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ABSTRACT

Colorectal cancer (CRC) screening relies on accurate polyp segmentation, yet
subtle appearance differences and ambiguous boundaries in colonoscopy images
make this task challenging. To overcome these limitations, we propose FSFMamba,
a dual-domain fusion network that jointly models boundary uncertainty and fre-
quency structure to improve delineation. In the spatial domain, a Fuzzy Spatial
Control Mechanism (FSCM) instantiates an interval type-2 membership to localize
uncertainty at boundary bands while preserving stability in homogeneous regions.
In the spectral domain, a Frequency Adaptive Selection Mechanism (FASM) per-
forms octave-wise spectral decomposition and applies learnable band-wise weight-
ing to emphasize task-relevant subbands and suppress spurious responses. The two
streams are fused by a Mamba-based state-space block that enables long-range,
low-latency interactions and pre-norm residual refinement for stable optimization.
Extensive experiments show FSFMamba consistently outperforms recent baselines
with sharper boundaries, fewer false positives, and strong robustness.

1 INTRODUCTION

Colorectal cancer (CRC) is the third most common cancer worldwide, accounting for 10% of all cases,
and remains the second leading cause of cancer-related deaths. Notably, around 85% of CRC cases
arise from adenomatous polyps (Mathews et al., 2021). Early detection and removal can significantly
reduce incidence and mortality, achieving a 5-year survival rate of up to 90% (Jiang et al., 2023).
Consequently, there is a critical need for automated and reliable polyp segmentation methods to
support physicians in accurately identifying polyp regions during diagnosis.

Recent advances in deep learning have significantly improved polyp segmentation performance (Lu
et al., 2024; Lijin et al., 2024). However, accurate delineation remains challenging due to the
frequent presence of indistinct and ambiguous polyp boundaries (Fig. 1(a) and (b)). To mitigate this,
various methods have introduced boundary-aware modules, such as reverse attention (Zhao et al.,
2019), balanced attention (Nguyen et al., 2021), and uncertainty-augmented context attention (Kim
et al., 2021). Yet, these models often fail in cases involving severe boundary ambiguity. To further
enhance boundary modeling, some studies have employed Bayesian estimation frameworks (Djebra
et al., 2025; Han et al., 2025) to capture prediction uncertainty. Despite these efforts, effectively
distinguishing polyps from fuzzy or overlapping background regions remains an open problem. This
raises a key question: How can uncertainty be effectively modeled to better distinguish polyps
from the background under boundary ambiguity?

Furthermore, our investigation reveals that existing methods primarily focus on single spatial fea-
tures, which, despite their effectiveness in segmentation, are prone to interference from complex
backgrounds due to their reliance on pixel-level information, particularly local intensity and spatial
position (Xu et al., 2024b). This limitation hampers their ability to capture global correlations, making
it difficult to distinguish subtle variations within polyps and surrounding tissues. Recent studies
indicate that frequency features extracted via Fourier Transform (FT) (Qin et al., 2021) or Discrete
Cosine Transform (DCT) (Xu et al., 2024b) provide global contextual representations, improving
image interpretation and alleviating spatial limitations. However, these methods primarily target
high- and low-frequency components, potentially neglecting critical mid-frequency information that
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Figure 1: Motivation. (a) is CRC image, while (b) highlights the magnified polyp region with
ambiguous boundaries and significant uncertainty. For this, we employ a Fuzzy Spatial Control
Mechanism, where G+(v;µ, σ) and G−(v;µ, σ) define the uncertainty bounds, refining key cues by
fuzzy control, as shown in (c). (d) enhances contours and edges by frequency cues, but boundary
ambiguity and interference limit its effectiveness. (e) shows the Frequency Adaptive Selection
Mechism. We split Fourier features into fixed radial octave bands and learn weights to select
frequencies, then invert to refine features, mainly strengthening boundary cues.

encodes essential structural details, as shown in Fig. 1 (d). Thus, another important question arises:
How can frequency cues be optimally utilized to extract meaningful information?

To address the above challenges, we propose FSFMamba, a joint fuzzy spatial-frequency learning
framework built on a Mamba backbone for precise polyp segmentation. It tackles both boundary
ambiguity and multi-frequency representation. To address Problem 1, we design the Fuzzy Spa-
tial Control Mechanism (FSCM), which leverages fuzzy set theory to model boundary uncertainty.
By employing second-order membership functions with upper and lower bounds G+(v;µ, σ) and
G−(v;µ, σ), FSCM adaptively captures edge ambiguity and transition regions (see Fig. 1(c)). To
solve Problem 2, we propose the Frequency Adaptive Selection Mechanism (FASM), which lever-
ages spectral decomposition to derive subband representations and employs a learnable weighting
scheme to selectively amplify discriminative frequency components. As shown in Fig. 1 (e), FASM
decomposes Fourier features into fixed octave bands and learns their weights, which are then mapped
back to refine spatial predictions. To jointly optimize both domains, we integrate FSCM and FASM
into a Dual-Domain Perception Mechanism (D2PM), forming the Frequency Learning and Fuzzy
Spatial Control (FLFSC). In a nutshell, the main contributions are listed as:

• To our knowledge, we are the first to employ fuzzy control to model ambiguous boundary uncertainty
and exploit multi-frequency bands to capture subtle variations, thereby enhancing polyp segmentation.

• We propose the joint fuzzy spatial-frequency learning Mamba network (FSFMamba) integrating
multi-level FLFSC for learning of fuzzy spatial features and frequency cues. Each FLFSC integrates:
(i) FSCM for capturing boundary uncertainty and adapts to membership variability, (ii) FASM for
modeling intrinsic correlations across frequency bands and learns dependencies among frequency
components, and (iii) D2PM for combining both to enhance polyp segmentation.

• Extensive comparative experiments on public datasets demonstrate that our method consistently
provides robust segmentation performance across various challenging scenarios.

2 RELATED WORKS

Polyp Segmentation. Recent polyp segmentation spans CNN, Transformer, and hybrid designs.
CNNs with VGG (Vedaldi & Zisserman, 2016) and ResNet (Koonce, 2021), enhanced by attention
(Kim et al., 2021; Nguyen et al., 2021; Zhao et al., 2019), interaction (Zhang et al., 2022b), edge-
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Figure 2: Overview of the proposed FSFMamba framework for polyp segmentation. Among these,
FSCM resolves boundaries by Gaussian fuzzy regression, FASM filters critical frequency sub-bands,
and D2PM fuses fuzzy spatial feature and spectral feature by visual state-space operators.

aware (Su et al., 2023), and multi-scale modules (Ji et al., 2024a), capture fine detail but lack global
context. Transformers improve long-range reasoning via self-attention, as in ViT (Chen et al., 2021),
Swin-Unet (Cao et al., 2023), and UNetFormer (Wang et al., 2022), often with higher compute.
Hybrids such as TransFuse (Zhang et al., 2021), PolypPVT (Bo et al., 2023), and SSFormer (Shi et al.,
2022) integrate global and local cues. Foundation models (SAM (Wei et al., 2024b), SAM2-UNet
(Xiong et al., 2024)) and VMamba (Liu et al., 2024b) extend efficient global modeling. Following
this, we adopt Mamba as the backbone for efficient feature extraction.

