
Separate Anything in Audio with Zero Training

**Chao Huang¹, Yuesheng Ma², Junxuan Huang³, Susan Liang¹, Yunlong Tang¹,
Jing Bi¹, Wenqiang Liu³, Nima Mesgarani², Chenliang Xu¹**

¹University of Rochester, ²Columbia University, ³Tencent America

Abstract

Audio source separation is fundamental for machines to understand complex acoustic environments and underpins numerous audio applications. Current supervised deep learning approaches, while powerful, are limited by the need for extensive, task-specific labeled data and struggle to generalize to the immense variability and open-set nature of real-world acoustic scenes. Inspired by the success of generative foundation models, we investigate whether pre-trained text-guided audio diffusion models can overcome these limitations. We make a surprising discovery: zero-shot source separation can be achieved purely through a pre-trained text-guided audio diffusion model under the right configuration. Our method, named ZeroSep, works by inverting the mixed audio into the diffusion model’s latent space and then using text conditioning to guide the denoising process to recover individual sources. Without any task-specific training or fine-tuning, ZeroSep repurposes the generative diffusion model for a discriminative separation task and inherently supports open-set scenarios through its rich textual priors. ZeroSep is compatible with a variety of pre-trained text-guided audio diffusion backbones and delivers strong separation performance on multiple separation benchmarks, surpassing even supervised methods. Our project page is here: <https://wikichao.github.io/ZeroSep/>.

1 Introduction

At the heart of acoustic scene perception lies the fundamental task of source separation, which aims to isolate individual sound sources from a complex audio mixture. Accurate source separation is crucial for a wide range of applications, including media production, surveillance systems, automatic speech recognition in noisy environments, and analysis of complex soundscapes.

The dominant approach to audio separation in recent years has relied heavily on supervised learning: deep neural networks are trained on large datasets of paired mixtures and clean sources [Luo and Mesgarani, 2019, Subakan et al., 2021]. While these methods have achieved impressive performance on specific, well-represented source types and datasets, they often fall short when faced with the open-set variability of real-world acoustic scenes. Consequently, training a foundation-level separation model becomes exceptionally challenging due to the need for vast amounts of labeled data, the difficulty of defining training objectives and mixing strategies, and the design of effective conditioning mechanisms.

Recent efforts, such as LASS-net Liu et al. [2022a], AudioSep Liu et al. [2023a], and FlowSep Yin et al. [2024], have explored leveraging natural language queries for more flexible separation. Despite these advances, they still contend with the same core challenges: vast data requirements, complex task-specific training regimes, and limited generalization to unseen acoustic scenes. Inspired by the transformative success of large language models in unifying diverse NLP tasks under a generative framework [Brown et al., 2020], we pose a central question: *Can a generative foundation model similarly emerge for audio tasks?* In this work, we explore this question by investigating the capabilities of pre-trained text-guided audio diffusion models.

We discover that a text-guided audio diffusion model can, *out of the box*, separate a mixture into its sources – **no training or fine-tuning**, relying solely on latent inversion and conditioned denoising: (i) Given a mixed audio signal, we can find a corresponding point in the diffusion model’s latent space through an inversion process. This latent representation captures the composite information from all the sound sources present in the mixture. (ii) Subsequently, by guiding the generative denoising process from this latent state using text prompts corresponding to individual sources in the mixture, the model can be steered to reconstruct each source in isolation. Surprisingly, even though this is a generative process, the separated sources are highly faithful to the original sources, especially with classifier-free guidance ≤ 1 , which prevents hallucination. This effectively repurposes the generative model for a discriminative task, offering a fundamentally different approach to separation.

Based on the above observations, we introduce **ZeroSep**, a zero-training framework for audio source separation that repurposes pretrained text-guided diffusion models. By casting separation as a two-step generative inference, latent inversion followed by text-conditioned denoising, **ZeroSep** offers three key advantages:

Open-set Separation: As the core of **ZeroSep** is a pre-trained text-guided audio diffusion model, which has learned to generate realistic audios from diverse, open-domain descriptions and mixing styles, **ZeroSep** naturally handles open-set queries and is able to separate from diverse mixtures.

Model-agnostic Versatility: The inversion plus denoising pipeline is generic to diffusion architectures, allowing **ZeroSep** to leverage different pre-trained audio diffusion backbones. Interestingly, we observe a trend that the better the audio diffusion model can generate, the better it can separate, which could suggest continuous improvement whenever there is a more advanced audio generation model available.

Training-Free Efficacy: Without any fine-tuning or task-specific data, **ZeroSep** matches or exceeds the performance of existing training-based generative separators, overturning the assumption that high-quality separation requires dedicated training.

In summary, our contributions to the community includes

1. We introduce **ZeroSep**, a *training-free* audio source-separation framework that repurposes pre-trained text-guided diffusion models, representing a fundamental shift away from supervised separation paradigms.
2. We demonstrate that pure generative inference—latent inversion followed by text-conditioned denoising—yields state-of-the-art separation performance, outperforming existing training-based generative methods.
3. We establish **ZeroSep**’s versatility and open-set capability: it seamlessly handles diverse mixtures and textual queries and can be applied to many pre-trained audio diffusion backbones, improving separation quality as the underlying model’s generative fidelity increases.

2 Related Works

Audio Diffusion Models. Diffusion probabilistic models have rapidly emerged as a leading paradigm for generating high-quality and diverse audio content. Early works like DiffWave [Kong et al., 2021] and WaveGrad [Chen et al., 2021a] demonstrated the potential of applying denoising diffusion to synthesize raw audio waveforms, achieving high-fidelity unconditional audio generation. Building on this foundation, diffusion models were successfully extended to conditional audio generation tasks. In text-to-speech (TTS), models such as Diff-TTS [Jeong et al., 2021] and Grad-TTS [Popov et al., 2021] showed that diffusion processes could generate high-fidelity mel-spectrograms conditioned on text input. Researchers also focused on improving the efficiency and controllability of diffusion sampling; for instance, Guided-TTS Kim et al. [2022] introduced classifier guidance for TTS, and PriorGrad [Lee et al., 2022] addressed sampling speed in vocoders through data-dependent priors. Diffusion models have also been applied to other audio synthesis tasks, including singing voice synthesis with DiffSinger [Liu et al., 2022b] and waveform super-resolution with NU-Wave [Lee and Han, 2021]. More recently, the focus has shifted towards latent-space diffusion models and text-conditioned generation of general audio. AudioLDM [Liu et al., 2023b] pioneered combining diffusion with CLAP embeddings to enable text-conditioned generation of diverse sounds and music. AudioLDM2 [Liu et al., 2024] and Tango [Ghosal et al., 2023] further advanced in this direction, providing enhanced control and quality. These text-conditioned latent diffusion models [Evans et al.,

2025a], capable of generating complex audio scenes from natural language, form the technological foundation for our training-free separation method `ZeroSep`.

Audio Separation. The problem of source separation has long been tackled by both classic signal-processing techniques and, more recently, deep learning. Traditional methods such as NMF-MFCC [Stöter et al., 2021] decompose mixtures under assumptions about timbral or spectral structure. While training-free, they often fail on complex or heavily overlapping sources that lack clear distinguishing features. Deep learning revolutionized the field by learning representations directly from data. Deep Clustering [Hershey et al., 2016] trains embeddings for clustering source-specific time-frequency bins, and Permutation-Invariant Training (PIT) [Yu et al., 2017] resolves the label-permutation problem during training. Conv-TasNet [Luo and Mesgarani, 2019] further advanced performance with end-to-end waveform separation, frequently surpassing traditional masking approaches. Diffusion-based approaches such as SepDiff [Chen et al., 2023] and DiffSep [Scheibler et al., 2023] reformulate separations as a generative problem. However, these models remain “blind” to user intent: once trained, they separate every detectable component rather than targeting a specific source. To introduce controllability, recent works condition separation on auxiliary modalities. Video-guided methods [Huang et al., 2024a] use visual cues, while language-based frameworks, such as LASS-Net [Liu et al., 2022a], AudioSep [Liu et al., 2023a], and FlowSep [Yin et al., 2024], leverage text prompts to guide mask estimation. Although more flexible, they still require large supervised corpora of synthetic mixtures, inheriting closed-world biases. Zero-shot diffusion editors like AUDIT [Wang et al., 2023], DITTO [Novack et al., 2024], and AudioEdit [Manor and Michaeli, 2024] fine-tune or invert latent trajectories to delete components, but focus on editing rather than explicit separation.

In contrast, `ZeroSep` repurposes a pre-trained text-guided audio diffusion model as a universal, training-free [Postolache et al., 2024] prior for open-set separation. By (i) inverting an audio mixture into the model’s latent space and (ii) re-denoising under user-provided text prompts with unit classifier-free guidance, `ZeroSep` generates one isolated waveform per prompt, achieving comprehensive, zero-shot source separation without fine-tuning.

3 Method

In this section, we first review the foundational knowledge of text-guided diffusion models and diffusion inversion techniques, which form the basis of our method. Next, we discuss the separation task setup with generative diffusion models. Lastly, we introduce `ZeroSep`, a zero-shot separation adaptation of existing text-guided audio diffusion models.

3.1 Preliminary: Text-Guided Audio Diffusion and Inversion

Text-guided audio diffusion models typically operate in a learned latent space: An initial audio signal is first encoded into a latent representation, denoted as \mathbf{x}_0 ; the forward diffusion process progressively adds Gaussian noise to this latent vector, transforming it into a pure noise vector \mathbf{x}_T . A neural network, parameterized by a set of θ , learns to predict and remove the noise added at each step t , effectively reversing the diffusion process and generating mel-spectrograms which are then converted to waveforms using a vocoder¹. In text-guided models, this denoising process is driven by a text condition \mathbf{c} , derived from a text encoder, ensuring the generated audio aligns with the text prompt.

DDIM Inversion. To enable manipulation of existing audio content, inversion techniques are used to map a real audio sample back into the noisy latent space. A common approach is DDIM inversion, which leverages the deterministic nature of DDIM sampling [Song et al., 2020]. The standard DDIM sampling process iteratively denoises a noisy latent \mathbf{x}_t to produce a less noisy version \mathbf{x}_{t-1} :

$$\mathbf{x}_{t-1} = \sqrt{\frac{\bar{\alpha}_{t-1}}{\bar{\alpha}_t}} \mathbf{x}_t + \left(\sqrt{\frac{1}{\bar{\alpha}_{t-1}} - 1} - \sqrt{\frac{1}{\bar{\alpha}_t} - 1} \right) \epsilon_\theta(\mathbf{x}_t, \mathbf{c}, t), \quad (1)$$

¹This pipeline underlies many audio diffusion models, such as the AudioLDM family [Liu et al., 2024, 2023b] and Tango [Ghosal et al., 2023], but does not apply to architectures like Stable Audio Open [Evans et al., 2025a].

where $\{\bar{\alpha}_t\}_{t=0}^T$ defines the noise schedule and $\epsilon_\theta(\cdot, \mathbf{c}, t)$ is the model’s noise prediction conditioned on \mathbf{c} . DDIM inversion reverses this process, estimating the noisy latent \mathbf{x}_{t+1} from \mathbf{x}_t :

$$\mathbf{x}_{t+1} = \sqrt{\frac{\bar{\alpha}_{t+1}}{\bar{\alpha}_t}} \mathbf{x}_t + \left(\sqrt{\frac{1}{\bar{\alpha}_{t+1}} - 1} - \sqrt{\frac{1}{\bar{\alpha}_t} - 1} \right) \epsilon_\theta(\mathbf{x}_t, \mathbf{c}, t), \quad (2)$$

so that iterating from \mathbf{x}_0 recovers an estimate of the pure noise \mathbf{x}_T . Cumulative errors can, however, cause deviations from the true noise trajectory.

