POLYP SEGMENTATION BY DUAL-DOMAIN REASON-ING: FUZZY SPATIAL CONTROL AND FREQUENCY SELECTION

Anonymous authorsPaper under double-blind review

ABSTRACT

Colorectal cancer (CRC) screening relies on accurate polyp segmentation, yet subtle appearance differences and ambiguous boundaries in colonoscopy images make this task challenging. To overcome these limitations, we propose FSFMamba, a dual-domain fusion network that jointly models boundary uncertainty and frequency structure to improve delineation. In the spatial domain, a Fuzzy Spatial Control Mechanism (FSCM) instantiates an interval type-2 membership to localize uncertainty at boundary bands while preserving stability in homogeneous regions. In the spectral domain, a Frequency Adaptive Selection Mechanism (FASM) performs octave-wise spectral decomposition and applies learnable band-wise weighting to emphasize task-relevant subbands and suppress spurious responses. The two streams are fused by a Mamba-based state-space block that enables long-range, low-latency interactions and pre-norm residual refinement for stable optimization. Extensive experiments show FSFMamba consistently outperforms recent baselines with sharper boundaries, fewer false positives, and strong robustness.

1 Introduction

Colorectal cancer (CRC) is the third most common cancer worldwide, accounting for 10% of all cases, and remains the second leading cause of cancer-related deaths (Organization). Notably, around 85% of CRC cases arise from adenomatous polyps (Mathews et al., 2021). Early detection and removal can significantly reduce incidence and mortality, achieving a 5-year survival rate of up to 90% (Jiang et al., 2023). Consequently, there is a critical need for automated and reliable polyp segmentation methods to support physicians in accurately identifying polyp regions during diagnosis.

Recent advances in deep learning have significantly improved polyp segmentation performance (Lu et al., 2024; Lijin et al., 2024). However, accurate delineation remains challenging due to the frequent presence of indistinct and ambiguous polyp boundaries (Fig. 1(a) and (b)). To mitigate this, various methods have introduced boundary-aware modules, such as reverse attention (Zhao et al., 2019), balanced attention (Nguyen et al., 2021), and uncertainty-augmented context attention (Kim et al., 2021). Yet, these models often fail in cases involving severe boundary ambiguity. To further enhance boundary modeling, some studies have employed Bayesian estimation frameworks (Djebra et al., 2025; Han et al., 2025) to capture prediction uncertainty. Despite these efforts, effectively distinguishing polyps from fuzzy or overlapping background regions remains an open problem. This raises a key question: How can uncertainty be effectively modeled to better distinguish polyps from the background under boundary ambiguity?

Furthermore, our investigation reveals that existing methods primarily focus on single spatial features, which, despite their effectiveness in segmentation, are prone to interference from complex backgrounds due to their reliance on pixel-level information, particularly local intensity and spatial position (Xu et al., 2024b). This limitation hampers their ability to capture global correlations, making it difficult to distinguish subtle variations within polyps and surrounding tissues. Recent studies indicate that frequency features extracted via Fourier Transform (FT) (Qin et al., 2021) or Discrete Cosine Transform (DCT) (Xu et al., 2024b) provide global contextual representations, improving image interpretation and alleviating spatial limitations. However, these methods primarily target high- and low-frequency components, potentially neglecting critical mid-frequency information that

Figure 1: Motivation. (a) is CRC image, while (b) highlights the magnified polyp region with ambiguous boundaries and significant uncertainty. For this, we employ a Fuzzy Spatial Control Mechanism, where $G^+(v;\mu,\sigma)$ and $G^-(v;\mu,\sigma)$ define the uncertainty bounds, refining key cues by fuzzy control, as shown in (c). (d) enhances contours and edges by frequency cues, but boundary ambiguity and interference limit its effectiveness. (e) demonstrates that our Frequency Adaptive Selection Mechanism integrates multiple sub-bands to better capture subtle variations and fine details.

encodes essential structural details, as shown in Fig. 1 (d) and (e). Thus, another important question arises: **How can frequency cues be optimally utilized to extract meaningful information?**

To address the above challenges, we propose FSFMamba, a joint fuzzy spatial-frequency learning framework built on a Mamba backbone for precise polyp segmentation. It tackles both boundary ambiguity and multi-frequency representation. To address *Problem 1*, we design the Fuzzy Spatial Control Mechanism (FSCM), which leverages fuzzy set theory to model boundary uncertainty. By employing second-order membership functions with upper and lower bounds $G^+(v; \mu, \sigma)$ and $G^-(v; \mu, \sigma)$, FSCM adaptively captures edge ambiguity and transition regions (see Fig. 1(c)). To solve *Problem 2*, we propose the Frequency Adaptive Selection Mechanism (FASM), which leverages spectral decomposition to derive subband representations and employs a learnable weighting scheme to selectively amplify discriminative frequency components. This enables the model to capture dependencies across frequency bands and enhance feature representation. To jointly optimize both domains, we integrate FSCM and FASM into a Dual-Domain Perception Mechanism (D2PM), forming the core Frequency Learning and Fuzzy Spatial Control (FLFSC), which is embedded within the Mamba backbone. In a nutshell, the main contributions are listed as:

- To our knowledge, we are the first to employ fuzzy control to model ambiguous boundary uncertainty and exploit multi-frequency bands to capture subtle variations, thereby enhancing polyp segmentation.
- We propose the joint fuzzy spatial-frequency learning Mamba network (FSFMamba) integrating multi-level FLFSC for learning of fuzzy spatial features and frequency cues. Each FLFSC integrates: (i) FSCM for capturing boundary uncertainty and adapts to membership variability, (ii) FASM for modeling intrinsic correlations across frequency bands and learns dependencies among frequency components, and (iii) D2PM for combining both to enhance polyp segmentation.
- Extensive comparative experiments on public datasets demonstrate that our method consistently provides robust segmentation performance across various challenging scenarios.

2 RELATED WORKS

Polyp Segmentation. Recent polyp segmentation spans CNN, Transformer, and hybrid designs. CNNs with VGG (Vedaldi & Zisserman, 2016) and ResNet (Koonce, 2021), enhanced by attention

Figure 2: Overview of the proposed FSFMamba framework for polyp segmentation. Among these, FSCM resolves boundaries by Gaussian fuzzy regression, FASM filters critical frequency sub-bands, and D2PM fuses fuzzy spatial feature and spectral feature by visual state-space operators.

(Kim et al., 2021; Nguyen et al., 2021; Zhao et al., 2019), interaction (Zhang et al., 2022b), edge-aware (Su et al., 2023), and multi-scale modules (Ji et al., 2024a), capture fine detail but lack global context. Transformers improve long-range reasoning via self-attention, as in ViT (Chen et al., 2021), Swin-Unet (Cao et al., 2023), and UNetFormer (Wang et al., 2022), often with higher compute. Hybrids such as TransFuse (Zhang et al., 2021), PolypPVT (Bo et al., 2023), and SSFormer (Shi et al., 2022) integrate global and local cues. Foundation models (SAM (Wei et al., 2024b), SAM2-UNet (Xiong et al., 2024)) and VMamba (Liu et al., 2024b) extend efficient global modeling. Following this, we adopt Mamba as the backbone for efficient feature extraction.

Fuzzy Learning. Deep learning excels at large-scale, task-driven feature extraction, but deterministic models handle uncertainty poorly. To mitigate this, fuzzy logic has been integrated into neural networks (Luo et al., 2023; Mohammadzadeh et al., 2023). Huang *et al.* (Xie et al., 2021) use fuzzy memberships to quantify pixel-level ambiguity in segmentation. Wang *et al.* (Wang et al., 2023) map images into a fuzzy domain for rule-based reasoning and fuse the result with convolutional features. Wei *et al.* (Wei et al., 2024a) detect boundary pixels via local variation with fuzzy awareness. We instead adopt a Gaussian-regressed interval type-2 membership that converts rigid constraints into elastic spatial boundaries, improving structural adaptability and reducing uncertainty.

Frequency Learning. Frequency analysis, central to signal processing (Pitas, 2000), is increasingly applied in vision to guide optimization (Yin et al., 2019), enable non-local feature learning (Huang et al., 2023), and support domain-generalizable representations (Lin et al., 2023b). In polyp segmentation, Ren *et al.* (Ren et al., 2024) leverage high-frequency cues with a local–nonlocal Transformer. Recent work integrates spatial and frequency cues: Yue *et al.* (Yue et al., 2024) fuse them via interaction learning, and Li *et al.* (Li et al., 2024) apply parameterized frequency modulation to refine styles and enhance lesions. Although frequency–spatial fusion is common, polyp noise and texture ambiguity undermine feature reliability. We propose fuzzy-controlled spatial optimization with adaptive frequency selection to jointly strengthen representations across domains.

3 Methodology

3.1 OVERVIEW

The framework of our FSFMamba is shown in Fig. 2, in which Mamba is adopted as the backbone (see Appendix A.2.1) owing to its demonstrated ability to capture long-range dependencies with lower computational overhead compared to full-attention Transformers. Given an input image $I \in \mathbb{R}^{H \times W \times 3}$, VMamba (Liu et al., 2024b) extracts multi-scale features $\{F_i\}_{i=1}^4$ with dimensions $\frac{H}{2^{i+1}} \times \frac{W}{2^{i+1}} \times C_i$. These are sequentially processed by Frequency Learning and Fuzzy Spatial Control

Figure 3: The illustration of FSCM constrained feature map.

(FLFSCs), which integrate a fuzzy spatial control mechanism (FSCM), a frequency adaptive selection mechanism (FASM), and a dual-domain perception module (D2PM) to refine feature representation. A partial decoder (PD; see Appendix A.2.2) provides semantic priors to the deepest FLFSC, while each subsequent FLFSC is hierarchically guided by the preceding output.

