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ABSTRACT

Tuning the hyperparameters of differentially private (DP) machine learning (ML)
algorithms often requires use of sensitive data and this may leak private informa-
tion via hyperparameter values. Recently, Papernot & Steinke (2022) proposed
a certain class of DP hyperparameter tuning algorithms, where the number of
random search samples is randomized itself. Commonly, these algorithms still
considerably increase the DP privacy parameter ε over non-tuned DP ML model
training and can be computationally heavy as evaluating each hyperparameter can-
didate requires a new training run. We focus on lowering both the DP bounds
and the computational cost of these methods by using only a random subset of
the sensitive data for the hyperparameter tuning and by extrapolating the optimal
values to a larger dataset. We provide a Rényi differential privacy analysis for
the proposed method and experimentally show that it consistently leads to better
privacy-utility trade-off than the baseline method by Papernot & Steinke (2022).

1 INTRODUCTION

Our aim is two-fold: to decrease the computational cost as well as the privacy cost of hyperparame-
ter tuning of DP ML models. The reasons for this are clear. As the dataset sizes grow and models get
more complex, blackbox optimization of hyperparameters becomes more expensive since evaluation
of a single set of hyperparameters often requires retraining a new model. On the other hand, tuning
the hyperparameters often depends on the use of sensitive data, so it requires privacy protection as
well, as illustrated by the counterexample by Papernot & Steinke (2022). Intuitively, the leakage
from hyperparameters is much smaller than from the model parameters, however providing tuning
algorithms with low additional DP cost has turned out challenging. Current best algorithms (Paper-
not & Steinke, 2022) still come with a considerable DP cost overhead.

Although our methods and results are applicable to general DP mechanisms, we will in particular
focus on tuning of the DP stochastic gradient descent (DP-SGD) (Song et al., 2013; Bassily et al.,
2014; Abadi et al., 2016). Compared to plain SGD, DP brings additional hyperparameters to tune:
the noise level σ and the clipping constant C. We use the results by Papernot & Steinke (2022)
as building blocks of our methods. Their work was based on the analysis of Liu & Talwar (2019)
who provided the first results for DP black-box optimization of hyperparameters, where, if the base
training algorithm is (ε, 0)-DP, then the tuned model is approximately (3ε, 0)-DP. Mohapatra et al.
(2022) showed that for reasonable numbers of adaptively chosen private candidates a naive RDP
accounting (i.e., release all models) often leads to lower DP bounds than the methods by Liu & Tal-
war (2019). Papernot & Steinke (2022) gave Rényi differential privacy (RDP) analysis for black-box
tuning algorithms where the guarantees grow only logarithmically w.r.t. number of model evalua-
tions. As the privacy bounds are in terms of RDP and assume only RDP bounds about the candidate
model training algorithms, they are particularly suitable to tuning DP-SGD. However, still, running
these algorithms increases the ε-values two or three-fold or more, and they can be computationally
heavy as evaluating each candidate model requires training a new model.

Our novelty is to consider using only a random subset of the sensitive data for the tuning part and use
the output hyperparameter values and the corresponding model for training subsequent models. This
automatically leads to both lower DP privacy leakage and lower computational cost. We mention
that in non-DP setting, small random subsets of data have been used in Bayesian optimization of
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hyperparameters, see e.g. (Swersky et al., 2013; Klein et al., 2017). The full version of this paper
can be found in (Koskela & Kulkarni, 2023).

1.1 OUR CONTRIBUTIONS

• We propose a subsampling strategy to lower the privacy and compute cost of DP hyperpa-
rameter tuning. We provide a tailored RDP analysis for the proposed strategy. Our analysis
is in terms of RDP and we use existing results for tuning Papernot & Steinke (2022) and
DP-SGD (Zhu & Wang, 2019) as building blocks.

• We propose algorithms to tune hyperparameters that affect the RDP guarantees of the base
model training algorithms. We provide a rigorous RDP analysis for these algorithms.

• We carry out experiments on several standard datasets, where we are able to improve upon
the baseline tuning method by a clear margin. While our experiments focus mainly on train-
ing of deep learning models with DP-SGD and DP-Adam, our framework is currently ap-
plicable to any computation that involves selecting the best among several alternatives (con-
sider e.g., DP model selection, Thakurta & Smith, 2013).

2 BACKGROUND: DP, DP-SGD AND DP HYPERPARAMETER TUNING

We first give the basic definitions. An input dataset containing n data points is denoted as X =
(x1, . . . , xn) ∈ Xn, where xi ∈ X , 1 ≤ i ≤ n. We say X and Y are neighbours if we get one by
adding or removing one data element to or from the other (denotedX ∼ Y ). Consider a randomized
mechanismM : Xn → O, where O denotes the output space. The (ε, δ)-definition of DP can be
given as follows (Dwork, 2006).
Definition 1. Let ε > 0 and δ ∈ [0, 1]. We say that a mechanismM is (ε, δ)-DP, if for all neigh-
bouring datasets X and Y and for every measurable set E ⊂ O we have:

Pr(M(X) ∈ E) ≤ eεPr(M(Y ) ∈ E) + δ.

We will also use the Rényi differential privacy (RDP) (Mironov, 2017) which is defined as follows.
Rényi divergence of order α > 1 between two distributions P and Q is defined as

Dα(P ||Q) =
1

α− 1
log

∫ (
P (t)

Q(t)

)α
Q(t) dt. (2.1)

Definition 2. We say that a mechanismM is (α, ε)-RDP, if for all neighbouring datasets X and Y ,
the output distributionsM(X) andM(Y ) have Rényi divergence of order α at most ε, i.e.,

max
X∼Y

Dα

(
M(X)||M(Y )

)
≤ ε.

We can convert from Rényi DP to approximate DP using, for example, the following formula:
Lemma 3 (Canonne et al. 2020). Suppose the mechanism M is

(
α, ε′

)
-RDP. Then M is also

(ε, δ(ε))-DP for arbitrary ε ≥ 0 with

δ(ε) =
exp

(
(α− 1)(ε′ − ε)

)
α

(
1− 1

α

)α−1

. (2.2)

As is common, in practice we carry out the RDP accounting such that we do bookkeeping of total
ε(α)-values for a list of RDP-orders (e.g. integer α’s) and in the end convert to (ε, δ)-guarantees
by minimizing over the values given by equation 2.2. RDP accounting for compositions of DP
mechanisms is carried using standard RDP composition results (Mironov, 2017).