DDPM Inversion. In contrast to DDIM inversion, DDPM inversion [Huberman-Spiegelglas et al., 2024] leverages the probabilistic forward diffusion to obtain an exact noise path. Given a clean latent \mathbf{x}_0 , one constructs an auxiliary sequence of noisy latents

$$\mathbf{x}_t = \sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \tilde{\epsilon}_t, \quad \tilde{\epsilon}_t \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), \quad t = 1, \dots, T, \quad (3)$$

and then extracts the per-step noise vectors

$$\mathbf{z}_t = \frac{\mathbf{x}_{t-1} - \mu_t(\mathbf{x}_t)}{\sigma_t}, \quad t = T, \dots, 1, \quad (4)$$

where $\mu_t(\mathbf{x}_t)$ and σ_t follow the DDPM [Ho et al., 2020] reverse-step definitions. Reconstruction simply re-injects \mathbf{x}_T and $\{\mathbf{z}_t\}$ via

$$\mathbf{x}_{t-1} = \mu_t(\mathbf{x}_t) + \sigma_t \mathbf{z}_t, \quad (5)$$

exactly recovering \mathbf{x}_0 . By scaling or replacing $\{\mathbf{z}_t\}$ (e.g. using text embeddings \mathbf{c} at select timesteps), DDPM inversion offers a probabilistic framework for precise, text-guided edits.

From a high-level perspective, both DDIM and DDPM inversion can be viewed as a single mapping, which we denote by $\mathbf{x}_T = \mathbf{F}^{\text{inv}}(\mathbf{x}_0, \mathbf{c})$. This operator \mathbf{F}^{inv} encapsulates the step-wise recovery of the noise trajectory corresponding to a given clean latent. Whether implemented via the deterministic updates of DDIM or the probabilistic steps of DDPM, \mathbf{F}^{inv} produces the pure noise \mathbf{x}_T that, when re-injected into the standard diffusion sampler, exactly reconstructs the original sample \mathbf{x}_0 .

3.2 Task Setup

In real-world scenarios, an audio stream a can be a mixture of N individual sound sources: $a = \sum_{i=1}^N s^{(i)}$, where each source $s^{(i)}$ can be of various categories. To work in the diffusion latent space, we first convert a to a mel-spectrogram and encode it with a Variational Autoencoder (VAE), yielding latent features $\mathbf{x} \in \mathbb{R}^{C \times T \times F}$, where C is the number of channels, F the numbers of frequency bins, and T the number of time frames. Let \mathbf{x}^{mix} denote the VAE encoding of the mixture and $\mathbf{x}^{(i)}$ the encoding of source i . Our goal is to find a separation mapping $f(\mathbf{x}^{\text{mix}}, \mathbf{c}^{(i)}) \rightarrow \mathbf{x}^{(i)}$, where $\mathbf{c}^{(i)}$ is a conditioning signal (e.g., text description) that specifies which source to extract. $\mathbf{x}^{(i)}$ is then fed to the VAE decoder and Vocoder to convert latent features back to waveform level to obtain $\hat{s}^{(i)}$.

3.3 From Generation to Separation: The ZeroSep Principle

The core of ZeroSep lies in repurposing a pre-trained text-guided audio diffusion model, originally designed for generating audio from text, to perform the task of audio source separation.

Let \mathbf{c}_{inv} be the text prompt used during the inversion process (mapping the mixed audio \mathbf{x}^{mix} to a noisy latent \mathbf{x}_T), and \mathbf{c}_{rev} be the text prompt used during the subsequent reverse denoising process (reconstructing a clean source from the noisy latent).

Diffusion models typically employ classifier-free guidance during denoising, where the noise prediction ϵ_t at step t is a combination of an unconditional prediction and a conditional prediction guided by \mathbf{c}_{rev} :

$$\epsilon_t = \epsilon_\theta(\mathbf{x}_t, \emptyset, t) + \omega \cdot (\epsilon_\theta(\mathbf{x}_t, \mathbf{c}_{\text{rev}}, t) - \epsilon_\theta(\mathbf{x}_t, \emptyset, t)). \quad (6)$$

Here, $\epsilon_\theta(\mathbf{x}_t, \emptyset, t)$ is the unconditional noise prediction, $\epsilon_\theta(\mathbf{x}_t, \mathbf{c}_{\text{rev}}, t)$ is the prediction guided by \mathbf{c}_{rev} , and ω is the classifier-free guidance weight controlling the influence of the text condition \mathbf{c}_{rev} .

While this formulation is typically used to amplify the presence of the desired content during generation, we discover that specific choices of \mathbf{c}_{inv} , \mathbf{c}_{rev} , and ω , enable effective source separation. This shifts the model’s function from synthesizing new audio to dissecting existing mixtures. Here are the key principles for transforming the generative process into a separation tool:

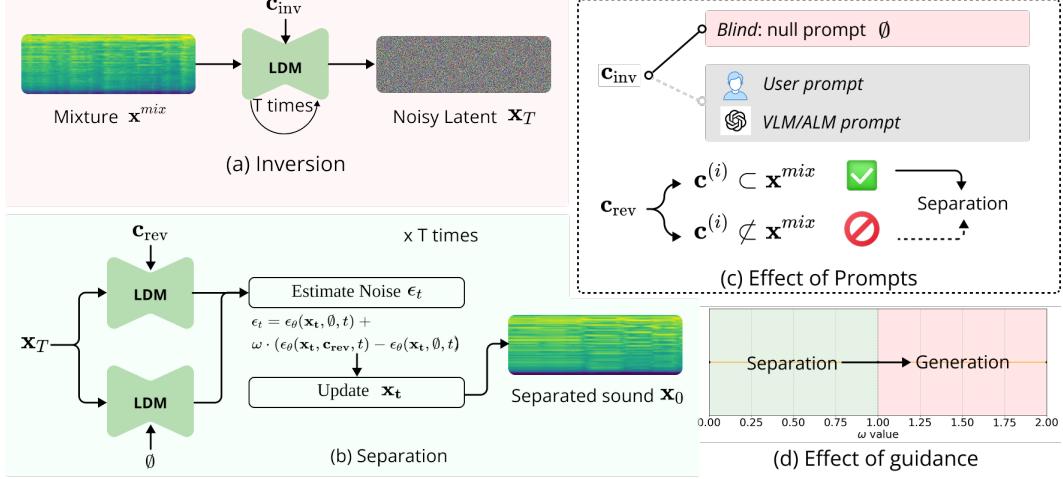


Figure 1: **The overview of ZeroSep**, which includes (a) an inversion process to obtain a latent representation for the mixture, and (b) a separation denoising process to effectively extract the target source with text conditions. We show the choice of inversion prompt c_{inv} and reverse prompt c_{rev} in (c), and demonstrate the valid separation region defined by ω in (d).

- **The Reverse Prompt c_{rev} :** To isolate a specific source i , the reverse denoising prompt c_{rev} must explicitly describe that target source:

$$c_{\text{rev}} := c^{(i)}, \quad \text{if separating source } i. \quad (7)$$

This directs the denoising process to reconstruct the audio components associated with the target source described by $c^{(i)}$. Using any other prompt would result in guided generation, not separation.

- **The Inversion Prompt c_{inv} :** The inversion prompt c_{inv} influences how the mixed audio is mapped to the noisy latent space. We found flexibility here, with effective choices including a null prompt \emptyset or prompts describing the other sources present in the mixture ($c^{(j)}$ for $j \neq i$). While describing other sources can potentially refine the latent representation by emphasizing non-target components, it requires prior knowledge of the mixture’s contents, yet can be achieved with user query or by prompting Vision-Language Models or Audio Language Models (as shown in Fig. 1(c)). A simpler and often effective approach is to use a null prompt ($c_{\text{inv}} = \emptyset$) as the default. This inverts the mixed signal based on the model’s general audio understanding without imposing specific content constraints during the inversion phase. The effect of c_{inv} and c_{rev} can be found in Tab. 9.

- **The Crucial Role of Guidance Weight ω :** A key discovery is that achieving separation hinges on setting the classifier-free guidance weight ω appropriately, specifically $\omega \leq 1$. This is counter-intuitive to typical generative usage where high ω values (e.g., $\omega = 3.5$ for AudioLDM2 [Liu et al., 2024]) amplify the conditional signal for a strong generation. In our context, when using $c_{\text{inv}} = \emptyset$:

- Setting $\omega = 0$ removes the conditional influence, effectively leading to a reconstruction of the original mixed audio.
- Setting $\omega = 1$ removes the unconditional noise estimation from the combined prediction in Eq. (6), leaving only the component aligned with the target source described by c_{rev} . This effectively isolates the target source during denoising.
- Setting $\omega > 1$, as in standard generation, overly amplifies the conditional signal, leading to the synthesis of new content rather than the separation of existing audio components.

We empirically find that $\omega = 1$ yields the best separation results (as shown in Fig. 3(a)). This finding reveals that controlling the balance between conditional and unconditional predictions via ω is critical for steering the diffusion process from generation towards faithful separation.

By carefully selecting c_{inv} , c_{rev} , and setting ω (in practice, we set $\omega = 1$), we effectively repurpose the pre-trained audio diffusion model’s generative capabilities to perform high-quality source separation without requiring any task-specific training.

3.4 Why Do T2A Diffusion Models Exhibit Zero-Shot Separation Ability?

The emergent source separation capability in Text-to-Audio (T2A) diffusion models is rooted in two core pillars: the **latent disentanglement** achieved during polyphonic training, and the **repurposing of the score function** via Classifier-Free Guidance (CFG) for an inverse problem.

Latent Disentanglement via Data Compositionality. T2A diffusion models are trained to estimate the probability density of multi-label, polyphonic audio (e.g., AudioSet [Gemmeke et al., 2017], with an average of ~ 2.7 concurrent labels per clip). To accurately generate a complex mixture, the model must implicitly learn the *compositional structure* of the acoustic environment. The model is forced to encode **disentangled latent factors** corresponding to individual sources ($s^{(1)}, \dots, s^{(N)}$) such that their superposition correctly predicts the mixture \mathbf{x}^{mix} . This compositional training establishes an inherent, semantically-aligned structure in the latent space, where the representation of the mixture \mathbf{x}^{mix} is a combination of the latent representations of its individual sources. This prerequisite knowledge makes the inverse task of decomposition feasible.

The Score Function View and Guided Filtering. The separation task is realized by repurposing the score-based generative process. The T2A model estimates the conditional score function via the noise prediction ϵ_θ , which is typically combined using Classifier-Free Guidance (illustrated in Eq. (6)). The procedure for separation involves two steps: first, the mixture audio \mathbf{x}_{mix} is mapped into the noisy latent space via **DDIM Inversion**. Second, the key to separation is setting the guidance weight to $\omega = 1$. This condition simplifies the guidance to $\hat{\epsilon}_\theta(\mathbf{x}_t, \mathbf{c}) = \epsilon_\theta(\mathbf{x}_t, \mathbf{c})$, effectively removing the unconditional score component $\epsilon_\theta(\mathbf{x}_t, \emptyset)$ (which models the mixture’s density) from the denoising process. By solely following the conditional score estimate, the model’s reverse process is steered to follow the gradient direction leading to the data distribution consistent **only** with the target source defined by the text prompt \mathbf{c} . This mechanism thus transforms the generative model into a *zero-shot guided filtering* tool for source extraction.

