicate that pre-trained text-guided diffusion models possess powerful inherent capabilities that can
be effectively harnessed for audio separation without the need for task-specific training.
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(a) (b) (c)

Figure 3: (a) Impact of guidance weight ω: increasing ω from 0 to 1 improves separation metrics
(LPAPS and CLAP-A), whereas ω > 1 degrades performance below the mixture baseline (ω = 0),
underscoring the critical role of ω. (b)–(c) Positive correlation between separation quality (normalized
all scores from Tab. 3) and generative capability (normalized FAD scores on AudioCap [Liu et al.,
2023b], [Liu et al., 2024]) across AudioLDM variants, indicating that stronger generation can
potentially lead to better separation.

4.3 Ablation Studies

In this section, we analyze the influence of various components on ZeroSep’s separation performance
to identify factors contributing to its effectiveness. We investigate aspects including the choice and
capacity of the base generative model, the impact of its training data domain, inversion strategies,
guidance weight effects, and prompt selection. More analysis can be found in the appendix.

How Does the Base Generative Model Affect Separation? Since ZeroSep is built upon a pre-
trained diffusion model, understanding how this base model affects separation is crucial. First, we
compare separation performance using different base model architectures, including models from
the AudioLDM [Liu et al., 2023b], AudioLDM2 [Liu et al., 2024], and Tango [Ghosal et al., 2023]
families, as shown in Tab. 3. The results indicate that various base models can yield separation
performance comparable to the best training-based baseline, FlowSep, demonstrating versatility in
base model selection. Specifically, models from the AudioLDM and AudioLDM2 families generally
outperform Tango in this separation task.

Second, we analyze the effect of model capacity by comparing different sizes within the AudioLDM
and AudioLDM2 families (e.g., AudioLDM-S vs. AudioLDM-L, AudioLDM2-S vs. AudioLDM2-L).
As shown in Tab. 3, increasing model size consistently leads to improved separation performance. This
suggests a positive correlation between the generative power of the base model and its effectiveness for
separation. We further visualize this trend by plotting the correlation between generative performance
(measured by FAD) and separation metrics in Fig. 3(b) and (c), which confirms that stronger generative
models tend to yield better separation results.

Third, we investigate the impact of the base model’s training data domain. Tab. 3 includes results
for a model trained specifically on MUSIC data compared to the same model trained on a broader
data corpora. We observe that the MUSIC-data-trained model achieves performance on the MUSIC
dataset that is similar to or even better than the full-training model for certain metrics (e.g., LPAPS
and CLAP-A). This finding suggests that if the target separation domain is narrow, a base generative
model trained on domain-specific data can be sufficient or even advantageous, potentially increasing
the separation flexibility.

Inversion Strategy. As shown in Tab. 3, both DDIM and DDPM inversion methods enable competi-
tive separation performance relative to the baselines. Analyzing their behavior across different base
model capacities and training data domains, we observe that DDPM inversion tends to yield more
stable metrics, exhibiting less fluctuation with respect to changes in model size and training data.
In contrast, DDIM inversion shows larger variations under these different conditions. This analysis
indicates that ZeroSep’s effectiveness is not strictly tied to a single inversion technique, offering
flexibility in implementation.

Effect of ω. As detailed in Sec. 3.3, setting ω = 0 effectively reduces the process to an unconditional
reconstruction, while higher values increase the adherence to the text prompt crev. We analyze the
impact of ω on separation performance by evaluating values in the set {0, 0.5, 1, 1.5, 2}. Fig. 3(a)
presents the results for LAPAS and CLAP-A metrics. It can be observed that as ω increases from
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Table 4: Effect of cinv and crev on separation metrics. Triangles indicate change relative to the
baseline, with ▼ denoting improvement and ▼ denoting degradation.

cinv crev
MUSIC AVE

FAD ↓ LPAPS ↓ C-A ↑ C-T ↑ FAD ↓ LPAPS ↓ C-A ↑ C-T ↑

∅ c(i) 0.377 4.669 0.615 0.271 0.269 4.537 0.442 −0.001

∅ random 0.577 4.900 0.363 0.125 0.325 4.749 0.289 0.019
▲ 0.200 ▲ 0.231 ▼ 0.252 ▼ 0.146 ▲ 0.056 ▲ 0.212 ▼ 0.153 ▲ 0.020

c(j) c(i) 0.454 4.547 0.581 0.254 0.321 4.599 0.496 0.055
▲ 0.077 ▼ 0.122 ▼ 0.034 ▼ 0.017 ▲ 0.052 ▲ 0.062 ▲ 0.054 ▲ 0.056

0 to 1, both separation metrics generally improve, indicating that conditioning on the target source
prompt effectively guides the separation. However, beyond ω = 1, performance deteriorates sharply,
suggesting that excessively strong guidance can lead to suboptimal reconstructions or introduce
artifacts. Based on this analysis, we empirically set ω = 1 for our main experiments to achieve the
best balance between adherence to the target prompt and reconstruction quality.