3.2 Fuzzy Spatial Control

In polyp segmentation, sharp boundary labels are unreliable because polyps and mucosa often share highly similar visual traits. To better capture this ambiguity, fuzzy logic assigns graded memberships to polyp and background, thereby enabling smooth boundary transitions and uncertaintyaware supervision. Building on this principle, FSCM explicitly regularizes boundary features to mitigate annotation brittleness, as illustrated in Fig. 3. By enforcing fuzzy learning, boundaries become smoother and the network gains stronger discrimination ability, akin to Gaussian fuzzy mechanisms (Liu, 2018) that assign membership based on neighboring pixel positions:

$$G_i(v; \mu, \sigma) = \frac{\lambda}{\sqrt{2\pi}\sigma} e^{-\frac{(v_i - \mu)^2 + \frac{1}{\rho(R_i)} \sum_{i \in R_{i'}} (v_{i'} - \mu)^2}{2\sigma^2}},$$
(1)

where $G_i(\cdot)$ represents the membership function, i is the pixel index, λ is the model coefficient, and v_i is the pixel value. μ and σ are the mean and standard deviation of the pixel values, respectively. R_i is the 8-neighbor set in a 3×3 window centered at pixel i, and apply neighborhood normalization $\rho(\cdot)$ to estimate local intensity variation. To account for non-Gaussian deviations, we introduce asymmetric fuzzy membership functions G_i^+ and G_i^- , representing interval-based pixel-wise confidence. G_i^+ captures positive deviations, while G_i^- encodes negative deviations, jointly modeling uncertainty with flexible context-aware constraints. The upper membership function $G_i^+(\cdot)$ is defined as:

$$G_{i}^{+}(v;\mu,\sigma) = \begin{cases} \frac{\lambda}{\sqrt{2\pi}\sigma} e^{-\frac{(v_{i}-\mu^{-})^{2} + \frac{1}{\rho(R_{i})} \sum\limits_{i \in R_{i'}} (v_{i'}-\mu^{-})^{2}}{2\sigma^{2}}}, & \text{if } v_{i} < \mu^{-} \\ \frac{\lambda}{\sqrt{2\pi}\sigma} e^{-\frac{(v_{i}-\mu^{+})^{2} + \frac{1}{\rho(R_{i})} \sum\limits_{i \in R_{i'}} (v_{i'}-\mu^{+})^{2}}{2\sigma^{2}}}, & \text{if } v_{i} > \mu^{+} \end{cases}$$
 (2)

In a similar way, the lower membership function, $G_i^-(\cdot)$, expressed as

$$G_{i}^{-}(v;\mu,\sigma) = \begin{cases} \frac{\lambda}{\sqrt{2\pi}\sigma} e^{-\frac{(v_{i}-\mu^{+})^{2} + \frac{1}{\rho(R_{i})} \sum\limits_{i \in R_{i'}} (v_{i'}-\mu^{+})^{2}}{2\sigma^{2}}}, & \text{if } v_{i} \leq \frac{\mu^{-} + \mu^{+}}{2} \\ \frac{\lambda}{\sqrt{2\pi}\sigma} e^{-\frac{(v_{i}-\mu^{-})^{2} + \frac{1}{\rho(R_{i})} \sum\limits_{i \in R_{i'}} (v_{i'}-\mu^{-})^{2}}{2\sigma^{2}}}, & \text{if } v_{i} \leq \frac{\mu^{-} + \mu^{+}}{2} \end{cases}$$
(3)

where the mean value μ is adjusted to the interval $[\mu^-, \mu^+]$, with μ^- and μ^+ representing the mean values at the left and right boundaries of the interval, are respectively calculated as:

$$\mu^{-} = \mu - \xi \times \sigma, \quad \mu^{+} = \mu + \xi \times \sigma, \tag{4}$$

where ξ is the interval adjustment factor for mean deviation. Under a Gaussian membership, 99.7% of mass falls in $[\mu - 3\sigma, \mu + 3\sigma]$. We control uncertainty with $\xi \in [0, 3]$, shifting the lower/upper memberships to form adaptive constraint intervals. The fuzzy feature is $X_{\text{fuzzy}} = \sum_{i=1}^R G_i^{+|-}(v;\mu,\sigma) \, v_i$ and ξ adjusts G^+/G^- weight kernel responses. Detailed theoretical analysis is provided in Appendix A.3.

Figure 4: The illustration of FASM.

3.3 Frequency Adaptive Selection

Standard CNNs exhibit a local inductive bias: without receptive-field expansion, they often miss global structure despite modeling local details well (Pan et al., 2024). As shown in Fig. 4, FASM selectively attenuates high-frequency responses in feature maps, enlarging the effective receptive field without incurring high-frequency bias.

We transform each channel feature $X_c \in \mathbb{R}^{H \times W}$, with $c \in \{1, 2, ..., C_i\}$, into the frequency domain by the Discrete Fourier Transform (DFT), represented as $X_{\mathcal{F},c} = \mathcal{F}(X_c)$:

$$X_{\mathcal{F},c}(u,v) = \frac{1}{HW} \sum_{h=0}^{H-1} \sum_{w=0}^{W-1} X_c(h,w) e^{-2\pi j(uh+vw)},$$
 (5)

where each point (h,w) represents spatial coordinates in X_c , with normalized frequencies in the height and width dimensions denoted as |u| and |v|, respectively. After shifting low-frequency components to the center, u and v range from $\{-\frac{H}{2},\ldots,\frac{H}{2}-1\}$ and $\{-\frac{W}{2},\ldots,\frac{W}{2}-1\}$, respectively. Frequencies exceeding the Nyquist limit, $\mathcal{H}_{D_+}=\{(u,v)||u|>\frac{1}{2D}\text{ or }|v|>\frac{1}{2D}\}$, cannot be accurately captured, limiting the effective bandwidth. FASM addresses this by decomposing input features into frequency bands using Fourier-domain masks as $X_{b,c}=\mathcal{F}^{-1}(\mathcal{M}_{b,c}X_{\mathcal{F},c})$, where \mathcal{F}^{-1} is inverse DFT. $\mathcal{M}_{b,c}$ is a binary mask to extract corresponding frequency:

$$\mathcal{M}_{b,c}(u,v) = \begin{cases} 1 & \text{if } \phi_b \le \max(|u|,|v|) < \phi_{b+1} \\ 0 & \text{otherwise} \end{cases}, \tag{6}$$

where ϕ_b and ϕ_{b+1} are derived from B+1 predetermined frequency thresholds defined as $\{0,\phi_1,\phi_2,\ldots,\phi_{B-1},\frac{1}{2}\}$. FASM at outset is to facilitate dynamic spatial reweighting of frequency components across various frequency bands, expressed as:

$$\widehat{X} = \operatorname{Conv}\left(\operatorname{Cat}\left[A_0 \odot X_0, \ A_1 \odot X_1, \ \dots, \ A_{B-1} \odot X_{B-1}\right]\right),\tag{7}$$

where \widehat{X} denotes the frequency-balanced representation and $A_b \in \mathbb{R}^{H \times W \times C_i}$ is the selection map for the b-th band obtained by $A_b = \operatorname{Conv}_b(X)$. Here, \odot denotes element-wise multiplication, $\operatorname{Cat}[\cdot]$ represents channel-wise concatenation, and $\operatorname{Conv}(\cdot)$ is a 1×1 convolution that learns to fuse band-specific responses. We place FASM upfront to systematically factor frequency content. The normalized spectrum is partitioned octave-wise into four bands: $[0, \frac{1}{16})$, $[\frac{1}{16}, \frac{1}{8})$, $[\frac{1}{8}, \frac{1}{4})$, and $[\frac{1}{4}, \frac{1}{2}]$. Detailed theoretical analysis is provided in Appendix A.4.

3.4 DUAL-DOMAIN PERCEPTION

The D2PM is proposed to fuse fuzzy spatial and frequency cues to capture cross-scale mixed information and long-range dependencies. As shown in Fig. 5, the D2PM consists of two stages: the input is first normalized and processed by the Visual State Space Block (VSSB) to capture global context, and then passed through the Scale-Mixed Feed-Forward Layer (SMFFL) to extract multi-scale features with residual connections. Formally:

$$F_{\text{cor}} = \text{Cat}(\hat{X}, X_{\text{fuzzy}}), F'_{\text{cor}} = F_{\text{cor}} + \text{VSSB}(\text{LN}(F_{\text{cor}})), F'_{\text{c}} = F'_{\text{cor}} + \mathcal{S}(\text{LN}(F'_{\text{cor}})),$$
(8)

Figure 5: The illustration of D2PM.

where $LN(\cdot)$ refers to the layer normalization and $S(\cdot)$ is the SMFFL.

VSSB. Fig. 5 provides the structure of the VSSB. The input features X are first subjected to layer normalization, followed by processing by a linear layer, resulting in the two separate streams as:

$$F_1 = \operatorname{Fc}(\operatorname{LN}(X)), F_1' = \operatorname{LN}(\operatorname{SS2D}(\operatorname{SiLU}(\operatorname{DW}(F_1)))), F_{\operatorname{VSSB}} = \operatorname{Fc}(F_1' \otimes \operatorname{SiLU}(F_1)), \quad (9)$$

where DW(·) refers to depth-wise separable convolution, SiLU(·) represents SiLU activation function, Fc(·) is linear layer, SS2D(·) denotes 2D selective scanning, and F_{VSSB} is the output of VSSB.

SMFFL. As shown in Fig. 5, SMFFL adopts a dual-branch, multi-scale structure. The input feature $F_{\rm X}$ is normalized and split into two branches with linear projection and 3×3 or 5×5 convolutions to capture multi-scale features in a low-dimensional space. After GELU activation and up-projection, residual connections are added to support gradient flow. The process is defined as:

$$F_{X}' = LN(F_{X}), F_{X1} = f_{3}(Fc(F_{X}')), F_{X2} = f_{5}(Fc(F_{X}')), F_{S} = Fc(\sigma_{G}(Cat(F_{X1}, F_{X2}))) + F_{X},$$
(10)

where $f_x(\cdot)$ denotes the standard convolution operation of size $x \times x$, $\sigma_G(\cdot)$ represents the GELU activation function, and \oplus indicates element-wise addition.

3.5 Loss Functions

The loss function utilized in this study is formulated as $\mathcal{L} = \mathcal{L}_{w\text{IoU}} + \mathcal{L}_{w\text{BCE}}$ (Jun Wei, 2020), where $\mathcal{L}_{w\text{IoU}}$ represents the weighted intersection over union (IoU) loss and $\mathcal{L}_{w\text{BCE}}$ denotes the weighted binary cross-entropy (BCE) loss. We implement the \mathcal{L} to facilitate deep supervision across the four outputs $\{t_i, i=1, 2, 3, 4\}$. Thus, the total loss is $\mathcal{L}_{\text{total}} = \sum_{i=1}^{i=4} \mathcal{L}\left(t_i^{up}, G\right)$.

