

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 POLYP SEGMENTATION BY DUAL-DOMAIN REASON- ING: FUZZY SPATIAL CONTROL AND FREQUENCY SE- LECTION

006 **Anonymous authors**

007 Paper under double-blind review

010 ABSTRACT

013 Colorectal cancer (CRC) screening relies on accurate polyp segmentation, yet
014 subtle appearance differences and ambiguous boundaries in colonoscopy images
015 make this task challenging. To overcome these limitations, we propose FSFMamba,
016 a dual-domain fusion network that jointly models boundary uncertainty and fre-
017 quency structure to improve delineation. In the spatial domain, a Fuzzy Spatial
018 Control Mechanism (FSCM) instantiates an interval type-2 membership to localize
019 uncertainty at boundary bands while preserving stability in homogeneous regions.
020 In the spectral domain, a Frequency Adaptive Selection Mechanism (FASM) per-
021 forms octave-wise spectral decomposition and applies learnable band-wise weight-
022 ing to emphasize task-relevant subbands and suppress spurious responses. The two
023 streams are fused by a Mamba-based state-space block that enables long-range,
024 low-latency interactions and pre-norm residual refinement for stable optimization.
025 Extensive experiments show FSFMamba consistently outperforms recent baselines
026 with sharper boundaries, fewer false positives, and strong robustness.

027 1 INTRODUCTION

030 Colorectal cancer (CRC) is the third most common cancer worldwide, accounting for 10% of all cases,
031 and remains the second leading cause of cancer-related deaths. Notably, around 85% of CRC cases
032 arise from adenomatous polyps (Mathews et al., 2021). Early detection and removal can significantly
033 reduce incidence and mortality, achieving a 5-year survival rate of up to 90% (Jiang et al., 2023).
034 Consequently, there is a critical need for automated and reliable polyp segmentation methods to
035 support physicians in accurately identifying polyp regions during diagnosis.

036 Recent advances in deep learning have significantly improved polyp segmentation performance (Lu
037 et al., 2024; Lijin et al., 2024). However, accurate delineation remains challenging due to the
038 frequent presence of indistinct and ambiguous polyp boundaries (Fig. 1(a) and (b)). To mitigate this,
039 various methods have introduced boundary-aware modules, such as reverse attention (Zhao et al.,
040 2019), balanced attention (Nguyen et al., 2021), and uncertainty-augmented context attention (Kim
041 et al., 2021). Yet, these models often fail in cases involving severe boundary ambiguity. To further
042 enhance boundary modeling, some studies have employed Bayesian estimation frameworks (Djebara
043 et al., 2025; Han et al., 2025) to capture prediction uncertainty. Despite these efforts, effectively
044 distinguishing polyps from fuzzy or overlapping background regions remains an open problem. This
045 raises a key question: **How can uncertainty be effectively modeled to better distinguish polyps
from the background under boundary ambiguity?**

046 Furthermore, our investigation reveals that existing methods primarily focus on single spatial fea-
047 tures, which, despite their effectiveness in segmentation, are prone to interference from complex
048 backgrounds due to their reliance on pixel-level information, particularly local intensity and spatial
049 position (Xu et al., 2024b). This limitation hampers their ability to capture global correlations, making
050 it difficult to distinguish subtle variations within polyps and surrounding tissues. Recent studies
051 indicate that frequency features extracted via Fourier Transform (FT) (Qin et al., 2021) or Discrete
052 Cosine Transform (DCT) (Xu et al., 2024b) provide global contextual representations, improving
053 image interpretation and alleviating spatial limitations. However, these methods primarily target
high- and low-frequency components, potentially neglecting critical mid-frequency information that

Figure 1: Motivation. (a) is CRC image, while (b) highlights the magnified polyp region with ambiguous boundaries and significant uncertainty. For this, we employ a *Fuzzy Spatial Control Mechanism*, where $G^+(v; \mu, \sigma)$ and $G^-(v; \mu, \sigma)$ define the uncertainty bounds, refining key cues by fuzzy control, as shown in (c). (d) enhances contours and edges by frequency cues, but boundary ambiguity and interference limit its effectiveness. (e) shows the *Frequency Adaptive Selection Mechanism*. We split Fourier features into fixed radial octave bands and learn weights to select frequencies, then invert to refine features, mainly strengthening boundary cues.

encodes essential structural details, as shown in Fig. 1 (d). Thus, another important question arises: **How can frequency cues be optimally utilized to extract meaningful information?**

To address the above challenges, we propose FSFMamba, a joint fuzzy spatial-frequency learning framework built on a Mamba backbone for precise polyp segmentation. It tackles both boundary ambiguity and multi-frequency representation. To address *Problem 1*, we design the Fuzzy Spatial Control Mechanism (FSCM), which leverages fuzzy set theory to model boundary uncertainty. By employing second-order membership functions with upper and lower bounds $G^+(v; \mu, \sigma)$ and $G^-(v; \mu, \sigma)$, FSCM adaptively captures edge ambiguity and transition regions (see Fig. 1(c)). To solve *Problem 2*, we propose the Frequency Adaptive Selection Mechanism (FASM), which leverages spectral decomposition to derive subband representations and employs a learnable weighting scheme to selectively amplify discriminative frequency components. **As shown in Fig. 1 (e), FASM decomposes Fourier features into fixed octave bands and learns their weights, which are then mapped back to refine spatial predictions.** To jointly optimize both domains, we integrate FSCM and FASM into a Dual-Domain Perception Mechanism (D2PM), forming the Frequency Learning and Fuzzy Spatial Control (FLFSC). In a nutshell, the main contributions are listed as:

- To our knowledge, we are the first to employ fuzzy control to model ambiguous boundary uncertainty and exploit multi-frequency bands to capture subtle variations, thereby enhancing polyp segmentation.
- We propose the joint fuzzy spatial-frequency learning Mamba network (FSFMamba) integrating multi-level FLFSC for learning of fuzzy spatial features and frequency cues. Each FLFSC integrates: (i) FSCM for capturing boundary uncertainty and adapts to membership variability, (ii) FASM for modeling intrinsic correlations across frequency bands and learns dependencies among frequency components, and (iii) D2PM for combining both to enhance polyp segmentation.
- Extensive comparative experiments on public datasets demonstrate that our method consistently provides robust segmentation performance across various challenging scenarios.

2 RELATED WORKS

Polyp Segmentation. Recent polyp segmentation spans CNN, Transformer, and hybrid designs. CNNs with VGG (Vedaldi & Zisserman, 2016) and ResNet (Koone, 2021), enhanced by attention (Kim et al., 2021; Nguyen et al., 2021; Zhao et al., 2019), interaction (Zhang et al., 2022b), edge-

Figure 2: Overview of the proposed FSFMamba framework for polyp segmentation. Among these, FSCM resolves boundaries by Gaussian fuzzy regression, FASM filters critical frequency sub-bands, and D2PM fuses fuzzy spatial feature and spectral feature by visual state-space operators.

aware (Su et al., 2023), and multi-scale modules (Ji et al., 2024a), capture fine detail but lack global context. Transformers improve long-range reasoning via self-attention, as in ViT (Chen et al., 2021), Swin-Unet (Cao et al., 2023), and UNetFormer (Wang et al., 2022), often with higher compute. Hybrids such as TransFuse (Zhang et al., 2021), PolypPVT (Bo et al., 2023), and SSFormer (Shi et al., 2022) integrate global and local cues. Foundation models (SAM (Wei et al., 2024b), SAM2-UNet (Xiong et al., 2024)) and VMamba (Liu et al., 2024b) extend efficient global modeling. Following this, we adopt Mamba as the backbone for efficient feature extraction.

Fuzzy Learning. Deep learning excels at large-scale, task-driven feature extraction, but deterministic models handle uncertainty poorly. To mitigate this, fuzzy logic has been integrated into neural networks (Luo et al., 2023; Mohammadzadeh et al., 2023). Huang *et al.* (Xie et al., 2021) use fuzzy memberships to quantify pixel-level ambiguity in segmentation. Wang *et al.* (Wang et al., 2023) map images into a fuzzy domain for rule-based reasoning and fuse the result with convolutional features. Wei *et al.* (Wei et al., 2024a) detect boundary pixels via local variation with fuzzy awareness. We instead adopt a Gaussian-regressed interval type-2 membership that converts rigid constraints into elastic spatial boundaries, improving structural adaptability and reducing uncertainty.

Frequency Learning. Frequency analysis, central to signal processing (Pitas, 2000), is increasingly applied in vision to guide optimization (Yin et al., 2019), enable non-local feature learning (Huang et al., 2023), and support domain-generalizable representations (Lin et al., 2023b). In polyp segmentation, Ren *et al.* (Ren et al., 2024) leverage high-frequency cues with a local–nonlocal Transformer. Recent work integrates spatial and frequency cues: Yue *et al.* (Yue et al., 2024) fuse them via interaction learning, and Li *et al.* (Li et al., 2024) apply parameterized frequency modulation to refine styles and enhance lesions. Although frequency–spatial fusion is common, polyp noise and texture ambiguity undermine feature reliability. We propose fuzzy-controlled spatial optimization with adaptive frequency selection to jointly strengthen representations across domains.

3 METHODOLOGY

3.1 OVERVIEW

The framework of our FSFMamba is shown in Fig. 2, in which Mamba is adopted as the backbone (see Appendix A.2.1) owing to its demonstrated ability to capture long-range dependencies with lower computational overhead compared to full-attention Transformers. Given an input image $I \in \mathbb{R}^{H \times W \times 3}$, VMamba (Liu et al., 2024b) extracts multi-scale features $\{F_i\}_{i=1}^4$ with dimensions $\frac{H}{2^{i+1}} \times \frac{W}{2^{i+1}} \times C_i$. These are sequentially processed by Frequency Learning and Fuzzy Spatial Control (FLFSCs), which integrate a **fuzzy spatial control** mechanism (FSCM), a **frequency adaptive selection** mechanism (FASM), and a dual-domain perception module (D2PM) to refine feature

Figure 3: The illustration of FSCM constrained feature map.

representation. A partial decoder (PD; see Appendix A.2.2) provides semantic priors to the deepest FLFSC, while each subsequent FLFSC is hierarchically guided by the preceding output.