DP-SGD differs from SGD such that sample-wise gradients of a random mini-batch are clipped to
have L2-norm at most C and normally distributed noise with variance σ2 is added to the sum of the
gradients of the mini-batch (Abadi et al., 2016). One iteration is given by

θj+1 = θj − ηj
( 1

|B|
∑
x∈Bj

clip(∇f(x, θj), C) + Zj

)
, (2.3)
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where Zj ∼ N (0, C
2σ2

|B|2 Id), and ηj denotes the learning rate hyperparameter and |B| is the expected
batch size (if we carry out Poisson subsampling of mini-batches, |Bj | varies). There are several
results that enable the RDP analysis of DP-SGD iterations (Abadi et al., 2016; Balle et al., 2018;
Zhu & Wang, 2019). The following result by Zhu & Wang (2019) is directly applicable to analyzing
DP-SGD, however we also use it for analyzing a variant of our hyperparameter tuning method.

Theorem 4 (Zhu & Wang 2019). Suppose M is a
(
α, ε(α)

)
-RDP mechanism, w.r.t.

to the add/remove neighbourhood relation. Consider the subsampled mechanism (M ◦
subsamplePoisson(γ))(X). If M is

(
α, ε(α)

)
-RDP then M ◦ subsamplePoisson(q) is

(
α, ε′(α)

)
-

RDP (α ≥ 2 is an integer), where

ε′(α) =
1

α− 1
log

(
(1− γ)α−1(αγ − γ + 1) +

(
α

2

)
γ2(1− γ)α−2 exp(ε(2))

+ 3

α∑
j=3

(
α

j

)
γj(1− γ)α−j exp((j − 1)ε(j))

)
.

We remark that the recent works (Koskela et al., 2020; Gopi et al., 2021; Zhu et al., 2022) give
methods to carry out (ε, δ)-analysis of DP-SGD tightly.

Intuitively, the leakage from hyperparameters is much smaller than from the model parameters,
however considering it in the final accounting is needed to ensure rigorous DP guarantees. In the
results of Papernot & Steinke (2022) it is important that the number of candidate models K is
randomized. They analyze various distributions for drawing K, however we focus on using the
Poisson distribution as it is the most concentrated around the mean among all the alternatives. The
corresponding hyperparameter tuning algorithm and its privacy guarantees are given as follows.

First recall: K is distributed according to a Poisson distribution with mean µ > 0, if for all non-
negative integer values k: P(K = k) = e−µ · µ

k

k! .

Theorem 5 (Papernot & Steinke 2022). Let Q : XN → Y be a randomized algorithm satisfying(
α, ε(α)

)
-RDP and (ε̂, δ̂)-DP for some α ∈ (1,∞) and ε, ε̂, δ̂ ≥ 0. Assume Y is totally ordered. Let

the Poisson distribution parameter µ > 0. Define the hyperparameter tuning algorithm A : XN →
Y as follows. Draw K from a Poisson distribution with mean µ. Run Q(X) for K times. Then
A(X) returns the best value of those K runs (both the hyperparameters and the model parameters).
If K = 0, A(X) returns some arbitrary output. If e ε̂ ≤ 1 + 1

α−1 , then A satisfies
(
α, ε′(α)

)
-RDP,

where ε′(α) = ε(α) + µ · δ̂ + log µ
α−1 .

3 DP HYPERPARAMETER TUNING WITH A RANDOM SUBSET

We next consider our main tool: we carry out the private hyperparameter tuning on a random subset,
and if needed, extrapolate the found hyperparameter values to larger datasets that we use for training
subsequent models. In our approach described below, the subset of data used for tuning is generally
smaller than the data used for training the final model and thus we extrapolate the hyperparameter
values.

3.1 OUR METHOD: SMALL RANDOM SUBSET FOR TUNING

Our method works as below:

1. Use Poisson subsampling to draw X1 ⊂ X: draw a random subset X1 such that each
x ∈ X is included in X1 with probability q.

2. Compute (θ1, t1) = M1(X1), where M1 is a hyperparameter tuning algorithm (e.g.,
method by Papernot & Steinke, 2022) that outputs the vector of optimal hyperparameters
t1 and the corresponding model θ1.

3. If needed, extrapolate the hyperparameters t1 to the dataset X \X1: t1 → t2.

4. Compute θ2 =M2(t2, X \X1), whereM2 is the base mechanism (e.g., DP-SGD).
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Denote the whole mechanism byM. Then, we may write

M(X) =
(
M1(X1),M2

(
M1(X1), X \X1

)
. (3.1)

Additionally, we consider a variation of our method in which we use consider the full data set X
instead of X \X1 in step 3 onwards.

M(X) =
(
M1(X1),M2

(
M1(X1), X

)
. (3.2)

We call these methods variant 1 and variant 2 respectively. The RDP bounds for variant 2 can be
obtained with standard subsampling and composition result (e.g. Thm 4). We provide a new tailored
analysis for this method in Section 3.3.

3.2 EXTRAPOLATING THE DP-SGD HYPERPARAMETERS

When using DP-SGD, to transfer the optimal hyperparameter to a larger dataset, we use the heuris-
tics also used by van der Veen et al. (2018): we scale the learning rate η with the dataset size. I.e.,
if we carry out the hyperparameter tuning using a subset of size m and find an optimal value η∗,
we multiply η∗ by n/m when transferring to the dataset of size n. Clipping constant C, the noise
level σ and the subsampling ratio γ are kept constant in this transfer. This can be also motivated as
follows. Consider T steps of the DP-SGD. With the above rules, the distribution of the noise that
gets injected into the second model is approximately

∑T

j=1
Zj ∼ N

(
0,

T ·
(
n
mη∗

)2
σ2C2

(γ·n)2

)
∼ N

(
0, T ·η

∗2σ2C2

(γ·m)2

)
which is the distribution of the noise added to the model trained with the subsample of size m.