4 EXPERIMENTS

4.1 SETUPS

Datasets. Following the experimental setups in (Bo et al., 2023), we systematically evaluate the performance of our method across five prominent public datasets focused on polyp segmentation: CVC-300, CVC-ClinicDB, Kvasir-SEG, CVC-ColonDB, and ETIS.

Compared Models and Evaluation Metrics. We compare our method against 13 public polyp segmentation models, including CaraNet (Lou et al., 2021), DCRNet (Yin et al., 2022), SSFormer (Shi et al., 2022), HSNet (Zhang et al., 2022b), CFANet (Zhang & Yan, 2023), FeDNet (Su et al., 2023), Polyp-PVT (Bo et al., 2023), MSCAF-Net (Liu et al., 2023), CAFENet (Liu et al., 2024a), PGCF (Ji et al., 2024b), CTNet (Xiao et al., 2024), SAM2UNet (Xiong et al., 2024), and DBG-Net (Zhai et al., 2024). For fairness, we adopt their official codes and evaluate all models under identical training and testing settings. Each method is rigorously assessed by 6 widely recognized metrics (Bo et al., 2023): mean Dice Similarity Coefficient (meanDSC), mean Intersection over Union (meanIoU), Weighted F-measure (wFm), S-measure (Sm), max E-measure (maxEm), and Mean Absolute Error (MAE).

Table 1: Quantitative comparison of our method against other models on two domain-specific datasets: CVC-ClinicDB and Kvasir-SEG. Best results are in red.

Method		C	VC-Clini	cDB			Kvasir-SEG							
	meanDSC \uparrow	meanIoU ↑	wFm↑	Sm ↑	$\text{MAE}\downarrow$	maxEm ↑	meanDSC \uparrow	meanIoU ↑	wFm ↑	Sm ↑	$\text{MAE}\downarrow$	maxEm ↑		
CaraNet	0.9045	0.8480	0.8943	0.9379	0.0124	0.9729	0.9046	0.8465	0.8869	0.9188	0.0273	0.9653		
DCRNet	0.8962	0.8440	0.8902	0.9337	0.0101	0.9779	0.8864	0.8248	0.8681	0.9106	0.0354	0.9412		
SSFormer	0.9160	0.8730	0.9240	0.9370	0.0070	0.9847	0.9250	0.8780	0.9210	0.9310	0.0170	0.9643		
HSNet	0.9476	0.9050	0.9508	0.9543	0.0055	0.9933	0.9258	0.8771	0.9177	0.9268	0.0234	0.9639		
CFANet	0.9325	0.8828	0.9241	0.9507	0.0068	0.9893	0.9147	0.8615	0.9029	0.9240	0.0229	0.9623		
FeDNet	0.9304	0.8846	0.9284	0.9501	0.0069	0.9817	0.9242	0.8761	0.9180	0.9329	0.0212	0.9664		
PolypPVT	0.9368	0.8894	0.9355	0.9500	0.0064	0.9891	0.9174	0.8642	0.9105	0.9251	0.0228	0.9617		
MSCAF-Net	0.9261	0.8786	0.9222	0.9503	0.0064	0.9818	0.9113	0.8565	0.9026	0.9218	0.0248	0.9636		
CAFE-Net	0.9326	0.8889	0.9316	0.9549	0.0064	0.9816	0.9210	0.8742	0.9145	0.9319	0.0211	0.9700		
PGCF	0.9397	0.8938	0.9396	0.9520	0.0057	0.9925	0.9117	0.8622	0.9049	0.9214	0.0241	0.9610		
CTNet	0.9355	0.8875	0.9344	0.9529	0.0063	0.9876	0.9171	0.8628	0.9100	0.9280	0.0232	0.9640		
SAM2UNet	0.9041	0.8535	0.8983	0.9464	0.0097	0.9683	0.9241	0.8760	0.9169	0.9394	0.0198	0.9727		
DBG-Net	0.9047	0.8571	0.8982	0.9367	0.0079	0.9684	0.9152	0.8626	0.9062	0.9196	0.0253	0.9637		
Ours	0.9522	0.9112	0.9510	0.9600	0.0053	0.9945	0.9358	0.8951	0.9331	0.9403	0.0176	0.9705		

Figure 6: Complexity comparison on CVC-ClinicDB and Kvasir-SEG.

Implementation Details. Our method is developed on the PyTorch framework, with the VMamba-Small model pretrained on ImageNet as the backbone. To account for variations in polyp image sizes, a multi-scale strategy of $\{0.75, 1, 1.25\}$ is employed instead of conventional data augmentation. Input images are resized to 352×352 pixels, with a mini-batch size of 16, and training is 100 epochs. The AdamW optimizer is used to fine-tune the model parameters, with a learning rate and weight decay both set to 1e–4. The training process, executed on an NVIDIA A5000 GPU.

4.2 Comparison with State-of-the-Arts

Quantitative Analysis of Learning Ability. We conduct a quantitative comparison on two clinically relevant benchmarks, CVC-ClinicDB and Kvasir-SEG (Table 1). Our method consistently outperforms existing approaches across all metrics. On CVC-ClinicDB, it ranks first on meanDSC (0.9522), meanIoU (0.9112), wFm (0.9510), Sm (0.9600), and maxEm (0.9945), while attaining the lowest MAE (0.0053). The same pattern holds on Kvasir-SEG, where our model leads on core metrics, including meanDSC (0.9358) and meanIoU (0.8951), evidencing strong generalization. Although SAM2UNet has a marginally higher maxEm (0.9727) on Kvasir-SEG, our approach delivers a more balanced overall profile. The Fig. 6 shows our method has mid-range FLOPs and parameters with high FPS, offering a favorable accuracy–efficiency trade-off.

Quantitative Analysis of Generalization Ability. We evaluate out-of-domain performance on CVC-300, CVC-ColonDB, and ETIS (Table 2). Our method consistently surpasses comparison models on most metrics. On CVC-300, it achieves the best meanDSC of 0.9171, meanIoU of 0.8674, and maxEm of 0.9879. On CVC-ColonDB, where image quality is low and structural variability is high, it reaches the top meanDSC of 0.8912 and meanIoU of 0.8347. On ETIS, which contains low-resolution and small-scale polyps, it again leads across metrics, including meanDSC of 0.8560, meanIoU of 0.7939, and Sm of 0.9162. While SAM2UNet peaks on a few isolated metrics, our model provides a more balanced profile, evidencing robust generalization under domain shift.

Figure 7: Visualization comparisons on CVC-ClinicDB and Kvasir-SEG datasets.

Table 2: Quantitative comparison of our method against other models across three out-of-domain datasets: CVC-300, CVC-ColonDB, and ETIS. Best results are in red.

Method		CVC-300						CVC-ColonDB						ETIS					
	meanDSC	meanIoU	wFm	Sm	MAE	maxEm	meanDSC	meanIoU	wFm	Sm	MAE	maxEm	meanDSC	meanIoU	wFm	Sm	MAE	maxEm	
CaraNet	0.8809	0.8109	0.8499	0.9298	0.0096	0.9820	0.7384	0.6558	0.7065	0.8289	0.0454	0.8725	0.7293	0.6444	0.6734	0.8488	0.0159	0.9126	
DCRNet	0.8565	0.7883	0.8303	0.9216	0.0101	0.9597	0.7040	0.6315	0.6839	0.8211	0.0516	0.8480	0.5557	0.4960	0.5063	0.7356	0.0958	0.7730	
SSFormer	0.8870	0.8210	0.8690	0.9290	0.0070	0.9751	0.7720	0.6970	0.7660	0.8440	0.0170	0.9235	0.7670	0.6980	0.7360	0.8630	0.0160	0.9132	
HSNet	0.9027	0.8393	0.8868	0.9375	0.0067	0.9750	0.8099	0.7347	0.7955	0.8679	0.0324	0.9146	0.8079	0.7335	0.7775	0.8821	0.0211	0.9090	
CFANet	0.8933	0.8269	0.8746	0.9383	0.0080	0.9781	0.7426	0.6649	0.7281	0.8351	0.0388	0.8976	0.7325	0.6549	0.6930	0.8455	0.0143	0.8920	
FeDNet	0.9106	0.8485	0.8971	0.9461	0.0057	0.9854	0.8235	0.7443	0.8089	0.8781	0.0295	0.9219	0.8104	0.7335	0.7729	0.8916	0.0156	0.9414	
PolypPVT	0.9001	0.8332	0.8835	0.9349	0.0066	0.9812	0.8083	0.7273	0.795	0.8654	0.0311	0.9190	0.7869	0.7058	0.7498	0.8709	0.0130	0.9098	
MSCAF-Net	0.9022	0.8362	0.8842	0.9417	0.0061	0.9805	0.7902	0.7109	0.7691	0.8596	0.0313	0.9033	0.7745	0.6977	0.7342	0.8660	0.0165	0.9069	
CAFE-Net	0.8867	0.8151	0.8618	0.9304	0.0079	0.9747	0.8181	0.7387	0.7994	0.8760	0.0270	0.9182	0.8275	0.7485	0.7874	0.8996	0.0122	0.9375	
PGCF	0.8955	0.8272	0.8732	0.9351	0.0073	0.9762	0.8158	0.7376	0.8013	0.8729	0.0271	0.9233	0.7619	0.6861	0.7290	0.8578	0.0173	0.8862	
CTNet	0.9082	0.8437	0.8943	0.9435	0.0058	0.9822	0.8127	0.7336	0.8007	0.8749	0.0272	0.9195	0.8098	0.7337	0.7764	0.8865	0.0139	0.9205	
SAM2UNet	0.8901	0.8237	0.9220	0.9579	0.0042	0.9866	0.8048	0.7279	0.7887	0.8773	0.0282	0.9141	0.7930	0.7201	0.7579	0.8815	0.0178	0.9113	
DBG-Net	0.9019	0.8367	0.8834	0.9400	0.0052	0.9797	0.7971	0.7227	0.7807	0.8698	0.0282	0.9120	0.7521	0.6813	0.7186	0.8604	0.0142	0.9098	
Ours	0.9171	0.8674	0.9076	0.9533	0.0056	0.9879	0.8912	0.8347	0.8828	0.9252	0.0158	0.9623	0.8560	0.7939	0.8361	0.9162	0.0076	0.9537	

Table 3: Ablation analysis of the components in our method. Best results are in **bold**.