Fuzzy Learning. Deep learning excels at large-scale, task-driven feature extraction, but deterministic
models handle uncertainty poorly. To mitigate this, fuzzy logic has been integrated into neural
networks (Luo et al., 2023; Mohammadzadeh et al., 2023). Huang et al. (Xie et al., 2021) use fuzzy
memberships to quantify pixel-level ambiguity in segmentation. Wang et al. (Wang et al., 2023) map
images into a fuzzy domain for rule-based reasoning and fuse the result with convolutional features.
Wei et al. (Wei et al., 2024a) detect boundary pixels via local variation with fuzzy awareness. We
instead adopt a Gaussian-regressed interval type-2 membership that converts rigid constraints into
elastic spatial boundaries, improving structural adaptability and reducing uncertainty.

Frequency Learning. Frequency analysis, central to signal processing (Pitas, 2000), is increas-
ingly applied in vision to guide optimization (Yin et al., 2019), enable non-local feature learning
(Huang et al., 2023), and support domain-generalizable representations (Lin et al., 2023b). In polyp
segmentation, Ren et al. (Ren et al., 2024) leverage high-frequency cues with a local–nonlocal
Transformer. Recent work integrates spatial and frequency cues: Yue et al. (Yue et al., 2024) fuse
them via interaction learning, and Li et al. (Li et al., 2024) apply parameterized frequency modulation
to refine styles and enhance lesions. Although frequency–spatial fusion is common, polyp noise and
texture ambiguity undermine feature reliability. We propose fuzzy-controlled spatial optimization
with adaptive frequency selection to jointly strengthen representations across domains.

3 METHODOLOGY

3.1 OVERVIEW

The framework of our FSFMamba is shown in Fig. 2, in which Mamba is adopted as the backbone
(see Appendix A.2.1) owing to its demonstrated ability to capture long-range dependencies with
lower computational overhead compared to full-attention Transformers. Given an input image
I ∈ RH×W×3, VMamba (Liu et al., 2024b) extracts multi-scale features {Fi}4i=1 with dimensions
H

2i+1 × W
2i+1 ×Ci. These are sequentially processed by Frequency Learning and Fuzzy Spatial Control

(FLFSCs), which integrate a fuzzy spatial control mechanism (FSCM), a frequency adaptive
selection mechanism (FASM), and a dual-domain perception module (D2PM) to refine feature

3
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Figure 3: The illustration of FSCM constrained feature map.

representation. A partial decoder (PD; see Appendix A.2.2) provides semantic priors to the deepest
FLFSC, while each subsequent FLFSC is hierarchically guided by the preceding output.

3.2 FUZZY SPATIAL CONTROL

In polyp segmentation, sharp boundary labels are unreliable because polyps and mucosa often
share highly similar visual traits. To better capture this ambiguity, fuzzy logic assigns graded
memberships to polyp and background, thereby enabling smooth boundary transitions and uncertainty-
aware supervision. Building on this principle, FSCM explicitly regularizes boundary features to
mitigate annotation brittleness, as illustrated in Fig. 3. By enforcing fuzzy learning, boundaries
become smoother and the network gains stronger discrimination ability, akin to Gaussian fuzzy
mechanisms (Liu, 2018) that assign membership based on neighboring pixel positions:

Gi(v;µ, σ) =
λ√
2πσ

e−
(vi−µ)2+ 1

ρ(Ri)

∑
i∈R

i′
(vi′−µ)2

2σ2 , (1)

where Gi(·) represents the membership function, i is the pixel index, λ is the model coefficient, and
vi is the deep feature activation at pixel i from an intermediate feature map. µ and σ are the mean
and standard deviation of the pixel values, respectively. Ri is the 8-neighbor set in a 3× 3 window
centered at pixel i, R′

i is derived from the signed distance map of predicted boundary logits within a
local neighborhood, and ρ(Ri) denotes the neighborhood scale normalization over Ri, implemented
as a differentiable local standard deviation:

ρ(Ri) =

√
1

|Ri|
∑
u∈Ri

(u− ū)2 + ε. (2)

This term estimates local feature variation and adaptively normalizes the membership response. To
account for non-Gaussian deviations, we introduce asymmetric fuzzy membership functions G+

i and
G−

i , representing interval-based pixel-wise confidence. G+
i captures positive deviations, while G−

i
encodes negative deviations, jointly modeling uncertainty with flexible context-aware constraints.
The upper membership function G+

i (·) is defined as:

G+
i (v;µ, σ) =


λ√
2πσ

e−
(vi−µ−)2+ 1

ρ(Ri)

∑
i∈R

i′
(v

i′−µ−)2

2σ2 , if vi < µ−

λ√
2πσ

e−
(vi−µ+)2+ 1

ρ(Ri)

∑
i∈R

i′
(v

i′−µ+)2

2σ2 , if vi > µ+

(3)

In a similar way, the lower membership function, G−
i (·), expressed as:

G−
i (v;µ, σ) =


λ√
2πσ

e−
(vi−µ+)2+ 1

ρ(Ri)

∑
i∈R

i′
(v

i′−µ+)2

2σ2 , if vi ≤ µ−+µ+

2

λ√
2πσ

e−
(vi−µ−)2+ 1

ρ(Ri)

∑
i∈R

i′
(v

i′−µ−)2

2σ2 , if vi > µ−+µ+

2

(4)

where the mean value µ is adjusted to the interval [µ−, µ+], with µ− and µ+ representing the mean
values at the left and right boundaries of the interval, are respectively calculated as:

µ− = µ− ξ × σ, µ+ = µ+ ξ × σ, (5)
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Figure 4: The illustration of FASM.

where ξ is the interval adjustment factor for mean deviation. Under a Gaussian membership, 99.7% of
mass falls in [µ−3σ, µ+3σ]. We control uncertainty with ξ ∈ [0, 3], shifting the lower/upper member-
ships to form adaptive constraint intervals. The fuzzy feature is Xfuzzy =

∑R
i=1 G

+|−
i (v;µ, σ) vi and

ξ adjusts G+/G− weight kernel responses. Detailed theoretical analysis is provided in Appendix A.3.

3.3 FREQUENCY ADAPTIVE SELECTION

Standard CNNs are dominated by local inductive bias. Without an explicit mechanism to regulate
spectral content, they tend to either overfit high-frequency noise or under-exploit mid-range texture
cues that are critical for polyp delineation, especially under blur and low contrast. Motivated by this,
we introduce the Frequency Adaptive Selection Module (FASM) to explicitly factor and reweight
frequency components before dual-domain fusion. As illustrated in Fig. 4, FASM suppresses unstable
high-frequency responses while preserving informative mid-frequency structures, thereby yielding a
more frequency-balanced representation.

Given a channel feature map Xc ∈ RH×W with c ∈ {1, 2, . . . , Ci}, we transform it into the Fourier
domain via the discrete Fourier transform (DFT),

XF,c(u, v) =
1

HW

H−1∑
h=0

W−1∑
w=0

Xc(h,w)e
−2πj(uh+vw), (6)

where (h,w) denotes spatial coordinates and (u, v) denotes normalized frequencies along height
and width. After shifting the spectrum to center low-frequency components, u and v range over
{−H

2 , . . . ,
H
2 − 1} and {−W

2 , . . . , W
2 − 1}, respectively. Frequencies beyond the Nyquist limit

HD+ = {(u, v) | |u| > 1
2D or |v| > 1

2D} cannot be faithfully represented, which effectively bounds
the usable bandwidth.