Training of certain models benefits from use of adaptive optimizers such as Adam (Kingma & Ba,
2014) or RMSProp, e.g., due to sparse gradients. Then the above extrapolation rules for DP-SGD
are not meaningful anymore. In our experiments, when training a neural network classifier for the
IMDB dataset and using Adam with DP-SGD gradients, we found that keeping the value of learning
rate fixed in the transfer to the larger dataset lead to better results. Recently Sander et al. (2022)
proposed hyperparameter scaling laws using a similar guiding principle.

3.3 PRIVACY ANALYSIS

We first consider the variant 2 given in equation 3.2. Using the RDP values given by Thm. 5
for M1 and a subsampling amplification result such as Thm. 4, we obtain RDP bounds for
(M1 ◦ subsamplePoisson(γ)). Using RDP bounds for M2 (e.g., DP-SGD) and composition re-
sults, we further get RDP bounds for the mechanismM of equation 3.2 where we use full data for
the subsequent model.

Tailored RDP-Analysis. When we only use the rest of the data X\X1 forM2 in variant 1 (equa-
tion 3.1), we can get even tighter RDP bounds. The following theorem gives tailored RDP bounds for
the mechanism of equation 3.1. Similarly to the analysis of Zhu & Wang (2019) for the Poisson sub-
sampled Gaussian mechanism, we obtain RDP bounds using the RDP bounds of the non-subsampled
mechanisms and by using binomial expansions (proof given in the Appendix C.2).

Theorem 6. Let X ∈ Xn and Y = X ∪ {x′} for some x′ ∈ X . Let M(X) be the mechanism
described in Section 3.1, such that X1 is sampled with sampling ratio q, 0 ≤ q ≤ 1. Let α > 1.
Denote by εP (α) and εQ(α) the RDP-values of mechanismsM1 andM2, respectively. We have
that

Dα
(
M(Y )||M(X)

)
≤ 1

α− 1
log

(
qα · exp

(
(α− 1)εP (α)

)
+ (1− q)α · exp

(
(α− 1)εQ(α)

)
+

α−1∑
j=1

(
α

j

)
· qα−j · (1− q)j · exp

(
(α− j − 1)εP (α− j)

)
exp

(
(j − 1)εQ(j)

)) (3.3)
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and

Dα
(
M(X)||M(Y )

)
≤ 1

α− 1
log

(
(1− q)α−1 · exp

(
(α− 1)εQ(α)

+

α−1∑
j=1

(
α− 1

j

)
· qj · (1− q)α−1−j · exp

(
j · εP (j + 1)

)
· exp

(
(α− j − 1)εQ(α− j)

))
.

(3.4)

Remark 7. We can initialize the subsequent model trainingM2 using the model θ1. This adaptivity
is included in all the RDP analyses we consider.

3.4 COMPUTATIONAL SAVINGS

The expected number of required gradient evaluations for our approach is bounded by (µ · q · n +
n) · epochs , whereas the baseline requires in expectation µ · n · epochs evaluations. For example,
in our experiments with µ = 10 and q = 0.1, the baseline requires µ

µ·q+1 ≈ 5 times more gradient
evaluations than our method.

4 DEALING WITH DP-SGD HYPERPARAMETERS THAT AFFECT THE DP
GUARANTEES

Theorem 5 gives RDP-parameters of order α for the tuning algorithm, assuming the underlying
candidate picking algorithm is

(
α, ε(α)

)
-RDP. In case of DP-SGD, if we are tuning the learning

rate η or clipping constant C, and fix rest of the hyperparameters, these
(
α, ε(α)

)
-RDP bounds are

fixed for all the hyperparameter candidates. However, if we are tuning hyperparameters that affect
the DP guarantees, i.e., the subsampling ratio γ, the noise level σ or the length of the training T , it is
less straightforward to determine suitable uniform ε(α)-upper bounds. As is common practice, we
consider a grid Λ of α-orders for RDP bookkeeping (e.g. integer values of α’s).

4.1 GRID SEARCH WITH RANDOMIZATION

To deal with this problem, we first set an approximative DP target value (ε, δ) that we use to adjust
some of the hyperparameters. For example, if we are tuning the subsampling ratio γ and noise level
σ, we can, for each choice of (γ, σ), adjust the length of the training T so that the resulting training
iteration is at most (ε, δ)-DP. Vice versa, we may tune γ and T , and take minimal value of σ such
that the resulting training iteration is at most (ε, δ)-DP.

More specifically,we first fix ε, δ > 0 which represent the target approximative DP bound for each
candidate model. Denote by ε(T, δ, γ, σ) the ε-value of the subsampled Gaussian mechanism with
parameter values γ, σ and T and for fixed δ. To each value of (γ, σ), we attach a number of iterations
Tγ,σ such that it is the largest number with which the resulting composition is (ε, δ)-DP:

Tγ,σ = max{T ∈ N : ε(T, δ, γ, σ) ≤ ε}.
As the RDP values increase monotonously w.r.t. number of compositions, it is straightforward to
find Tγ,σ, e.g., using the bisection method.

Alternatively, we could fix a few values of T , and to each combination of (γ, T ), attach the smallest σ
(denoted σγ,T ) such that the target (ε, δ)-guarantee holds. We prefer this option in our experiments
to suit our computational constraints. By the data-processing inequality, the privacy parameters
decrease monotonously w.r.t. σ, so that again, e.g., the bisection method can be used to find σ.

We consider a finite grid Γ of possible hyperparameter values t (e.g., t = (γ, σ, T ), where T is
adjusted to γ and σ). Then, for all t ∈ Γ, we compute the corresponding RDP value εt(α) for each
α ∈ Λ. Finally, for each α ∈ Λ, we set

ε(α) = max
t∈Γ

εt(α).