No.		Settings		CVC-CI	inicDB	Kvasir-SEG			
	baseline	PD	FLFSC	meanDSC	meanIoU	meanDSC	meanIoU		
#1	1	×	Х	0.8623	0.8073	0.8537	0.8012		
#2	/	1	X	0.8951	0.8255	0.8879	0.8225		
#3	/	X	✓	0.9312	0.8843	0.9231	0.8754		
#4	✓	✓	✓	0.9522	0.9112	0.9358	0.8951		
	FSCM	FASM	D2PM	meanDSC	meanIoU	meanDSC	meanIoU		
#5	1	×	Х	0.9158	0.8601	0.9089	0.8524		
#6	/	/	X	0.9328	0.8846	0.9214	0.8748		
#7	✓	×	✓	0.9334	0.8873	0.9218	0.8716		

Qualitative Analysis. As shown in Fig. 7, baseline methods such as CaraNet, DCRNet, and SSFormer often miss accurate polyp boundaries under complex shapes and low contrast, yielding fragmented or incomplete masks. More recent models improve overall detection but frequently over-segment ambiguous regions, introducing false positives. In contrast, HSNet, PGCF, and our method achieve stronger structural alignment with the ground truth. Notably, our approach better preserves fine boundaries while suppressing background noise, reflecting superior spatial awareness and feature

Figure 8: Visualization comparisons on CVC-300, CVC-ColonDB, and ETIS datasets.

Figure 9: Ablation results on different configurations.

discrimination. Fig. 8 further confirms this advantage on CVC-300, CVC-ColonDB, and ETIS, demonstrating robust generalization under domain shifts and challenging clinical conditions.

4.3 ABLATION STUDY

The Effect of Each Component. Table 3 reports the ablation study of FSFMamba. Starting from the "Vmamba–FPN" baseline (#1), we individually introduce the PD (#2) and FLFSC (#3) components, each yielding clear gains. Their joint integration (#4) further amplifies performance, achieving the best results. Fig. 9 shows that adding PD and FLFSC progressively sharpens predictions toward GT boundaries, confirming their complementarity and the effect of our method.

The Effect of Sub-modules within FLFSC. To assess the contribution of the FLFSC, we decompose it into FSCM, FASM, and D2PM. As shown in Table 3, FSCM (#5) handles fuzzy boundaries, FASM (#6) selects frequency cues to enrich structural detail, and D2PM (#7) fuses both outputs. Each part provides measurable gains, while the full FLFSC (#4) achieves the best performance. These results confirm that combining spatial and frequency cues is critical for accurate polyp delineation.

5 CONCLUSION

In this paper, we propose FSFMamba to address boundary ambiguity and multi-frequency exploitation in polyp segmentation. The FSCM captures boundary uncertainty through fuzzy learning, while the FASM emphasizes informative subbands to refine representation. Embedded in the D2PM, these components jointly optimize spatial and spectral cues. Extensive experiments demonstrate consistent improvements in segmentation accuracy, boundary precision, and robustness across datasets, highlighting the effectiveness of FSFMamba for automated CRC screening. Future work will explore adaptive representations and efficient modeling strategies to further enhance scalability and generalization in real-world clinical settings.

6 ETHICS STATEMENTS

We use only de-identified, publicly available colonoscopy datasets (CVC-ClinicDB, Kvasir-SEG, CVC-300, CVC-ColonDB, and ETIS) under their licenses, and we collect no new human data. No reidentification is attempted, and all data are handled on secure research infrastructure. The method is for research use and is not a diagnostic device. We acknowledge possible distribution shift and bias across sites and recommend site-specific evaluation. Code, configurations, and checkpoints will be released to support transparency, reproducibility, and responsible use.

7 REPRODUCIBILITY STATEMENT

We ensure reproducibility by releasing source code, configuration files, trained checkpoints, and evaluation scripts, together with fixed random seeds and an environment specification. All preprocessing, training, and inference steps are scripted end-to-end, with exact metric definitions and reporting protocols included. We will provide ablation and hyperparameter sweep scripts to enable independent verification without reliance on undocumented settings.

REFERENCES

- Jorge Bernal, F Javier Sánchez, Gloria Fernández-Esparrach, Debora Gil, Cristina Rodríguez, and Fernando Vilariño. Wm-dova maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians. *Computerized medical imaging and graphics*, 43:99–111, 2015.
- Dong Bo, Wang Wenhai, Fan Deng-Ping, Li Jinpeng, Fu Huazhu, and Shao Ling. Polyp-pvt: Polyp segmentation with pyramidvision transformers. *CAAI AIR*, 2023.
- Hu Cao, Yueyue Wang, Joy Chen, Dongsheng Jiang, Xiaopeng Zhang, Qi Tian, and Manning Wang. Swin-unet: Unet-like pure transformer for medical image segmentation. In Leonid Karlinsky, Tomer Michaeli, and Ko Nishino (eds.), *Computer Vision ECCV 2022 Workshops*, pp. 205–218, Cham, 2023. Springer Nature Switzerland.
- Xiangning Chen, Cho-Jui Hsieh, and Boqing Gong. When vision transformers outperform resnets without pretraining or strong data augmentations. *arXiv* preprint arXiv:2106.01548, 2021.
- Beilei Cui, Minqing Zhang, Mengya Xu, An Wang, Wu Yuan, and Hongliang Ren. Rectifying noisy labels with sequential prior: Multi-scale temporal feature affinity learning for robust video segmentation. In *International Conference on Medical Image Computing and Computer-Assisted Intervention*, pp. 90–100, 2023.
- Yanis Djebra, Xiaofeng Liu, Thibault Marin, Amal Tiss, Maeva Dhaynaut, Nicolas Guehl, Keith Johnson, Georges El Fakhri, Chao Ma, and Jinsong Ouyang. Bayesian posterior distribution estimation of kinetic parameters in dynamic brain pet using generative deep learning models. *IEEE Transactions on Medical Imaging*, pp. 1–1, 2025. doi: 10.1109/TMI.2025.3588859.
- Deng-Ping Fan, Ge-Peng Ji, Tao Zhou, Geng Chen, Huazhu Fu, Jianbing Shen, and Ling Shao. Pranet: Parallel reverse attention network for polyp segmentation. *MICCAI*, pp. 263–273, 2020.
- Chengjia Han, Handuo Yang, and Yaowen Yang. Enhancing pixel-level crack segmentation with visual mamba and convolutional networks. *Automation in Construction*, 168:105770, 2024.
- Kai Han, Shuhui Wang, Jun Chen, Chengxuan Qian, Chongwen Lyu, Siqi Ma, Chengjian Qiu, Victor S. Sheng, Qingming Huang, and Zhe Liu. Region uncertainty estimation for medical image segmentation with noisy labels. *IEEE Transactions on Medical Imaging*, pp. 1–1, 2025. doi: 10.1109/TMI.2025.3589058.
- Zhipeng Huang, Zhizheng Zhang, Cuiling Lan, Zheng-Jun Zha, Yan Lu, and Baining Guo. Adaptive frequency filters as efficient global token mixers. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 6049–6059, 2023.

- Debesh Jha, Pia H Smedsrud, Michael A Riegler, Pål Halvorsen, Thomas De Lange, Dag Johansen, and Håvard D Johansen. Kvasir-seg: A segmented polyp dataset. In *MultiMedia modeling: 26th international conference, MMM 2020, Daejeon, South Korea, January 5–8, 2020, proceedings, part II 26*, pp. 451–462. Springer, 2020.
 - Ge-Peng Ji, Yu-Cheng Chou, Deng-Ping Fan, Geng Chen, Huazhu Fu, Debesh Jha, and Ling Shao. Progressively normalized self-attention network for video polyp segmentation. In *International Conference on Medical Image Computing and Computer-Assisted Intervention*, pp. 142–152, 2021.
 - Zexuan Ji, Hao Qian, and Xiao Ma. Progressive group convolution fusion network for colon polyp segmentation. *Biomedical Signal Processing and Control*, 96:106586, 2024a. ISSN 1746-8094. doi: https://doi.org/10.1016/j.bspc.2024.106586.
 - Zexuan Ji, Hao Qian, and Xiao Ma. Progressive group convolution fusion network for colon polyp segmentation. *Biomedical Signal Processing and Control*, 96:106586, 2024b.
 - Wenxi Jiang, Linying Xin, Shefeng Zhu, Zhaoxue Liu, Jiali Wu, Feng Ji, Chaohui Yu, and Zhe Shen. Risk factors related to polyp miss rate of short-term repeated colonoscopy. *Digestive Diseases and Sciences*, 68(5):2040–2049, 2023.
 - Qingming Huang Jun Wei, Shuhui Wang. F3net: Fusion, feedback and focus for salient object detection. In *Proceedings of the AAAI Conference on Artificial Intelligence*, 2020.
 - Taehun Kim, Hyemin Lee, and Daijin Kim. Uacanet: Uncertainty augmented context attention for polyp segmentation. In *Proceedings of the 29th ACM international conference on multimedia*, pp. 2167–2175, 2021.
 - Brett Koonce. ResNet 50, pp. 63-72. Apress, Berkeley, CA, 2021.
 - Yan Li, Zhuoran Zheng, Wenqi Ren, Yunfeng Nie, Jingang Zhang, and Xiuyi Jia. Dual-domain learning network for polyp segmentation. In Bin Ma, Jian Li, and Qi Li (eds.), *Digital Forensics and Watermarking*, pp. 233–247, Singapore, 2024.
 - P Lijin, Mohib Ullah, Anuja Vats, Faouzi Alaya Cheikh, Madhu S Nair, et al. Dual encoder decoder shifted window-based transformer network for polyp segmentation with self-learning approach. *IEEE Transactions on Artificial Intelligence*, 2024.
 - Junhao Lin, Qian Dai, Lei Zhu, Huazhu Fu, Qiong Wang, Weibin Li, Wenhao Rao, Xiaoyang Huang, and Liansheng Wang. Shifting more attention to breast lesion segmentation in ultrasound videos. In *International Conference on Medical Image Computing and Computer-Assisted Intervention*, pp. 497–507, 2023a.
 - Shiqi Lin, Zhizheng Zhang, Zhipeng Huang, Yan Lu, Cuiling Lan, Peng Chu, Quanzeng You, Jiang Wang, Zicheng Liu, Amey Parulkar, et al. Deep frequency filtering for domain generalization. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 11797–11807, 2023b.
 - Fang Liu. Generalized gaussian mechanism for differential privacy. *IEEE Transactions on Knowledge and Data Engineering*, 31(4):747–756, 2018.
 - Guoqi Liu, Sheng Yao, Dong Liu, Baofang Chang, Zongyu Chen, Jiajia Wang, and Jiangqi Wei. Cafe-net: Cross-attention and feature exploration network for polyp segmentation. *Expert Systems with Applications*, 238:121754, 2024a. ISSN 0957-4174. doi: https://doi.org/10.1016/j.eswa.2023. 121754.
 - Yu Liu, Haihang Li, Juan Cheng, and Xun Chen. Mscaf-net: A general framework for camouflaged object detection via learning multi-scale context-aware features. *IEEE Trans. Cir. and Sys. for Video Technol.*, 33(9):4934–4947, September 2023. ISSN 1051-8215.
 - Yue Liu, Yunjie Tian, Yuzhong Zhao, Hongtian Yu, Lingxi Xie, Yaowei Wang, Qixiang Ye, and Yunfan Liu. Vmamba: Visual state space model. *arXiv preprint arXiv:2401.10166*, 2024b.
 - Ange Lou, Shuyue Guan, and Murray H. Loew. Caranet: context axial reverse attention network for segmentation of small medical objects. *Journal of Medical Imaging*, 10:014005 014005, 2021.