Different from wavelet or DWT-based decompositions that yield predefined multi-scale sub-bands,
we adopt a simple and interpretable octave-wise Fourier partition. Specifically, we decompose XF,c

into multiple fixed sub-bands using binary masks,

Xb,c = F−1
(
Mb,c XF,c

)
, (7)

where F−1 is the inverse DFT and Mb,c is defined by fixed octave thresholds,

Mb,c(u, v) =

{
1, if ϕb ≤ max(|u|, |v|) < ϕb+1,

0, otherwise.
(8)

where {ϕb}Bb=0 are predetermined frequency boundaries, yielding an octave-wise split of the normal-
ized spectrum. In all experiments, we use four bands [0, 1

16 ), [
1
16 ,

1
8 ), [

1
8 ,

1
4 ), and [ 14 ,

1
2 ].

Crucially, FASM does not learn band boundaries. Instead, it learns spatially varying selection maps
Ab to adaptively reweight fixed bands,

X̂ = Conv
(
Cat

[
A0 ⊙X0, A1 ⊙X1, . . . , AB−1 ⊙XB−1

])
, (9)

where X̂ is the frequency-balanced representation. The selection map Ab ∈ RH×W×Ci for band
b is predicted from the input features via Ab = Convb(X). The operator ⊙ denotes element-wise

5
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Figure 5: The illustration of D2PM.

multiplication, Cat[·] is channel-wise concatenation, and Conv(·) is a 1× 1 convolution for fusing
band-specific responses. This design yields a fixed, octave-wise spectral basis for interpretability,
while allowing the model to emphasize the most informative bands in a content-aware manner.
Detailed theoretical analysis is provided in Appendix A.4.

3.4 DUAL-DOMAIN PERCEPTION

The D2PM is proposed to fuse fuzzy spatial and frequency cues to capture cross-scale mixed
information and long-range dependencies. As shown in Fig. 5, the D2PM consists of two stages:
the input is first normalized and processed by the Visual State Space Block (VSSB) to capture
global context, and then passed through the Scale-Mixed Feed-Forward Layer (SMFFL) to extract
multi-scale features with residual connections. Formally:

Fcor = Cat(X̂,Xfuzzy, F
′
c
(k−1)), F ′

cor = Fcor +VSSB(LN(Fcor)), F
′
c
(k) = F ′

cor + S(LN(F ′
cor)),

(10)
where LN(·) refers to the layer normalization and S(·) is the SMFFL.

VSSB. Fig. 5 provides the structure of the VSSB. The input features X are first subjected to layer
normalization, followed by processing by a linear layer, resulting in the two separate streams as:

F1 = Fc(LN(X)), F ′
1 = LN(SS2D(SiLU(DW(F1)))), FVSSB = Fc(F ′

1 ⊗ SiLU(F1)), (11)

where DW(·) refers to depth-wise separable convolution, SiLU(·) represents SiLU activation function,
Fc(·) is linear layer, SS2D(·) denotes 2D selective scanning, and FVSSB is the output of VSSB.

SMFFL. As shown in Fig. 5, SMFFL adopts a dual-branch, multi-scale structure. The input feature
FX is normalized and split into two branches with linear projection and 3× 3 or 5× 5 convolutions
to capture multi-scale features in a low-dimensional space. After GELU activation and up-projection,
residual connections are added to support gradient flow. The process is defined as:

F ′
X = LN(FX), FX1 = f3(Fc(F ′

X)), FX2 = f5(Fc(F ′
X)), FS = Fc(σG(Cat(FX1, FX2))) + FX,

(12)
where fx(·) denotes the standard convolution operation of size x× x, σG(·) represents the GELU
activation function, and ⊕ indicates element-wise addition.

3.5 LOSS FUNCTIONS

The loss function utilized in this study is formulated as L = LwIoU + LwBCE (Jun Wei, 2020), where
LwIoU represents the weighted intersection over union (IoU) loss and LwBCE denotes the weighted
binary cross-entropy (BCE) loss. We implement the L to facilitate deep supervision across the four
outputs {ti, i = 1, 2, 3, 4}. Thus, the total loss is Ltotal =

∑i=4
i=1 L (tupi , G).

6
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Table 1: Quantitative comparison of our method against other models on two domain-specific datasets:
CVC-ClinicDB and Kvasir-SEG. Best results are in red.

Method
CVC-ClinicDB Kvasir-SEG

mDSC ↑ mIoU ↑ wFm ↑ Sm ↑ MAE ↓ maxEm ↑ mDSC ↑ mIoU ↑ wFm ↑ Sm ↑ MAE ↓ maxEm ↑

CaraNet 0.9045 0.8480 0.8943 0.9379 0.0124 0.9729 0.9046 0.8465 0.8869 0.9188 0.0273 0.9653
DCRNet 0.8962 0.8440 0.8902 0.9337 0.0101 0.9779 0.8864 0.8248 0.8681 0.9106 0.0354 0.9412

SSFormer 0.9160 0.8730 0.9240 0.9370 0.0070 0.9847 0.9250 0.8780 0.9210 0.9310 0.0170 0.9643
HSNet 0.9476 0.9050 0.9508 0.9543 0.0055 0.9933 0.9258 0.8771 0.9177 0.9268 0.0234 0.9639

CFANet 0.9325 0.8828 0.9241 0.9507 0.0068 0.9893 0.9147 0.8615 0.9029 0.9240 0.0229 0.9623
FeDNet 0.9304 0.8846 0.9284 0.9501 0.0069 0.9817 0.9242 0.8761 0.9180 0.9329 0.0212 0.9664

PolypPVT 0.9368 0.8894 0.9355 0.9500 0.0064 0.9891 0.9174 0.8642 0.9105 0.9251 0.0228 0.9617
MSCAF-Net 0.9261 0.8786 0.9222 0.9503 0.0064 0.9818 0.9113 0.8565 0.9026 0.9218 0.0248 0.9636
CAFE-Net 0.9326 0.8889 0.9316 0.9549 0.0064 0.9816 0.9210 0.8742 0.9145 0.9319 0.0211 0.9700

PGCF 0.9397 0.8938 0.9396 0.9520 0.0057 0.9925 0.9117 0.8622 0.9049 0.9214 0.0241 0.9610
CTNet 0.9355 0.8875 0.9344 0.9529 0.0063 0.9876 0.9171 0.8628 0.9100 0.9280 0.0232 0.9640

SAM2UNet 0.9041 0.8535 0.8983 0.9464 0.0097 0.9683 0.9241 0.8760 0.9169 0.9394 0.0198 0.9727
DBG-Net 0.9047 0.8571 0.8982 0.9367 0.0079 0.9684 0.9152 0.8626 0.9062 0.9196 0.0253 0.9637

Ours 0.9522 0.9112 0.9510 0.9600 0.0053 0.9945 0.9358 0.8951 0.9331 0.9403 0.0176 0.9705

(b) Evaluation on Kvasir-SEG 
(i) (ii)

(a) Evaluation on  CVC-ClinicDB 
(i) (ii)

Figure 6: Complexity comparison on CVC-ClinicDB and Kvasir-SEG. Metrics are split by optimiza-
tion objective for clarity: (i) higher-is-better metrics and (ii) lower-is-better metrics.