4 Experiments

4.1 Experimental Settings

Baselines. To evaluate our training-free diffusion-based separation method, we compare it against two categories of existing approaches: **(i) Training-based methods.** These methods rely on large-scale supervised training and leverage text queries for targeted separation. We include: *LASS-Net* [Liu et al., 2022a], which conditions a mask estimator on text queries; *AudioSep* [Liu et al., 2023a], a scaled-up version of LASS-Net trained on massive multimodal data for zero-shot capabilities across diverse sources; and *FlowSep* [Yin et al., 2024], which enhances query-based separation using rectified continuous normalizing flows. We note that *AUDIT* [Wang et al., 2023] also uses audio diffusion models for instruction-guided audio editing (including source manipulation) but is not included as a direct baseline due to the lack of public code and data release for comparison. **(ii) Training-free methods.** These methods perform separation without requiring task-specific training data. We compare against: *NMF-MFCC* [Stöter et al., 2021], a classical non-negative matrix factorization approach operating on MFCC features for blind source separation; and *AudioEditor* [Manor and Michaeli, 2024], which achieves unsupervised separation by discovering principal components within the denoising process of a pre-trained diffusion model. In summary, training-based baselines require extensive annotated data for training, whereas other training-free baselines employ different underlying principles from our generative diffusion-based approach.

Datasets. We evaluate the open-set separation capabilities of our training-free method on two benchmark multimodal datasets with paired audio and text labels: The Audio–Visual Event (AVE) [Tian et al., 2018] dataset contains 4,143 video clips, each 10 seconds long, covering 28 distinct sound categories (e.g., *church bell*, *barking*, *frying*). AVE is valuable for evaluating separation in complex, real-world scenarios due to the presence of background noise, off-screen sounds, and varying event durations. The MUSIC dataset [Zhao et al., 2018] consists of clean solo performances from 11 musical instruments, thereby offering a controlled environment to assess the separation of individual, isolated sources with minimal interference. To facilitate comparison with prior research and ensure reproducibility, we use the official separation data splits for both AVE and MUSIC as provided by the DAVIS repository [Huang et al., 2024a].

Table 1: Main audio separation results comparing ZeroSep with training-based and training-free baselines on the AVE [Tian et al., 2018] and MUSIC [Zhao et al., 2018] datasets. Metrics are reported on the test sets. \uparrow indicates higher is better, \downarrow indicates lower is better. The best results are **bold**. More metrics can be found in Appendix A.

Method	MUSIC				AVE			
	FAD \downarrow	LPAPS \downarrow	C-A \uparrow	C-T \uparrow	FAD \downarrow	LPAPS \downarrow	C-A \uparrow	C-T \uparrow
Require Separation Training								
LASS-Net	1.039	5.602	0.204	0.014	0.626	6.062	0.232	0.011
AudioSep	0.725	5.209	0.450	0.204	0.446	5.733	0.457	0.167
FlowSep	0.402	5.578	0.564	0.245	0.258	4.719	0.493	0.082
Separation Training Free								
NMF-MFCC	1.286	5.618	0.239	-0.055	1.246	5.851	0.174	0.211
AudioEdit	0.568	4.869	0.453	0.196	0.372	4.959	0.341	0.074
ZeroSep (Ours)	0.377	4.669	0.615	0.271	0.269	4.537	0.442	-0.001

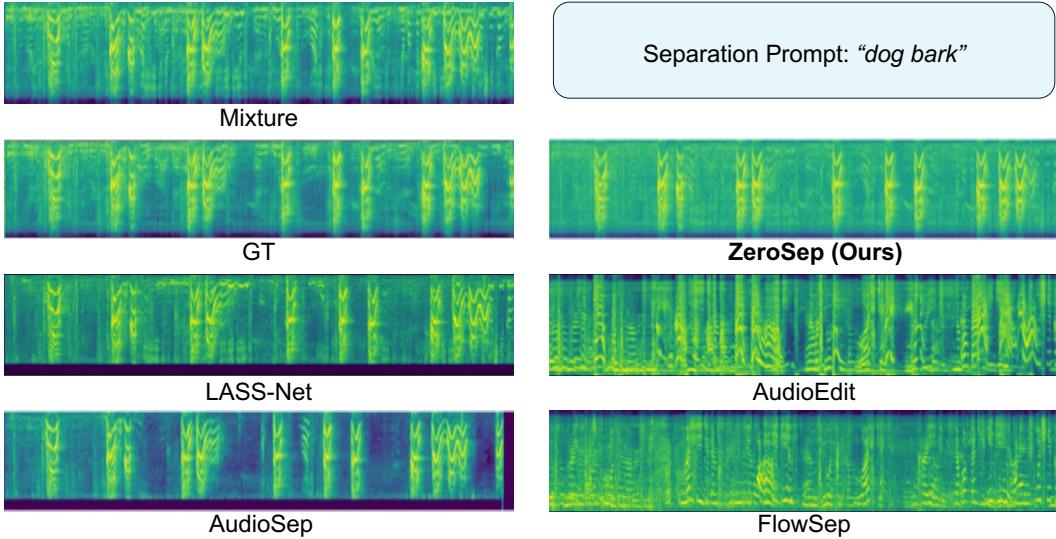


Figure 2: Qualitative visualization of audio separation results. The figure shows the input mixture (containing speech and dog barking) and the separated “dog barking” source produced by different baselines and ZeroSep. ZeroSep, guided by the text prompt “dog bark”, successfully isolates the target sound, demonstrating its effectiveness compared to baseline methods. More separation results can be found in the appendix.

Evaluation Metrics. Traditional separation metrics—Signal-to-Distortion Ratio (SDR), Signal-to-Interference Ratio (SIR), and Signal-to-Artifact Ratio (SAR) [Raffel et al., 2014]—quantify sample-level differences between a separated output \hat{s} and the ground truth s . These metrics assume the output lies on the same waveform manifold as s , an assumption violated by generative models that may produce perceptually accurate but sample-wise divergent signals. Tab. 2 demonstrates how a VAE–Vocoder reconstruction of the mixture yields misleadingly poor SDR/SIR/SAR scores. Such an issue was previously studied in [Jayaram and Thickstun, 2020].

To capture perceptual and semantic fidelity of generative separation, we adopt metrics in embedding spaces: **Frechét Audio Distance (FAD)** [Kilgour et al., 2018]: measures the distance between embedding distributions of separated and ground-truth audio. **Learned Perceptual Audio Patch**

Table 2: Breakdown of SDR/SIR/SAR (with respect to the individual target source), for a generative reconstruction of the mixture versus the original mixture.

Method	SDR	SIR	SAR
Original	0.31	0.31	149.90
VAE + Vcoder	-23.07	-0.79	-19.09

Table 3: Evaluation of AudioLDM [Liu et al., 2024], AudioLDM2 [Liu et al., 2024], and Tango [Ghosal et al., 2023] on the MUSIC and AVE benchmarks. We compare two U-Net sizes for each AudioLDM variant-S (181 M) / L (739 M) and AudioLDM2-S (350 M) / AudioLDM2-L (750 M), and Tango’s 866 M-parameter U-Net. Results are reported for both DDIM and DDPM inversion methods, and for AudioLDM2 we include full vs. music-only training data.

Model	Size	Data	MUSIC				AVE			
			FAD \downarrow	LPAPS \downarrow	C-A \uparrow	C-T \uparrow	FAD \downarrow	LPAPS \downarrow	C-A \uparrow	C-T \uparrow
DDIM Inversion										
AudioLDM	S	Full	0.460	4.690	0.562	0.284	0.275	4.821	0.484	0.114
	L	Full	0.470	4.625	0.577	0.260	0.253	4.742	0.490	0.102
AudioLDM2	S	Full	0.421	4.630	0.575	0.261	0.251	4.560	0.477	0.039
	S	Music	0.439	4.620	0.584	0.259	0.325	4.666	0.424	0.106
	L	Full	0.377	4.669	0.615	0.271	0.269	4.537	0.442	-0.001
Tango	L	Full	0.606	4.511	0.544	0.204	0.724	4.451	0.437	0.077
DDPM Inversion										
AudioLDM	S	Full	0.417	4.580	0.605	0.300	0.239	4.681	0.504	0.133
	L	Full	0.388	4.536	0.626	0.283	0.266	4.629	0.496	0.108
AudioLDM2	S	Full	0.390	4.586	0.595	0.238	0.272	4.546	0.488	0.041
	S	Music	0.384	4.596	0.609	0.259	0.238	4.628	0.467	0.126
	L	Full	0.397	4.581	0.598	0.239	0.267	4.523	0.445	-0.008
Tango	L	Full	0.539	4.474	0.581	0.189	0.723	4.471	0.451	0.032

Similarity (LPAPS) [Manor and Michaeli, 2024]: evaluates perceptual audio similarity in a learned embedding space. **CLAP-A** and **CLAP-T** [Yin et al., 2024]: CLAP-A is the cosine similarity between audio embeddings of the separation output and the ground-truth source; CLAP-T is the cosine similarity between audio embeddings and the text embedding of the target class. These feature-based metrics better reflect perceptual quality and semantic alignment, addressing the shortcomings of waveform-level reference metrics for generative audio separation. We further assess whether the model truly separates the original source content or merely generates audio with similar semantic qualities that may not remain consistent with the ground-truth mixture (Appendix A).

4.2 Main Comparison

Tab. 1 presents the core results of our evaluation, comparing the performance of our training-free method, ZeroSep, against representative training-based and other training-free baselines on the AVE and MUSIC datasets. Remarkably, ZeroSep demonstrates performance that surpasses the leading supervised methods, effectively challenging the necessity of large-scale supervised training for state-of-the-art audio separation. On the MUSIC dataset, ZeroSep outperforms the strongest training-based baseline FlowSep across all metrics. On the more complex and open-domain AVE dataset, ZeroSep achieves performance comparable to FlowSep.

The training-based baselines show a clear improvement trend with increasing model size and data: LASS-Net is surpassed by AudioSep, which in turn is surpassed by FlowSep, underscoring the benefits of extensive supervised training data and better models. The other training-free methods evaluated, NMF-MFCC and AudioEditor, yield substantially lower performance than the top supervised methods, highlighting the difficulty of achieving high-quality separation without leveraging separation training, which ZeroSep has addressed.

Beyond quantitative scores, the qualitative visualization in Fig. 2 provides further evidence of ZeroSep’s effectiveness, illustrating the successful separation of a target sound (e.g., “dog barking”) from a complex mixture containing other sources like human speech. These results collectively indicate that pre-trained text-guided diffusion models possess powerful inherent capabilities that can be effectively harnessed for audio separation without the need for task-specific training.