- Ziru Lu, Yizhe Zhang, Yi Zhou, Ye Wu, and Tao Zhou. Domain-interactive contrastive learning and prototype-guided self-training for cross-domain polyp segmentation. *IEEE Transactions on Medical Imaging*, pp. 1–1, 2024. doi: 10.1109/TMI.2024.3443262.
 - Na Luo, Hua Yu, Zeqing You, Yao Li, Tunan Zhou, Yuwei Jiao, Nan Han, Chenxu Liu, Zihan Jiang, and Shaojie Qiao. Fuzzy logic and neural network-based risk assessment model for import and export enterprises: A review. *Journal of Data Science and Intelligent Systems*, 1(1):2–11, 2023.
 - April A Mathews, Peter V Draganov, and Dennis Yang. Endoscopic management of colorectal polyps: From benign to malignant polyps. *World Journal of Gastrointestinal Endoscopy*, 13(9):356, 2021.
 - Ardashir Mohammadzadeh, Chunwei Zhang, Khalid A Alattas, Fayez FM El-Sousy, and Mai The Vu. Fourier-based type-2 fuzzy neural network: Simple and effective for high dimensional problems. *Neurocomputing*, 547:126316, 2023.
 - Tan-Cong Nguyen, Tien-Phat Nguyen, Gia-Han Diep, Anh-Huy Tran-Dinh, Tam V Nguyen, and Minh-Triet Tran. Ccbanet: cascading context and balancing attention for polyp segmentation. In *Medical Image Computing and Computer Assisted Intervention*, pp. 633–643. Springer, 2021.
 - World Health Organization. Colorectal cancer. [Online]. https://www.who.int/news-room/fact-sheets/detail/colorectal-cancer.
 - Hongyi Pan, Debesh Jha, Koushik Biswas, and Ulas Bagci. Frequency-based federated domain generalization for polyp segmentation. *arXiv preprint arXiv:2410.02044*, 2024.
 - I Pitas. Digital image processing algorithms and applications. *John Wiley & Sons Inc google schola*, 2:133–138, 2000.
 - Zequn Qin, Pengyi Zhang, Fei Wu, and Xi Li. Fcanet: Frequency channel attention networks. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 783–792, 2021.
 - Jingjing Ren, Xiaoyong Zhang, and Lina Zhang. Hiffiseg: High-frequency information enhanced polyp segmentation with global-local vision transformer. *arXiv preprint arXiv:2410.02528*, 2024.
 - Wentao Shi, Jing Xu, and Pan Gao. Ssformer: A lightweight transformer for semantic segmentation. In *Proceedings of International Workshop on Multimedia Signal Processing*, pp. 1–5, 09 2022. doi: 10.1109/MMSP55362.2022.9949177.
 - Juan Silva, Aymeric Histace, Olivier Romain, Xavier Dray, and Bertrand Granado. Toward embedded detection of polyps in wce images for early diagnosis of colorectal cancer. *International journal of* computer assisted radiology and surgery, 9:283–293, 2014.
 - Yanzhou Su, Jian Cheng, Chuqiao Zhong, Yijie Zhang, Jin Ye, Junjun He, and Jun Liu. Fednet: Feature decoupled network for polyp segmentation from endoscopy images. *Biomedical Signal Processing and Control*, 83:104699, 2023. ISSN 1746-8094. doi: https://doi.org/10.1016/j.bspc. 2023.104699.
 - Nima Tajbakhsh, R Gurudu, Suryakanth, and Jianming Liang. Automated polyp detection in colonoscopy videos using shape and context information. *IEEE transactions on medical imaging*, 35(2):630–644, 2015.
 - David Vázquez, Jorge Bernal, F Javier Sánchez, Gloria Fernández-Esparrach, Antonio M López, Adriana Romero, Michal Drozdzal, and Aaron Courville. A benchmark for endoluminal scene segmentation of colonoscopy images. *Journal of healthcare engineering*, 2017(1):4037190, 2017.
 - Andrea Vedaldi and Andrew Zisserman. Vgg convolutional neural networks practical. *Department of Engineering Science, University of Oxford*, 66, 2016.
 - Changzhong Wang, Xiang Lv, Mingwen Shao, Yuhua Qian, and Yang Zhang. A novel fuzzy hierarchical fusion attention convolution neural network for medical image super-resolution reconstruction. *Information Sciences*, 622:424–436, 2023. ISSN 0020-0255.
 - Haolin Wang, Kai-Ni Wang, Jie Hua, Yi Tang, Yang Chen, Guang-Quan Zhou, and Shuo Li. Dynamic spectrum-driven hierarchical learning network for polyp segmentation. *Medical Image Analysis*, 101:103449, 2025a.

- Libo Wang, Rui Li, Ce Zhang, Shenghui Fang, Chenxi Duan, Xiaoliang Meng, and Peter M. Atkinson. Unetformer: A unet-like transformer for efficient semantic segmentation of remote sensing urban scene imagery. *ISPRS Journal of Photogrammetry and Remote Sensing*, 190:196–214, 2022. ISSN 0924-2716. doi: https://doi.org/10.1016/j.isprsjprs.2022.06.008.
 - Yongpeng Wang, Qi Tian, Jinghui Chu, and Wei Lu. A wavelet-enhanced boundary aware network with dynamic fusion for polyp segmentation. *Neurocomputing*, pp. 130259, 2025b.
 - Guangyi Wei, Jindong Xu, Qianpeng Chong, Jianjun Huang, and Haihua Xing. Prior-guided fuzzy-aware multibranch network for remote sensing image segmentation. *IEEE Geoscience and Remote Sensing Letters*, 2024a.
 - J Wei, J Deng, and M Chao. Sam-based auto-segmentation of critical structures for head and neck cancer radiotherapy. *International Journal of Radiation Oncology, Biology, Physics*, 120(2): e113–e114, 2024b.
 - Zhe Wu, Li Su, and Qingming Huang. Cascaded partial decoder for fast and accurate salient object detection. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 3907–3916, 2019.
 - Bin Xiao, Jinwu Hu, Weisheng Li, Chi-Man Pun, and Xiuli Bi. Ctnet: Contrastive transformer network for polyp segmentation. *IEEE Transactions on Cybernetics*, 2024.
 - Chen Xie, Deepu Rajan, and Quek Chai. An interpretable neural fuzzy hammerstein-wiener network for stock price prediction. *Information Sciences*, 577:324–335, 2021.
 - Xinyu Xiong, Zihuang Wu, Shuangyi Tan, Wenxue Li, Feilong Tang, Ying Chen, Siying Li, Jie Ma, and Guanbin Li. Sam2-unet: Segment anything 2 makes strong encoder for natural and medical image segmentation. *arXiv preprint arXiv:2408.08870*, 2024.
 - Huihui Xu, Yijun Yang, Angelica I Aviles-Rivero, Guang Yang, Jing Qin, and Lei Zhu. Lgrnet: Local-global reciprocal network for uterine fibroid segmentation in ultrasound videos. In *International Conference on Medical Image Computing and Computer-Assisted Intervention*, pp. 667–677, 2024a.
 - Wenhao Xu, Rongtao Xu, Changwei Wang, Xiuli Li, Shibiao Xu, and Li Guo. Pstnet: Enhanced polyp segmentation with multi-scale alignment and frequency domain integration. *IEEE Journal of Biomedical and Health Informatics*, 2024b.
 - Dong Yin, Raphael Gontijo Lopes, Jon Shlens, Ekin Dogus Cubuk, and Justin Gilmer. A fourier perspective on model robustness in computer vision. *Advances in Neural Information Processing Systems*, 32, 2019.
 - Zijin Yin, Kongming Liang, Zhanyu Ma, and Jun Guo. Duplex contextual relation network for polyp segmentation. In 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), pp. 1–5, 2022. doi: 10.1109/ISBI52829.2022.9761402.
 - Guanghui Yue, Yuanyan Li, Shangjie Wu, Bin Jiang, Tianwei Zhou, Weiqing Yan, Hanhe Lin, and Tianfu Wang. Dual-domain feature interaction network for automatic colorectal polyp segmentation. *IEEE Transactions on Instrumentation and Measurement*, 2024.
 - Chenxu Zhai, Lei Yang, Yanhong Liu, and Guibin Bian. Dbg-net: A double-branch boundary guidance network for polyp segmentation. *IEEE Transactions on Instrumentation and Measurement*, 2024.
 - Qing Zhang and Weiqi Yan. Cfanet: A cross-layer feature aggregation network for camouflaged object detection. In 2023 IEEE International Conference on Multimedia and Expo (ICME), pp. 2441–2446, 2023. doi: 10.1109/ICME55011.2023.00416.
 - Ruifei Zhang, Peiwen Lai, Xiang Wan, De-Jun Fan, Feng Gao, Xiao-Jian Wu, and Guanbin Li. Lesion-aware dynamic kernel for polyp segmentation. In *International Conference on Medical Image Computing and Computer-Assisted Intervention*, pp. 99–109. Springer, 2022a.