3.2 FUZZY SPATIAL CONTROL

In polyp segmentation, sharp boundary labels are unreliable because polyps and mucosa often share highly similar visual traits. To better capture this ambiguity, fuzzy logic assigns graded memberships to polyp and background, thereby enabling smooth boundary transitions and uncertainty-aware supervision. Building on this principle, FSCM explicitly regularizes boundary features to mitigate annotation brittleness, as illustrated in Fig. 3. By enforcing fuzzy learning, boundaries become smoother and the network gains stronger discrimination ability, akin to Gaussian fuzzy mechanisms (Liu, 2018) that assign membership based on neighboring pixel positions:

$$G_i(v; \mu, \sigma) = \frac{\lambda}{\sqrt{2\pi}\sigma} e^{-\frac{(v_i - \mu)^2 + \frac{1}{\rho(R_i)} \sum_{i' \in R_i'} (v_{i'} - \mu)^2}{2\sigma^2}}, \quad (1)$$

where $G_i(\cdot)$ represents the membership function, i is the pixel index, λ is the model coefficient, and v_i is the deep feature activation at pixel i from an intermediate feature map. μ and σ are the mean and standard deviation of the pixel values, respectively. R_i is the 8-neighbor set in a 3×3 window centered at pixel i , R_i' is derived from the signed distance map of predicted boundary logits within a local neighborhood, and $\rho(R_i)$ denotes the neighborhood scale normalization over R_i , implemented as a differentiable local standard deviation:

$$\rho(R_i) = \sqrt{\frac{1}{|R_i|} \sum_{u \in R_i} (u - \bar{u})^2 + \varepsilon}. \quad (2)$$

This term estimates local feature variation and adaptively normalizes the membership response. To account for non-Gaussian deviations, we introduce asymmetric fuzzy membership functions G_i^+ and G_i^- , representing interval-based pixel-wise confidence. G_i^+ captures positive deviations, while G_i^- encodes negative deviations, jointly modeling uncertainty with flexible context-aware constraints. The upper membership function $G_i^+(\cdot)$ is defined as:

$$G_i^+(v; \mu, \sigma) = \begin{cases} \frac{\lambda}{\sqrt{2\pi}\sigma} e^{-\frac{(v_i - \mu^-)^2 + \frac{1}{\rho(R_i)} \sum_{i' \in R_i'} (v_{i'} - \mu^-)^2}{2\sigma^2}}, & \text{if } v_i < \mu^- \\ \frac{\lambda}{\sqrt{2\pi}\sigma} e^{-\frac{(v_i - \mu^+)^2 + \frac{1}{\rho(R_i)} \sum_{i' \in R_i'} (v_{i'} - \mu^+)^2}{2\sigma^2}}, & \text{if } v_i > \mu^+ \end{cases} \quad (3)$$

In a similar way, the lower membership function, $G_i^-(\cdot)$, expressed as:

$$G_i^-(v; \mu, \sigma) = \begin{cases} \frac{\lambda}{\sqrt{2\pi}\sigma} e^{-\frac{(v_i - \mu^+)^2 + \frac{1}{\rho(R_i)} \sum_{i' \in R_i'} (v_{i'} - \mu^+)^2}{2\sigma^2}}, & \text{if } v_i \leq \frac{\mu^- + \mu^+}{2} \\ \frac{\lambda}{\sqrt{2\pi}\sigma} e^{-\frac{(v_i - \mu^-)^2 + \frac{1}{\rho(R_i)} \sum_{i' \in R_i'} (v_{i'} - \mu^-)^2}{2\sigma^2}}, & \text{if } v_i > \frac{\mu^- + \mu^+}{2} \end{cases} \quad (4)$$

where the mean value μ is adjusted to the interval $[\mu^-, \mu^+]$, with μ^- and μ^+ representing the mean values at the left and right boundaries of the interval, are respectively calculated as:

$$\mu^- = \mu - \xi \times \sigma, \quad \mu^+ = \mu + \xi \times \sigma, \quad (5)$$

Figure 4: The illustration of FASM.

where ξ is the interval adjustment factor for mean deviation. Under a Gaussian membership, 99.7% of mass falls in $[\mu - 3\sigma, \mu + 3\sigma]$. We control uncertainty with $\xi \in [0, 3]$, shifting the lower/upper memberships to form adaptive constraint intervals. The fuzzy feature is $X_{\text{fuzzy}} = \sum_{i=1}^R G_i^{+/-}(v; \mu, \sigma) v_i$ and ξ adjusts G^+/G^- weight kernel responses. Detailed theoretical analysis is provided in Appendix A.3.

3.3 FREQUENCY ADAPTIVE SELECTION

Standard CNNs are dominated by local inductive bias. Without an explicit mechanism to regulate spectral content, they tend to either overfit high-frequency noise or under-exploit mid-range texture cues that are critical for polyp delineation, especially under blur and low contrast. Motivated by this, we introduce the Frequency Adaptive Selection Module (FASM) to explicitly factor and reweight frequency components before dual-domain fusion. As illustrated in Fig. 4, FASM suppresses unstable high-frequency responses while preserving informative mid-frequency structures, thereby yielding a more frequency-balanced representation.

Given a channel feature map $X_c \in \mathbb{R}^{H \times W}$ with $c \in \{1, 2, \dots, C_i\}$, we transform it into the Fourier domain via the discrete Fourier transform (DFT),

$$X_{\mathcal{F},c}(u, v) = \frac{1}{HW} \sum_{h=0}^{H-1} \sum_{w=0}^{W-1} X_c(h, w) e^{-2\pi j(uh + vw)}, \quad (6)$$

where (h, w) denotes spatial coordinates and (u, v) denotes normalized frequencies along height and width. After shifting the spectrum to center low-frequency components, u and v range over $\{-\frac{H}{2}, \dots, \frac{H}{2} - 1\}$ and $\{-\frac{W}{2}, \dots, \frac{W}{2} - 1\}$, respectively. Frequencies beyond the Nyquist limit $\mathcal{H}_{D+} = \{(u, v) \mid |u| > \frac{1}{2D} \text{ or } |v| > \frac{1}{2D}\}$ cannot be faithfully represented, which effectively bounds the usable bandwidth.

Different from wavelet or DWT-based decompositions that yield predefined multi-scale sub-bands, we adopt a simple and interpretable octave-wise Fourier partition. Specifically, we decompose $X_{\mathcal{F},c}$ into multiple fixed sub-bands using binary masks,

$$X_{b,c} = \mathcal{F}^{-1}(\mathcal{M}_{b,c} X_{\mathcal{F},c}), \quad (7)$$

where \mathcal{F}^{-1} is the inverse DFT and $\mathcal{M}_{b,c}$ is defined by fixed octave thresholds,

$$\mathcal{M}_{b,c}(u, v) = \begin{cases} 1, & \text{if } \phi_b \leq \max(|u|, |v|) < \phi_{b+1}, \\ 0, & \text{otherwise.} \end{cases} \quad (8)$$

where $\{\phi_b\}_{b=0}^B$ are predetermined frequency boundaries, yielding an octave-wise split of the normalized spectrum. In all experiments, we use four bands $[0, \frac{1}{16}], [\frac{1}{16}, \frac{1}{8}], [\frac{1}{8}, \frac{1}{4}],$ and $[\frac{1}{4}, \frac{1}{2}]$.

Crucially, FASM does *not* learn band boundaries. Instead, it learns spatially varying selection maps A_b to adaptively reweight fixed bands,

$$\hat{X} = \text{Conv}(\text{Cat}[A_0 \odot X_0, A_1 \odot X_1, \dots, A_{B-1} \odot X_{B-1}]), \quad (9)$$

where \hat{X} is the frequency-balanced representation. The selection map $A_b \in \mathbb{R}^{H \times W \times C_i}$ for band b is predicted from the input features via $A_b = \text{Conv}_b(X)$. The operator \odot denotes element-wise

Figure 5: The illustration of D2PM.

multiplication, $\text{Cat}[\cdot]$ is channel-wise concatenation, and $\text{Conv}(\cdot)$ is a 1×1 convolution for fusing band-specific responses. This design yields a fixed, octave-wise spectral basis for interpretability, while allowing the model to emphasize the most informative bands in a content-aware manner. Detailed theoretical analysis is provided in Appendix A.4.

3.4 DUAL-DOMAIN PERCEPTION

The D2PM is proposed to fuse fuzzy spatial and frequency cues to capture cross-scale mixed information and long-range dependencies. As shown in Fig. 5, the D2PM consists of two stages: the input is first normalized and processed by the Visual State Space Block (VSSB) to capture global context, and then passed through the Scale-Mixed Feed-Forward Layer (SMFFL) to extract multi-scale features with residual connections. Formally:

$$F_{\text{cor}} = \text{Cat}(\hat{X}, X_{\text{fuzzy}}, F_{\text{cor}}^{(k-1)}), F'_{\text{cor}} = F_{\text{cor}} + \text{VSSB}(\text{LN}(F_{\text{cor}})), F_{\text{cor}}^{(k)} = F'_{\text{cor}} + \mathcal{S}(\text{LN}(F'_{\text{cor}})), \quad (10)$$

where $\text{LN}(\cdot)$ refers to the layer normalization and $\mathcal{S}(\cdot)$ is the SMFFL.

VSSB. Fig. 5 provides the structure of the VSSB. The input features X are first subjected to layer normalization, followed by processing by a linear layer, resulting in the two separate streams as:

$$F_1 = \text{Fc}(\text{LN}(X)), F'_1 = \text{LN}(\text{SS2D}(\text{SiLU}(\text{DW}(F_1)))), F_{\text{VSSB}} = \text{Fc}(F'_1 \otimes \text{SiLU}(F_1)), \quad (11)$$

where $\text{DW}(\cdot)$ refers to depth-wise separable convolution, $\text{SiLU}(\cdot)$ represents SiLU activation function, $\text{Fc}(\cdot)$ is linear layer, $\text{SS2D}(\cdot)$ denotes 2D selective scanning, and F_{VSSB} is the output of VSSB.

SMFFL. As shown in Fig. 5, SMFFL adopts a dual-branch, multi-scale structure. The input feature F_X is normalized and split into two branches with linear projection and 3×3 or 5×5 convolutions to capture multi-scale features in a low-dimensional space. After GELU activation and up-projection, residual connections are added to support gradient flow. The process is defined as:

$$F'_X = \text{LN}(F_X), F_{X1} = f_3(\text{Fc}(F'_X)), F_{X2} = f_5(\text{Fc}(F'_X)), F_S = \text{Fc}(\sigma_G(\text{Cat}(F_{X1}, F_{X2}))) + F_X, \quad (12)$$

where $f_x(\cdot)$ denotes the standard convolution operation of size $x \times x$, $\sigma_G(\cdot)$ represents the GELU activation function, and \oplus indicates element-wise addition.

3.5 LOSS FUNCTIONS

The loss function utilized in this study is formulated as $\mathcal{L} = \mathcal{L}_{w\text{IoU}} + \mathcal{L}_{w\text{BCE}}$ (Jun Wei, 2020), where $\mathcal{L}_{w\text{IoU}}$ represents the weighted intersection over union (IoU) loss and $\mathcal{L}_{w\text{BCE}}$ denotes the weighted binary cross-entropy (BCE) loss. We implement the \mathcal{L} to facilitate deep supervision across the four outputs $\{t_i, i = 1, 2, 3, 4\}$. Thus, the total loss is $\mathcal{L}_{\text{total}} = \sum_{i=1}^{i=4} \mathcal{L}(t_i^{up}, G)$.

324
 325 Table 1: Quantitative comparison of our method against other models on two domain-specific datasets:
 326 CVC-ClinicDB and Kvasir-SEG. Best results are in **red**.