4 EXPERIMENTS

4.1 SETUPS

Datasets. Following the experimental setups in (Bo et al., 2023), we systematically evaluate the
performance of our method across five prominent public datasets focused on polyp segmentation:
CVC-300, CVC-ClinicDB, Kvasir-SEG, CVC-ColonDB, and ETIS.

Compared Models and Evaluation Metrics. We compare our method against 13 public polyp
segmentation models, including CaraNet (Lou et al., 2021), DCRNet (Yin et al., 2022), SSFormer (Shi
et al., 2022), HSNet (Zhang et al., 2022b), CFANet (Zhang & Yan, 2023), FeDNet (Su et al., 2023),
Polyp-PVT (Bo et al., 2023), MSCAF-Net (Liu et al., 2023), CAFENet (Liu et al., 2024a), PGCF (Ji
et al., 2024b), CTNet (Xiao et al., 2024), SAM2UNet (Xiong et al., 2024), and DBG-Net (Zhai et al.,
2024). For fairness, we adopt their official codes and evaluate all models under identical training
and testing settings. Each method is rigorously assessed by 6 widely recognized metrics (Bo et al.,
2023): mean Dice Similarity Coefficient (mDSC), mean Intersection over Union (mIoU), Weighted
F-measure (wFm), S-measure (Sm), max E-measure (maxEm), and Mean Absolute Error (MAE).

Implementation Details. Our method is developed on the PyTorch framework, with the VMamba-
Small model pretrained on ImageNet as the backbone. To account for variations in polyp image
sizes, a multi-scale strategy of {0.75, 1, 1.25} is employed instead of conventional data augmentation.
Input images are resized to 352× 352 pixels, with a mini-batch size of 16, and training is 100 epochs.
The AdamW optimizer is used to fine-tune the model parameters, with a learning rate and weight
decay both set to 1e–4. The training process, executed on an NVIDIA A5000 GPU.

4.2 COMPARISON WITH STATE-OF-THE-ARTS

Quantitative Analysis of Learning Ability. We conduct a quantitative comparison on two clinically
relevant benchmarks, CVC-ClinicDB and Kvasir-SEG (Table 1). Our method consistently outper-
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Table 2: Quantitative comparison of our method against other models across three out-of-domain
datasets: CVC-300, CVC-ColonDB, and ETIS. Best results are in red.

Method
CVC-300 CVC-ColonDB ETIS

mDSC mIoU wFm Sm MAE maxEm mDSC mIoU wFm Sm MAE maxEm mDSC mIoU wFm Sm MAE maxEm

CaraNet 0.8809 0.8109 0.8499 0.9298 0.0096 0.9820 0.7384 0.6558 0.7065 0.8289 0.0454 0.8725 0.7293 0.6444 0.6734 0.8488 0.0159 0.9126

DCRNet 0.8565 0.7883 0.8303 0.9216 0.0101 0.9597 0.7040 0.6315 0.6839 0.8211 0.0516 0.8480 0.5557 0.4960 0.5063 0.7356 0.0958 0.7730

SSFormer 0.8870 0.8210 0.8690 0.9290 0.0070 0.9751 0.7720 0.6970 0.7660 0.8440 0.0170 0.9235 0.7670 0.6980 0.7360 0.8630 0.0160 0.9132

HSNet 0.9027 0.8393 0.8868 0.9375 0.0067 0.9750 0.8099 0.7347 0.7955 0.8679 0.0324 0.9146 0.8079 0.7335 0.7775 0.8821 0.0211 0.9090

CFANet 0.8933 0.8269 0.8746 0.9383 0.0080 0.9781 0.7426 0.6649 0.7281 0.8351 0.0388 0.8976 0.7325 0.6549 0.6930 0.8455 0.0143 0.8920

FeDNet 0.9106 0.8485 0.8971 0.9461 0.0057 0.9854 0.8235 0.7443 0.8089 0.8781 0.0295 0.9219 0.8104 0.7335 0.7729 0.8916 0.0156 0.9414

PolypPVT 0.9001 0.8332 0.8835 0.9349 0.0066 0.9812 0.8083 0.7273 0.795 0.8654 0.0311 0.9190 0.7869 0.7058 0.7498 0.8709 0.0130 0.9098

MSCAF-Net 0.9022 0.8362 0.8842 0.9417 0.0061 0.9805 0.7902 0.7109 0.7691 0.8596 0.0313 0.9033 0.7745 0.6977 0.7342 0.8660 0.0165 0.9069

CAFE-Net 0.8867 0.8151 0.8618 0.9304 0.0079 0.9747 0.8181 0.7387 0.7994 0.8760 0.0270 0.9182 0.8275 0.7485 0.7874 0.8996 0.0122 0.9375

PGCF 0.8955 0.8272 0.8732 0.9351 0.0073 0.9762 0.8158 0.7376 0.8013 0.8729 0.0271 0.9233 0.7619 0.6861 0.7290 0.8578 0.0173 0.8862

CTNet 0.9082 0.8437 0.8943 0.9435 0.0058 0.9822 0.8127 0.7336 0.8007 0.8749 0.0272 0.9195 0.8098 0.7337 0.7764 0.8865 0.0139 0.9205

SAM2UNet 0.8901 0.8237 0.9220 0.9579 0.0042 0.9866 0.8048 0.7279 0.7887 0.8773 0.0282 0.9141 0.7930 0.7201 0.7579 0.8815 0.0178 0.9113

DBG-Net 0.9019 0.8367 0.8834 0.9400 0.0052 0.9797 0.7971 0.7227 0.7807 0.8698 0.0282 0.9120 0.7521 0.6813 0.7186 0.8604 0.0142 0.9098

Ours 0.9171 0.8674 0.9076 0.9533 0.0056 0.9879 0.8912 0.8347 0.8828 0.9252 0.0158 0.9623 0.8560 0.7939 0.8361 0.9162 0.0076 0.9537

forms existing approaches across all metrics. On CVC-ClinicDB, it ranks first on mDSC (0.9522),
mIoU (0.9112), wFm (0.9510), Sm (0.9600), and maxEm (0.9945), while attaining the lowest MAE
(0.0053). The same pattern holds on Kvasir-SEG, where our model leads on core metrics, including
mDSC (0.9358) and mIoU (0.8951), evidencing strong generalization. Although SAM2UNet has a
marginally higher maxEm (0.9727) on Kvasir-SEG, our approach delivers a more balanced overall
profile. The Fig. 6 shows our method has mid-range FLOPs and parameters with high FPS, offering a
favorable accuracy–efficiency trade-off.
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Figure 7: Visualization comparisons on CVC-ClinicDB and Kvasir-SEG datasets.

Quantitative Analysis of Generalization Ability. We evaluate out-of-domain performance on
CVC-300, CVC-ColonDB, and ETIS (Table 2). Our method consistently surpasses comparison
models on most metrics. On CVC-300, it achieves the best mDSC of 0.9171, mIoU of 0.8674, and
maxEm of 0.9879. On CVC-ColonDB, where image quality is low and structural variability is high,
it reaches the top mDSC of 0.8912 and mIoU of 0.8347. On ETIS, which contains low-resolution
and small-scale polyps, it again leads across metrics, including mDSC of 0.8560, mIoU of 0.7939,
and Sm of 0.9162. While SAM2UNet peaks on a few isolated metrics, our model provides a more
balanced profile, evidencing robust generalization under domain shift.