Then, since for each random draw of t, the DP-SGD trained candidate model is ε(α)-RDP, by
Lemma A.1 given in Appendix, the candidate picking algorithm Q is also ε(α)-RDP. This approach
is used in the experiments of Appendix 5.2, where we jointly tune σ, γ and η.
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5 EXPERIMENTS

5.1 LEARNING RATE TUNING

Figure 1 describes the results for learning rate tuning using our methods and the baseline method
by Papernot & Steinke (2022) when training neural networks on standard benchmark datasets
for classification (MNIST (LeCun et al., 1998), FashionMNIST (Xiao et al., 2017), CIFAR-
10 (Krizhevsky & Hinton, 2009) and IMDB (Maas et al., 2011)). Full details of the experiments
are are given in Appendix B. We set here µ = 10 (the expected number of candidate models the
tuning algorithm trains). We notice that both variants of our method provide better privacy-utility
trade-off and have a lower computational cost than the baseline method.

(a) MNIST

(b) FashionMNIST

(c) CIFAR-10

(d) IMDB

Figure 1: Tuning only the learning rate. Test accuracies averaged across 5 independent runs. The
numbers in the legend refer to the mean training timings scaled with respect to variant 1 (blue
curves). The error bars denote the std. error of the mean. Each curve contains 9 points, one for each
target ε ∈ {0.4, 0.6, .., 2.0} (for δ = 10−5) used to adjust σ.
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5.2 TUNING ALL HYPERAPARAMETERS

Next we jointly optimize the noise level σ, the batch size, and the learning rate η. The remaining
setup is the same as in the previous experiment. The hyperparameter candidates are listed in Table 2
(Section B.2 in Appendix). Figure 2 shows the same quantities as Figure 1, however higher values
of µ are used to accommodate to increased hyperaparameter spaces. Our method is more accurate
compared to the baseline for low target ε-values and there is slight degradation in accuracy for higher
target ε’s. We also note that for final ε-value 2.0, our test accuracies are at least as good as those
of Abadi et al. (2016) in case of MNIST (96% in Abadi et al., 2016) for and approximately the same
in case of CIFAR-10 (67% in Abadi et al., 2016), although the results of Abadi et al. (2016) do not
include the DP cost of hyperparameter tuning.

(a) MNIST with µ = 45

(b) FashionMNIST with µ = 50

(c) CIFAR-10 with µ = 40

(d) IMDB with µ = 45

Figure 2: Tuning of subsampling ratio, training length, and learning rate. Test accuracies averaged
across 5 independent runs. The numbers in the legend refer to the mean training timings scaled with
respect to variant 1 (blue curves). The error bars denote the std. error of the mean. Each curve
contains 9 points, one for each target ε ∈ {0.4, 0.6, .., 2.0}.
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APPENDIX

A DEALING WITH HYPERPARAMETERS THAT AFFECT THE DP GUARANTEES

A.1 RANDOM SEARCH

Here, we assume we are given some distributions of the hyperparameter candidates and the algorithm
Q draws hyperparameters using them. In order to adjust the number of iterations for each candidate,
we take a α-line as an RDP upper bound. More specifically, we require that the candidate models
are
(
α, c · α

)
-RDP for some c > 0 and for all α ∈ Λ. Then the number of iterations Tγ,σ for each

draw of (γ, σ) is the maximum number of iterations for which the
(
α, c · α

)
-RDP bound holds, i.e.,

Tγ,σ = max{T ∈ N : T · εγ,σ(α) ≤ c · α for all α ∈ Λ}.

Similarly, we can find the minimal σ based on T and γ such that the mechanism is
(
α, c · α

)
-RDP

for all α ∈ Λ.

Again, by Lemma A.1 below, the candidate picking algorithm Q is then c · α-RDP and we may use
Thm. 5 to obtain RDP bounds for the tuning algorithm.

The following result gives a rigorous proof for RDP bounds for algorithms presented in Section 4.1
and Section A.1. Let’s call them Algorithm 1 and 2.

A.2 RDP ANALYSIS OF ALGORITHMS 1 AND 2

Lemma A.1. Denote by C the random variable of which outcomes are the hyperparameter can-
didates (drawing either randomly from a grid or from given distributions). Consider an algorithm
Q, that first randomly picks hyperparameters t ∼ C, then runs a randomised mechanismM(t,X).
SupposeM(t,X) is

(
α, ε(α)

)
-RDP for all t. Then, Q is

(
α, ε(α)

)
-RDP.

Proof. Suppose the hyperparameters t are outcomes of a random variable C. Let X and Y be
neighbouring datasets. Then, if p(t, s) and q(t, s) (as functions of s) give the density functions of
M(t,X) andM(t, Y ), respectively, we have that

Q(X) ∼ Et∼C p(t, s) and Q(Y ) ∼ Et∼C q(t, s).

Since for any distributions p and q, and for any α > 1,

exp
(
(α− 1)Dα(p||q)

)
=

∫ (
p(t)

q(t)

)α
q(t) dt

gives an f -divergence (for f(x) = xα), it is also jointly convex w.r.t. p and q (Liese & Vajda, 2006).
Thus, using Jensen’s inequality, we have

exp
(
(α− 1)Dα

(
Q(X)||Q(Y )

))
=

∫ (
Et∼C p(t, s)

Et∼C q(t, s)

)α
· Et∼C q(t, s) ds

≤ Et∼C
∫ (

p(t, s)

q(t, s)

)α
· q(t, s) ds

= Et∼C exp
(
(α− 1)Dα

(
M(t,X)||M(t, Y )

))
≤ Et∼C exp ((α− 1)ε(α))

= exp ((α− 1)ε(α))

from which the claim follows.

A.3 ADJUSTING THE PARAMETERS T AND σ FOR DP-SGD

We next discuss the reasons for the success of Algorithm 1 and 2. It is often a good approximation to
say that the RDP-guarantees of the Poisson subsampled Gaussian mechanism are lines as functions
of the RDP order α, i.e., that the guarantees are those a Gaussian mechanism with some sensitivity
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and noise level values. For example, Mironov et al. (Thm. 11, 2019) show that the Poisson sub-
sampled Gaussian mechanism is

(
α, 2γ2α/σ2

)
-RDP when α is sufficiently small. Also, (Thm. 38,

Steinke, 2022) show that if the underlying mechanism is ρ-zCDP, then the Poisson subsampled ver-
sion with subsampling ratio γ is

(
α, 10γ2ρα

)
-RDP when α is sufficiently small. Notice that the

Gaussian mechanism with L2-sensitivity ∆ and noise level σ is (∆2/2σ2)-zCDP (Bun & Steinke,
2016).