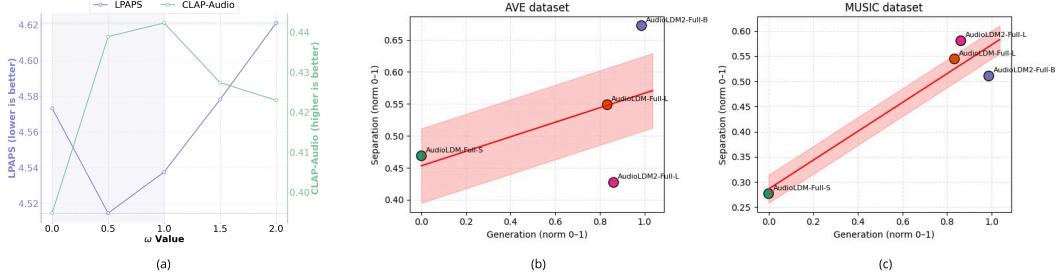


Figure 3: (a) Impact of guidance weight ω : increasing ω from 0 to 1 improves separation metrics (LPAPS and CLAP-A), whereas $\omega > 1$ degrades performance below the mixture baseline ($\omega = 0$), underscoring the critical role of ω . (b)–(c) Positive correlation between separation quality (normalized all scores from Tab. 3) and generative capability (normalized FAD scores on AudioCap [Liu et al., 2023b], [Liu et al., 2024]) across AudioLDM variants, indicating that stronger generation can potentially lead to better separation.

4.3 Ablation Studies

In this section, we analyze the influence of various components on ZeroSep’s separation performance to identify factors contributing to its effectiveness. We investigate aspects including the choice and capacity of the base generative model, the impact of its training data domain, inversion strategies, guidance weight effects, and prompt selection. More analysis can be found in the appendix.

How Does the Base Generative Model Affect Separation? Since ZeroSep is built upon a pre-trained diffusion model, understanding how this base model affects separation is crucial. First, we compare separation performance using different base model architectures, including models from the AudioLDM [Liu et al., 2023b], AudioLDM2 [Liu et al., 2024], and Tango [Ghosal et al., 2023] families, as shown in Tab. 3. The results indicate that various base models can yield separation performance comparable to the best training-based baseline, FlowSep, demonstrating versatility in base model selection. Specifically, models from the AudioLDM and AudioLDM2 families generally outperform Tango in this separation task.

Second, we analyze the effect of model capacity by comparing different sizes within the AudioLDM and AudioLDM2 families (e.g., AudioLDM-S vs. AudioLDM-L, AudioLDM2-S vs. AudioLDM2-L). As shown in Tab. 3, increasing model size consistently leads to improved separation performance. This suggests a positive correlation between the generative power of the base model and its effectiveness for separation. We further visualize this trend by plotting the correlation between generative performance (measured by FAD) and separation metrics in Fig. 3(b) and (c), which confirms that stronger generative models tend to yield better separation results.

Third, we investigate the impact of the base model’s training data domain. Tab. 3 includes results for a model trained specifically on MUSIC data compared to the same model trained on a broader data corpora. We observe that the MUSIC-data-trained model achieves performance on the MUSIC dataset that is similar to or even better than the full-training model for certain metrics (e.g., LPAPS and CLAP-A). This finding suggests that if the target separation domain is narrow, a base generative model trained on domain-specific data can be sufficient or even advantageous, potentially increasing the separation flexibility.

Inversion Strategy. As shown in Tab. 3, both DDIM and DDPM inversion methods enable competitive separation performance relative to the baselines. Analyzing their behavior across different base model capacities and training data domains, we observe that DDPM inversion tends to yield more stable metrics, exhibiting less fluctuation with respect to changes in model size and training data. In contrast, DDIM inversion shows larger variations under these different conditions. This analysis indicates that ZeroSep’s effectiveness is not strictly tied to a single inversion technique, offering flexibility in implementation.

Effect of ω . As detailed in Sec. 3.3, setting $\omega = 0$ effectively reduces the process to an unconditional reconstruction, while higher values increase the adherence to the text prompt \mathbf{c}_{rev} . We analyze the impact of ω on separation performance by evaluating values in the set $\{0, 0.5, 1, 1.5, 2\}$. Fig. 3(a) presents the results for LAPAS and CLAP-A metrics. It can be observed that as ω increases from

Table 4: Effect of c_{inv} and c_{rev} on separation metrics. Triangles indicate change relative to the baseline, with \blacktriangledown denoting improvement and \blacktriangledown denoting degradation.

c_{inv}	c_{rev}	MUSIC				AVE			
		FAD \downarrow	LPAPS \downarrow	C-A \uparrow	C-T \uparrow	FAD \downarrow	LPAPS \downarrow	C-A \uparrow	C-T \uparrow
\emptyset	$c^{(i)}$	0.377	4.669	0.615	0.271	0.269	4.537	0.442	-0.001
\emptyset	random	0.577 $\blacktriangleup 0.200$	4.900 $\blacktriangleup 0.231$	0.363 $\blacktriangledown 0.252$	0.125 $\blacktriangledown 0.146$	0.325 $\blacktriangleup 0.056$	4.749 $\blacktriangleup 0.212$	0.289 $\blacktriangledown 0.153$	0.019 $\blacktriangleup 0.020$
$c^{(j)}$	$c^{(i)}$	0.454 $\blacktriangleup 0.077$	4.547 $\blacktriangledown 0.122$	0.581 $\blacktriangledown 0.034$	0.254 $\blacktriangledown 0.017$	0.321 $\blacktriangleup 0.052$	4.599 $\blacktriangleup 0.062$	0.496 $\blacktriangleup 0.054$	0.055 $\blacktriangleup 0.056$

0 to 1, both separation metrics generally improve, indicating that conditioning on the target source prompt effectively guides the separation. However, beyond $\omega = 1$, performance deteriorates sharply, suggesting that excessively strong guidance can lead to suboptimal reconstructions or introduce artifacts. Based on this analysis, we empirically set $\omega = 1$ for our main experiments to achieve the best balance between adherence to the target prompt and reconstruction quality.

Effect of c_{rev} and c_{inv} . Tab. 9 summarizes the separation performance under different prompt configurations. First, replacing the prompt c_{rev} specifying the target sound source with a random, mixture-unrelated prompt results in a drastic performance drop across all metrics. This highlights the essential role of accurate text conditioning towards separating target source. For c_{inv} , we explore replacing the null prompt with a prompt for a different source present in the mixture but not the target. This substitution leads to a slight degradation in performance, which demonstrates that while c_{inv} provides some contextual information, the method is less sensitive to its precise content.

5 Conclusion

This paper demonstrates a new paradigm for audio source separation, moving away from reliance on extensive supervised training. In particular, we introduce ZeroSep, a novel training-free approach that leverages the power of pre-trained text-guided audio diffusion models. Our evaluation reveals that ZeroSep achieves performance on par with or exceeds leading supervised separation baselines across benchmark datasets, and our analysis further illuminates the factors critical for successful transformation from generation to separation. The effectiveness of ZeroSep showcases a new application for the growing family of audio diffusion models and offers a compelling alternative direction for developing open-set audio source separation models.

Limitations. While we have demonstrated the efficacy of ZeroSep on popular audio diffusion models (e.g., AudioLDM families and Tango), how it works on larger models and alternative architectures remains untested. In addition, our reliance on latent inversion can introduce approximation errors that may impair separation fidelity. Due to computational constraints, we did not include these experiments in this work. We will explore how to scale evaluations to diverse, high-capacity diffusion models and develop more accurate inversion techniques in future work.

Beyond Basic Separation. ZeroSep’s inherent mechanism unlocks diverse application scenarios beyond simple text-to-sound separation. First, text prompts can be automatically generated. Audio event detection [Mesaros et al., 2021] or audio language models [Gong et al., 2023, Ghosh et al., 2024] can derive labels or free-form descriptions from mixtures, enabling automated separation. Second, ZeroSep facilitates cross-modal applications; for instance, leveraging audio-visual localization [Huang et al., 2023, Chen et al., 2021b] and vision-language models [Liu et al., 2023c], users could separate sounds in a video by visually describing sounding objects. Third, recognizing the importance of spatial audio understanding and rendering [Gao and Grauman, 2019, Liang et al., 2023a,b, Huang et al., 2024b] for human-level acoustic perception, ZeroSep can be directly extended to spatial audio separation using diffusion models that support multi-channel input, such as Stable Audio Open [Evans et al., 2025b]. Finally, our method naturally enables a continuous transition from mixture reconstruction to sound highlighting [Gandikota et al., 2024a, Huang et al., 2024c, 2025a,b] by varying the value of classifier-free guidance, allowing scaling of target sound elements from full presence to complete separation [Gandikota et al., 2024b].

References

Yi Luo and Nima Mesgarani. Conv-tasnet: Surpassing ideal time–frequency magnitude masking for speech separation. *IEEE/ACM Trans. Audio Speech Language Process.*, 27(8):1256–1266, 2019. doi: 10.1109/TASLP.2019.2915167.

Cem Subakan, Mirco Ravanelli, Samuele Cornell, Mirko Bronzi, and Jianyuan Zhong. Attention is all you need in speech separation. In *Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, 2021.

Xubo Liu, Haohe Liu, Qiuqiang Kong, Xinhao Mei, Jinzheng Zhao, Qiushi Huang, Mark D. Plumbley, and Wenwu Wang. Separate what you describe: Language-queried audio source separation. In *Proc. Interspeech*, pages 1801–1805, 2022a.

Xubo Liu, Qiuqiang Kong, Yan Zhao, Haohe Liu, Yi Yuan, Yuzhuo Liu, Rui Xia, Yuxuan Wang, Mark D. Plumbley, and Wenwu Wang. Separate anything you describe. *arXiv preprint arXiv:2308.05037*, 2023a.

Han Yin, Jisheng Bai, Yang Xiao, Hui Wang, Siqi Zheng, Yafeng Chen, Rohan Kumar Das, Chong Deng, and Jianfeng Chen. Flowsep: Language-queried sound separation with rectified flow. *arXiv preprint arXiv:2409.07614*, 2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. Diffwave: A versatile diffusion model for audio synthesis. In *International Conference on Learning Representations (ICLR)*, 2021.

Nanxin Chen, Yu Zhang, Heiga Zen, Ron J. Weiss, Mohammad Norouzi, and William Chan. Wavegrad: Estimating gradients for waveform generation. In *International Conference on Learning Representations (ICLR)*, 2021a.

Myeonghun Jeong, Hyeongju Kim, Sung Jun Cheon, Byoung Jin Choi, and Nam Soo Kim. Diff-tts: A denoising diffusion model for text-to-speech. In *Proc. Interspeech 2021*, pages 3605–3609, 2021. doi: 10.21437/Interspeech.2021-469.

Vadim Popov, Ivan Vovk, Vladimir Gogoryan, Tasnima Sadekova, and Mikhail Kudinov. Grad-tts: A diffusion probabilistic model for text-to-speech. In *International Conference on Machine Learning*, pages 8599–8608. PMLR, 2021.

Heeseung Kim, Sungwon Kim, and Sungroh Yoon. Guided-tts: A diffusion model for text-to-speech via classifier guidance. In *Proceedings of the 39th International Conference on Machine Learning (ICML)*, 2022.

Sang-gil Lee, Heeseung Kim, Chaehun Shin, Xu Tan, Chang Liu, Qi Meng, Tao Qin, Wei Chen, Sungroh Yoon, and Tie-Yan Liu. Priorgrad: Improving conditional denoising diffusion models with data-dependent adaptive prior. In *International Conference on Learning Representations (ICLR)*, 2022.

Jinglin Liu, Chengxi Li, Yi Ren, Feiyang Chen, and Zhou Zhao. Diffssinger: Singing voice synthesis via shallow diffusion mechanism. In *Proceedings of the AAAI Conference on Artificial Intelligence*, 2022b.

Junhyeok Lee and Seungu Han. Nu-wave: A diffusion probabilistic model for neural audio upsampling. In *Proc. Interspeech 2021*, pages 1634–1638, 2021. doi: 10.21437/Interspeech.2021-36.