Qualitative Analysis. As shown in Fig. 7, baseline methods such as CaraNet, DCRNet, and SSFormer
often miss accurate polyp boundaries under complex shapes and low contrast, yielding fragmented
or incomplete masks. More recent models improve overall detection but frequently over-segment
ambiguous regions, introducing false positives. In contrast, HSNet, PGCF, and our method achieve
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Figure 8: Visualization comparisons on CVC-300, CVC-ColonDB, and ETIS datasets.

Table 3: Ablation analysis of the components in our method. Best results are in bold.

No.
Settings CVC-ClinicDB Kvasir-SEG

baseline PD FLFSC mDSC mIoU mDSC mIoU

#1 ✓ ✗ ✗ 0.8623 0.8073 0.8537 0.8012

#2 ✓ ✓ ✗ 0.8951 0.8255 0.8879 0.8225

#3 ✓ ✗ ✓ 0.9312 0.8843 0.9231 0.8754

#4 ✓ ✓ ✓ 0.9522 0.9112 0.9358 0.8951

FSCM FASM D2PM mDSC mIoU mDSC mIoU

#5 ✓ ✗ ✗ 0.9158 0.8601 0.9089 0.8524

#6 ✓ ✓ ✗ 0.9328 0.8846 0.9214 0.8748

#7 ✓ ✗ ✓ 0.9334 0.8873 0.9218 0.8716
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Figure 9: Ablation results on different configurations.

stronger structural alignment with the ground truth. Notably, our approach better preserves fine
boundaries while suppressing background noise, reflecting superior spatial awareness and feature
discrimination. Fig. 8 further confirms this advantage on CVC-300, CVC-ColonDB, and ETIS,
demonstrating robust generalization under domain shifts and challenging clinical conditions.

4.3 ABLATION STUDY

The Effect of Each Component. Table 3 reports the ablation study of FSFMamba. Starting from the
“Vmamba–FPN” baseline (#1), we individually introduce the PD (#2) and FLFSC (#3) components,
each yielding clear gains. Their joint integration (#4) further amplifies performance, achieving the
best results. Fig. 9 shows that adding PD and FLFSC progressively sharpens predictions toward GT
boundaries, confirming their complementarity and the effect of our method.
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RGB/GT Selection Map 1 Selection Map 2 Selection Map 3 Selection Map 4

Figure 10: Octave-wise band-selection maps Ab learned by FASM. Mid-frequency maps (2/3)
highlight polyp contours, while low- (1) and high-frequency (4) maps mainly respond to smooth
background and noisy details, respectively.

Table 4: Type-2 vs. Type-1 FSCM ablation
Dataset Model mDice ↑ mIoU ↑ MAE ↓

CVC-ClinicDB Type-2 FSCM (Full) 0.9522 0.9091 0.0068
Type-1 FSCM baseline 0.9417 0.8943 0.0081

Kvasir-SEG Type-2 FSCM (Full) 0.9358 0.8896 0.0089
Type-1 FSCM baseline 0.9246 0.8729 0.0103

CVC-ColonDB Type-2 FSCM (Full) 0.8820 0.8012 0.0315
Type-1 FSCM baseline 0.8613 0.7784 0.0352

ETIS Type-2 FSCM (Full) 0.8325 0.7420 0.0410
Type-1 FSCM baseline 0.8041 0.7118 0.0461

The Effect of Sub-modules within FLFSC. To assess the contribution of the FLFSC, we decompose
it into FSCM, FASM, and D2PM. As shown in Table 3, FSCM (#5) handles fuzzy boundaries, FASM
(#6) selects frequency cues to enrich structural detail, and D2PM (#7) fuses both outputs. Each part
provides measurable gains, while the full FLFSC (#4) achieves the best performance. These results
confirm that combining spatial and frequency cues is critical for accurate polyp delineation.

Evidence of Critical Mid-Frequency Selection. To make FASM’s frequency preference explicit,
we visualize the learned octave-wise band-selection maps Ab for four bands. Fig. 10 shows that
the mid-frequency maps (A2, A3) form contiguous high-response belts along polyp contours and
thin structures, while the low-frequency map A1 mainly responds to smooth background and coarse
illumination and the high-frequency map A4 is sparsely activated in noisy or specular regions. This
confirming that FASM prioritizes mid-frequency cues for subtle boundary delineation over extreme
low or high frequencies.

Type-2 vs Type-1 FSCM Ablation Analysis. We build a Type-1 fuzzy baseline by collapsing FSCM’s
upper and lower memberships into a single Gaussian membership with the same parameterization,
while keeping the backbone, losses, and training protocol identical. As shown in Table 4, the interval
Type-2 FSCM consistently improves mDice/mIoU and reduces MAE across all datasets, with larger
gains on boundary-ambiguous and out-of-domain sets (e.g., CVC-ColonDB and ETIS) where Type-1
tends to under-model uncertainty. Since Type-1 is a degenerate case of Type-2, these results show
that the adaptive fuzzy band in Type-2 provides necessary flexibility for resolving ambiguous polyp
contours, justifying the added complexity.

5 CONCLUSION

In this paper, we propose FSFMamba to address boundary ambiguity and multi-frequency exploitation
in polyp segmentation. The FSCM captures boundary uncertainty through fuzzy learning, while the
FASM emphasizes informative subbands to refine representation. Embedded in the D2PM, these
components jointly optimize spatial and spectral cues. Extensive experiments demonstrate consis-
tent improvements in segmentation accuracy, boundary precision, and robustness across datasets,
highlighting the effectiveness of FSFMamba for automated CRC screening. Future work will ex-
plore adaptive representations and efficient modeling strategies to further enhance scalability and
generalization in real-world clinical settings.
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6 ETHICS STATEMENTS

We use only de-identified, publicly available colonoscopy datasets (CVC-ClinicDB, Kvasir-SEG,
CVC-300, CVC-ColonDB, and ETIS) under their licenses, and we collect no new human data. No
reidentification is attempted, and all data are handled on secure research infrastructure. The method
is for research use and is not a diagnostic device. We acknowledge possible distribution shift and bias
across sites and recommend site-specific evaluation. Code, configurations, and checkpoints will be
released to support transparency, reproducibility, and responsible use.

7 REPRODUCIBILITY STATEMENT

We ensure reproducibility by releasing source code, configuration files, trained checkpoints, and eval-
uation scripts, together with fixed random seeds and an environment specification. All preprocessing,
training, and inference steps are scripted end-to-end, with exact metric definitions and reporting
protocols included. We will provide ablation and hyperparameter sweep scripts to enable independent
verification without reliance on undocumented settings.
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A APPENDIX

A.1 THE DETAILS OF DATASETS AND EVALUATION METRICS

A.1.1 THE DETAILS OF DATASETS

To evaluate the effectiveness of the proposed method, we utilize five benchmark datasets, described
in detail as follows:

CVC-ClinicDB. This dataset consists of 612 images derived from 31 frame sequences, with corre-
sponding ground truth annotations of polyp regions manually marked by experts (Bernal et al., 2015).
The images, originally at a resolution of 384× 288, were curated in collaboration with the Hospital
Clinic of Barcelona, Spain.