Effect of crev and cinv. Tab. 9 summarizes the separation performance under different prompt
configurations. First, replacing the prompt crev specifying the target sound source with a random,
mixture-unrelated prompt results in a drastic performance drop across all metrics. This highlights
the essential role of accurate text conditioning towards separating target source. For cinv, we explore
replacing the null prompt with a prompt for a different source present in the mixture but not the target.
This substitution leads to a slight degradation in performance, which demonstrates that while cinv
provides some contextual information, the method is less sensitive to its precise content.

5 Conclusion

This paper demonstrates a new paradigm for audio source separation, moving away from reliance on
extensive supervised training. In particular, we introduce ZeroSep, a novel training-free approach
that leverages the power of pre-trained text-guided audio diffusion models. Our evaluation reveals
that ZeroSep achieves performance on par with or exceeds leading supervised separation baselines
across benchmark datasets, and our analysis further illuminates the factors critical for successful
transformation from generation to separation. The effectiveness of ZeroSep showcases a new
application for the growing family of audio diffusion models and offers a compelling alternative
direction for developing open-set audio source separation models.

Limitations. While we have demonstrated the efficacy of ZeroSep on popular audio diffusion models
(e.g., AudioLDM families and Tango), how it works on larger models and alternative architectures
remains untested. In addition, our reliance on latent inversion can introduce approximation errors
that may impair separation fidelity. Due to computational constraints, we did not include these
experiments in this work. We will explore how to scale evaluations to diverse, high-capacity diffusion
models and develop more accurate inversion techniques in future work.

Beyond Basic Separation. ZeroSep’s inherent mechanism unlocks diverse application scenarios
beyond simple text-to-sound separation. First, text prompts can be automatically generated. Audio
event detection [Mesaros et al., 2021] or audio language models [Gong et al., 2023, Ghosh et al.,
2024] can derive labels or free-form descriptions from mixtures, enabling automated separation.
Second, ZeroSep facilitates cross-modal applications; for instance, leveraging audio-visual localiza-
tion [Huang et al., 2023, Chen et al., 2021b] and vision-language models [Liu et al., 2023c], users
could separate sounds in a video by visually describing sounding objects. Third, recognizing the
importance of spatial audio understanding and rendering [Gao and Grauman, 2019, Liang et al.,
2023a,b, Huang et al., 2024b] for human-level acoustic perception, ZeroSep can be directly extended
to spatial audio separation using diffusion models that support multi-channel input, such as Stable
Audio Open [Evans et al., 2025b]. Finally, our method naturally enables a continuous transition from
mixture reconstruction to sound highlighting [Gandikota et al., 2024a, Huang et al., 2024c, 2025a,b]
by varying the value of classifier-free guidance, allowing scaling of target sound elements from full
presence to complete separation [Gandikota et al., 2024b].
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Table 5: Additional evaluation on the AVE [Tian et al., 2018] and MUSIC [Zhao et al., 2018] datasets
with MSE and Encodec-based metrics. ↓ indicates lower is better. The best results are bold.

Method MUSIC AVE

MSE ↓ L1 (Emb.) ↓ L2 (Emb.) ↓ MSE ↓ L1 (Emb.) ↓ L2 (Emb.) ↓
Require Separation Training

LASS-Net 32.860 0.6205 0.7338 12.612 0.5984 0.6737
AudioSep 10.857 0.4232 0.4046 9.383 0.4949 0.5095
FlowSep 15.134 0.5525 0.5869 7.785 0.6706 0.8402

Separation Training Free

NMF-MFCC 36.761 0.4230 0.4180 59.594 0.5766 0.6906
AudioEdit 29.357 0.8059 1.3088 22.253 0.9588 1.7090
ZeroSep (Ours) 15.470 0.5540 0.5912 11.076 0.7959 1.1258

A More Metrics

To further assess separation quality, we report additional metrics, including L1/L2 loss on En-
codec [Défossez et al., 2022] embeddings and MSE on mel-spectrograms, which capture temporal
fidelity more effectively. Results are shown in Tab. 5. On these newly introduced metrics, ZeroSep
achieves performance comparable to the supervised FlowSep model and surpasses LASS-Net on
the MUSIC dataset, providing stronger evidence of genuine source separation rather than prompt-
consistent hallucination.