Haohe Liu, Zehua Chen, Yi Yuan, Xinhao Mei, Xubo Liu, Danilo Mandic, Wenwu Wang, and Mark D. Plumbley. Audioldm: Text-to-audio generation with latent diffusion models. In *Proceedings of the 40th International Conference on Machine Learning (ICML)*, pages 21450–21474. PMLR, 2023b.

Haohe Liu, Yi Yuan, Xubo Liu, Xinhao Mei, Qiuqiang Kong, Qiao Tian, Yuping Wang, Wenwu Wang, Yuxuan Wang, and Mark D. Plumbley. Audioldm 2: Learning holistic audio generation with self-supervised pretraining. *IEEE/ACM Transactions on Audio, Speech, and Language Processing*, 32:2871–2883, 2024. doi: 10.1109/TASLP.2024.3399607.

Deepanway Ghosal, Navonil Majumder, Ambuj Mehrish, and Soujanya Poria. Text-to-audio generation using instruction tuned llm and latent diffusion model. *arXiv preprint arXiv:2304.13731*, 2023.

Zach Evans, Julian D Parker, CJ Carr, Zack Zukowski, Josiah Taylor, and Jordi Pons. Stable audio open. In *ICASSP 2025-2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pages 1–5. IEEE, 2025a.

Fabian-Robert Stöter, Zahra Hafida Benslimane, et al. Separation by timbre via non-negative matrix factorization with mfcc clustering, 2021. Implementation in the nussl Python library.

John R. Hershey, Zhuo Chen, Jonathan Le Roux, and Shinji Watanabe. Deep clustering: Discriminative embeddings for segmentation and separation. In *Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, 2016.

Dong Yu, Morten Kolbaek, Zheng-Hua Tan, and Jesper Jensen. Permutation invariant training of deep models for speaker-independent multi-talker speech separation. In *Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pages 241–245, 2017. doi: 10.1109/ICASSP.2017.7952154.

Bo Chen, Chao Wu, and Wenbin Zhao. Sepdiff: Speech separation based on denoising diffusion model. In *ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pages 1–5. IEEE, 2023.

Robin Scheibler, Youna Ji, Soo-Whan Chung, Jaeuk Byun, Soyeon Choe, and Min-Seok Choi. Diffusion-based generative speech source separation. In *ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pages 1–5. IEEE, 2023.

Chao Huang, Susan Liang, Yapeng Tian, Anurag Kumar, and Chenliang Xu. High-quality visually-guided sound separation from diverse categories. In *Proceedings of the Asian Conference on Computer Vision (ACCV)*, pages 35–49, December 2024a.

Yuancheng Wang, Zeqian Ju, Xu Tan, Lei He, Zhizheng Wu, Jiang Bian, and Sheng Zhao. Audit: Audio editing by following instructions with latent diffusion models. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2023.

Zachary Novack, Julian McAuley, Taylor Berg-Kirkpatrick, and Nicholas J Bryan. Ditto: Diffusion inference-time t-optimization for music generation. *arXiv preprint arXiv:2401.12179*, 2024.

Hila Manor and Tomer Michaeli. Zero-shot unsupervised and text-based audio editing using DDPM inversion. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp, editors, *Proceedings of the 41st International Conference on Machine Learning*, volume 235 of *Proceedings of Machine Learning Research*, pages 34603–34629. PMLR, 21–27 Jul 2024. URL <https://proceedings.mlr.press/v235/manor24a.html>.

Emilian Postolache, Giorgio Mariani, Luca Cosmo, Emmanouil Benetos, and Emanuele Rodolà. Generalized multi-source inference for text conditioned music diffusion models. In *ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pages 6980–6984. IEEE, 2024.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *arXiv preprint arXiv:2010.02502*, 2020.

Inbar Huberman-Spiegelglas, Vladimir Kulikov, and Tomer Michaeli. An edit friendly ddpm noise space: Inversion and manipulations. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 12469–12478, 2024.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in Neural Information Processing Systems*, 33:6840–6851, 2020.

Jort F Gemmeke, Daniel PW Ellis, Dylan Freedman, Aren Jansen, Wade Lawrence, R Channing Moore, Manoj Plakal, and Marvin Ritter. Audio set: An ontology and human-labeled dataset for audio events. In *2017 IEEE international conference on acoustics, speech and signal processing (ICASSP)*, pages 776–780. IEEE, 2017.

Yapeng Tian, Jing Shi, Bochen Li, Zhiyao Duan, and Chenliang Xu. Audio-visual event localization in unconstrained videos. In *Proceedings of the European Conference on Computer Vision (ECCV)*, pages 247–263, 2018.

Hang Zhao, Chuang Gan, Andrew Rouditchenko, Carl Vondrick, Josh McDermott, and Antonio Torralba. The sound of pixels. In *Proceedings of the European conference on computer vision (ECCV)*, pages 570–586, 2018.

Colin Raffel, Brian McFee, Eric J Humphrey, Justin Salamon, Oriol Nieto, Dawen Liang, Daniel PW Ellis, and C Colin Raffel. Mir_eval: A transparent implementation of common mir metrics. In *ISMIR*, pages 367–372, 2014.

Vivek Jayaram and John Thickstun. Source separation with deep generative priors. In *International Conference on Machine Learning*, pages 4724–4735. PMLR, 2020.

Kevin Kilgour, Mauricio Zuluaga, Dominik Roblek, and Matthew Sharifi. Fr\’echet audio distance: A metric for evaluating music enhancement algorithms. *arXiv preprint arXiv:1812.08466*, 2018.

Annamaria Mesaros, Toni Heittola, Tuomas Virtanen, and Mark D Plumley. Sound event detection: A tutorial. *IEEE Signal Processing Magazine*, 38(5):67–83, 2021.

Yuan Gong, Hongyin Luo, Alexander H Liu, Leonid Karlinsky, and James Glass. Listen, think, and understand. *arXiv preprint arXiv:2305.10790*, 2023.

Sreyan Ghosh, Sonal Kumar, Ashish Seth, Chandra Kiran Reddy Evuru, Utkarsh Tyagi, S Sakshi, Oriol Nieto, Ramani Duraiswami, and Dinesh Manocha. Gama: A large audio-language model with advanced audio understanding and complex reasoning abilities. *arXiv preprint arXiv:2406.11768*, 2024.

Chao Huang, Yapeng Tian, Anurag Kumar, and Chenliang Xu. Egocentric audio-visual object localization. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 22910–22921, 2023.

Honglie Chen, Weidi Xie, Triantafyllos Afouras, Arsha Nagrani, Andrea Vedaldi, and Andrew Zisserman. Localizing visual sounds the hard way. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 16867–16876, 2021b.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances in neural information processing systems*, 36:34892–34916, 2023c.

Ruohan Gao and Kristen Grauman. 2.5 d visual sound. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 324–333, 2019.

Susan Liang, Chao Huang, Yapeng Tian, Anurag Kumar, and Chenliang Xu. Av-nerf: Learning neural fields for real-world audio-visual scene synthesis. *Advances in Neural Information Processing Systems*, 36:37472–37490, 2023a.

Susan Liang, Chao Huang, Yapeng Tian, Anurag Kumar, and Chenliang Xu. Neural acoustic context field: Rendering realistic room impulse response with neural fields. *arXiv preprint arXiv:2309.15977*, 2023b.

Chao Huang, Dejan Marković, Chenliang Xu, and Alexander Richard. Modeling and driving human body soundfields through acoustic primitives. In *European Conference on Computer Vision*, pages 1–17. Springer, 2024b.

Zach Evans, Julian D Parker, CJ Carr, Zack Zukowski, Josiah Taylor, and Jordi Pons. Stable audio open. In *ICASSP 2025-2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pages 1–5. IEEE, 2025b.

Rohit Gandikota, Joanna Materzyńska, Tingrui Zhou, Antonio Torralba, and David Bau. Concept sliders: Lora adaptors for precise control in diffusion models. In *European Conference on Computer Vision*, pages 172–188. Springer, 2024a.

Chao Huang, Susan Liang, Yunlong Tang, Yapeng Tian, Anurag Kumar, and Chenliang Xu. Scaling concept with text-guided diffusion models. *arXiv preprint arXiv:2410.24151*, 2024c.

Chao Huang, Ruohan Gao, JMF Tsang, Jan Kurcius, Cagdas Bilen, Chenliang Xu, Anurag Kumar, and Sanjeel Parekh. Learning to highlight audio by watching movies. *arXiv preprint arXiv:2505.12154*, 2025a.

Chao Huang, Susan Liang, Yunlong Tang, Li Ma, Yapeng Tian, and Chenliang Xu. Fresca: Unveiling the scaling space in diffusion models. *arXiv preprint arXiv:2504.02154*, 2025b.

Rohit Gandikota, Joanna Materzyńska, Tingrui Zhou, Antonio Torralba, and David Bau. Erasing concepts from diffusion models. In *Proceedings of the 2024 IEEE European Conference on Computer Vision*, 2024b. arXiv preprint arXiv:2311.12092.

Alexandre Défossez, Jade Copet, Gabriel Synnaeve, and Yossi Adi. High fidelity neural audio compression. *arXiv preprint arXiv:2210.13438*, 2022.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. *arXiv preprint arXiv:2207.12598*, 2022.

Seyedmorteza Sadat, Otmar Hilliges, and Romann M Weber. Eliminating oversaturation and artifacts of high guidance scales in diffusion models. In *The Thirteenth International Conference on Learning Representations*, 2024.

Table 5: Additional evaluation on the AVE [Tian et al., 2018] and MUSIC [Zhao et al., 2018] datasets with MSE and Encodenc-based metrics. \downarrow indicates lower is better. The best results are **bold**.

Method	MUSIC			AVE		
	MSE \downarrow	L1 (Emb.) \downarrow	L2 (Emb.) \downarrow	MSE \downarrow	L1 (Emb.) \downarrow	L2 (Emb.) \downarrow
Require Separation Training						
LASS-Net	32.860	0.6205	0.7338	12.612	0.5984	0.6737
AudioSep	10.857	0.4232	0.4046	9.383	0.4949	0.5095
FlowSep	15.134	0.5525	0.5869	7.785	0.6706	0.8402
Separation Training Free						
NMF-MFCC	36.761	0.4230	0.4180	59.594	0.5766	0.6906
AudioEdit	29.357	0.8059	1.3088	22.253	0.9588	1.7090
ZeroSep (Ours)	15.470	0.5540	0.5912	11.076	0.7959	1.1258

A More Metrics

To further assess separation quality, we report additional metrics, including L1/L2 loss on Encodenc [Défossez et al., 2022] embeddings and MSE on mel-spectrograms, which capture temporal fidelity more effectively. Results are shown in Tab. 5. On these newly introduced metrics, ZeroSep achieves performance comparable to the supervised FlowSep model and surpasses LASS-Net on the MUSIC dataset, providing stronger evidence of genuine source separation rather than prompt-consistent hallucination.

An interesting observation arises with NMF-MFCC. Unlike other methods, which typically fail by leaving residual interference, NMF-MFCC often produces silence or overly smoothed outputs. This distinct failure mode can artificially benefit the Encodenc embedding distances: the smoothed, low-detail outputs align more closely with Encodenc’s coarse embedding space, despite discarding much of the fine-grained content. As a result, NMF-MFCC appears competitive on L1/L2 embedding metrics, yet its poor performance on perceptual and semantic measures (e.g., FAD, LPAPS, and mel-spectrogram MSE) highlights its limitations.