CVC-300. Containing 300 polyp images extracted from 13 video sequences, this dataset provides
frames at a resolution of 574× 500 (Vázquez et al., 2017).

Kvasir-SEG. Comprising 1000 manually annotated polyp images, this dataset was created by
experienced physicians at Vestre Viken Health Trust, Norway (Jha et al., 2020). The resolutions of
these images range from 332× 487 to 1920× 1072, reflecting diverse input conditions.

CVC-ColonDB. This dataset features 380 annotated images extracted from 15 distinct colonoscopy
video sequences (Tajbakhsh et al., 2015). To enhance the functional focus, non-informative black
borders were cropped. The frames were carefully curated to ensure variability by excluding similar
perspectives. All images are standardized to a resolution of 574× 500.

ETIS. This dataset contains 196 polyp images obtained from 34 colonoscopy videos conducted at the
Universitat Autònoma de Barcelona (Silva et al., 2014). The images were identified and annotated by
clinical experts to ensure precise ground truths.

These datasets provide diverse resolutions and annotations, supporting comprehensive evaluation of
the proposed method across various imaging conditions and challenges.

A.1.2 THE DETAILS OF EVALUATION METRICS

The performance of our model is rigorously evaluated using six widely recognized metrics (Bo
et al., 2023): mean Dice Similarity Coefficient (mDSC), mean Intersection over Union (mIoU),
Weighted F-measure (wFm), S-measure (Sm), max E-measure (maxEm), and Mean Absolute Error
(MAE). DSC and IoU function as regional similarity indicators, focusing on the internal coherence
of the segmented entities. In this analysis, the mean values for Dice and IoU are denoted as mDSC
and mIoU, respectively. The metric wFm integrates recall and precision, effectively addressing
the limitations of conventional metrics that treat all pixels equally. The Sm emphasizes structural
similarity at both regional and object levels. The maxEm evaluates segmentation performance at pixel
and image levels, while MAE provides a pixel-wise comparative analysis, calculating the average
absolute deviation between predicted and actual values. In this context, lower MAE values are
desirable, whereas higher values are preferred for the other metrics.
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A.2 THE DETAILS OF MAMBA BACKBONE AND PD

A.2.1 MAMBA BACKBONE

We employed VMamba (Liu et al., 2024b) as the backone for feature extraction. The input image
I ∈ RH×W×3 is initially segmented into patches via a stem module, yielding a two-dimensional
feature map with spatial dimensions of H

4 × W
4 . Subsequent stages of the network are designed to

produce hierarchical representations at resolutions of H
8 × W

8 , H
16 × W

16 , and H
32 × W

32 . Each stage
consists of a down-sampling layer (excluding the initial stage) followed by a series of Visual State
Space Block (VSSB) (Han et al., 2024).

The SS2D in VSSB. The SS2D maps a 1-D function or sequence x(t) ∈ R to y(t) ∈ R through
a hidden state h(t) ∈ RN , governed by evolution parameters A ∈ RN×N , projection parameters
B ∈ RN×1, and C ∈ R1×N :

h′(t) = Ah(t) +Bx(t),

y(t) = Ch(t).
(13)

SS2D represents discrete approximations of continuous systems, where a timescale parameter ∆
is employed to discretize the continuous parameters A and B to A and B, respectively. The
transformation is typically performed using the zero-order hold method, as defined below:

A = exp (∆A),

B = (∆A)−1(exp (∆A)− I) ·∆B.
(14)

After discretizing A and B, the corresponding discrete form of Eq. (13) with step size ∆ can be
expressed as:

ht = Aht−1 +Bxt,

yt = Cht.
(15)

Ultimately, the models produce the output through a global convolution process:

K = (CB,CAB, . . . ,CA
M−1

B),

y = x ∗K,
(16)

where M refers to the length of the input sequence x, while K ∈ RM represents a structured
convolutional kernel.

A.2.2 PARTIAL DECODER

As outlined in the previous section, the encoder produces four levels of multi-resolution feature
maps, denoted as Fi, i = 1, . . . , 4. These feature maps are categorized into two groups: low-level
features {Fi, i = 1, 2} and high-level features {Fi, i = 3, 4}. According to observations in (Wu
et al., 2019), low-level features significantly increase computational complexity while contributing
less to improving performance. Consequently, we adopt the parallel partial decoder from (Wu et al.,
2019), aggregating only high-level features to construct the initial global semantic map, which is then
refined by attention modules. The above operation is defined as:

F c2
i = F c1

i ⊙ΠL
k=i+1Conv(Up(F

c1
k )), i ∈ {l, ..., L− 1}, (17)

where Up(·) refers to the upsampling operation by a factor of 2k−i, while “Conv” represents a
3× 3 convolutional layer. Finally, an upsampling and concatenation strategy is employed to merge
multi-level features. When constructing a partial decoder, and designating the 3× 3 convolutional
layer as the optimization layer (with l = 2 and L = 4), the output is a feature map with dimensions
[H4 ,

W
4 ]. After applying additional 3 × 3 and 1 × 1 convolutional layers, the final feature map is

obtained and resized to [H,W ].
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A.3 THEORY SUPPORTS ON FSCM

A.3.1 DEFINITION OF TYPE-2 KERNEL AGGREGATION

For site i with neighborhood Ri, local cue vj , mean µ and variance σ2, set an interval mean:

µ− = µ− ξσ, µ+ = µ+ ξσ, ξ∈ [0, 3], (18)

and temperature si > 0. Upper/lower memberships:

UMF(v) = exp
(
− (v − µ−)2

2σ2si

)
, LMF(v) = exp

(
− (v − µ+)2

2σ2si

)
. (19)

Type-reduced, normalized weights:

wij = αi
UMF(vj)∑

k∈Ri
UMF(vk)

+ (1− αi)
LMF(vj)∑

k∈Ri
LMF(vk)

, αi∈ [0, 1], (20)

where αi is a learnable per-pixel gate predicted by a lightweight 1× 1 conv followed by a sigmoid
on intermediate features, enabling spatially adaptive mixing between UMF and LMF.

FSCM output (convex kernel smoother):

xFSCM
i =

∑
j∈Ri

wij xj . (21)

Interpretation. A mixture of two narrowly shifted Gaussians (centers µ±) brackets boundary
hypotheses, si controls bandwidth, ξ controls FOU width, and αi selects the favored side.

A.3.2 WHY IT HELPS BOUNDARY-CENTRIC TASKS

xFSCM
i is a Nadaraya–Watson estimator with type-2 kernel Ki(v) = αi

UMF(v)
ZU

i
+ (1− αi)

LMF(v)
ZL

i
,

i.e., an anisotropic, boundary-aware kernel: interior ⇒ ξ→0 (isotropic smoothing); across edges ⇒
mass shifts away from the opposite side, reducing cross-edge averaging at fixed bandwidth.

Bias–Variance Near a Step Edge (1-D sketch). For a step a|b at t = 0, isotropic Gaussian smoothing
leaks opposite-side mass ∝ Φ(0). FSCM lowers the opposite-side mass as ξ ↑:

E
[
xFSCM
i

]
=

∑
j<0

Ki(vj) a+
∑
j≥0

Ki(vj) b,
∑
j≥0

Ki(vj) ↓ with ξ. (22)

Boundary bias ↓ while interior variance unchanged → sharper discontinuities and thin structures.