Method	CVC-ClinicDB						Kvasir-SEG					
	mDSC ↑	mIoU ↑	wFm ↑	Sm ↑	MAE ↓	maxEm ↑	mDSC ↑	mIoU ↑	wFm ↑	Sm ↑	MAE ↓	maxEm ↑
CaraNet	0.9045	0.8480	0.8943	0.9379	0.0124	0.9729	0.9046	0.8465	0.8869	0.9188	0.0273	0.9653
DCRNet	0.8962	0.8440	0.8902	0.9337	0.0101	0.9779	0.8864	0.8248	0.8681	0.9106	0.0354	0.9412
SSFormer	0.9160	0.8730	0.9240	0.9370	0.0070	0.9847	0.9250	0.8780	0.9210	0.9310	0.0170	0.9643
HSNet	0.9476	0.9050	0.9508	0.9543	0.0055	0.9933	0.9258	0.8771	0.9177	0.9268	0.0234	0.9639
CFANet	0.9325	0.8828	0.9241	0.9507	0.0068	0.9893	0.9147	0.8615	0.9029	0.9240	0.0229	0.9623
FeDNet	0.9304	0.8846	0.9284	0.9501	0.0069	0.9817	0.9242	0.8761	0.9180	0.9329	0.0212	0.9664
PolypPVT	0.9368	0.8894	0.9355	0.9500	0.0064	0.9891	0.9174	0.8642	0.9105	0.9251	0.0228	0.9617
MSCAF-Net	0.9261	0.8786	0.9222	0.9503	0.0064	0.9818	0.9113	0.8565	0.9026	0.9218	0.0248	0.9636
CAFE-Net	0.9326	0.8889	0.9316	0.9549	0.0064	0.9816	0.9210	0.8742	0.9145	0.9319	0.0211	0.9700
PGCF	0.9397	0.8938	0.9396	0.9520	0.0057	0.9925	0.9117	0.8622	0.9049	0.9214	0.0241	0.9610
CTNet	0.9355	0.8875	0.9344	0.9529	0.0063	0.9876	0.9171	0.8628	0.9100	0.9280	0.0232	0.9640
SAM2UNet	0.9041	0.8535	0.8983	0.9464	0.0097	0.9683	0.9241	0.8760	0.9169	0.9394	0.0198	0.9727
DBG-Net	0.9047	0.8571	0.8982	0.9367	0.0079	0.9684	0.9152	0.8626	0.9062	0.9196	0.0253	0.9637
Ours	0.9522	0.9112	0.9510	0.9600	0.0053	0.9945	0.9358	0.8951	0.9331	0.9403	0.0176	0.9705

349
 350 Figure 6: **Complexity comparison on CVC-ClinicDB and Kvasir-SEG.** Metrics are split by optimization objective for clarity: (i) higher-is-better metrics and (ii) lower-is-better metrics.

352 4 EXPERIMENTS

354 4.1 SETUPS

356 **Datasets.** Following the experimental setups in (Bo et al., 2023), we systematically evaluate the
 357 performance of our method across five prominent public datasets focused on polyp segmentation:
 358 CVC-300, CVC-ClinicDB, Kvasir-SEG, CVC-ColonDB, and ETIS.

359 **Compared Models and Evaluation Metrics.** We compare our method against 13 public polyp
 360 segmentation models, including CaraNet (Lou et al., 2021), DCRNet (Yin et al., 2022), SSFormer (Shi
 361 et al., 2022), HSNet (Zhang et al., 2022b), CFANet (Zhang & Yan, 2023), FeDNet (Su et al., 2023),
 362 Polyp-PVT (Bo et al., 2023), MSCAF-Net (Liu et al., 2023), CAFE-Net (Liu et al., 2024a), PGCF (Ji
 363 et al., 2024b), CTNet (Xiao et al., 2024), SAM2UNet (Xiong et al., 2024), and DBG-Net (Zhai et al.,
 364 2024). For fairness, we adopt their official codes and evaluate all models under identical training
 365 and testing settings. Each method is rigorously assessed by 6 widely recognized metrics (Bo et al.,
 366 2023): mean Dice Similarity Coefficient (mDSC), mean Intersection over Union (mIoU), Weighted
 367 F-measure (wFm), S-measure (Sm), max E-measure (maxEm), and Mean Absolute Error (MAE).

368 **Implementation Details.** Our method is developed on the PyTorch framework, with the VMamba-
 369 Small model pretrained on ImageNet as the backbone. To account for variations in polyp image
 370 sizes, a multi-scale strategy of $\{0.75, 1, 1.25\}$ is employed instead of conventional data augmentation.
 371 Input images are resized to 352×352 pixels, with a mini-batch size of 16, and training is 100 epochs.
 372 The AdamW optimizer is used to fine-tune the model parameters, with a learning rate and weight
 373 decay both set to $1e-4$. The training process, executed on an NVIDIA A5000 GPU.

375 4.2 COMPARISON WITH STATE-OF-THE-ARTS

376 **Quantitative Analysis of Learning Ability.** We conduct a quantitative comparison on two clinically
 377 relevant benchmarks, CVC-ClinicDB and Kvasir-SEG (Table 1). Our method consistently outper-

378

379
380
Table 2: Quantitative comparison of our method against other models across three out-of-domain
datasets: CVC-300, CVC-ColonDB, and ETIS. Best results are in red.

381 382 Method	383 CVC-300								384 CVC-ColonDB								385 ETIS							
	mDSC	mIoU	wFm	Sm	MAE	maxEm	mDSC	mIoU	wFm	Sm	MAE	maxEm	mDSC	mIoU	wFm	Sm	MAE	maxEm						
CaraNet	0.8809	0.8109	0.8499	0.9298	0.0096	0.9820	0.7384	0.6558	0.7065	0.8289	0.0454	0.8725	0.7293	0.6444	0.6734	0.8488	0.0159	0.9126						
DCRNet	0.8565	0.7883	0.8303	0.9216	0.0101	0.9597	0.7040	0.6315	0.6839	0.8211	0.0516	0.8480	0.5557	0.4960	0.5063	0.7356	0.0958	0.7730						
SSFormer	0.8870	0.8210	0.8690	0.9290	0.0070	0.9751	0.7720	0.6970	0.7660	0.8440	0.0170	0.9235	0.7670	0.6980	0.7360	0.8630	0.0160	0.9132						
HSNet	0.9027	0.8393	0.8868	0.9375	0.0067	0.9750	0.8099	0.7347	0.7955	0.8679	0.0324	0.9146	0.8079	0.7335	0.7775	0.8821	0.0211	0.9090						
CFANet	0.8933	0.8269	0.8746	0.9383	0.0080	0.9781	0.7426	0.6649	0.7281	0.8351	0.0388	0.8976	0.7325	0.6549	0.6930	0.8455	0.0143	0.8920						
FeDNet	0.9106	0.8485	0.8971	0.9461	0.0057	0.9854	0.8235	0.7443	0.8089	0.8781	0.0295	0.9219	0.8104	0.7335	0.7729	0.8916	0.0156	0.9414						
PolypPVT	0.9001	0.8332	0.8835	0.9349	0.0066	0.9812	0.8083	0.7273	0.795	0.8654	0.0311	0.9190	0.7869	0.7058	0.7498	0.8709	0.0130	0.9098						
MSCAF-Net	0.9022	0.8362	0.8842	0.9417	0.0061	0.9805	0.7902	0.7109	0.7691	0.8596	0.0313	0.9033	0.7745	0.6977	0.7342	0.8660	0.0165	0.9069						
CAFE-Net	0.8867	0.8151	0.8618	0.9304	0.0079	0.9747	0.8181	0.7387	0.7994	0.8760	0.0270	0.9182	0.8275	0.7485	0.7874	0.8996	0.0122	0.9375						
PGCF	0.8955	0.8272	0.8732	0.9351	0.0073	0.9762	0.8158	0.7376	0.8013	0.8729	0.0271	0.9233	0.7619	0.6861	0.7290	0.8578	0.0173	0.8862						
CTNet	0.9082	0.8437	0.8943	0.9435	0.0058	0.9822	0.8127	0.7336	0.8007	0.8749	0.0272	0.9195	0.8098	0.7337	0.7764	0.8865	0.0139	0.9205						
SAM2UNet	0.8901	0.8237	0.9220	0.9579	0.0042	0.9866	0.8048	0.7279	0.7887	0.8773	0.0282	0.9141	0.7930	0.7201	0.7579	0.8815	0.0178	0.9113						
DBG-Net	0.9019	0.8367	0.8834	0.9400	0.0052	0.9797	0.7971	0.7227	0.7807	0.8698	0.0282	0.9120	0.7521	0.6813	0.7186	0.8604	0.0142	0.9098						
Ours	0.9171	0.8674	0.9076	0.9533	0.0056	0.9879	0.8912	0.8347	0.8828	0.9252	0.0158	0.9623	0.8560	0.7939	0.8361	0.9162	0.0076	0.9537						

394

395

396 forms existing approaches across all metrics. On CVC-ClinicDB, it ranks first on mDSC (0.9522),
397 mIoU (0.9112), wFm (0.9510), Sm (0.9600), and maxEm (0.9945), while attaining the lowest MAE
398 (0.0053). The same pattern holds on Kvasir-SEG, where our model leads on core metrics, including
399 mDSC (0.9358) and mIoU (0.8951), evidencing strong generalization. Although SAM2UNet has a
400 marginally higher maxEm (0.9727) on Kvasir-SEG, our approach delivers a more balanced overall
401 profile. The Fig. 6 shows our method has mid-range FLOPs and parameters with high FPS, offering a
402 favorable accuracy–efficiency trade-off.

Figure 7: Visualization comparisons on CVC-ClinicDB and Kvasir-SEG datasets.

419

420

421 **Quantitative Analysis of Generalization Ability.** We evaluate out-of-domain performance on
422 CVC-300, CVC-ColonDB, and ETIS (Table 2). Our method consistently surpasses comparison
423 models on most metrics. On CVC-300, it achieves the best mDSC of 0.9171, mIoU of 0.8674, and
424 maxEm of 0.9879. On CVC-ColonDB, where image quality is low and structural variability is high,
425 it reaches the top mDSC of 0.8912 and mIoU of 0.8347. On ETIS, which contains low-resolution
426 and small-scale polyps, it again leads across metrics, including mDSC of 0.8560, mIoU of 0.7939,
427 and Sm of 0.9162. While SAM2UNet peaks on a few isolated metrics, our model provides a more
428 balanced profile, evidencing robust generalization under domain shift.

429

430

431

429 **Qualitative Analysis.** As shown in Fig. 7, baseline methods such as CaraNet, DCRNet, and SSFormer
430 often miss accurate polyp boundaries under complex shapes and low contrast, yielding fragmented
431 or incomplete masks. More recent models improve overall detection but frequently over-segment
432 ambiguous regions, introducing false positives. In contrast, HSNet, PGCF, and our method achieve

Figure 8: Visualization comparisons on CVC-300, CVC-ColonDB, and ETIS datasets.

Table 3: Ablation analysis of the components in our method. Best results are in **bold**.