B Effect of ω and Scheduled Guidance

Large guidance weights ω amplify the conditional score. Since both the unconditional and conditional scores are approximations, excessive scaling can push samples into low-probability regions off the data manifold, improving prompt adherence and sample diversity but risking artifacts—a phenomenon broadly reported in image/audio diffusion models [Ho and Salimans, 2022, Sadat et al., 2024]. Consequently, large ω favors generative hallucination rather than accurate separation. Empirically, we find $\omega = 1$ strikes a good balance between suppressing interfering sounds and avoiding spurious generations.

Static vs. Scheduled Guidance. Intuitively, early diffusion steps shape the global structure, while later steps refine details. We therefore compared constant and scheduled ω on the AudioLDM2-Large backbone (DDIM, 50 steps). Results on MUSIC are shown in Tab. 6.

Table 6: Comparison of static vs. scheduled guidance (ω) on MUSIC.

ω schedule	FAD \downarrow	LPAPS \downarrow	C-A \uparrow	C-T \uparrow
constant 1	0.377	4.669	0.615	0.271
linear 0→1	0.471	4.526	0.520	0.202
linear 1→0	0.332	4.667	0.618	0.281
sine 0→1	0.431	4.523	0.550	0.227

Observations. (i) Low-to-high schedules (0→1, sine) degrade separation, as early under-conditioning causes loss of clean target structure. (ii) High-to-low schedules (1→0) improve over constant $\omega = 1$, consistent with reports that guidance is most useful in the early-to-mid noise range

but less helpful at the end. This supports our main claim that $\omega = 1$ is an effective default while also motivating dynamic scheduling as a promising future direction.

C Runtime and Scalability for Multiple Sources

Let S denote the number of inference steps and T_d the per-step time. `ZeroSep` requires a single inversion of the mixture (shared for all branches) plus one guided denoising per target source:

$$T_{\text{ZeroSep}} \approx \underbrace{S T_d}_{\text{inversion}} + \underbrace{N S T_d}_{N \text{ targets}} = (N + 1) S T_d.$$

Discriminative models (LASS-Net, `AudioSep`) require only a single forward pass per target ($N T_d$). `FlowSep`, a rectified-flow model, requires multi-step denoising ($N S T_d$). Tab. 7 summarizes complexity and measured runtimes.

Table 7: Runtime complexity and average cost (separating one source) on A100 GPU.

Method	Complexity	Runtime (s)
LASS-Net	$N T_d$	0.05
<code>AudioSep</code>	$N T_d$	0.04
<code>FlowSep</code>	$N S T_d$	1.07
<code>ZeroSep</code> (AudioLDM-S)	$(N + 1) S T_d$	0.98

While `ZeroSep` is slower than discriminative models, it matches `FlowSep`. Crucially, runtime scales down with advanced samplers: DPM-Solver++ attains high quality in 15–20 steps, and consistency models in 2–8 or even 1 step, which would directly reduce `ZeroSep`’s runtime.

D Polyphonic Mixtures

`ZeroSep` naturally extends to multi-source separation. On 3-source MUSIC mixtures (e.g., violin+flute+trumpet), results degrade moderately compared to 2-source (8).

Table 8: `ZeroSep`’s performance on 2- and 3-source mixtures from the MUSIC dataset.

# Sources	FAD \downarrow	LPAPS \downarrow	C-A \uparrow	C-T \uparrow
2	0.377	4.669	0.615	0.271
3	0.508	4.248	0.501	0.246

For especially challenging cases where sources share the same event class, attribute-qualified prompts (e.g., “soft violin arpeggio” vs. “long sustained violin note”) may help.

E Prompt Sensitivity and Hierarchical/Open-Set Behavior

We tested prompt robustness by perturbing MUSIC class names with hypernyms (e.g., *violin* \rightarrow *string instrument*) and underspecified descriptors (e.g., *trumpet* \rightarrow *bright instrument*). Results are summarized in Tab. 9.

Table 9: Prompt sensitivity analysis on MUSIC.

Prompt type	FAD \downarrow	LPAPS \downarrow	C-A \uparrow	C-T \uparrow
canonical	0.377	4.669	0.615	0.271
hypernym	0.388	4.692	0.583	0.280
underspecified	0.336	4.714	0.577	0.248

Observations. Hypernyms preserve family-level correctness, slightly degrading accuracy but improving consistency (C-T). Underspecified descriptors sometimes improve distributional metrics (FAD) while reducing class accuracy, indicating plausible but less precise extractions. These findings suggest hierarchical robustness: ZeroSep generalizes reasonably from coarse categories (e.g., “string instrument”) to specific instances (e.g., violin), though we avoid over-claiming open-set separation.

Table 10: Effect of prompt descriptiveness on MUSIC.

Prompt type	FAD \downarrow	LPAPS \downarrow	C-A \uparrow	C-T \uparrow
Class label	0.377	4.669	0.615	0.271
Descriptive	0.484	4.541	0.512	0.196
AudioSep	0.725	5.209	0.450	0.204

F Prompt Length and Descriptiveness

We conducted a focused study on the MUSIC dataset to test robustness to descriptive prompts (shown in Tab. 10). Each of the 11 instrument class labels was expanded into a free-form caption roughly $10\times$ longer than the label. For example, “saxophone” was expanded to “warm, breathy reed tone with slight rasp and expressive bends”, and “accordion” to “reedy, wheezy sustained chords with gentle tremolo and slow swells”. This setting stresses ZeroSep with more detailed but potentially noisy prompts.

Observations. ZeroSep shows a moderate degradation under long, descriptive prompts but still outperforms the strong supervised baseline AudioSep across most metrics. We attribute this drop to a mismatch between our prompt expansions and the captions used to train text-to-audio diffusion models, which are typically short, coarse descriptions (e.g., “a man speaking while a baby is crying”). This highlights a promising direction: aligning prompt style with training data or finetuning on more descriptive captions to better exploit natural-language expressiveness.

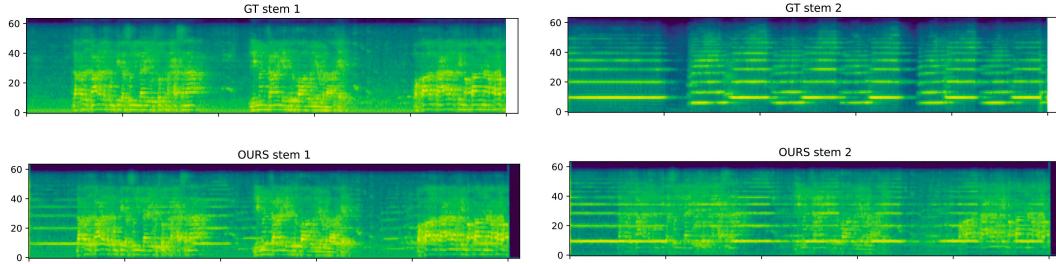


Figure 4: Failure case analysis of ZeroSep. Mixture: Man speech (stem 1) + Shofar (stem 2).

G Failure Case Analysis

While generally effective, ZeroSep can sometimes fail to fully isolate the target source. This typically occurs when an interfering source possesses significant energy that the model cannot eliminate in a single iteration. An illustrative example of such a failure is presented in Fig. 4. We postulate that, given the inherent progressive operation of diffusion models, the removal of interfering sources also proceeds incrementally. Consequently, this performance limitation may be tied to the number of inference steps utilized. Potential avenues for improvement include increasing the inference steps or iteratively applying the separation process.

H More Separation Results

These figures present mel-spectrograms that visualize the audio separation performance on two-source mixtures. For each figure, the rows are ordered from top to bottom as follows: the first source’s Ground Truth, followed by its separation results from LASS-Net, FlowSep, AudioEdit, AudioSep,

and Ours. This sequence is then repeated for the second source: Ground Truth 2, LASS-Net 2, FlowSep 2, AudioEdit 2, AudioSep 2, and Ours 2. You might notice some white or empty areas on the right side of the mel-spectrograms; these are simply due to the varying lengths of the audio samples.

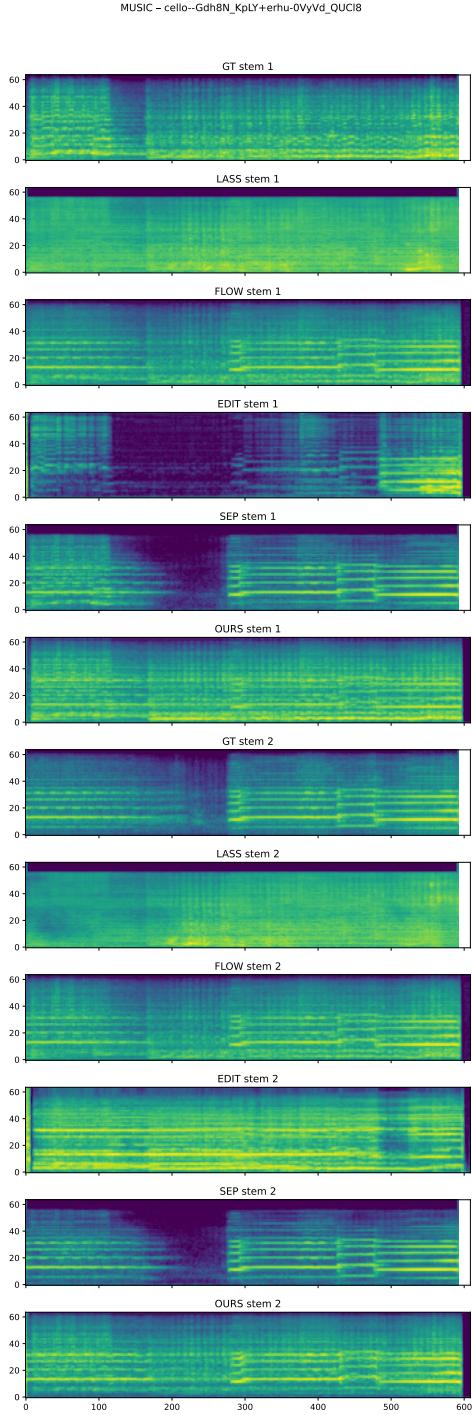


Figure 5: Mixture: Cello (stem 1) + Erhu (Stem 2)

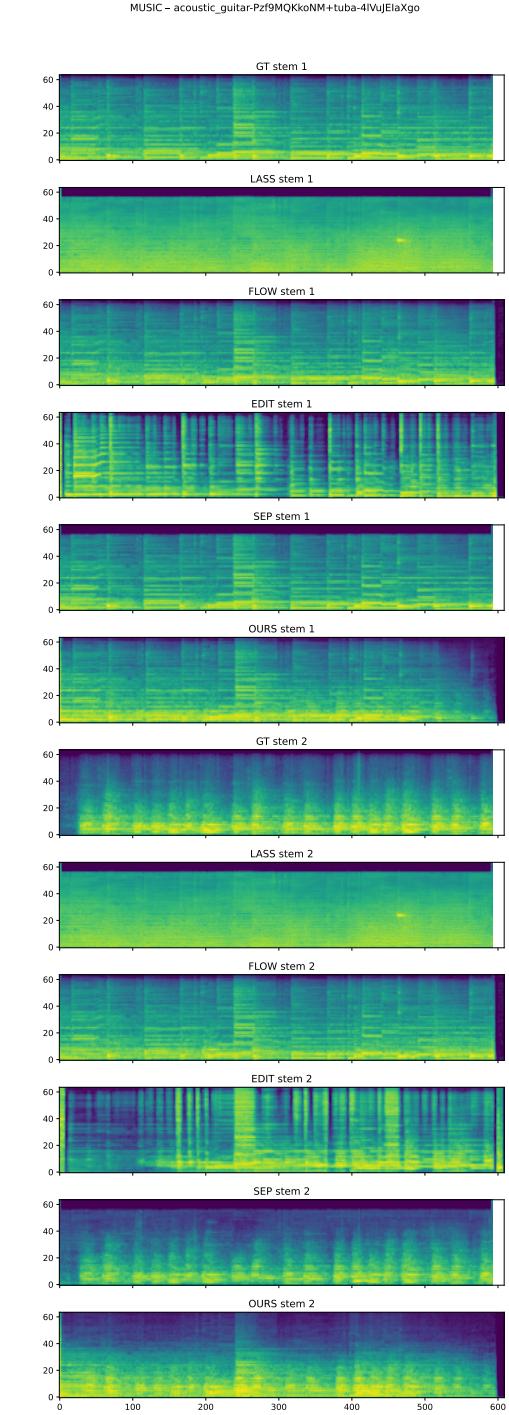


Figure 6: Mixture: Acoustic Guitar (stem 1) + Tuba (Stem 2)