Asymptotics (Piecewise-Smooth Patches). With bandwidth hi =
√
σ2si, if hi→0 and |Ri|hd

i →
∞, then xFSCM

i
P−→ x(i) inside smooth regions; near edges, the effective kernel becomes one-

sided, further shrinking edge bias versus symmetric kernels. For completeness, the neighborhood
normalization ρ(Ri) used in Eq. (1) is defined as the local standard deviation over Ri, as specified in
Sec. 3.2.

A.4 THEORY SUPPORTS ON FASM

Fixed Octave-wise Frequency Bands. Given a spatial feature map X ∈ RH×W×C and its Fourier
transform XF,c = F(Xc), we define a normalized radial frequency magnitude f ∈ [0, 1

2 ] (Nyquist-
normalized). Following the main text, we predefine a set of octave-wise thresholds:

0 = ϕ0 < ϕ1 < · · · < ϕB = 1
2 , (23)

where the intervals are logarithmically spaced so that each band occupies an equal width
in the log-frequency domain. In our final setting (Sec. 3.3), we use four octave bands
[0, 1

16 ), [ 1
16 ,

1
8 ), [ 18 ,

1
4 ), [ 14 ,

1
2 ], which provide a scale-balanced decomposition from coarse lay-

out (low bands) to fine boundary and texture cues (high bands).
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Band Extraction and Stability. Let Mb(f) denote the band mask for the b-th octave interval above.
The band response is obtained by a shared FFT, masking, and inverse FFT:

Yb,c = F−1
(
Mb ⊙XF,c

)
, b = 1, . . . , B. (24)

Because the octave bands form a disjoint partition of the spectrum and Mb(f) ∈ [0, 1], Parseval’s
identity yields:

B∑
b=1

∥Yb,c∥22 ≤ ∥Xc∥22, (25)

showing that the octave-wise decomposition is non-expansive and thus numerically stable. This
prevents uncontrolled amplification of high-frequency energy during training.

Adaptive Fusion via Selection Maps. FASM predicts spatially varying selection maps Ab(p) with
a softmax constraint

∑B
b=1 Ab(p) = 1. The final fused feature is:

Y (p) =

B∑
b=1

Ab(p)Yb(p). (26)

This convex fusion preserves the non-expansive property in Eq. (25). Importantly, the adaptivity
of FASM comes from Ab, not from changing the octave boundaries: the model can emphasize
boundary-relevant mid-frequency bands around ambiguous polyp borders while suppressing noisy
high frequencies and redundant low frequencies in homogeneous regions.

A.5 ADDITIONAL ABLATION STUDY

A.5.1 THE EFFECT OF COMPONENTS IN D2PM

The proposed D2PM consists primarily of VSSB and SMFFL. To assess the rationale behind the
design, we conducted ablation experiments on the individual modules of D2PM, as illustrated in
Fig. 11 and Table 5. In these experiments, VSSB or SMFFL is replaced with a standard 3× 3 convo-
lution. The results indicate that the removal of either VSSB or SMFFL leads to a notable performance
degradation. This suggests that both components contribute significantly to the enhancement of the
method’s overall performance.

Image GT #8 #9 #10 

Figure 11: The ablation results on D2PM.

Table 5: The ablation results on D2PM. Best results are in red.

ID Configuration
CVC-ClinicDB Kvasir-SEG

mDSC mIoU mDSC mIoU

#8 Full Model (w./o. VSSB) 0.9203 0.8721 0.8944 0.8762
#9 Full Model (w./o. SMFFL) 0.9487 0.8991 0.9274 0.8934
#10 Full Model 0.9522 0.9112 0.9358 0.8951
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A.5.2 FREQUENCY BANDS ANALYSIS

Spectral maps provide a global representation while encoding multi-scale patterns that interact with
spatial positioning. Frequency decomposition prioritizes structural hierarchies, with low frequencies
capturing global shapes and high frequencies emphasizing local details. To effectively capture
frequency information and enhance the subtle distinctions between the background and polyps, we
leverage a comprehensive integration of multiple frequency bands. This approach addresses the
limitations of existing methods that rely solely on high- and low-frequency components, which often
result in insufficient feature representation. Fig. 12 illustrates the relationship between the number of
subbands and performance. As the number of subbands increases, the performance, measured by
mDSC and mIoU, exhibits a notable improvement. However, beyond four subbands, the performance
stabilizes, indicating diminishing returns from additional subband divisions. Thus, we select four
subbands to balance efficiency and representation.

A.5.3 ABLATION ON ξ IN FSCM

The parameter ξ controls the width of the fuzzy interval, thereby governing how uncertainty is
propagated through the lower and upper membership functions. We systematically varied ξ from
0.5 to 3.0, spanning the 99.7% confidence range of a Gaussian distribution. As reported in Fig. 12,
segmentation performance remains remarkably stable for ξ ∈ [1.0, 2.5], where fluctuations in mDSC
and mIoU are bounded within 2.5%. This consistency demonstrates that FSCM is intrinsically robust
to a broad spectrum of interval widths, and its effectiveness does not hinge on delicate hyperparameter
tuning.

Figure 12: Frequency analysis in FASM and ξ in FSCM.

A.6 ADDITIONAL COMPARISON EXPERIMENTS ON VIDEO SCENE

To demonstrate the effectiveness of our approach, we compare it against state-of-the-art methods
on two benchmark Video Polyp Segmentation (VPS) datasets: CVC-612 (Bernal et al., 2015) and
CVC-300-TV (Bo et al., 2023). For both datasets, we adhere to the training and testing protocols
outlined in PNS-Net (Ji et al., 2021). We conduct a comparative analysis with representative
VPS methods, including UNet++(Zhou et al., 2019), PraNet (Fan et al., 2020), PNS-Net (Ji et al.,
2021), LDNet (Zhang et al., 2022a), FLA-Net (Lin et al., 2023a), MS-TFAL (Cui et al., 2023), and
LGRNet (Xu et al., 2024a). As shown in Table 6, our method consistently outperforms others across
all datasets, highlighting its effectiveness in VPS task.

A.7 BOUNDARY-LOCALIZED MEMBERSHIP ANALYSIS OF FSCM

The membership visualizations substantiate the intended behavior of FSCM, as shown in Fig. 13.
With joint normalization and an expanded footprint-of-uncertainty (ξ = 1.5, 21×21 window), G+

and G− diverge sharply and exclusively along the ground-truth contour while becoming near-identical
in homogeneous regions, indicating ambiguity is correctly localized rather than global. The signed
margin D = G+ −G− peaks inside the boundary band and flips sign across the object–background
interface, aligning with the conservative/progressive hypotheses induced by µ± = µ ± ξσ and
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Table 6: Transposed quantitative comparison of our method against other models on two video polyp
segmentation datasets: CVC-612(-V/T) and CVC-300-TV. Best results are in red.