We numerically observe, that the larger the noise level σ and the smaller the subsampling ratio γ,
the better the line approximation of the RDP-guarantees (see Figure 3).

In case the privacy guarantees (either (ε, δ)-DP or RDP) are approximately those of a Gaussian
mechanisms with some sensitivity and noise level values, both of the approaches for tuning the
hyperparameters γ, σ and T described in Section 4 would lead to very little slack. This is because for
the Gaussian mechanism, both the RDP guarantees (Mironov, 2017) and (ε, δ)-DP guarantees (Dong
et al., 2022) depend monotonously on the scaled parameter

σ̃ =
σ

∆ ·
√
T
.

This means that if we adjust the training length T based on values of σ by having some target
(δ, ε)-bound for the candidate model (Algorithm 1 of Section 4), the resulting RDP upper bounds
of different candidates will not be far from each other (and similarly for adjusting σ based on value
of T ). Similarly, for Algorithm 2 of Section 4, when adjusting T based on values of σ, the RDP
guarantees of all the candidate models would be close to the upper bound (c · α, c > 0), i.e., they
would not be far from each other.
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Figure 3: DP-SGD RDP curves for different values of noise level σ and number of compostions T .
Left: γ = 1/100, right: γ = 1/50 and the corresponding lines with the smallest slope that give
upper bounds for the RDP orders up to α = 24.

B FULL DESCRIPTION OF EXPERIMENTS

Quality Metric and Evaluation. In all of our experiments, we partition the available data into
train and test sets and choose the best model based on the test accuracy. Training and test sets are
disjoint, and the quality metric is usually a low sensitivity function. Therefore, even for a private test
set, parallel composition (for an RDP bound of parallel compositions, we refer to Appendix D) can
accommodate DP evaluation of a quality metric in the training budget itself. However, we assume
that only the training dataset is private and the test data is public for simplicity. This assumption of
test data set being public and the approach of making only two (train and test) partitions of available
data instead of three (train, validation, and test) has been considered in many prior works (Mohapatra
et al., 2022; Papernot & Steinke, 2022) to study the proposed method in isolation. This relaxation
also allows us to take the best checkpoint over all epochs for each model.

Our plots show the test accuracy of the final model against the final approximate DP ε of the tuning
process for several target ε’s, varying from {0.4, 0.6, .., 2.0}. We fix q = 0.1 for our methods. We
mention that in several cases smaller value of q would have lead to better privacy-accuracy trade-
off (see Appendix E for additional experiments), however we use the same value q = 0.1 in all
experiments. The carry out RDP accounting using RDP orders {2, . . . , 64} and use δ = 10−5 in all
experiments.
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Methods. We consider the both variants of our proposed approach in our experiments. The final
ε(α)’s for the variant 2 and 1 are obtained by combining Thm. 5 with Thm. 4 and Thm. 6, respec-
tively. We expect the second variant to be more accurate for a larger final ε compared to the first,
since the final models obtained with the mechanism equation 3.2 use slightly more data than the one
obtained with the mechanism equation 3.1. As discussed in Section 3.2, we scale the best learn-
ing rate obtained from the first model by the dataset size for training the final model. The method
by Papernot & Steinke (2022) described in Thm. 5 is the baseline.

Datasets and Models. We carry out our experiments on the following standard benchmark datasets
for classification: CIFAR-10 (Krizhevsky & Hinton, 2009), MNIST (LeCun et al., 1998), Fashion-
MNIST (Xiao et al., 2017) and IMDB (Maas et al., 2011). For MNIST and IMDB, we use the
convolutional neural networks from the examples provided in the Opacus library Yousefpour et al.
(2021). For FashionMNIST, we consider a simple feedforward 3-layer ReLU network with hidden
layers of width 120. For CIFAR-10, we use a Resnet20 pretrained on CIFAR-100 (Krizhevsky &
Hinton, 2009) dataset so that only the last fully connected layer is trained. We minimize the cross-
entropy loss in all models. Following the Opacus example, we optimize with DP-Adam for IMDB
dataset, but use DP-SGD for others.

Hyperparameters. For these datasets, in one of the experiments we tune only the learning rate, and
in the other one the learning rate, batch size, and the number of epochs, while fixing the clipping
constant C. The number of trainable parameters and the hyperparameter ranges used are provided
in Table 2 (Appendix B.2). The numbers of epochs are chosen to suit our computational constraints.
Following the procedure from Section 4.1, we compute the smallest σ satisfying a target (ε, δ) bound
for each (γ, epoch) pair. The only purpose of target ε’s is to facilitate the mapping from epochs to
σ, and retain comparability across methods.

Initializing with the First Model. We are free to use the first model beyond hyperparameter ex-
traction, since its privacy cost is already accounted for in the privacy analysis. Therefore, we use it
to initialize the final model in both variants.

Implementation. For the implementation of DP-SGD, we use the Opacus library (Yousefpour et al.,
2021). For scalability, we explore the hyperparameter spaces with Ray Tune (Liaw et al., 2018) on
a multi-GPU cluster. We spell out additional details in the corresponding sections.

B.1 TUNING LEARNING RATE

The learning rate is among the most critical hyperaparameters, and thus we start with a learning rate
optimization experiment. We fix the subsampling ratio γ and the number of epochs to the values
given in Table 1 (Appendix B.2) for all models. For example, for q = 0.1, γ = 0.0213 on MNIST
dataset, the Poisson subsampling of DP-SGD gives in expectation batch sizes of 128 and 1150 for
our method and 1280 for the baseline method. The learning rate grid size is either 5 or 6, and we
use µ = 10, which is sufficiently large to include a good candidate with a large probability.

Plot Description. Figure 1 and Figure 2 plots the test accuracy against the final ε for all 4 datasets.
The labels with ’variant 1’ and ’variant 2’ refer to the mechanism given in equation 3.1 and equa-
tion 3.2. The label ’baseline’ refers to the method by (Papernot & Steinke, 2022) described in
Thm. 5. The left panel for each dataset considers the case when the first model output by the tuning
algorithm is used to initialize the subsequent model and the right panel shows the results when the
first model is not used for initialization. Each plot contains 9 points for each method, one for each
target ε (ε ∈ {0.4, 0.6, .., 2.0}) for each model training run.
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B.2 HYPERPARAMETER TABLES

Tables 1 and 2 gives the hyperaparameters for the experiments of figures 1 and 2.