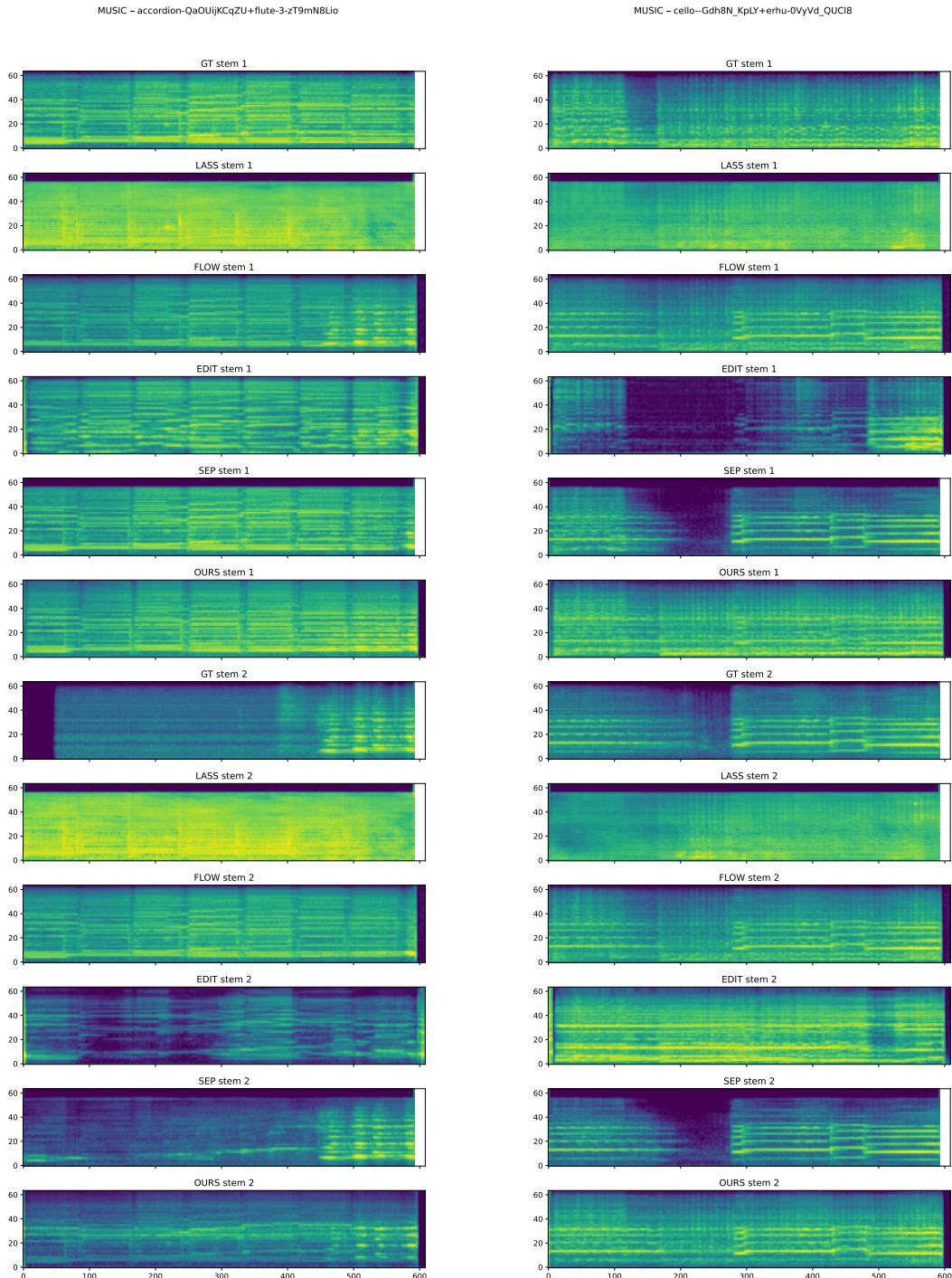


Figure 7: Mixture: Accordion (stem 1) + Flute (Stem 2)

Figure 8: Mixture: Cello (stem 1) + Erhu (Stem 2)

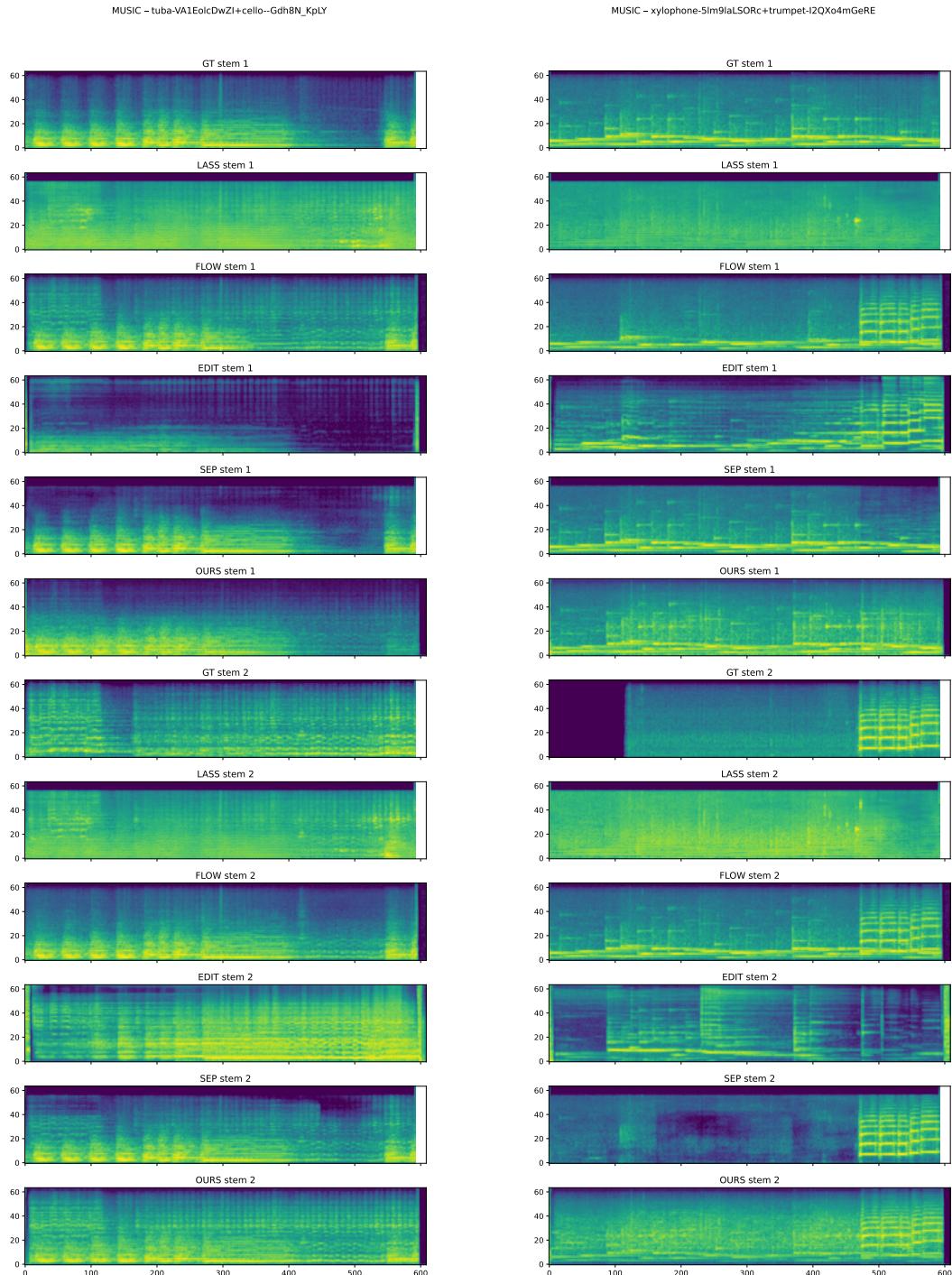


Figure 9: Mixture: Tuba (stem 1) + Cello (stem 2)

Figure 10: Mixture: Xylophone (stem 1) + Trumpet (stem 2)

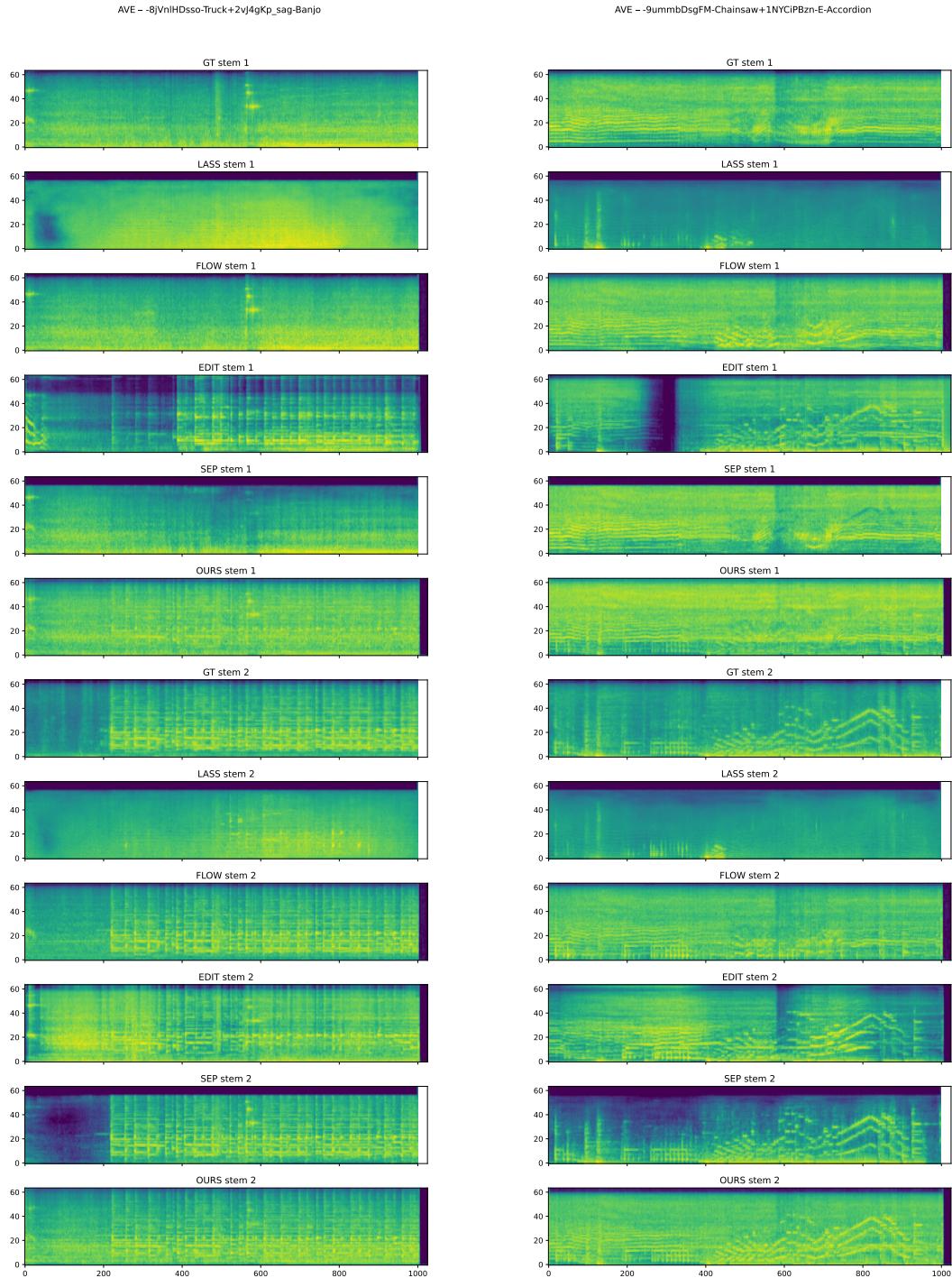


Figure 11: Mixture: Truck (stem 1) + Banjo (Stem 2)