Wenchao Zhang, Chong Fu, Yu Zheng, Fangyuan Zhang, Yanli Zhao, and Chiu-Wing Sham. Hsnet: A hybrid semantic network for polyp segmentation. *Computers in Biology and Medicine*, 150: 106173, 2022b. ISSN 0010-4825. doi: https://doi.org/10.1016/j.compbiomed.2022.106173.

Yundong Zhang, Huiye Liu, and Qiang Hu. Transfuse: Fusing transformers and cnns for medical image segmentation, 2021.

Jiaxing Zhao, Jiang-Jiang Liu, Deng-Ping Fan, Yang Cao, Jufeng Yang, and Ming-Ming Cheng. Egnet: Edge guidance network for salient object detection. In 2019 IEEE/CVF International Conference on Computer Vision, pp. 8778–8787, 2019. doi: 10.1109/ICCV.2019.00887.

Zongwei Zhou, Md Mahfuzur Rahman Siddiquee, Nima Tajbakhsh, and Jianming Liang. Unet++: Redesigning skip connections to exploit multiscale features in image segmentation. *IEEE transactions on medical imaging*, 39(6):1856–1867, 2019.

Xingguo Zhu, Wei Wang, Chen Zhang, and Haifeng Wang. Polyp-mamba: A hybrid multi-frequency perception gated selection network for polyp segmentation. *Information Fusion*, 115:102759, 2025.

A APPENDIX

A.1 THE DETAILS OF DATASETS AND EVALUATION METRICS

A.1.1 THE DETAILS OF DATASETS

To evaluate the effectiveness of the proposed method, we utilize five benchmark datasets, described in detail as follows:

CVC-ClinicDB. This dataset consists of 612 images derived from 31 frame sequences, with corresponding ground truth annotations of polyp regions manually marked by experts (Bernal et al., 2015). The images, originally at a resolution of 384×288 , were curated in collaboration with the Hospital Clinic of Barcelona, Spain.

CVC-300. Containing 300 polyp images extracted from 13 video sequences, this dataset provides frames at a resolution of 574×500 (Vázquez et al., 2017).

Kvasir-SEG. Comprising 1000 manually annotated polyp images, this dataset was created by experienced physicians at Vestre Viken Health Trust, Norway (Jha et al., 2020). The resolutions of these images range from 332×487 to 1920×1072 , reflecting diverse input conditions.

CVC-ColonDB. This dataset features 380 annotated images extracted from 15 distinct colonoscopy video sequences (Tajbakhsh et al., 2015). To enhance the functional focus, non-informative black borders were cropped. The frames were carefully curated to ensure variability by excluding similar perspectives. All images are standardized to a resolution of 574×500 .

ETIS. This dataset contains 196 polyp images obtained from 34 colonoscopy videos conducted at the Universitat Autònoma de Barcelona (Silva et al., 2014). The images were identified and annotated by clinical experts to ensure precise ground truths.

These datasets provide diverse resolutions and annotations, supporting comprehensive evaluation of the proposed method across various imaging conditions and challenges.

A.1.2 THE DETAILS OF EVALUATION METRICS

The performance of our model is rigorously evaluated using six widely recognized metrics (Bo et al., 2023): mean Dice Similarity Coefficient (meanDSC), mean Intersection over Union (meanIoU), Weighted F-measure (wFm), S-measure (Sm), max E-measure (maxEm), and Mean Absolute Error (MAE). DSC and IoU function as regional similarity indicators, focusing on the internal coherence of the segmented entities. In this analysis, the mean values for Dice and IoU are denoted as meanDSC and meanIoU, respectively. The metric wFm integrates recall and precision, effectively addressing the limitations of conventional metrics that treat all pixels equally. The Sm emphasizes structural similarity at both regional and object levels. The maxEm evaluates segmentation performance at pixel

and image levels, while MAE provides a pixel-wise comparative analysis, calculating the average absolute deviation between predicted and actual values. In this context, lower MAE values are desirable, whereas higher values are preferred for the other metrics.

A.2 THE DETAILS OF MAMBA BACKBONE AND PD

A.2.1 MAMBA BACKBONE

We employed VMamba (Liu et al., 2024b) as the backone for feature extraction. The input image $I \in \mathbb{R}^{H \times W \times 3}$ is initially segmented into patches via a stem module, yielding a two-dimensional feature map with spatial dimensions of $\frac{H}{4} \times \frac{W}{4}$. Subsequent stages of the network are designed to produce hierarchical representations at resolutions of $\frac{H}{8} \times \frac{W}{8}$, $\frac{H}{16} \times \frac{W}{16}$, and $\frac{H}{32} \times \frac{W}{32}$. Each stage consists of a down-sampling layer (excluding the initial stage) followed by a series of Visual State Space Block (VSSB) (Han et al., 2024).

The SS2D in VSSB. The SS2D maps a 1-D function or sequence $x(t) \in \mathbb{R}$ to $y(t) \in \mathbb{R}$ through a hidden state $h(t) \in \mathbb{R}^N$, governed by evolution parameters $\mathbf{A} \in \mathbb{R}^{N \times N}$, projection parameters $\mathbf{B} \in \mathbb{R}^{N \times 1}$, and $\mathbf{C} \in \mathbb{R}^{1 \times N}$:

$$h'(t) = \mathbf{A}h(t) + \mathbf{B}x(t),$$

$$y(t) = \mathbf{C}h(t).$$
(11)

SS2D represents discrete approximations of continuous systems, where a timescale parameter Δ is employed to discretize the continuous parameters $\bf A$ and $\bf B$ to $\overline{\bf A}$ and $\overline{\bf B}$, respectively. The transformation is typically performed using the zero-order hold method, as defined below:

$$\overline{\mathbf{A}} = \exp(\Delta \mathbf{A}),$$

$$\overline{\mathbf{B}} = (\Delta \mathbf{A})^{-1} (\exp(\Delta \mathbf{A}) - \mathbf{I}) \cdot \Delta \mathbf{B}.$$
(12)

After discretizing $\overline{\bf A}$ and $\overline{\bf B}$, the corresponding discrete form of Eq. (11) with step size Δ can be expressed as:

$$h_t = \overline{\mathbf{A}}h_{t-1} + \overline{\mathbf{B}}x_t,$$

$$y_t = \mathbf{C}h_t.$$
(13)

Ultimately, the models produce the output through a global convolution process:

$$\overline{\mathbf{K}} = (\mathbf{C}\overline{\mathbf{B}}, \mathbf{C}\overline{\mathbf{A}}\overline{\mathbf{B}}, \dots, \mathbf{C}\overline{\mathbf{A}}^{\mathbf{M}-1}\overline{\mathbf{B}}),$$

$$\mathbf{y} = \mathbf{x} * \overline{\mathbf{K}},$$
(14)

where M refers to the length of the input sequence x, while $\overline{K} \in \mathbb{R}^M$ represents a structured convolutional kernel.

A.2.2 PARTIAL DECODER

As outlined in the previous section, the encoder produces four levels of multi-resolution feature maps, denoted as F_i , $i=1,\ldots,4$. These feature maps are categorized into two groups: low-level features $\{F_i, i=1,2\}$ and high-level features $\{F_i, i=3,4\}$. According to observations in (Wu et al., 2019), low-level features significantly increase computational complexity while contributing less to improving performance. Consequently, we adopt the parallel partial decoder from (Wu et al., 2019), aggregating only high-level features to construct the initial global semantic map, which is then refined by attention modules. The above operation is defined as:

$$F_i^{c_2} = F_i^{c_1} \odot \prod_{k=i+1}^L \text{Conv}(U_p(F_k^{c_1})), i \in \{l, ..., L-1\},$$
(15)

where $U_p(\cdot)$ refers to the upsampling operation by a factor of 2^{k-i} , while "Conv" represents a 3×3 convolutional layer. Finally, an upsampling and concatenation strategy is employed to merge multi-level features. When constructing a partial decoder, and designating the 3×3 convolutional layer as the optimization layer (with l=2 and L=4), the output is a feature map with dimensions $[\frac{H}{4},\frac{W}{4}]$. After applying additional 3×3 and 1×1 convolutional layers, the final feature map is obtained and resized to [H,W].

A.3 THEORY SUPPORTS ON FSCM

A.3.1 DEFINITION OF TYPE-2 KERNEL AGGREGATION

For site i with neighborhood R_i , local cue v_i , mean μ and variance σ^2 , set an interval mean:

$$\mu^{-} = \mu - \xi \sigma, \quad \mu^{+} = \mu + \xi \sigma, \quad \xi \in [0, 3],$$
 (16)

and temperature $s_i > 0$. Upper/lower memberships:

$$UMF(v) = \exp\left(-\frac{(v-\mu^{-})^{2}}{2\sigma^{2}s_{i}}\right), \quad LMF(v) = \exp\left(-\frac{(v-\mu^{+})^{2}}{2\sigma^{2}s_{i}}\right). \tag{17}$$

Type-reduced, normalized weights:

$$w_{ij} = \alpha_i \frac{\text{UMF}(v_j)}{\sum_{k \in R_i} \text{UMF}(v_k)} + (1 - \alpha_i) \frac{\text{LMF}(v_j)}{\sum_{k \in R_i} \text{LMF}(v_k)}, \quad \alpha_i \in [0, 1].$$
 (18)

FSCM output (convex kernel smoother):

$$x_i^{\text{FSCM}} = \sum_{j \in R_i} w_{ij} \, x_j. \tag{19}$$

Interpretation. A mixture of two narrowly shifted Gaussians (centers μ^{\pm}) brackets boundary hypotheses, s_i controls bandwidth, ξ controls FOU width, and α_i selects the favored side.