MNIST FashionMNIST CIFAR-10 IMDB
γ = B

N 0.0213 0.0213 0.0256 0.0256
epochs 40 40 40 110

Table 1: Tuning η: rest of the hyperparameters fixed to these values.

train/test set parameters C B learning rate epochs
MNIST 60k/10k ∼26k 1 {128, 256} {10−i}i∈{2,1.5,1,0.5,0} {10,20,30,40}

FashionMNIST 60k/10k ∼109k 3 {128, 256} {10−i}i∈{2,1.5,1,0.5,0,−0.5} {10,20,30,40}
CIFAR-10 50k/10k 0.65k 3 {64, 128} {10−i}i∈{2,1.5,1,0.5,0,−0.5} {20,30,40}

IMDB 25k/25k ∼464k 1 {64, 128} {0.02,0.1,0.2,1,1.1} {50,70,90,110}

Table 2: Tuning σ, η and T : datasets used and the corresponding hyperparameter grids.
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C PROOF OF THEOREM 6

C.1 AUXILIARY LEMMA

We will need the following inequality for the proof of Theorem 6.

Lemma C.1 (Lemma 35, Steinke 2022). For all p ∈ [0, 1] and x ∈ (0,∞),

1

1− p+ p
x

≤ 1− p+ p · x.

Remark C.2. An alternative proof for this result can be obtained using so called Bergström’s in-
equality, which states that for all xk ∈ R, ak > 0, k ∈ [n],

(x1 + . . .+ xn)2

a1 + . . .+ an
≤ x2

1

a1
+ . . .+

x2
n

an
. (C.1)

In particular, for n = 2 and a1 = q
x , a2 = 1− q, x1 = q, x2 = 1− q, this gives

1

1− q + q
x

≤ 1− q + q · x.

As the following proof shows, the statement of of Theorem 6 could be generalized to the case of
random k-way split (k > 2) using the inequality of equation C.1.

C.2 PROOF OF THM. 6

Proof. We first consider the case Dα

(
M(Y )||M(X)

)
. Let X ∈ Xn and x′ ∈ X . Denote

ε1(α) = Dα

(
M(X ∪ {x′})||M(X)

)
.

Looking at our approach which uses Poisson subsampling with subsampling ratio q to obtain the
dataset X1, and conditioning the output on the randomness in choosing X1, we can write the mech-
anism as a mixture over all possible choices of X1 as

M(X) =
∑
X1

pX1
·
(
M1(X1),M2(M1(X1), X\X1)

)
, (C.2)

where pX1 is the probability of sampling X1. Since each data element is in X1 with probability q,
we can furthermore writeM(X ∪ {x′}) as a mixture

M(X ∪ {x′}) =
∑
X1

pX1
·
(
q ·
(
M1(X1 ∪ {x′}),M2(M1(X1 ∪ {x′}), X\X1)

)
+ (1− q) ·

(
M1(X1),M2(M1(X1), X\X1 ∪ {x′})

))
.

(C.3)

From the quasi-convexity of the Rényi divergence (Van Erven & Harremos, 2014) and the expres-
sions equation C.2 and equation C.3, it follows that

Dα

(
M(X ∪ {x′})||M(X)

)
≤ sup

X1

Dα

(
q ·
(
M1(X1 ∪ {x′}),M2(M1(X1 ∪ {x′}), X\X1)

)
+ (1− q) ·

(
M1(X1),M2(M1(X1), X\X1 ∪ {x′})

)
||
(
M1(X1),M2(M1(X1), X\X1)

))
.

(C.4)

Our aim is to express the right-hand side of equation C.4 in terms of RDP parameters ofM1 and
M2. To this end, take an arbitrary X1 ⊂ X , and denote by

• P̃ (t) the density function ofM1(X1 ∪ {x′}),

• P (t) the density function ofM1(X1),

• Q̃(t, s) the density function ofM2(t,X\X1 ∪ {x′}) for auxiliary variable t (the output of
M1),
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• Q(t, s) the density function ofM2(t,X\X1) for auxiliary variable t.

Then, we see that

P
((
M1(X1),M2(M1(X1), X\X1)

)
= (t, s)

)
= P (t) ·Q(t, s)

and similarly that

P
(
q ·
(
M1(X1 ∪ {x′}),M2(M1(X1 ∪ {x′}), X\X1)

)
+ (1− q) ·

(
M1(X1),M2(M1(X1), X\X1 ∪ {x′})

)
= (t, s)

)
= q · P

((
M1(X1 ∪ {x′}),M2(M1(X1 ∪ {x′}), X\X1)

)
= (t, s)

)
+ (1− q) · P

((
M1(X1),M2(M1(X1), X\X1 ∪ {x′})

)
= (t, s)

)
= q · P̃ (t) ·Q(t, s) + (1− q) · P (t) · Q̃(t, s).

By the definition of the Rényi divergence, we have that

exp

(
(α− 1)Dα

(
q ·
(
M1(X1 ∪ {x′}),M2(M1(X1 ∪ {x′}), X\X1)

)
+ (1− q) ·

(
M1(X1),M2(M1(X1), X\X1 ∪ {x′})

)
||
(
M1(X1),M2(M1(X1), X\X1)

)))
=

∫ ∫ (
q · P̃ (t) ·Q(t, s) + (1− q) · P (t) · Q̃(t, s)

P (t) ·Q(t, s)

)α
· P (t) ·Q(t, s) dt ds.