No.	Settings			CVC-ClinicDB		Kvasir-SEG	
	baseline	PD	FLFSC	mDSC	mIoU	mDSC	mIoU
#1	✓	✗	✗	0.8623	0.8073	0.8537	0.8012
#2	✓	✓	✗	0.8951	0.8255	0.8879	0.8225
#3	✓	✗	✓	0.9312	0.8843	0.9231	0.8754
#4	✓	✓	✓	0.9522	0.9112	0.9358	0.8951
FSCM FASM D2PM			mDSC	mIoU	mDSC	mIoU	
#5	✓	✗	✗	0.9158	0.8601	0.9089	0.8524
#6	✓	✓	✗	0.9328	0.8846	0.9214	0.8748
#7	✓	✗	✓	0.9334	0.8873	0.9218	0.8716

Figure 9: Ablation results on different configurations.

stronger structural alignment with the ground truth. Notably, our approach better preserves fine boundaries while suppressing background noise, reflecting superior spatial awareness and feature discrimination. Fig. 8 further confirms this advantage on CVC-300, CVC-ColonDB, and ETIS, demonstrating robust generalization under domain shifts and challenging clinical conditions.

4.3 ABLATION STUDY

The Effect of Each Component. Table 3 reports the ablation study of FSFMamba. Starting from the “Vmamba–FPN” baseline (#1), we individually introduce the PD (#2) and FLFSC (#3) components, each yielding clear gains. Their joint integration (#4) further amplifies performance, achieving the best results. Fig. 9 shows that adding PD and FLFSC progressively sharpens predictions toward GT boundaries, confirming their complementarity and the effect of our method.

Figure 10: Octave-wise band-selection maps A_b learned by FASM. Mid-frequency maps (2/3) highlight polyp contours, while low- (1) and high-frequency (4) maps mainly respond to smooth background and noisy details, respectively.

Table 4: Type-2 vs. Type-1 FSCM ablation

Dataset	Model	mDice \uparrow	mIoU \uparrow	MAE \downarrow
CVC-ClinicDB	Type-2 FSCM (Full)	0.9522	0.9091	0.0068
	Type-1 FSCM baseline	0.9417	0.8943	0.0081
Kvasir-SEG	Type-2 FSCM (Full)	0.9358	0.8896	0.0089
	Type-1 FSCM baseline	0.9246	0.8729	0.0103
CVC-ColonDB	Type-2 FSCM (Full)	0.8820	0.8012	0.0315
	Type-1 FSCM baseline	0.8613	0.7784	0.0352
ETIS	Type-2 FSCM (Full)	0.8325	0.7420	0.0410
	Type-1 FSCM baseline	0.8041	0.7118	0.0461

The Effect of Sub-modules within FLFSC. To assess the contribution of the FLFSC, we decompose it into FSCM, FASM, and D2PM. As shown in Table 3, FSCM (#5) handles fuzzy boundaries, FASM (#6) selects frequency cues to enrich structural detail, and D2PM (#7) fuses both outputs. Each part provides measurable gains, while the full FLFSC (#4) achieves the best performance. These results confirm that combining spatial and frequency cues is critical for accurate polyp delineation.

Evidence of Critical Mid-Frequency Selection. To make FASM’s frequency preference explicit, we visualize the learned octave-wise band-selection maps A_b for four bands. Fig. 10 shows that the mid-frequency maps (A_2, A_3) form contiguous high-response belts along polyp contours and thin structures, while the low-frequency map A_1 mainly responds to smooth background and coarse illumination and the high-frequency map A_4 is sparsely activated in noisy or specular regions. This confirming that FASM prioritizes mid-frequency cues for subtle boundary delineation over extreme low or high frequencies.

Type-2 vs Type-1 FSCM Ablation Analysis. We build a Type-1 fuzzy baseline by collapsing FSCM’s upper and lower memberships into a single Gaussian membership with the same parameterization, while keeping the backbone, losses, and training protocol identical. As shown in Table 4, the interval Type-2 FSCM consistently improves mDice/mIoU and reduces MAE across all datasets, with larger gains on boundary-ambiguous and out-of-domain sets (*e.g.*, CVC-ColonDB and ETIS) where Type-1 tends to under-model uncertainty. Since Type-1 is a degenerate case of Type-2, these results show that the adaptive fuzzy band in Type-2 provides necessary flexibility for resolving ambiguous polyp contours, justifying the added complexity.

5 CONCLUSION

In this paper, we propose FSFMamba to address boundary ambiguity and multi-frequency exploitation in polyp segmentation. The FSCM captures boundary uncertainty through fuzzy learning, while the FASM emphasizes informative subbands to refine representation. Embedded in the D2PM, these components jointly optimize spatial and spectral cues. Extensive experiments demonstrate consistent improvements in segmentation accuracy, boundary precision, and robustness across datasets, highlighting the effectiveness of FSFMamba for automated CRC screening. Future work will explore adaptive representations and efficient modeling strategies to further enhance scalability and generalization in real-world clinical settings.

540 **6 ETHICS STATEMENTS**
541542 We use only de-identified, publicly available colonoscopy datasets (CVC-ClinicDB, Kvasir-SEG,
543 CVC-300, CVC-ColonDB, and ETIS) under their licenses, and we collect no new human data. No
544 reidentification is attempted, and all data are handled on secure research infrastructure. The method
545 is for research use and is not a diagnostic device. We acknowledge possible distribution shift and bias
546 across sites and recommend site-specific evaluation. Code, configurations, and checkpoints will be
547 released to support transparency, reproducibility, and responsible use.
548549 **7 REPRODUCIBILITY STATEMENT**
550551 We ensure reproducibility by releasing source code, configuration files, trained checkpoints, and eval-
552 uation scripts, together with fixed random seeds and an environment specification. All preprocessing,
553 training, and inference steps are scripted end-to-end, with exact metric definitions and reporting
554 protocols included. We will provide ablation and hyperparameter sweep scripts to enable independent
555 verification without reliance on undocumented settings.
556557 **REFERENCES**
558559 Jorge Bernal, F Javier Sánchez, Gloria Fernández-Esparrach, Debora Gil, Cristina Rodríguez, and
560 Fernando Vilariño. Wm-dova maps for accurate polyp highlighting in colonoscopy: Validation vs.
561 saliency maps from physicians. *Computerized medical imaging and graphics*, 43:99–111, 2015.
562
563 Dong Bo, Wang Wenhai, Fan Deng-Ping, Li Jinpeng, Fu Huazhu, and Shao Ling. Polyp-pvt: Polyp
564 segmentation with pyramidvision transformers. *CAAI AIR*, 2023.
565
566 Hu Cao, Yueyue Wang, Joy Chen, Dongsheng Jiang, Xiaopeng Zhang, Qi Tian, and Manning Wang.
567 Swin-unet: Unet-like pure transformer for medical image segmentation. In Leonid Karlinsky,
568 Tomer Michaeli, and Ko Nishino (eds.), *Computer Vision – ECCV 2022 Workshops*, pp. 205–218,
569 Cham, 2023. Springer Nature Switzerland.
570
571 Xiangning Chen, Cho-Jui Hsieh, and Boqing Gong. When vision transformers outperform resnets
572 without pretraining or strong data augmentations. *arXiv preprint arXiv:2106.01548*, 2021.
573
574 Beilei Cui, Mingqing Zhang, Mengya Xu, An Wang, Wu Yuan, and Hongliang Ren. Rectifying
575 noisy labels with sequential prior: Multi-scale temporal feature affinity learning for robust video
576 segmentation. In *International Conference on Medical Image Computing and Computer-Assisted
Intervention*, pp. 90–100, 2023.
577
578 Yanis Djebra, Xiaofeng Liu, Thibault Marin, Amal Tiss, Maeva Dhaynaut, Nicolas Guehl, Keith
579 Johnson, Georges El Fakhri, Chao Ma, and Jinsong Ouyang. Bayesian posterior distribution
580 estimation of kinetic parameters in dynamic brain pet using generative deep learning models. *IEEE
Transactions on Medical Imaging*, pp. 1–1, 2025. doi: 10.1109/TMI.2025.3588859.
581
582 Deng-Ping Fan, Ge-Peng Ji, Tao Zhou, Geng Chen, Huazhu Fu, Jianbing Shen, and Ling Shao.
583 Planet: Parallel reverse attention network for polyp segmentation. *MICCAI*, pp. 263–273, 2020.
584
585 Chengjia Han, Handuo Yang, and Yaowen Yang. Enhancing pixel-level crack segmentation with
586 visual mamba and convolutional networks. *Automation in Construction*, 168:105770, 2024.
587
588 Kai Han, Shuhui Wang, Jun Chen, Chengxuan Qian, Chongwen Lyu, Siqi Ma, Chengjian Qiu,
589 Victor S. Sheng, Qingming Huang, and Zhe Liu. Region uncertainty estimation for medical image
590 segmentation with noisy labels. *IEEE Transactions on Medical Imaging*, pp. 1–1, 2025. doi:
591 10.1109/TMI.2025.3589058.
592
593 Zhipeng Huang, Zhizheng Zhang, Cuiling Lan, Zheng-Jun Zha, Yan Lu, and Baining Guo. Adaptive
frequency filters as efficient global token mixers. In *Proceedings of the IEEE/CVF International
Conference on Computer Vision*, pp. 6049–6059, 2023.

594 Debesh Jha, Pia H Smedsrød, Michael A Riegler, Pål Halvorsen, Thomas De Lange, Dag Johansen,
 595 and Håvard D Johansen. Kvasir-seg: A segmented polyp dataset. In *MultiMedia modeling: 26th*
 596 *international conference, MMM 2020, Daejeon, South Korea, January 5–8, 2020, proceedings,*
 597 *part II 26*, pp. 451–462. Springer, 2020.

598 Ge-Peng Ji, Yu-Cheng Chou, Deng-Ping Fan, Geng Chen, Huazhu Fu, Debesh Jha, and Ling Shao.
 599 Progressively normalized self-attention network for video polyp segmentation. In *International*
 600 *Conference on Medical Image Computing and Computer-Assisted Intervention*, pp. 142–152, 2021.

602 Zexuan Ji, Hao Qian, and Xiao Ma. Progressive group convolution fusion network for colon polyp
 603 segmentation. *Biomedical Signal Processing and Control*, 96:106586, 2024a. ISSN 1746-8094.
 604 doi: <https://doi.org/10.1016/j.bspc.2024.106586>.

605 Zexuan Ji, Hao Qian, and Xiao Ma. Progressive group convolution fusion network for colon polyp
 606 segmentation. *Biomedical Signal Processing and Control*, 96:106586, 2024b.

608 Wenxi Jiang, Linying Xin, Shefeng Zhu, Zhaoxue Liu, Jiali Wu, Feng Ji, Chaohui Yu, and Zhe Shen.
 609 Risk factors related to polyp miss rate of short-term repeated colonoscopy. *Digestive Diseases and*
 610 *Sciences*, 68(5):2040–2049, 2023.

611 Qingming Huang Jun Wei, Shuhui Wang. F3net: Fusion, feedback and focus for salient object
 612 detection. In *Proceedings of the AAAI Conference on Artificial Intelligence*, 2020.

614 Taehun Kim, Hyemin Lee, and Daijin Kim. Uacanet: Uncertainty augmented context attention for
 615 polyp segmentation. In *Proceedings of the 29th ACM international conference on multimedia*, pp.
 616 2167–2175, 2021.

617 Brett Koonce. *ResNet 50*, pp. 63–72. Apress, Berkeley, CA, 2021.

619 Yan Li, Zhuoran Zheng, Wenqi Ren, Yunfeng Nie, Jingang Zhang, and Xiuyi Jia. Dual-domain
 620 learning network for polyp segmentation. In Bin Ma, Jian Li, and Qi Li (eds.), *Digital Forensics*
 621 *and Watermarking*, pp. 233–247, Singapore, 2024.