A.3.2 Why it helps boundary-centric tasks

 x_i^{FSCM} is a Nadaraya–Watson estimator with type-2 kernel $K_i(v) = \alpha_i \frac{\mathrm{UMF}(v)}{Z_i^{\mathrm{U}}} + (1 - \alpha_i) \frac{\mathrm{LMF}(v)}{Z_i^{\mathrm{U}}},$ i.e., an anisotropic, boundary-aware kernel: interior $\Rightarrow \xi \to 0$ (isotropic smoothing); across edges \Rightarrow mass shifts away from the opposite side, reducing cross-edge averaging at fixed bandwidth.

Bias–Variance Near a Step Edge (1-D sketch). For a step a|b at t=0, isotropic Gaussian smoothing leaks opposite-side mass $\propto \Phi(0)$. FSCM lowers the opposite-side mass as $\xi \uparrow$:

$$\mathbb{E}\left[x_i^{\text{FSCM}}\right] = \sum_{j < 0} K_i(v_j) \, a + \sum_{j \ge 0} K_i(v_j) \, b, \qquad \sum_{j \ge 0} K_i(v_j) \downarrow \text{ with } \xi. \tag{20}$$

Boundary bias \downarrow while interior variance unchanged \rightarrow sharper discontinuities and thin structures.

Asymptotics (Piecewise-Smooth Patches). With bandwidth $h_i = \sqrt{\sigma^2 s_i}$, if $h_i \to 0$ and $|R_i|h_i^d \to \infty$, then $x_i^{\mathrm{FSCM}} \stackrel{\mathbb{P}}{\to} x(i)$ inside smooth regions; near edges, the effective kernel becomes one-sided, further shrinking edge bias versus symmetric kernels.

A.4 THEORY SUPPORTS ON FASM

We operate in the radial frequency domain $r = \sqrt{\omega_x^2 + \omega_y^2} \in [0, \pi]$. Given a feature map $X \in \mathbb{R}^{H \times W \times C}$ with Fourier transform $\widehat{X} = \mathcal{F}(X)$, we introduce a set of strictly ordered band boundaries $0 = \phi_0 < \phi_1 < \dots < \phi_B = \pi$. To accommodate both prior structure and data-specific spectra, the boundaries are parameterized by positive increments $\delta_b = \operatorname{softplus}(\theta_b)$ and normalized cumulants $\widetilde{\delta}_b = \delta_b / \sum_{k=1}^B \delta_k$, yielding a monotone map:

$$\phi_b = \phi_0 + \left(\sum_{k=1}^b \tilde{\delta}_k\right) (\pi - \phi_0),\tag{21}$$

which guarantees strict ordering and end-point anchoring while remaining fully differentiable. This construction subsumes fixed partitions (equal-width or geometric) as special cases and lets the model refine resolution where informative power concentrates (typically mid-high frequencies).

Within each interval $[\phi_{b-1}, \phi_b]$ we realize a smooth band-pass window $M_b : [0, \pi] \to [0, 1]$ using a raised-cosine transition of width $\gamma > 0$:

$$M_{b}(r) = \begin{cases} 0, & r \leq \phi_{b-1} - \gamma, \\ \frac{1}{2} \left[1 + \cos\left(\frac{\pi(r - \phi_{b-1})}{\gamma}\right) \right], & \phi_{b-1} - \gamma < r < \phi_{b-1} + \gamma, \\ 1, & \phi_{b-1} + \gamma \leq r \leq \phi_{b} - \gamma, \\ \frac{1}{2} \left[1 + \cos\left(\frac{\pi(\phi_{b} - r)}{\gamma}\right) \right], & \phi_{b} - \gamma < r < \phi_{b} + \gamma, \\ 0, & r \geq \phi_{b} + \gamma. \end{cases}$$
(22)

Adjacent windows dovetail so that $\sum_{b=1}^B M_b(r) \approx 1$ for all r, forming a near partition of unity that minimizes spectral gaps and overlaps. Analysis–synthesis per band is then linear and transparent:

$$Y_b = \mathcal{F}^{-1}(M_b \odot \widehat{X}) \in \mathbb{R}^{H \times W \times C}, \qquad b = 1, \dots, B,$$
(23)

where \odot denotes Hadamard product. A shared FFT of X followed by bandwise masking and IFFT amortizes computation and preserves differentiability.

The band responses are fused by spatially adaptive convex weights $\alpha_b: \Omega \to [0,1]$ with $\sum_b \alpha_b(\mathbf{p}) = 1$, implemented by a lightweight 1×1 head (conv + softmax):

$$Y(\mathbf{p}) = \sum_{b=1}^{B} \alpha_b(\mathbf{p}) Y_b(\mathbf{p}). \tag{24}$$

This fusion lets the network emphasize high-frequency bands only where image evidence requires, such as object boundaries, thin structures, or depth discontinuities, while favoring low and mid bands in homogeneous regions. It results in a controllable redistribution of spectral mass that sharpens informative transitions without globally amplifying noise.

The design is effective for three intertwined reasons. First, energy and stability are controlled by construction. Since $M_b(r) \in [0,1]$ and $\sum_b M_b(r) \leq 1$, Parseval's identity gives $\sum_b \|Y_b\|_2^2 \leq \|X\|_2^2$; the convex fusion satisfies $\|Y\|_2 \leq \sum_b \|\alpha_b\|_\infty \|Y_b\|_2 \leq \|X\|_2$. Thus FASM is non-expansive: it cannot blow up energy and remains numerically stable while manipulating high frequencies. Moreover, if the head producing α_b is L_α -Lipschitz on a compact set, the overall map $X \mapsto Y$ is \tilde{L} -Lipschitz with $\tilde{L} = \mathcal{O}(L_\alpha)$, ensuring robustness to small photometric or feature perturbations that commonly occur in real scenes.

Second, the module aligns with bandwise optimal linear estimation. Under a wide-sense stationary signal-noise model X = S + N with uncorrelated S, N, and approximately constant band powers $\operatorname{Var}_b(S) = \sigma_{S,b}^2, \operatorname{Var}_b(N) = \sigma_{N,b}^2$, the MMSE linear estimator applies gains $G_b^\star = \sigma_{S,b}^2/(\sigma_{S,b}^2 + \sigma_{N,b}^2) \propto \operatorname{SNR}_b$. Geometric or learned spacing makes within-band statistics more homogeneous, so the spatially varying $\alpha_b(\mathbf{p})$ act as Wiener-like gains that increase where the local SNR is higher and recede where noise dominates. Consequently, FASM denoises in a spectrally selective manner while preserving the structural detail most often carried by mid-high frequencies.

Third, the construction yields a favorable bias–variance profile at discontinuities. Isotropic smoothing at a fixed bandwidth leaks opposite-side mass across an edge, introducing boundary bias. By isolating narrow, smoothly windowed high-frequency bands and lifting their contribution only near edges through $\alpha_b(\mathbf{p})$, FASM reduces cross-edge leakage without inflating variance in flat regions. In the frame-theoretic view, if $\{M_b\}$ realize an exact partition of unity, the analysis–synthesis system becomes a tight frame with $\|X\|_2^2 = \sum_b \|Y_b\|_2^2$; as the number of bands increases and $\gamma \to 0$ while maintaining the partition, the operator approaches the identity, ensuring consistency while granting ever finer spectral control.

A.5 ADDITIONAL ABLATION STUDY

A.5.1 THE EFFECT OF COMPONENTS IN D2PM

The proposed D2PM consists primarily of VSSB and SMFFL. To assess the rationale behind the design, we conducted ablation experiments on the individual modules of D2PM, as illustrated in

Fig. 10 and Table 4. In these experiments, VSSB or SMFFL is replaced with a standard 3×3 convolution. The results indicate that the removal of either VSSB or SMFFL leads to a notable performance degradation. This suggests that both components contribute significantly to the enhancement of the method's overall performance.

Figure 10: The ablation results on D2PM.

	Table 4: The ablation results on D2PM. Best results are in red.													
ID	Configuration	CVC-Cl	inicDB	Kvasir-SEG										
	Configuration	meanDSC	meanIoU	meanDSC	meanIoU									
#8	Full Model (w./o. VSSB)	0.9203	0.8721	0.8944	0.8762									
#9	Full Model (w./o. SMFFL)	0.9487	0.8991	0.9274	0.8934									
#10	Full Model	0.9522	0.9112	0.9358	0.8951									

A.5.2 Frequency Bands Analysis

Spectral maps provide a global representation while encoding multi-scale patterns that interact with spatial positioning. Frequency decomposition prioritizes structural hierarchies, with low frequencies capturing global shapes and high frequencies emphasizing local details. To effectively capture frequency information and enhance the subtle distinctions between the background and polyps, we leverage a comprehensive integration of multiple frequency bands. This approach addresses the limitations of existing methods that rely solely on high- and low-frequency components, which often result in insufficient feature representation. Fig. 11 illustrates the relationship between the number of subbands and performance. As the number of subbands increases, the performance, measured by meanDSC and meanIoU, exhibits a notable improvement. However, beyond four subbands, the performance stabilizes, indicating diminishing returns from additional subband divisions. Thus, we select four subbands to balance efficiency and representation.

A.5.3 ABLATION ON ξ IN FSCM

The parameter ξ controls the width of the fuzzy interval, thereby governing how uncertainty is propagated through the lower and upper membership functions. We systematically varied ξ from 0.5 to 3.0, spanning the 99.7% confidence range of a Gaussian distribution. As reported in Fig. 11, segmentation performance remains remarkably stable for $\xi \in [1.0, 2.5]$, where fluctuations in meanDSC and meanIoU are bounded within 2.5%. This consistency demonstrates that FSCM is intrinsically robust to a broad spectrum of interval widths, and its effectiveness does not hinge on delicate hyperparameter tuning.

A.6 ADDITIONAL COMPARISON EXPERIMENTS ON VIDEO SCENE

To demonstrate the effectiveness of our approach, we compare it against state-of-the-art methods on two benchmark Video Polyp Segmentation (VPS) datasets: CVC-612 (Bernal et al., 2015) and CVC-300-TV (Bo et al., 2023). For both datasets, we adhere to the training and testing protocols outlined in PNS-Net (Ji et al., 2021). We conduct a comparative analysis with representative

Figure 11: Frequency analysis in FASM and ξ in FSCM.

Table 5: Transposed quantitative comparison of our method against other models on two video polyp segmentation datasets: CVC-612(-V/T) and CVC-300-TV. Best results are in red.