(C.5)
which can be expanded as∫ ∫ (

q · P̃ (t) ·Q(t, s) + (1− q) · P (t) · Q̃
P (t) ·Q(t, s)

)α
P (t) ·Q(t, s) dt ds

=

∫ ∫ (
q · P̃ (t)

P (t)
+ (1− q) · Q̃(t, s)

Q(t, s)

)α
P (t) ·Q(t, s) dt ds

=

∫ ∫
qα

(
P̃ (t)

P (t)

)α
P (t) ·Q(t, s) dt ds

+

∫ ∫
(1− q)α

(
Q̃(t, s)

Q(t, s)

)α
P (t) ·Q(t, s) dt ds

+

∫ ∫
α · qα−1 · (1− q) ·

(
P̃ (t)

P (t)

)α−1

P (t) · Q̃(t, s) dt ds

+

∫ ∫
α · q · (1− q)α−1 ·

(
Q̃(t, s)

Q(t, s)

)α−1

Q(t, s) · P̃ (t) dt ds

+

∫ ∫ α−2∑
j=2

(
α

j

)
· qα−j · (1− q)j ·

( P̃ (t)

P (t)

)α−j
P (t)

( Q̃(t, s)

Q(t, s)

)j
Q(t, s)

 dt ds.

(C.6)

We next bound five integrals on the right hand side of equation C.6. For the first two integrals, we
use the RDP-bounds forM1 andM2 to obtain∫ ∫ (

P̃ (t)

P (t)

)α
P (t)Q(t, s) dt ds =

∫ (
P̃ (t)

P (t)

)α
P (t) dt

≤ exp
(
(α− 1)εP (α)

)
.

(C.7)
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and ∫ ∫ (
Q̃(t, s)

Q(t, s)

)α
Q(t, s)P (t) ds dt ≤

∫
exp

(
(α− 1)εQ(α)

)
P (t) dt

= exp
(
(α− 1)εQ(α)

)
,

(C.8)

where εP and εQ give the RDP-parameters of order α for M1 and M2, respectively. The third
and fourth integral can be bounded analogously. In the second inequality we have also used the fact
that the RDP-parameters ofM2 are independent of the auxiliary variable t. Similarly, for the third
integral, we have ∫ ∫ ( P̃ (t)

P (t)

)α−j
P (t)

( Q̃(t, s)

Q(t, s)

)j
Q(t, s)

 ds dt

≤
∫ ( P̃ (t)

P (t)

)α−j
P (t)

 exp
(
(j − 1)εQ(j)

)
dt

≤ exp
(
(α− j − 1)εP (α− j)

)
· exp

(
(j − 1)εQ(j)

)
.

(C.9)

Substituting equation C.7, equation C.8 (and similar expressions for the third and fourth integral)
and equation C.9 to equation C.6, we get a bound for equation C.5. Since X1 ⊂ X was arbitrary,
we arrive at the claim via equation C.4.

Next, we consider bounding Dα

(
M(X)||M(Y )

)
. The proof goes similarly as the one for

Dα

(
M(Y )||M(X)

)
. Denote

ε2(α) = Dα

(
M(X)||M(X ∪ {x′})

)
.

With the notation of proof of Thm. 6, we see that, instead of equation C.5, we need to bound

exp
(
(α− 1)ε2(α)

)
=

∫ ∫ (
P (t) ·Q(t, s)

q · P̃ (t) ·Q(t, s) + (1− q) · P (t) · Q̃(t, s)

)α
(q · P̃ (t) ·Q(t, s) + (1− q) · P (t) · Q̃(t, s)) dt ds.

In order to use here the series approach, we need to use Lemma C.1:

(
P ·Q

q · P̃ ·Q+ (1− q) · P · Q̃

)α
(q · P̃ ·Q+ (1− q) · P · Q̃)

=

(
P ·Q

q · P̃ ·Q+ (1− q) · P · Q̃

)α−1

· P ·Q

=

(
q · P̃

P
+ (1− q) · Q̃

Q

)1−α

· P ·Q

=

(
q · P̃

P

Q

Q̃
+ (1− q)

)1−α

·

(
Q̃

Q

)1−α

· P ·Q

=

(
q · P̃

P

Q

Q̃
+ (1− q)

)1−α

·
(
Q

Q̃

)α−1

· P ·Q

≤

(
q · P

P̃

Q̃

Q
+ (1− q)

)α−1

·
(
Q

Q̃

)α−1

· P ·Q

=

(
q · P

P̃

Q̃

Q
+ (1− q)

)α−1

·
(
Q

Q̃

)α
· P · Q̃,

(C.10)
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where in the inequality we have used Lemma C.1. Now we can expand
(
q · P

P̃

Q̃
Q + 1− q

)α−1

:(
1− q + q · P

P̃

Q̃

Q

)α−1

·
(
Q

Q̃

)α
· P · Q̃

=

α−1∑
j=0

(
α− 1

j

)
qj · (1− q)α−1−j ·

(
P

P̃

)j (
Q̃

Q

)j · (Q
Q̃

)α
· P · Q̃

=

α−1∑
j=0

(
α− 1

j

)
qj · (1− q)α−1−j ·

(
P

P̃

)j (
Q

Q̃

)α−j · P · Q̃

=

α−1∑
j=0

(
α− 1

j

)
qj · (1− q)α−1−j ·

(
P

P̃

)j+1

P̃ ·
(
Q

Q̃

)α−j
Q̃.

Then, we use the known εP (α) and εQ(α)-values as in equation C.9 to arrive at the claim.
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D f -DIVERGENCE OF PARALLEL COMPOSITIONS

We first formulate the parallel composition result for general f -divergences (Lemma D.1). We then
obtain the RDP bound for parallel compositions as a corollary (Cor. D.2).

Our Lemma D.1 below can be seen as an f -divergence version of the (ε, 0)-DP result given
in (Thm. 4 McSherry, 2009). Corollary 2 by Smith et al. (2022) gives the corresponding result
in terms of µ-Gaussian differential privacy (GDP), and it is a special case of our Lemma D.1 as
µ-GDP equals the (ε, δ)-DP (i.e., the hockey-stick divergence) of the Gaussian mechanism with a
certain noise scale (Cor. 1, Dong et al., 2022).

We define f -divergence for distributions on Rd as follows. Consider two probability densities P and
Q defined on Rd, such that ifQ(x) = 0 then also P (x) = 0, and a convex function f : [0,∞)→ R.
Then, an f -divergence (Liese & Vajda, 2006) is defined as

Df (P ||Q) =

∫
f

(
P (t)

Q(t)

)
Q(t) dt.