An interesting observation arises with NMF-MFCC. Unlike other methods, which typically fail
by leaving residual interference, NMF-MFCC often produces silence or overly smoothed outputs.
This distinct failure mode can artificially benefit the Encodec embedding distances: the smoothed,
low-detail outputs align more closely with Encodec’s coarse embedding space, despite discarding
much of the fine-grained content. As a result, NMF-MFCC appears competitive on L1/L2 embedding
metrics, yet its poor performance on perceptual and semantic measures (e.g., FAD, LPAPS, and
mel-spectrogram MSE) highlights its limitations.

B Effect of ω and Scheduled Guidance

Large guidance weights ω amplify the conditional score. Since both the unconditional and conditional
scores are approximations, excessive scaling can push samples into low-probability regions off the data
manifold, improving prompt adherence and sample diversity but risking artifacts—a phenomenon
broadly reported in image/audio diffusion models [Ho and Salimans, 2022, Sadat et al., 2024].
Consequently, large ω favors generative hallucination rather than accurate separation. Empirically,
we find ω = 1 strikes a good balance between suppressing interfering sounds and avoiding spurious
generations.

Static vs. Scheduled Guidance. Intuitively, early diffusion steps shape the global structure, while
later steps refine details. We therefore compared constant and scheduled ω on the AudioLDM2-Large
backbone (DDIM, 50 steps). Results on MUSIC are shown in Tab. 6.

Table 6: Comparison of static vs. scheduled guidance (ω) on MUSIC.
ω schedule FAD ↓ LPAPS ↓ C-A ↑ C-T ↑
constant 1 0.377 4.669 0.615 0.271
linear 0→1 0.471 4.526 0.520 0.202
linear 1→0 0.332 4.667 0.618 0.281
sine 0→1 0.431 4.523 0.550 0.227

Observations. (i) Low-to-high schedules (0→1, sine) degrade separation, as early under-
conditioning causes loss of clean target structure. (ii) High-to-low schedules (1→0) improve over
constant ω = 1, consistent with reports that guidance is most useful in the early-to-mid noise range
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but less helpful at the end. This supports our main claim that ω = 1 is an effective default while also
motivating dynamic scheduling as a promising future direction.

C Runtime and Scalability for Multiple Sources

Let S denote the number of inference steps and Td the per-step time. ZeroSep requires a single
inversion of the mixture (shared for all branches) plus one guided denoising per target source:

TZeroSep ≈ S Td︸︷︷︸
inversion

+N S Td︸ ︷︷ ︸
N targets

= (N + 1)S Td.

Discriminative models (LASS-Net, AudioSep) require only a single forward pass per target (N Td).
FlowSep, a rectified-flow model, requires multi-step denoising (N S Td). Tab. 7 summarizes com-
plexity and measured runtimes.

Table 7: Runtime complexity and average cost (separating one source) on A100 GPU.
Method Complexity Runtime (s)

LASS-Net N Td 0.05
AudioSep N Td 0.04
FlowSep N S Td 1.07
ZeroSep (AudioLDM-S) (N + 1)S Td 0.98

While ZeroSep is slower than discriminative models, it matches FlowSep. Crucially, runtime scales
down with advanced samplers: DPM-Solver++ attains high quality in 15–20 steps, and consistency
models in 2–8 or even 1 step, which would directly reduce ZeroSep ’s runtime.

D Polyphonic Mixtures

ZeroSep naturally extends to multi-source separation. On 3-source MUSIC mixtures (e.g., vio-
lin+flute+trumpet), results degrade moderately compared to 2-source (8).

Table 8: ZeroSep’s performance on 2- and 3-source mixtures from the MUSIC dataset.
# Sources FAD ↓ LPAPS ↓ C-A ↑ C-T ↑

2 0.377 4.669 0.615 0.271
3 0.508 4.248 0.501 0.246

For especially challenging cases where sources share the same event class, attribute-qualified prompts
(e.g., “soft violin arpeggio” vs. “long sustained violin note”) may help.

E Prompt Sensitivity and Hierarchical/Open-Set Behavior

We tested prompt robustness by perturbing MUSIC class names with hypernyms (e.g., violin →
string instrument) and underspecified descriptors (e.g., trumpet → bright instrument). Results are
summarized in Tab. 9.