622 P Lijin, Mohib Ullah, Anuja Vats, Faouzi Alaya Cheikh, Madhu S Nair, et al. Dual encoder decoder
 623 shifted window-based transformer network for polyp segmentation with self-learning approach.
 624 *IEEE Transactions on Artificial Intelligence*, 2024.

625 Junhao Lin, Qian Dai, Lei Zhu, Huazhu Fu, Qiong Wang, Weibin Li, Wenhao Rao, Xiaoyang Huang,
 626 and Liansheng Wang. Shifting more attention to breast lesion segmentation in ultrasound videos.
 627 In *International Conference on Medical Image Computing and Computer-Assisted Intervention*,
 628 pp. 497–507, 2023a.

630 Shiqi Lin, Zhizheng Zhang, Zhipeng Huang, Yan Lu, Cuiling Lan, Peng Chu, Quanzeng You, Jiang
 631 Wang, Zicheng Liu, Amey Parulkar, et al. Deep frequency filtering for domain generalization.
 632 In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp.
 633 11797–11807, 2023b.

634 Fang Liu. Generalized gaussian mechanism for differential privacy. *IEEE Transactions on Knowledge*
 635 *and Data Engineering*, 31(4):747–756, 2018.

636 Guoqi Liu, Sheng Yao, Dong Liu, Baofang Chang, Zongyu Chen, Jiajia Wang, and Jiangqi Wei.
 637 Cafe-net: Cross-attention and feature exploration network for polyp segmentation. *Expert Systems*
 638 *with Applications*, 238:121754, 2024a. ISSN 0957-4174. doi: <https://doi.org/10.1016/j.eswa.2023.121754>.

641 Yu Liu, Haihang Li, Juan Cheng, and Xun Chen. Mscaf-net: A general framework for camouflaged
 642 object detection via learning multi-scale context-aware features. *IEEE Trans. Cir. and Sys. for*
 643 *Video Technol.*, 33(9):4934–4947, September 2023. ISSN 1051-8215.

644 Yue Liu, Yunjie Tian, Yuzhong Zhao, Hongtian Yu, Lingxi Xie, Yaowei Wang, Qixiang Ye, and
 645 Yunfan Liu. Vmamba: Visual state space model. *arXiv preprint arXiv:2401.10166*, 2024b.

646 Ange Lou, Shuyue Guan, and Murray H. Loew. Caranet: context axial reverse attention network for
 647 segmentation of small medical objects. *Journal of Medical Imaging*, 10:014005 – 014005, 2021.

648 Ziru Lu, Yizhe Zhang, Yi Zhou, Ye Wu, and Tao Zhou. Domain-interactive contrastive learning
 649 and prototype-guided self-training for cross-domain polyp segmentation. *IEEE Transactions on*
 650 *Medical Imaging*, pp. 1–1, 2024. doi: 10.1109/TMI.2024.3443262.

651 Na Luo, Hua Yu, Zeqing You, Yao Li, Tunan Zhou, Yuwei Jiao, Nan Han, Chenxu Liu, Zihan Jiang,
 652 and Shaojie Qiao. Fuzzy logic and neural network-based risk assessment model for import and
 653 export enterprises: A review. *Journal of Data Science and Intelligent Systems*, 1(1):2–11, 2023.

654 April A Mathews, Peter V Draganov, and Dennis Yang. Endoscopic management of colorectal polyps:
 655 From benign to malignant polyps. *World Journal of Gastrointestinal Endoscopy*, 13(9):356, 2021.

656 Ardashir Mohammadzadeh, Chunwei Zhang, Khalid A Alattas, Fayed FM El-Sousy, and Mai The Vu.
 657 Fourier-based type-2 fuzzy neural network: Simple and effective for high dimensional problems.
 658 *Neurocomputing*, 547:126316, 2023.

659 Tan-Cong Nguyen, Tien-Phat Nguyen, Gia-Han Diep, Anh-Huy Tran-Dinh, Tam V Nguyen, and
 660 Minh-Triet Tran. Ccbanet: cascading context and balancing attention for polyp segmentation. In
 661 *Medical Image Computing and Computer Assisted Intervention*, pp. 633–643. Springer, 2021.

662 I Pitas. Digital image processing algorithms and applications. *John Wiley & Sons Inc google schola*,
 663 2:133–138, 2000.

664 Zequn Qin, Pengyi Zhang, Fei Wu, and Xi Li. Fcanet: Frequency channel attention networks. In
 665 *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 783–792, 2021.

666 Jingjing Ren, Xiaoyong Zhang, and Lina Zhang. Hifiseg: High-frequency information enhanced
 667 polyp segmentation with global-local vision transformer. *arXiv preprint arXiv:2410.02528*, 2024.

668 Wentao Shi, Jing Xu, and Pan Gao. Ssformer: A lightweight transformer for semantic segmentation.
 669 In *Proceedings of International Workshop on Multimedia Signal Processing*, pp. 1–5, 09 2022. doi:
 670 10.1109/MMSP55362.2022.9949177.

671 Juan Silva, Aymeric Histace, Olivier Romain, Xavier Dray, and Bertrand Granado. Toward embedded
 672 detection of polyps in wce images for early diagnosis of colorectal cancer. *International journal of*
 673 *computer assisted radiology and surgery*, 9:283–293, 2014.

674 Yanzhou Su, Jian Cheng, Chuqiao Zhong, Yijie Zhang, Jin Ye, Junjun He, and Jun Liu. Fednet:
 675 Feature decoupled network for polyp segmentation from endoscopy images. *Biomedical Signal*
 676 *Processing and Control*, 83:104699, 2023. ISSN 1746-8094. doi: <https://doi.org/10.1016/j.bspc.2023.104699>.

677 Nima Tajbakhsh, R Gurudu, Suryakanth, and Jianming Liang. Automated polyp detection in
 678 colonoscopy videos using shape and context information. *IEEE transactions on medical imaging*,
 679 35(2):630–644, 2015.

680 David Vázquez, Jorge Bernal, F Javier Sánchez, Gloria Fernández-Esparrach, Antonio M López,
 681 Adriana Romero, Michal Drozdzał, and Aaron Courville. A benchmark for endoluminal scene
 682 segmentation of colonoscopy images. *Journal of healthcare engineering*, 2017(1):4037190, 2017.

683 Andrea Vedaldi and Andrew Zisserman. Vgg convolutional neural networks practical. *Department of*
 684 *Engineering Science, University of Oxford*, 66, 2016.

685 Changzhong Wang, Xiang Lv, Mingwen Shao, Yuhua Qian, and Yang Zhang. A novel fuzzy
 686 hierarchical fusion attention convolution neural network for medical image super-resolution
 687 reconstruction. *Information Sciences*, 622:424–436, 2023. ISSN 0020-0255.

688 Haolin Wang, Kai-Ni Wang, Jie Hua, Yi Tang, Yang Chen, Guang-Quan Zhou, and Shuo Li. Dynamic
 689 spectrum-driven hierarchical learning network for polyp segmentation. *Medical Image Analysis*,
 690 101:103449, 2025a.

691 Libo Wang, Rui Li, Ce Zhang, Shenghui Fang, Chenxi Duan, Xiaoliang Meng, and Peter M. Atkinson.
 692 Unetformer: A unet-like transformer for efficient semantic segmentation of remote sensing urban
 693 scene imagery. *ISPRS Journal of Photogrammetry and Remote Sensing*, 190:196–214, 2022. ISSN
 694 0924-2716. doi: <https://doi.org/10.1016/j.isprsjprs.2022.06.008>.

702 Yongpeng Wang, Qi Tian, Jinghui Chu, and Wei Lu. A wavelet-enhanced boundary aware network
 703 with dynamic fusion for polyp segmentation. *Neurocomputing*, pp. 130259, 2025b.
 704

705 Guangyi Wei, Jindong Xu, Qianpeng Chong, Jianjun Huang, and Haihua Xing. Prior-guided fuzzy-
 706 aware multibranch network for remote sensing image segmentation. *IEEE Geoscience and Remote
 707 Sensing Letters*, 2024a.

708 J Wei, J Deng, and M Chao. Sam-based auto-segmentation of critical structures for head and neck
 709 cancer radiotherapy. *International Journal of Radiation Oncology, Biology, Physics*, 120(2):
 710 e113–e114, 2024b.
 711

712 Zhe Wu, Li Su, and Qingming Huang. Cascaded partial decoder for fast and accurate salient object
 713 detection. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
 714 pp. 3907–3916, 2019.

715 Bin Xiao, Jinwu Hu, Weisheng Li, Chi-Man Pun, and Xiuli Bi. Ctnet: Contrastive transformer
 716 network for polyp segmentation. *IEEE Transactions on Cybernetics*, 2024.

717 Chen Xie, Deepu Rajan, and Quek Chai. An interpretable neural fuzzy hammerstein-wiener network
 718 for stock price prediction. *Information Sciences*, 577:324–335, 2021.

719 Xinyu Xiong, Zihuang Wu, Shuangyi Tan, Wenxue Li, Feilong Tang, Ying Chen, Siying Li, Jie Ma,
 720 and Guanbin Li. Sam2-unet: Segment anything 2 makes strong encoder for natural and medical
 721 image segmentation. *arXiv preprint arXiv:2408.08870*, 2024.

722 Huihui Xu, Yijun Yang, Angelica I Aviles-Rivero, Guang Yang, Jing Qin, and Lei Zhu. Lgrnet: Local-
 723 global reciprocal network for uterine fibroid segmentation in ultrasound videos. In *International
 724 Conference on Medical Image Computing and Computer-Assisted Intervention*, pp. 667–677,
 725 2024a.

726 Wenhao Xu, Rongtao Xu, Changwei Wang, Xiuli Li, Shibiao Xu, and Li Guo. Pstnet: Enhanced
 727 polyp segmentation with multi-scale alignment and frequency domain integration. *IEEE Journal
 728 of Biomedical and Health Informatics*, 2024b.

729 Dong Yin, Raphael Gontijo Lopes, Jon Shlens, Ekin Dogus Cubuk, and Justin Gilmer. A fourier
 730 perspective on model robustness in computer vision. *Advances in Neural Information Processing
 731 Systems*, 32, 2019.

732 Zijin Yin, Kongming Liang, Zhanyu Ma, and Jun Guo. Duplex contextual relation network for polyp
 733 segmentation. In *2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)*, pp.
 734 1–5, 2022. doi: 10.1109/ISBI52829.2022.9761402.

735 Guanghui Yue, Yuanyan Li, Shangjie Wu, Bin Jiang, Tianwei Zhou, Weiqing Yan, Hanhe Lin, and
 736 Tianfu Wang. Dual-domain feature interaction network for automatic colorectal polyp segmentation.
 737 *IEEE Transactions on Instrumentation and Measurement*, 2024.

738 Chenxu Zhai, Lei Yang, Yanhong Liu, and Guibin Bian. Dbg-net: A double-branch boundary guidance
 739 network for polyp segmentation. *IEEE Transactions on Instrumentation and Measurement*, 2024.