In case the data is divided into disjoint shards and separate mechanisms are applied to each shard,
the f -divergence upper bound for two neighbouring datasets can be obtained from the individual
f -divergence upper bounds:
Lemma D.1. Suppose a dataset X ∈ XN is divided into k disjoint shards Xi, i ∈ [k], and mecha-
nismsMi, i ∈ [k], are applied to the shards, respectively. Consider the mechanism

M(X) =
(
M1(X1), . . . ,Mk(Xk)

)
.

Then, we have that

max
X∼Y

Df

(
M(X)||M(Y )

)
≤ max

i∈[k]
max
X∼Y

Df

(
Mi(X)||Mi(Y )

)
.

Proof. Let X be divided into k shards as described above and suppose Y is a neighbouring dataset
such that X1 ∼ Y1 and Y = {Y1, X2, . . . , Xk}.
Then, we see that

P
(
M(X) = (a1, . . . , ak)

)
P
(
M(Y ) = (a1, . . . , ak)

)
=

P
(
M1(X1) = a1

)
· P
(
M1(X2, a1) = a2

)
· · ·P

(
Mk(Xk, a1, . . . , ak−1) = ak

)
P
(
M1(Y1) = a1

)
· P
(
M1(X2, a1) = a2

)
· · ·P

(
Mk(Xk, a1, . . . , ak−1) = ak

)
=

P
(
M1(X1) = a1

)
P
(
M1(Y1) = a1

) .
and furthermore, denoting a = (a1, . . . , ak),

Df

(
M(X)||M(Y ))

)
=

∫
f

(
P
(
M(X) = a

)
P
(
M(Y ) = a

))P
(
M(Y ) = a

)
da

=

∫
f

(
P
(
M1(X1) = (a1)

)
P
(
M1(Y1) = (a1)

) )P
(
M(Y ) = a

)
da

=

∫
f

(
P
(
M1(X1) = (a1)

)
P
(
M1(Y1) = (a1)

) )P
(
M(Y1) = (a1)

)
da1

= Df (M1(X1)||M1(Y1))
)
.

Thus,

Df (M(X)||M(Y )) = Df (M1(X1)||M1(Y1)) ≤ max
X∼Y

Df (M1(X)||M1(Y )).

Similarly, if Xi ∼ Yi, i = 2, . . . , k and

Y =
(
X1, . . . Xi−1, Yi, Xi+1, . . . , Xk

)
,
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we see that

Df (M(X)||M(Y )) = Df (Mi(Xi)||Mi(Yi)) ≤ max
X∼Y

Df (Mi(X)||Mi(Y )).

Thus, we have that

max
X∼Y

Df (M(X)||M(Y )) = max
i∈[k]

max
X∼Y

Df (Mi(X)||Mi(Y )).

Corollary D.2. Suppose a dataset X ∈ XN is divided into k disjoint shards Xi, i ∈ [k], and
mechanismsMi, i ∈ [k], are applied to the shards, respectively. Consider the mechanism

M(X) =
(
M1(X1), . . . ,Mk(Xk)

)
.

Suppose eachMi is
(
α, εi(α)

)
-RDP, respectively. Then,M is

(
α,maxi∈[k] εi(α)

)
-RDP.

Proof. This follows from Lemma D.1 since

exp
(
(α− 1)Dα(M(X)||M(Y ))

)
=

∫ (P
(
M(X) = a

)
P
(
M(Y ) = a

))α P(M(Y ) = a
)

da

is an f -divergence for f(x) = xα. Thus, by Lemma D.1 we have that

max
X∼Y

exp
(
(α− 1)Dα(M(X)||M(Y ))

)
≤ max

i∈[k]
max
X∼Y

exp
(
(α− 1)Dα(Mi(X)||Mi(Y ))

)
from which it follows that

max
X∼Y

Dα(M(X)||M(Y )) ≤ max
i∈[k]

max
X∼Y

Dα(Mi(X)||Mi(Y )) = max
i∈[k]

εi(α).
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E ADDITIONAL EXPERIMENTS

E.1 COMPARISON OF (ε, δ)-BOUNDS

Figure 4: Final ε as a function of q for µ = 50, when the base mechanism is the subsampled
Gaussian mechanism with γ = 64/6000, number of epochs = 50 and σ = 2.0. The value of q varies
from 0.05 to 0.9. Compared to the baseline, our method has considerably smaller ε’s for small values
of q. However, with q ≤ 0.1, it may not provide good utility on small data sets (e.g., IMDB).

E.2 VARY q

When q increases, the hyperparameter tuning mechanism trains with a larger dataset which means
also weaker final privacy guarantees. Additionally, the best learning rate from the first model is also
scaled with a smaller factor in the final model. We perform for an experiment to compute the final
test accuracies and ε-values as a function of q.

Figure 5 shows the test accuracy as a function of target ε for the base mechanism (DP-SGD), q, final
ε. The value of q in each plot varies from 0.1 to 0.8. As expected, the accuracy for the variant 1
drops when q increases. The performance of variant 2 that trains the final model with the full dataset
remains relatively steady for all models. In IMDB, we use DP-Adam to train the IMDB model and
do not scale the best initial learning rate.
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(a) MNIST with µ = 10

(b) FashionMNIST with µ = 10

(c) CIFAR-10 with µ = 10

(d) IMDB with µ = 10

Figure 5: Tuning learning rate: We keep the batch size, the number of epochs fixed and only tune
the learning rate with our method for various values of q’. Test accuracies are averaged across 5
independent runs. The error bars denotes the std. error of the mean. Each plot contains 8 points
for both variants of our method, one for each q ∈ {0.1, 0.2, .., 0.8} (left to right). We also add
the baseline method for comparison. The q = 0.1 case generally yields the peak accuracy on all
datasets.
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(a) MNIST with µ = 10

(b) FashionMNIST with µ = 10

(c) CIFAR-10 with µ = 10

(d) IMDB with µ = 10

Figure 6: Tuning learning rate for q ≤ 0.1: We keep the batch size and the number of epochs fixed
and only tune the learning rate with our methods for various values of q ≤ 0.1. Test accuracies are
averaged across 5 independent runs. The error bars denotes the std. error of the mean. Each plot
contains 4 points for both variants, i.e. when q ∈ {0.05, 0.067, 0.083, 0.1}.
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