Table 9: Prompt sensitivity analysis on MUSIC.
Prompt type FAD ↓ LPAPS ↓ C-A ↑ C-T ↑
canonical 0.377 4.669 0.615 0.271
hypernym 0.388 4.692 0.583 0.280
underspecified 0.336 4.714 0.577 0.248
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Observations. Hypernyms preserve family-level correctness, slightly degrading accuracy but
improving consistency (C-T). Underspecified descriptors sometimes improve distributional metrics
(FAD) while reducing class accuracy, indicating plausible but less precise extractions. These findings
suggest hierarchical robustness: ZeroSep generalizes reasonably from coarse categories (e.g., “string
instrument”) to specific instances (e.g., violin), though we avoid over-claiming open-set separation.

Table 10: Effect of prompt descriptiveness on MUSIC.
Prompt type FAD ↓ LPAPS ↓ C-A ↑ C-T ↑
Class label 0.377 4.669 0.615 0.271
Descriptive 0.484 4.541 0.512 0.196
AudioSep 0.725 5.209 0.450 0.204

F Prompt Length and Descriptiveness

We conducted a focused study on the MUSIC dataset to test robustness to descriptive prompts (shown
in Tab. 10). Each of the 11 instrument class labels was expanded into a free-form caption roughly
10× longer than the label. For example, “saxophone” was expanded to “warm, breathy reed tone
with slight rasp and expressive bends”, and “accordion” to “reedy, wheezy sustained chords with
gentle tremolo and slow swells”. This setting stresses ZeroSep with more detailed but potentially
noisy prompts.

Observations. ZeroSep shows a moderate degradation under long, descriptive prompts but still
outperforms the strong supervised baseline AudioSep across most metrics. We attribute this drop to
a mismatch between our prompt expansions and the captions used to train text-to-audio diffusion
models, which are typically short, coarse descriptions (e.g., “a man speaking while a baby is crying”).
This highlights a promising direction: aligning prompt style with training data or finetuning on more
descriptive captions to better exploit natural-language expressiveness.

Figure 4: Failure case analysis of ZeroSep. Mixture: Man speech (stem 1) + Shofar (stem 2).

G Failure Case Analysis

While generally effective, ZeroSep can sometimes fail to fully isolate the target source. This typically
occurs when an interfering source possesses significant energy that the model cannot eliminate in a
single iteration. An illustrative example of such a failure is presented in Fig. 4. We postulate that,
given the inherent progressive operation of diffusion models, the removal of interfering sources also
proceeds incrementally. Consequently, this performance limitation may be tied to the number of
inference steps utilized. Potential avenues for improvement include increasing the inference steps or
iteratively applying the separation process.

H More Separation Results

These figures present mel-spectrograms that visualize the audio separation performance on two-source
mixtures. For each figure, the rows are ordered from top to bottom as follows: the first source’s
Ground Truth, followed by its separation results from LASS-Net, FlowSep, AudioEdit, AudioSep,
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and Ours. This sequence is then repeated for the second source: Ground Truth 2, LASS-Net 2,
FlowSep 2, AudioEdit 2, AudioSep 2, and Ours 2. You might notice some white or empty areas
on the right side of the mel-spectrograms; these are simply due to the varying lengths of the audio
samples.
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Figure 5: Mixture: Cello (stem 1) + Erhu
(Stem 2)
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Figure 6: Mixture: Acoustic Guitar (stem 1)
+ Tuba (Stem 2)
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Figure 7: Mixture: Accordion (stem 1) +
Flute (Stem 2)
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Figure 8: Mixture: Cello (stem 1) + Erhu
(Stem 2)
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Figure 9: Mixture: Tuba (stem 1) + Cello
(Stem 2)
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Figure 10: Mixture: Xlyophone (stem 1) +
Trumpet (Stem 2)
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Figure 11: Mixture: Truck (stem 1) + Banjo
(Stem 2)
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Figure 12: Mixture: Chainsaw (stem 1) +
Accordion (Stem 2)
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Figure 13: Mixture: Train Horn (stem 1) +
Bark (Stem 2)
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Figure 14: Mixture: Male Speech (stem 1) +
Airplane (Stem 2)
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Figure 15: Mixture: Truck (stem 1) + Ukulele
(Stem 2)
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Figure 16: Mixture: Bark (stem 1) + Toilet
Flush (Stem 2)
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims are provided in the introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Limitations will be provided in the appendix.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: No theory results are provided.573
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All details are discussed in the method part.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]

Justification: The code will be released upon acceptance.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Details are provided in the setup.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We fix the random seed and verify the experiments on a large amount of data
to minimize the randomness.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

26

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Details are provided in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Confirmed.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss it in the introduction.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We discuss it in the appendix.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No assets are released.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Not involve LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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