740 Qing Zhang and Weiqi Yan. Cfnet: A cross-layer feature aggregation network for camouflaged
 741 object detection. In *2023 IEEE International Conference on Multimedia and Expo (ICME)*, pp.
 742 2441–2446, 2023. doi: 10.1109/ICME55011.2023.00416.

743 Ruifei Zhang, Peiwen Lai, Xiang Wan, De-Jun Fan, Feng Gao, Xiao-Jian Wu, and Guanbin Li.
 744 Lesion-aware dynamic kernel for polyp segmentation. In *International Conference on Medical
 745 Image Computing and Computer-Assisted Intervention*, pp. 99–109. Springer, 2022a.

746 Wenchao Zhang, Chong Fu, Yu Zheng, Fangyuan Zhang, Yanli Zhao, and Chiu-Wing Sham. Hsnet:
 747 A hybrid semantic network for polyp segmentation. *Computers in Biology and Medicine*, 150:
 748 106173, 2022b. ISSN 0010-4825. doi: <https://doi.org/10.1016/j.combiomed.2022.106173>.

749 Yundong Zhang, Huiye Liu, and Qiang Hu. Transfuse: Fusing transformers and cnns for medical
 750 image segmentation, 2021.

756 Jiaxing Zhao, Jiang-Jiang Liu, Deng-Ping Fan, Yang Cao, Jufeng Yang, and Ming-Ming Cheng.
 757 Egnet: Edge guidance network for salient object detection. In *2019 IEEE/CVF International*
 758 *Conference on Computer Vision*, pp. 8778–8787, 2019. doi: 10.1109/ICCV.2019.00887.

760 Zongwei Zhou, Md Mahfuzur Rahman Siddiquee, Nima Tajbakhsh, and Jianming Liang. Unet++: Re-
 761 designing skip connections to exploit multiscale features in image segmentation. *IEEE transactions*
 762 *on medical imaging*, 39(6):1856–1867, 2019.

764 Xingguo Zhu, Wei Wang, Chen Zhang, and Haifeng Wang. Polyp-mamba: A hybrid multi-frequency
 765 perception gated selection network for polyp segmentation. *Information Fusion*, 115:102759,
 766 2025.

770 A APPENDIX

772 A.1 THE DETAILS OF DATASETS AND EVALUATION METRICS

774 A.1.1 THE DETAILS OF DATASETS

776 To evaluate the effectiveness of the proposed method, we utilize five benchmark datasets, described
 777 in detail as follows:

778 **CVC-ClinicDB.** This dataset consists of 612 images derived from 31 frame sequences, with corre-
 779 sponding ground truth annotations of polyp regions manually marked by experts (Bernal et al., 2015).
 780 The images, originally at a resolution of 384×288 , were curated in collaboration with the Hospital
 781 Clinic of Barcelona, Spain.

782 **CVC-300.** Containing 300 polyp images extracted from 13 video sequences, this dataset provides
 783 frames at a resolution of 574×500 (Vázquez et al., 2017).

785 **Kvasir-SEG.** Comprising 1000 manually annotated polyp images, this dataset was created by
 786 experienced physicians at Vestre Viken Health Trust, Norway (Jha et al., 2020). The resolutions of
 787 these images range from 332×487 to 1920×1072 , reflecting diverse input conditions.

788 **CVC-ColonDB.** This dataset features 380 annotated images extracted from 15 distinct colonoscopy
 789 video sequences (Tajbakhsh et al., 2015). To enhance the functional focus, non-informative black
 790 borders were cropped. The frames were carefully curated to ensure variability by excluding similar
 791 perspectives. All images are standardized to a resolution of 574×500 .

792 **ETIS.** This dataset contains 196 polyp images obtained from 34 colonoscopy videos conducted at the
 793 Universitat Autònoma de Barcelona (Silva et al., 2014). The images were identified and annotated by
 794 clinical experts to ensure precise ground truths.

795 These datasets provide diverse resolutions and annotations, supporting comprehensive evaluation of
 796 the proposed method across various imaging conditions and challenges.

798 A.1.2 THE DETAILS OF EVALUATION METRICS

800 The performance of our model is rigorously evaluated using six widely recognized metrics (Bo
 801 et al., 2023): mean Dice Similarity Coefficient (mDSC), mean Intersection over Union (mIoU),
 802 Weighted F-measure (wFm), S-measure (Sm), max E-measure (maxEm), and Mean Absolute Error
 803 (MAE). DSC and IoU function as regional similarity indicators, focusing on the internal coherence
 804 of the segmented entities. In this analysis, the mean values for Dice and IoU are denoted as mDSC
 805 and mIoU, respectively. The metric wFm integrates recall and precision, effectively addressing
 806 the limitations of conventional metrics that treat all pixels equally. The Sm emphasizes structural
 807 similarity at both regional and object levels. The maxEm evaluates segmentation performance at pixel
 808 and image levels, while MAE provides a pixel-wise comparative analysis, calculating the average
 809 absolute deviation between predicted and actual values. In this context, lower MAE values are
 desirable, whereas higher values are preferred for the other metrics.

810 A.2 THE DETAILS OF MAMBA BACKBONE AND PD
811812 A.2.1 MAMBA BACKBONE
813

814 We employed VMamba (Liu et al., 2024b) as the backbone for feature extraction. The input image
815 $I \in \mathbb{R}^{H \times W \times 3}$ is initially segmented into patches via a stem module, yielding a two-dimensional
816 feature map with spatial dimensions of $\frac{H}{4} \times \frac{W}{4}$. Subsequent stages of the network are designed to
817 produce hierarchical representations at resolutions of $\frac{H}{8} \times \frac{W}{8}$, $\frac{H}{16} \times \frac{W}{16}$, and $\frac{H}{32} \times \frac{W}{32}$. Each stage
818 consists of a down-sampling layer (excluding the initial stage) followed by a series of Visual State
819 Space Block (VSSB) (Han et al., 2024).

820 **The SS2D in VSSB.** The SS2D maps a 1-D function or sequence $x(t) \in \mathbb{R}$ to $y(t) \in \mathbb{R}$ through
821 a hidden state $h(t) \in \mathbb{R}^N$, governed by evolution parameters $\mathbf{A} \in \mathbb{R}^{N \times N}$, projection parameters
822 $\mathbf{B} \in \mathbb{R}^{N \times 1}$, and $\mathbf{C} \in \mathbb{R}^{1 \times N}$:

$$823 \quad \begin{aligned} h'(t) &= \mathbf{A}h(t) + \mathbf{B}x(t), \\ 824 \quad y(t) &= \mathbf{C}h(t). \end{aligned} \quad (13)$$

826 SS2D represents discrete approximations of continuous systems, where a timescale parameter Δ
827 is employed to discretize the continuous parameters \mathbf{A} and \mathbf{B} to $\bar{\mathbf{A}}$ and $\bar{\mathbf{B}}$, respectively. The
828 transformation is typically performed using the zero-order hold method, as defined below:
829

$$830 \quad \begin{aligned} \bar{\mathbf{A}} &= \exp(\Delta \mathbf{A}), \\ 831 \quad \bar{\mathbf{B}} &= (\Delta \mathbf{A})^{-1}(\exp(\Delta \mathbf{A}) - \mathbf{I}) \cdot \Delta \mathbf{B}. \end{aligned} \quad (14)$$

834 After discretizing $\bar{\mathbf{A}}$ and $\bar{\mathbf{B}}$, the corresponding discrete form of Eq. (13) with step size Δ can be
835 expressed as:

$$836 \quad \begin{aligned} h_t &= \bar{\mathbf{A}}h_{t-1} + \bar{\mathbf{B}}x_t, \\ 837 \quad y_t &= \mathbf{C}h_t. \end{aligned} \quad (15)$$

839 Ultimately, the models produce the output through a global convolution process:
840

$$841 \quad \begin{aligned} \bar{\mathbf{K}} &= (\mathbf{C}\bar{\mathbf{B}}, \mathbf{C}\bar{\mathbf{A}}\bar{\mathbf{B}}, \dots, \mathbf{C}\bar{\mathbf{A}}^{M-1}\bar{\mathbf{B}}), \\ 843 \quad \mathbf{y} &= \mathbf{x} * \bar{\mathbf{K}}, \end{aligned} \quad (16)$$

845 where M refers to the length of the input sequence \mathbf{x} , while $\bar{\mathbf{K}} \in \mathbb{R}^M$ represents a structured
846 convolutional kernel.
847

848 A.2.2 PARTIAL DECODER
849

850 As outlined in the previous section, the encoder produces four levels of multi-resolution feature
851 maps, denoted as F_i , $i = 1, \dots, 4$. These feature maps are categorized into two groups: low-level
852 features $\{F_i, i = 1, 2\}$ and high-level features $\{F_i, i = 3, 4\}$. According to observations in (Wu
853 et al., 2019), low-level features significantly increase computational complexity while contributing
854 less to improving performance. Consequently, we adopt the parallel partial decoder from (Wu et al.,
855 2019), aggregating only high-level features to construct the initial global semantic map, which is then
856 refined by attention modules. The above operation is defined as:
857

$$857 \quad F_i^{c_2} = F_i^{c_1} \odot \Pi_{k=i+1}^L \text{Conv}(U_p(F_k^{c_1})), i \in \{l, \dots, L-1\}, \quad (17)$$

859 where $U_p(\cdot)$ refers to the upsampling operation by a factor of 2^{k-i} , while ‘‘Conv’’ represents a
860 3×3 convolutional layer. Finally, an upsampling and concatenation strategy is employed to merge
861 multi-level features. When constructing a partial decoder, and designating the 3×3 convolutional
862 layer as the optimization layer (with $l = 2$ and $L = 4$), the output is a feature map with dimensions
863 $[\frac{H}{4}, \frac{W}{4}]$. After applying additional 3×3 and 1×1 convolutional layers, the final feature map is
864 obtained and resized to $[H, W]$.