Figure 12: Mixture: Chainsaw (stem 1) + Accordion (Stem 2)

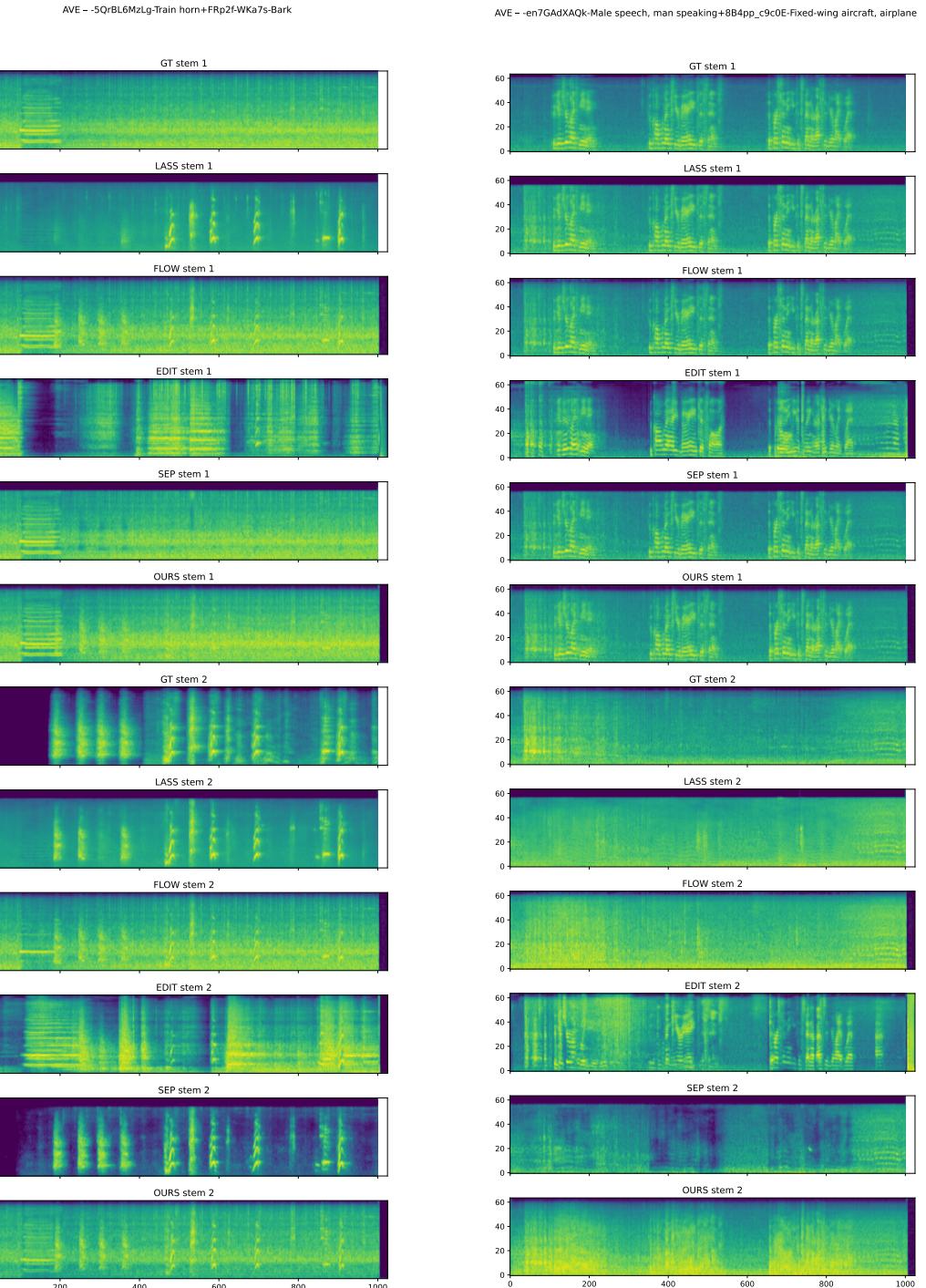


Figure 13: Mixture: Train Horn (stem 1) + Bark (Stem 2)

Figure 14: Mixture: Male Speech (stem 1) + Airplane (Stem 2)

AVE - -IKMo9-20Zc-Truck+16cpSo6bBCE-Ukulele

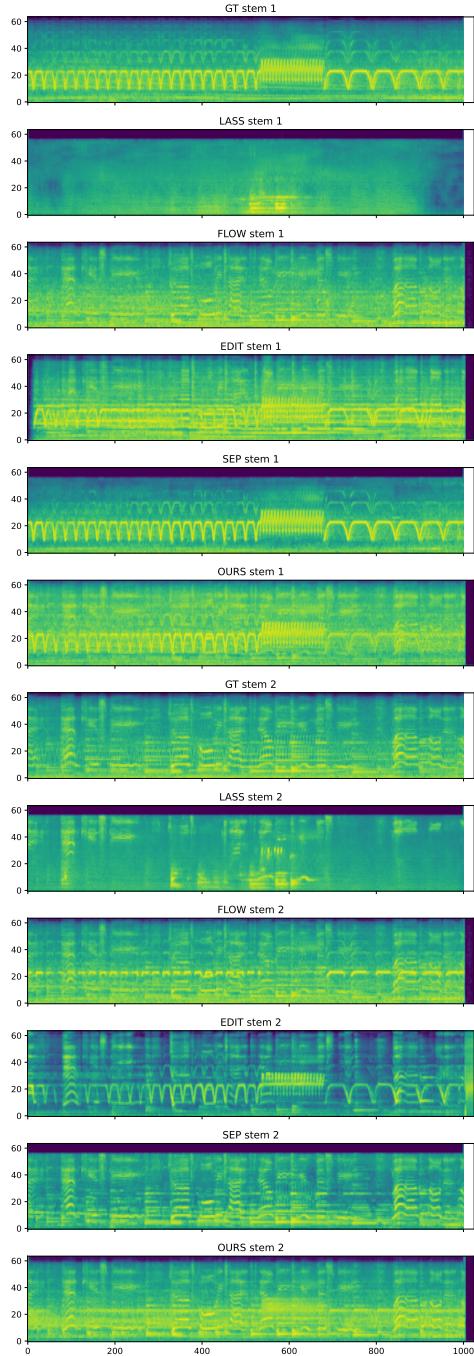


Figure 15: Mixture: Truck (stem 1) + Ukulele (Stem 2)

AVE - -BjNMHZDcU-Bark+-2C9ZpNhvg-Toilet flush

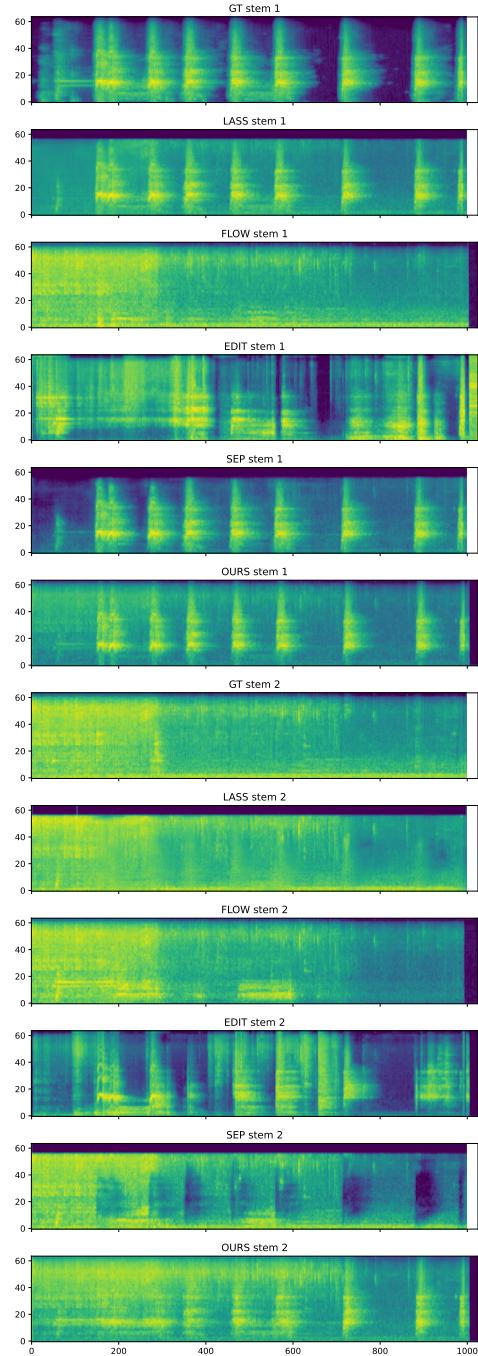


Figure 16: Mixture: Bark (stem 1) + Toilet Flush (Stem 2)

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [\[Yes\]](#)

Justification: The claims are provided in the introduction.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [\[Yes\]](#)

Justification: Limitations will be provided in the appendix.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [\[NA\]](#)

Justification: No theory results are provided.573

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: **[Yes]**

Justification: All details are discussed in the method part.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
 - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
 - (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
 - (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: **[No]**

Justification: The code will be released upon acceptance.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: **[Yes]**

Justification: Details are provided in the setup.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: **[No]**

Justification: We fix the random seed and verify the experiments on a large amount of data to minimize the randomness.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer “Yes” if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).

- It should be clear whether the error bar is the standard deviation or the standard error of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [\[Yes\]](#)

Justification: Details are provided in the appendix.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics <https://neurips.cc/public/EthicsGuidelines>?

Answer: [\[Yes\]](#)

Justification: Confirmed.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [\[Yes\]](#)

Justification: We discuss it in the introduction.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.

- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: No such risks.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: We discuss it in the appendix.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.

- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [NA]

Justification: No assets are released.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: No human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: No human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorosity, or originality of the research, declaration is not required.

Answer: [NA]

Justification: Not involve LLMs.

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (<https://neurips.cc/Conferences/2025/LLM>) for what should or should not be described.