\mathcal{C}					\	/									
Method	CVC-612-V						CVC			CVC-612-T					
	meanDSC	meanIoU	Sm	maxEm	MAE	meanDSC	meanIoU	Sm	maxEm	MAE	meanDSC	meanIoU	Sm	maxEm	MAE
UNet++	0.684	0.570	0.805	0.830	0.025	0.649	0.539	0.796	0.831	0.024	0.740	0.635	0.800	0.817	0.059
PraNet	0.869	0.799	0.915	0.936	0.013	0.739	0.645	0.833	0.852	0.016	0.852	0.786	0.886	0.904	0.038
PNS-Net	0.873	0.800	0.923	0.944	0.012	0.840	0.745	0.909	0.921	0.013	0.860	0.795	0.903	0.903	0.038
LDNet	0.870	0.799	0.918	0.941	0.013	0.835	0.741	0.898	0.910	0.015	0.857	0.791	0.892	0.903	0.037
FLA-Net	0.885	0.814	0.920	0.963	0.012	0.874	0.789	0.907	0.969	0.010	0.861	0.795	0.904	0.904	0.036
MS-TFAL	0.911	0.846	0.961	0.971	0.010	0.891	0.810	0.912	0.974	0.007	0.864	0.796	0.906	0.910	0.038
LGRNet	0.933	0.877	0.947	0.977	0.007	0.916	0.852	0.937	0.986	0.005	0.875	0.814	0.907	0.915	0.035
Ours	0.947	0.884	0.945	0.973	0.007	0.925	0.876	0.939	0.978	0.005	0.882	0.827	0.921	0.923	0.031

VPS methods, including UNet++(Zhou et al., 2019), PraNet (Fan et al., 2020), PNS-Net (Ji et al., 2021), LDNet (Zhang et al., 2022a), FLA-Net (Lin et al., 2023a), MS-TFAL (Cui et al., 2023), and LGRNet (Xu et al., 2024a). As shown in Table 5, our method consistently outperforms others across all datasets, highlighting its effectiveness in VPS task.

A.7 BOUNDARY-LOCALIZED MEMBERSHIP ANALYSIS OF FSCM

The membership visualizations substantiate the intended behavior of FSCM, as shown in Fig. 12. With joint normalization and an expanded footprint-of-uncertainty ($\xi=1.5, 21\times21$ window), G^+ and G^- diverge sharply and exclusively along the ground-truth contour while becoming near-identical in homogeneous regions, indicating ambiguity is correctly localized rather than global. The signed margin $D=G^+-G^-$ peaks inside the boundary band and flips sign across the object–background interface, aligning with the conservative/progressive hypotheses induced by $\mu^\pm=\mu\pm\xi\sigma$ and confirming the directional bias of the type-reduction. Moreover, higher local variance (via s_i) consistently widens the G^+/G^- separation only where structural uncertainty is high, whereas flat areas remain stable; this selectivity persists across images and under moderate changes of ξ and window size. The visualizations confirm that FSCM localizes uncertainty at boundaries, enforces side-consistent evidence aggregation, and preserves interior stability, directly supporting our design goals and explaining the observed improvements in boundary accuracy.

A.8 COMPARISON WITH RECENT FREQUENCY-BASED SEGMENTATION METHODS

To ensure that the evaluation remains both rigorous and up to date, we incorporated recent frequency-based segmentation methods, including Polyp-Mamba (Zhu et al., 2025), DSHNet (Wang et al., 2025a), and WBANet (Wang et al., 2025b), into our experimental comparisons. All methods were trained and tested under identical settings to guarantee fairness. As summarized in Table 6, our method consistently achieves superior results across CVC-ClinicDB and Kvasir-SEG, surpassing these strong baselines on nearly all metrics. This performance gain confirms the effectiveness of our dual-domain design with fuzzy spatial control and frequency selection, and demonstrates that the

Figure 12: Visualization of FSCM memberships. G^+ and G^- diverge at boundaries but remain consistent in interiors, yielding boundary-localized uncertainty and stable regions as intended.

Table 6: Quantitative comparison of recent frequency-based segmentation methods on CVC-ClinicDB and Kvasir-SEG datasets. Best results are in red.

Method		C	VC-Clin	icDB		Kvasir-SEG							
Method	meanDSC	meanIoU	wFm	Sm	MAE	maxEm	meanDSC	meanIoU	wFm	Sm	MAE	maxEm	
Polyp-Mamba (Zhu et al., 2025)	0.941	0.896	0.936	0.970	0.008	0.987	0.919	0.867	0.912	0.951	0.021	0.968	
DSHNet (Wang et al., 2025a)	0.942	0.896	0.937	0.954	0.007	0.987	0.929	0.881	0.922	0.936	0.020	0.965	
WBANet (Wang et al., 2025b)	0.947	0.907	0.953	0.956	0.005	0.992	0.933	0.889	0.929	0.936	0.020	0.972	
Ours	0.952	0.911	0.951	0.960	0.005	0.995	0.936	0.895	0.933	0.940	0.018	0.971	

Table 7: Quantitative comparison of different backbones and methods on CVC-ClinicDB and Kvasir-SEG datasets. Best results are in red

Method	Backbone		C	VC-Clini	icDB]	Kvasir-S	EG			
Method	Dackbone	meanDSC	meanIoU	wFm	Sm	MAE	maxEm	meanDSC	meanIoU	wFm	Sm	MAE	maxEm
CaraNet	ResNet50	0.905	0.848	0.894	0.938	0.012	0.973	0.905	0.847	0.887	0.919	0.027	0.965
PolypPVT	PVT	0.937	0.889	0.936	0.950	0.006	0.989	0.917	0.864	0.911	0.925	0.023	0.962
MSCAF-Net	PVT	0.926	0.879	0.919	0.950	0.006	0.982	0.911	0.857	0.903	0.922	0.025	0.964
CAFE-Net	PVT	0.936	0.889	0.932	0.952	0.006	0.982	0.921	0.874	0.915	0.932	0.021	0.970
PGCF	PVT	0.940	0.894	0.940	0.952	0.006	0.993	0.912	0.862	0.905	0.921	0.024	0.961
CTNet	Mixed ViT	0.936	0.888	0.934	0.953	0.006	0.988	0.917	0.863	0.910	0.926	0.022	0.969
DBG-Net	Res2Net50	0.905	0.857	0.898	0.937	0.008	0.968	0.915	0.863	0.906	0.920	0.025	0.964
Polyp-Mamba	Mamba	0.941	0.891	0.942	0.970	0.008	0.987	0.919	0.867	0.912	0.951	0.021	0.968
Ours (ResNet50)	ResNet50	0.921	0.881	0.922	0.928	0.007	0.965	0.908	0.868	0.905	0.912	0.020	0.942
Ours (Res2Net50)	Res2Net50	0.923	0.884	0.922	0.931	0.007	0.965	0.908	0.868	0.905	0.912	0.020	0.942
Ours (Swin)	Swin	0.926	0.886	0.925	0.934	0.005	0.968	0.911	0.871	0.908	0.914	0.019	0.945
Ours (PVT)	PVT	0.943	0.902	0.942	0.950	0.005	0.985	0.927	0.886	0.924	0.931	0.018	0.961
Ours (Mamba)	Mamba	0.946	0.911	0.951	0.960	0.005	0.995	0.936	0.895	0.933	0.940	0.018	0.971

proposed framework advances the state of the art among the latest frequency-driven segmentation strategies.

A.9 BACKBONE ABLATION AND COMPLEXITY-PERFORMANCE TRADE-OFF

As shown in Table 7, the backbone ablation results demonstrate that the observed performance improvements cannot be attributed merely to substituting a stronger backbone. Instead, they highlight the synergistic interaction between the Mamba backbone and our dual-domain modules (FSCM and FASM).

Same-Backbone Comparison. Under the same backbone, our method consistently outperforms existing approaches. For example, with the Mamba backbone on CVC-ClinicDB, our method achieves 0.946 meanDSC and 0.911 meanIoU, surpassing Polyp-Mamba (0.941 meanDSC, 0.891 meanIoU) by +0.5% and +2.2%, respectively. Similar gains are observed on Kvasir-SEG (+1.8% in meanDSC and +3.2% in meanIoU). These improvements indicate that the advantage does not come from Mamba alone, but from the added capabilities of FSCM in boundary uncertainty modeling and FASM in mid-frequency spectrum exploitation, which together enhance segmentation quality.

Cross-Backbone Comparison. When comparing different backbones, Mamba offers a significant advantage. On CVC-ClinicDB, it outperforms ResNet50, Res2Net50, Swin Transformer, and PVT by +3.4%, +3.1%, +2.8%, and +1.0% in mean IoU, respectively. on Kvasir-SEG, the gains are +3.1%, +3.1%, +2.8%, and +1.0%, respectively. Given that these alternatives are already strong backbones, these consistent improvements highlight Mamba's superior long-range spatial-spectral modeling capability.

Complexity-Efficiency Trade-off. Despite a higher parameter count (69.37M), our model maintains competitive FLOPs (16.53G) and achieves 65.24 FPS on an NVIDIA A5000 for $352 \times 352 \times 3$ inputs (well above the 24 FPS real-time threshold) owing to the lightweight Mamba design, the non-iterative fuzzy weighting, and the adaptive frequency selection. These results confirm a favorable accuracy—efficiency trade-off, where the added complexity is proportionally justified by consistent, cross-dataset gains in segmentation accuracy.

Overall, the above results show that Mamba provides a strong foundation, while FSCM and FASM consistently deliver additional accuracy gains across datasets, achieving a favorable accuracy–efficiency balance.

A.10 LIMITATIONS

Although FSFMamba demonstrates strong performance across diverse polyp segmentation datasets, several limitations remain. First, the model is trained and evaluated on curated benchmark datasets that may not fully represent the variability of real-world clinical settings, such as motion blur, lighting inconsistencies, or unseen device artifacts. Second, while the fuzzy spatial control mechanism effectively models boundary uncertainty, it introduces additional computational overhead due to the iterative calculation of membership functions, which may limit its deployment in resource-constrained environments. Lastly, the current frequency decomposition strategy relies on predefined sub-band partitions, which may not optimally adapt to varying image characteristics across domains. Future work will explore adaptive frequency learning schemes and lightweight uncertainty modeling to further enhance scalability and generalization.