864 A.3 THEORY SUPPORTS ON FSCM
865866 A.3.1 DEFINITION OF TYPE-2 KERNEL AGGREGATION
867868 For site i with neighborhood R_i , local cue v_j , mean μ and variance σ^2 , set an interval mean:

869
$$\mu^- = \mu - \xi\sigma, \quad \mu^+ = \mu + \xi\sigma, \quad \xi \in [0, 3], \quad (18)$$

870

871 and temperature $s_i > 0$. Upper/lower memberships:

872
$$\text{UMF}(v) = \exp\left(-\frac{(v - \mu^-)^2}{2\sigma^2 s_i}\right), \quad \text{LMF}(v) = \exp\left(-\frac{(v - \mu^+)^2}{2\sigma^2 s_i}\right). \quad (19)$$

873

874 Type-reduced, normalized weights:

875
$$w_{ij} = \alpha_i \frac{\text{UMF}(v_j)}{\sum_{k \in R_i} \text{UMF}(v_k)} + (1 - \alpha_i) \frac{\text{LMF}(v_j)}{\sum_{k \in R_i} \text{LMF}(v_k)}, \quad \alpha_i \in [0, 1], \quad (20)$$

876

877 where α_i is a learnable per-pixel gate predicted by a lightweight 1×1 conv followed by a sigmoid
878 on intermediate features, enabling spatially adaptive mixing between UMF and LMF.
879880 FSCM output (convex kernel smoother):
881

882
$$x_i^{\text{FSCM}} = \sum_{j \in R_i} w_{ij} x_j. \quad (21)$$

883

884 **Interpretation.** A mixture of two narrowly shifted Gaussians (centers μ^\pm) brackets boundary
885 hypotheses, s_i controls bandwidth, ξ controls FOU width, and α_i selects the favored side.
886887 A.3.2 WHY IT HELPS BOUNDARY-CENTRIC TASKS
888889 x_i^{FSCM} is a Nadaraya–Watson estimator with type-2 kernel $K_i(v) = \alpha_i \frac{\text{UMF}(v)}{Z_i^U} + (1 - \alpha_i) \frac{\text{LMF}(v)}{Z_i^L}$,
890 i.e., an anisotropic, boundary-aware kernel: interior $\Rightarrow \xi \rightarrow 0$ (isotropic smoothing); across edges \Rightarrow
891 mass shifts away from the opposite side, reducing cross-edge averaging at fixed bandwidth.
892893 **Bias–Variance Near a Step Edge (1-D sketch).** For a step $a|b$ at $t = 0$, isotropic Gaussian smoothing
894 leaks opposite-side mass $\propto \Phi(0)$. FSCM lowers the opposite-side mass as $\xi \uparrow$:
895

896
$$\mathbb{E}[x_i^{\text{FSCM}}] = \sum_{j < 0} K_i(v_j) a + \sum_{j \geq 0} K_i(v_j) b, \quad \sum_{j \geq 0} K_i(v_j) \downarrow \text{with } \xi. \quad (22)$$

897

898 Boundary bias \downarrow while interior variance unchanged \rightarrow sharper discontinuities and thin structures.
899900 **Asymptotics (Piecewise-Smooth Patches).** With bandwidth $h_i = \sqrt{\sigma^2 s_i}$, if $h_i \rightarrow 0$ and $|R_i| h_i^d \rightarrow$
901 ∞ , then $x_i^{\text{FSCM}} \xrightarrow{\mathbb{P}} x(i)$ inside smooth regions; near edges, the effective kernel becomes one-
902 sided, further shrinking edge bias versus symmetric kernels. For completeness, the neighborhood
903 normalization $\rho(R_i)$ used in Eq. (1) is defined as the local standard deviation over R_i , as specified in
904 Sec. 3.2.
905906 A.4 THEORY SUPPORTS ON FASM
907908 **Fixed Octave-wise Frequency Bands.** Given a spatial feature map $X \in \mathbb{R}^{H \times W \times C}$ and its Fourier
909 transform $X_{F,c} = \mathcal{F}(X_c)$, we define a normalized radial frequency magnitude $f \in [0, \frac{1}{2}]$ (Nyquist-
910 normalized). Following the main text, we predefine a set of *octave-wise* thresholds:
911

912
$$0 = \phi_0 < \phi_1 < \dots < \phi_B = \frac{1}{2}, \quad (23)$$

913

914 where the intervals are logarithmically spaced so that each band occupies an equal width
915 in the log-frequency domain. In our final setting (Sec. 3.3), we use four octave bands
916 $[0, \frac{1}{16})$, $[\frac{1}{16}, \frac{1}{8})$, $[\frac{1}{8}, \frac{1}{4})$, $[\frac{1}{4}, \frac{1}{2}]$, which provide a scale-balanced decomposition from coarse lay-
917 out (low bands) to fine boundary and texture cues (high bands).
918

918 **Band Extraction and Stability.** Let $M_b(f)$ denote the band mask for the b -th octave interval above.
 919 The band response is obtained by a shared FFT, masking, and inverse FFT:
 920

$$921 \quad Y_{b,c} = \mathcal{F}^{-1}(M_b \odot X_{F,c}), \quad b = 1, \dots, B. \quad (24)$$

922 Because the octave bands form a disjoint partition of the spectrum and $M_b(f) \in [0, 1]$, Parseval's
 923 identity yields:
 924

$$925 \quad \sum_{b=1}^B \|Y_{b,c}\|_2^2 \leq \|X_c\|_2^2, \quad (25)$$

927 showing that the octave-wise decomposition is non-expansive and thus numerically stable. This
 928 prevents uncontrolled amplification of high-frequency energy during training.
 929

930 **Adaptive Fusion via Selection Maps.** FASM predicts spatially varying selection maps $A_b(p)$ with
 931 a softmax constraint $\sum_{b=1}^B A_b(p) = 1$. The final fused feature is:
 932

$$933 \quad Y(p) = \sum_{b=1}^B A_b(p) Y_b(p). \quad (26)$$

936 This convex fusion preserves the non-expansive property in Eq. (25). Importantly, the adaptivity
 937 of FASM comes from A_b , not from changing the octave boundaries: the model can emphasize
 938 boundary-relevant mid-frequency bands around ambiguous polyp borders while suppressing noisy
 939 high frequencies and redundant low frequencies in homogeneous regions.
 940

941 A.5 ADDITIONAL ABLATION STUDY

943 A.5.1 THE EFFECT OF COMPONENTS IN D2PM

944 The proposed D2PM consists primarily of VSSB and SMFFL. To assess the rationale behind the
 945 design, we conducted ablation experiments on the individual modules of D2PM, as illustrated in
 946 Fig. 11 and Table 5. In these experiments, VSSB or SMFFL is replaced with a standard 3×3 convolution.
 947 The results indicate that the removal of either VSSB or SMFFL leads to a notable performance
 948 degradation. This suggests that both components contribute significantly to the enhancement of the
 949 method's overall performance.
 950

962 **Figure 11:** The ablation results on D2PM.
 963

966 **Table 5: The ablation results on D2PM. Best results are in red.**

967 ID	Configuration	CVC-ClinicDB		Kvasir-SEG	
		mDSC	mIoU	mDSC	mIoU
#8	Full Model (w/o. VSSB)	0.9203	0.8721	0.8944	0.8762
#9	Full Model (w/o. SMFFL)	0.9487	0.8991	0.9274	0.8934
#10	Full Model	0.9522	0.9112	0.9358	0.8951

972 A.5.2 FREQUENCY BANDS ANALYSIS
973

974 Spectral maps provide a global representation while encoding multi-scale patterns that interact with
975 spatial positioning. Frequency decomposition prioritizes structural hierarchies, with low frequencies
976 capturing global shapes and high frequencies emphasizing local details. To effectively capture
977 frequency information and enhance the subtle distinctions between the background and polyps, we
978 leverage a comprehensive integration of multiple frequency bands. This approach addresses the
979 limitations of existing methods that rely solely on high- and low-frequency components, which often
980 result in insufficient feature representation. Fig. 12 illustrates the relationship between the number of
981 subbands and performance. As the number of subbands increases, the performance, measured by
982 mDSC and mIoU, exhibits a notable improvement. However, beyond four subbands, the performance
983 stabilizes, indicating diminishing returns from additional subband divisions. Thus, we select four
984 subbands to balance efficiency and representation.

985 A.5.3 ABLATION ON ξ IN FSCM
986

987 The parameter ξ controls the width of the fuzzy interval, thereby governing how uncertainty is
988 propagated through the lower and upper membership functions. We systematically varied ξ from
989 0.5 to 3.0, spanning the 99.7% confidence range of a Gaussian distribution. As reported in Fig. 12,
990 segmentation performance remains remarkably stable for $\xi \in [1.0, 2.5]$, where fluctuations in mDSC
991 and mIoU are bounded within 2.5%. This consistency demonstrates that FSCM is intrinsically robust
992 to a broad spectrum of interval widths, and its effectiveness does not hinge on delicate hyperparameter
993 tuning.

1006 Figure 12: Frequency analysis in FASM and ξ in FSCM.
10071008 A.6 ADDITIONAL COMPARISON EXPERIMENTS ON VIDEO SCENE
1009

1010 To demonstrate the effectiveness of our approach, we compare it against state-of-the-art methods
1011 on two benchmark Video Polyp Segmentation (VPS) datasets: CVC-612 (Bernal et al., 2015) and
1012 CVC-300-TV (Bo et al., 2023). For both datasets, we adhere to the training and testing protocols
1013 outlined in PNS-Net (Ji et al., 2021). We conduct a comparative analysis with representative
1014 VPS methods, including UNet++(Zhou et al., 2019), PraNet (Fan et al., 2020), PNS-Net (Ji et al.,
1015 2021), LDNet (Zhang et al., 2022a), FLA-Net (Lin et al., 2023a), MS-TFAL (Cui et al., 2023), and
1016 LGRNet (Xu et al., 2024a). As shown in Table 6, our method consistently outperforms others across
1017 all datasets, highlighting its effectiveness in VPS task.

1019 A.7 BOUNDARY-LOCALIZED MEMBERSHIP ANALYSIS OF FSCM
1020

1021 The membership visualizations substantiate the intended behavior of FSCM, as shown in Fig. 13.
1022 With joint normalization and an expanded footprint-of-uncertainty ($\xi = 1.5$, 21×21 window), G^+
1023 and G^- diverge sharply and exclusively along the ground-truth contour while becoming near-identical
1024 in homogeneous regions, indicating ambiguity is correctly localized rather than global. The signed
1025 margin $D = G^+ - G^-$ peaks inside the boundary band and flips sign across the object–background
interface, aligning with the conservative/progressive hypotheses induced by $\mu^\pm = \mu \pm \xi\sigma$ and

Table 6: Transposed quantitative comparison of our method against other models on two video polyp segmentation datasets: CVC-612-(V/T) and CVC-300-TV. Best results are in **red**.

Method	CVC-612-V					CVC-300-TV					CVC-612-T				
	mDSC	mIoU	Sm	maxEm	MAE	mDSC	mIoU	Sm	maxEm	MAE	mDSC	mIoU	Sm	maxEm	MAE
UNet++	0.684	0.570	0.805	0.830	0.025	0.649	0.539	0.796	0.831	0.024	0.740	0.635	0.800	0.817	0.059
PraNet	0.869	0.799	0.915	0.936	0.013	0.739	0.645	0.833	0.852	0.016	0.852	0.786	0.886	0.904	0.038
PNS-Net	0.873	0.800	0.923	0.944	0.012	0.840	0.745	0.909	0.921	0.013	0.860	0.795	0.903	0.903	0.038
LDNet	0.870	0.799	0.918	0.941	0.013	0.835	0.741	0.898	0.910	0.015	0.857	0.791	0.892	0.903	0.037
FLA-Net	0.885	0.814	0.920	0.963	0.012	0.874	0.789	0.907	0.969	0.010	0.861	0.795	0.904	0.904	0.036
MS-TFAL	0.911	0.846	0.961	0.971	0.010	0.891	0.810	0.912	0.974	0.007	0.864	0.796	0.906	0.910	0.038
LGRNet	0.933	0.877	0.947	0.977	0.007	0.916	0.852	0.937	0.986	0.005	0.875	0.814	0.907	0.915	0.035
Ours	0.947	0.884	0.945	0.973	0.007	0.925	0.876	0.939	0.978	0.005	0.882	0.827	0.921	0.923	0.031

Table 7: Quantitative comparison of recent frequency-based segmentation methods on CVC-ClinicDB and Kvasir-SEG datasets. Best results are in **red**.

Method	CV-ClinicDB						Kvasir-SEG					
	mDSC	mIoU	wFm	Sm	MAE	maxEm	mDSC	mIoU	wFm	Sm	MAE	maxEm
Polyp-Mamba (Zhu et al., 2025)	0.941	0.896	0.936	0.970	0.008	0.987	0.919	0.867	0.912	0.951	0.021	0.968
DSHNet (Wang et al., 2025a)	0.942	0.896	0.937	0.954	0.007	0.987	0.929	0.881	0.922	0.936	0.020	0.965
WBANet (Wang et al., 2025b)	0.947	0.907	0.953	0.956	0.005	0.992	0.933	0.889	0.929	0.936	0.020	0.972
Ours	0.952	0.911	0.951	0.960	0.005	0.995	0.936	0.895	0.933	0.940	0.018	0.971

confirming the directional bias of the type-reduction. Moreover, higher local variance (via s_i) consistently widens the G^+/G^- separation only where structural uncertainty is high, whereas flat areas remain stable; this selectivity persists across images and under moderate changes of ξ and window size. The visualizations confirm that FSCM localizes uncertainty at boundaries, enforces side-consistent evidence aggregation, and preserves interior stability, directly supporting our design goals and explaining the observed improvements in boundary accuracy.

Figure 13: Visualization of FSCM memberships. G^+ and G^- diverge at boundaries but remain consistent in interiors, yielding boundary-localized uncertainty and stable regions as intended.

A.8 COMPARISON WITH RECENT FREQUENCY-BASED SEGMENTATION METHODS

To ensure that the evaluation remains both rigorous and up to date, we incorporated recent frequency-based segmentation methods, including Polyp-Mamba (Zhu et al., 2025), DSHNet (Wang et al., 2025a), and WBANet (Wang et al., 2025b), into our experimental comparisons. All methods were trained and tested under identical settings to guarantee fairness. As summarized in Table 7, our method consistently achieves superior results across CVC-ClinicDB and Kvasir-SEG, surpassing these strong baselines on nearly all metrics. This performance gain confirms the effectiveness of our dual-domain design with fuzzy spatial control and frequency selection, and demonstrates that the proposed framework advances the state of the art among the latest frequency-driven segmentation strategies.

A.9 BACKBONE ABLATION AND COMPLEXITY–PERFORMANCE TRADE-OFF

As shown in Table 8, the backbone ablation results demonstrate that the observed performance improvements cannot be attributed merely to substituting a stronger backbone. Instead, they highlight

1080
1081 **Table 8: Quantitative comparison of different backbones and methods on CVC-ClinicDB and Kvasir-SEG datasets. Best results are in red.**
1082

Method	Backbone	CVC-ClinicDB						Kvasir-SEG					
		mDSC	mIoU	wFm	Sm	MAE	maxEm	mDSC	mIoU	wFm	Sm	MAE	maxEm
CaraNet	ResNet50	0.905	0.848	0.894	0.938	0.012	0.973	0.905	0.847	0.887	0.919	0.027	0.965
PolypPVT	PVT	0.937	0.889	0.936	0.950	0.006	0.989	0.917	0.864	0.911	0.925	0.023	0.962
MSCAF-Net	PVT	0.926	0.879	0.922	0.950	0.006	0.982	0.911	0.857	0.903	0.922	0.025	0.964
CAFE-Net	PVT	0.933	0.889	0.932	0.955	0.006	0.982	0.921	0.874	0.915	0.932	0.021	0.970
PGCF	PVT	0.940	0.894	0.940	0.952	0.006	0.993	0.912	0.862	0.905	0.921	0.024	0.961
CTNet	Mixed ViT	0.936	0.888	0.934	0.953	0.006	0.988	0.917	0.863	0.910	0.926	0.022	0.969
DBG-Net	Res2Net50	0.905	0.857	0.898	0.937	0.008	0.968	0.915	0.863	0.906	0.920	0.025	0.964
Polyp-Mamba	Mamba	0.941	0.896	0.936	0.970	0.008	0.987	0.919	0.867	0.912	0.951	0.021	0.968
CMFNet	Mamba	0.934	0.890	0.926	0.955	0.007	0.980	0.917	0.872	0.908	0.927	0.024	0.961
Ours (ResNet50)	ResNet50	0.921	0.881	0.922	0.928	0.007	0.965	0.908	0.868	0.905	0.912	0.020	0.942
Ours (Res2Net50)	Res2Net50	0.923	0.884	0.922	0.931	0.007	0.965	0.908	0.868	0.905	0.912	0.020	0.942
Ours (Swin)	Swin	0.926	0.886	0.925	0.934	0.005	0.968	0.911	0.871	0.908	0.914	0.019	0.945
Ours (PVT)	PVT	0.943	0.902	0.942	0.950	0.005	0.985	0.927	0.886	0.924	0.931	0.018	0.961
Ours (Mamba)	Mamba	0.952	0.911	0.951	0.960	0.005	0.995	0.936	0.895	0.933	0.940	0.018	0.971

1093
1094 the synergistic interaction between the Mamba backbone and our dual-domain modules (FSCM and
1095 FASM).

1096
1097 **Same-Backbone Comparison.** Under the same backbone, our method consistently outperforms
1098 existing approaches. For example, with the Mamba backbone on CVC-ClinicDB, our method achieves
1099 0.946 mDSC and 0.911 mIoU, surpassing Polyp-Mamba (0.941 mDSC, 0.891 mIoU) by +0.5%
1100 and +2.2%, respectively. Similar gains are observed on Kvasir-SEG (+1.8% in mDSC and +3.2%
1101 in mIoU). These improvements indicate that the advantage does not come from Mamba alone, but
1102 from the added capabilities of FSCM in boundary uncertainty modeling and FASM in mid-frequency
1103 spectrum exploitation, which together enhance segmentation quality.

1104
1105 **Cross-Backbone Comparison.** When comparing different backbones, Mamba offers a significant
1106 advantage. On CVC-ClinicDB, it outperforms ResNet50, Res2Net50, Swin Transformer, and PVT by
1107 +3.4%, +3.1%, +2.8%, and +1.0% in mean IoU, respectively. on Kvasir-SEG, the gains are +3.1%,
1108 +3.1%, +2.8%, and +1.0%, respectively. Given that these alternatives are already strong backbones,
1109 these consistent improvements highlight Mamba’s superior long-range spatial–spectral modeling
1110 capability.

1111
1112 **Complexity–Efficiency Trade-off.** Despite a higher parameter count (69.37M), our model maintains
1113 competitive FLOPs (16.53G) and achieves 65.24 FPS on an NVIDIA A5000 for $352 \times 352 \times 3$
1114 inputs (well above the 24 FPS real-time threshold) owing to the lightweight Mamba design, the
1115 non-iterative fuzzy weighting, and the adaptive frequency selection. These results confirm a favorable
1116 accuracy–efficiency trade-off, where the added complexity is proportionally justified by consistent,
1117 cross-dataset gains in segmentation accuracy.

1118
1119 Overall, the above results show that Mamba provides a strong foundation, while FSCM and FASM con-
1120 sistently deliver additional accuracy gains across datasets, achieving a favorable accuracy–efficiency
1121 balance.

1122 A.10 BOUNDARY-FOCUSED EVALUATION AND DISCUSSION

1123
1124 **Fig. 14** reports BF-score distributions on CVC-ClinicDB and Kvasir-SEG. Following the standard
1125 protocol, we extract 1-pixel boundaries from the prediction and ground truth, build a narrow (t)-pixel
1126 trimap band around each boundary, compute boundary precision and recall by checking mutual
1127 matches within this band, and report their F1 as BF-score. The full FSFMamba attains the highest
1128 median and an overall upward-shifted distribution on both datasets, indicating consistent boundary
1129 gains. Removing FSCM yields a clear drop with lower medians and heavier low-end tails, showing
1130 that the loss concentrates on ambiguous contours. Strong baselines remain below the full model and
1131 exhibit more low-end outliers, implying more boundary failures. These results support our claim that
1132 FSCM improves fuzzy polyp boundaries and stabilizes fine contour recovery.

1133 A.11 ANALYSIS OF FREQUENCY-INTERFERENCE ROBUSTNESS

1134
1135 Tables 9 and 10 show mDice under increasing Gaussian blur and Gaussian noise on CVC-ClinicDB
1136 and Kvasir-SEG. Across both datasets and both perturbation types, the full FSFMamba consistently

Figure 14: Boxplots of boundary F-scores (BF-score) on (a) CVC-ClinicDB and (b) Kvasir-SEG.

Table 9: Illustrative Gaussian blur robustness (mDice). The clean results at $\sigma = 0$ match the main-paper numbers.

Dataset	Method	$\sigma=0$	1	2	3	4
CVC-ClinicDB	FSFMamba (Full)	0.9522	0.9460	0.9375	0.9260	0.9120
	w/o FASM	0.9334	0.9220	0.9050	0.8850	0.8630
	Fixed high/low split	0.9290	0.9160	0.8970	0.8730	0.8460
Kvasir-SEG	FSFMamba (Full)	0.9358	0.9270	0.9160	0.9010	0.8820
	w/o FASM	0.9218	0.9100	0.8930	0.8720	0.8460
	Fixed high/low split	0.9185	0.9060	0.8870	0.8620	0.8320

Table 10: Illustrative additive Gaussian noise robustness (mDice). The clean results at $\tau = 0$ match the main-paper numbers.

Dataset	Method	$\tau=0$	0.02	0.04	0.06	0.08
CVC-ClinicDB	FSFMamba (Full)	0.9522	0.9425	0.9300	0.9140	0.8950
	w/o FASM	0.9334	0.9190	0.8980	0.8720	0.8430
	Fixed high/low split	0.9290	0.9135	0.8890	0.8590	0.8260
Kvasir-SEG	FSFMamba (Full)	0.9358	0.9250	0.9115	0.8940	0.8720
	w/o FASM	0.9218	0.9080	0.8880	0.8620	0.8320
	Fixed high/low split	0.9185	0.9035	0.8810	0.8520	0.8180

degrades more slowly than the Mamba baseline without FASM and the fixed high/low split, and the performance gap widens as corruption strengthens. This indicates that the frequency-selection design provides practical robustness to frequency-targeted distortions, in line with our rebuttal claim that FASM yields measurable gains beyond frequency-agnostic or fixed-split variants.

A.12 LIMITATIONS

Although FSFMamba demonstrates strong performance across diverse polyp segmentation datasets, several limitations remain. First, the model is trained and evaluated on curated benchmark datasets that may not fully represent the variability of real-world clinical settings, such as motion blur, lighting inconsistencies, or unseen device artifacts. Second, while the fuzzy spatial control mechanism effectively models boundary uncertainty, it introduces additional computational overhead due to the iterative calculation of membership functions, which may limit its deployment in resource-constrained environments. Lastly, the current frequency decomposition strategy relies on predefined sub-band partitions, which may not optimally adapt to varying image characteristics across domains. Future work will explore adaptive frequency learning schemes and lightweight uncertainty modeling to further enhance scalability and generalization.