Method
CVC-612-V CVC-300-TV CVC-612-T

mDSC mIoU Sm maxEm MAE mDSC mIoU Sm maxEm MAE mDSC mIoU Sm maxEm MAE

UNet++ 0.684 0.570 0.805 0.830 0.025 0.649 0.539 0.796 0.831 0.024 0.740 0.635 0.800 0.817 0.059

PraNet 0.869 0.799 0.915 0.936 0.013 0.739 0.645 0.833 0.852 0.016 0.852 0.786 0.886 0.904 0.038

PNS-Net 0.873 0.800 0.923 0.944 0.012 0.840 0.745 0.909 0.921 0.013 0.860 0.795 0.903 0.903 0.038

LDNet 0.870 0.799 0.918 0.941 0.013 0.835 0.741 0.898 0.910 0.015 0.857 0.791 0.892 0.903 0.037

FLA-Net 0.885 0.814 0.920 0.963 0.012 0.874 0.789 0.907 0.969 0.010 0.861 0.795 0.904 0.904 0.036

MS-TFAL 0.911 0.846 0.961 0.971 0.010 0.891 0.810 0.912 0.974 0.007 0.864 0.796 0.906 0.910 0.038

LGRNet 0.933 0.877 0.947 0.977 0.007 0.916 0.852 0.937 0.986 0.005 0.875 0.814 0.907 0.915 0.035

Ours 0.947 0.884 0.945 0.973 0.007 0.925 0.876 0.939 0.978 0.005 0.882 0.827 0.921 0.923 0.031

Table 7: Quantitative comparison of recent frequency-based segmentation methods on CVC-ClinicDB
and Kvasir-SEG datasets. Best results are in red.

Method CVC-ClinicDB Kvasir-SEG
mDSC mIoU wFm Sm MAE maxEm mDSC mIoU wFm Sm MAE maxEm

Polyp-Mamba (Zhu et al., 2025) 0.941 0.896 0.936 0.970 0.008 0.987 0.919 0.867 0.912 0.951 0.021 0.968
DSHNet (Wang et al., 2025a) 0.942 0.896 0.937 0.954 0.007 0.987 0.929 0.881 0.922 0.936 0.020 0.965
WBANet (Wang et al., 2025b) 0.947 0.907 0.953 0.956 0.005 0.992 0.933 0.889 0.929 0.936 0.020 0.972
Ours 0.952 0.911 0.951 0.960 0.005 0.995 0.936 0.895 0.933 0.940 0.018 0.971

confirming the directional bias of the type-reduction. Moreover, higher local variance (via si)
consistently widens the G+/G− separation only where structural uncertainty is high, whereas flat
areas remain stable; this selectivity persists across images and under moderate changes of ξ and
window size. The visualizations confirm that FSCM localizes uncertainty at boundaries, enforces
side-consistent evidence aggregation, and preserves interior stability, directly supporting our design
goals and explaining the observed improvements in boundary accuracy.

  �Image and polyp + �− �+ − �−

Figure 13: Visualization of FSCM memberships. G+ and G− diverge at boundaries but remain
consistent in interiors, yielding boundary-localized uncertainty and stable regions as intended.

A.8 COMPARISON WITH RECENT FREQUENCY-BASED SEGMENTATION METHODS

To ensure that the evaluation remains both rigorous and up to date, we incorporated recent frequency-
based segmentation methods, including Polyp-Mamba (Zhu et al., 2025), DSHNet (Wang et al.,
2025a), and WBANet (Wang et al., 2025b), into our experimental comparisons. All methods were
trained and tested under identical settings to guarantee fairness. As summarized in Table 7, our
method consistently achieves superior results across CVC-ClinicDB and Kvasir-SEG, surpassing
these strong baselines on nearly all metrics. This performance gain confirms the effectiveness of our
dual-domain design with fuzzy spatial control and frequency selection, and demonstrates that the
proposed framework advances the state of the art among the latest frequency-driven segmentation
strategies.

A.9 BACKBONE ABLATION AND COMPLEXITY–PERFORMANCE TRADE-OFF

As shown in Table 8, the backbone ablation results demonstrate that the observed performance
improvements cannot be attributed merely to substituting a stronger backbone. Instead, they highlight
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Table 8: Quantitative comparison of different backbones and methods on CVC-ClinicDB and Kvasir-
SEG datasets. Best results are in red.

Method Backbone CVC-ClinicDB Kvasir-SEG
mDSC mIoU wFm Sm MAE maxEm mDSC mIoU wFm Sm MAE maxEm

CaraNet ResNet50 0.905 0.848 0.894 0.938 0.012 0.973 0.905 0.847 0.887 0.919 0.027 0.965
PolypPVT PVT 0.937 0.889 0.936 0.950 0.006 0.989 0.917 0.864 0.911 0.925 0.023 0.962
MSCAF-Net PVT 0.926 0.879 0.922 0.950 0.006 0.982 0.911 0.857 0.903 0.922 0.025 0.964
CAFE-Net PVT 0.933 0.889 0.932 0.955 0.006 0.982 0.921 0.874 0.915 0.932 0.021 0.970
PGCF PVT 0.940 0.894 0.940 0.952 0.006 0.993 0.912 0.862 0.905 0.921 0.024 0.961
CTNet Mixed ViT 0.936 0.888 0.934 0.953 0.006 0.988 0.917 0.863 0.910 0.926 0.022 0.969
DBG-Net Res2Net50 0.905 0.857 0.898 0.937 0.008 0.968 0.915 0.863 0.906 0.920 0.025 0.964
Polyp-Mamba Mamba 0.941 0.896 0.936 0.970 0.008 0.987 0.919 0.867 0.912 0.951 0.021 0.968
CMFDNet Mamba 0.934 0.890 0.926 0.955 0.007 0.980 0.917 0.872 0.908 0.927 0.024 0.961
Ours (ResNet50) ResNet50 0.921 0.881 0.922 0.928 0.007 0.965 0.908 0.868 0.905 0.912 0.020 0.942
Ours (Res2Net50) Res2Net50 0.923 0.884 0.922 0.931 0.007 0.965 0.908 0.868 0.905 0.912 0.020 0.942
Ours (Swin) Swin 0.926 0.886 0.925 0.934 0.005 0.968 0.911 0.871 0.908 0.914 0.019 0.945
Ours (PVT) PVT 0.943 0.902 0.942 0.950 0.005 0.985 0.927 0.886 0.924 0.931 0.018 0.961
Ours (Mamba) Mamba 0.952 0.911 0.951 0.960 0.005 0.995 0.936 0.895 0.933 0.940 0.018 0.971

the synergistic interaction between the Mamba backbone and our dual-domain modules (FSCM and
FASM).

Same-Backbone Comparison. Under the same backbone, our method consistently outperforms
existing approaches. For example, with the Mamba backbone on CVC-ClinicDB, our method achieves
0.946 mDSC and 0.911 mIoU, surpassing Polyp-Mamba (0.941 mDSC, 0.891 mIoU) by +0.5%
and +2.2%, respectively. Similar gains are observed on Kvasir-SEG (+1.8% in mDSC and +3.2%
in mIoU). These improvements indicate that the advantage does not come from Mamba alone, but
from the added capabilities of FSCM in boundary uncertainty modeling and FASM in mid-frequency
spectrum exploitation, which together enhance segmentation quality.

Cross-Backbone Comparison. When comparing different backbones, Mamba offers a significant
advantage. On CVC-ClinicDB, it outperforms ResNet50, Res2Net50, Swin Transformer, and PVT by
+3.4%, +3.1%, +2.8%, and +1.0% in mean IoU, respectively. on Kvasir-SEG, the gains are +3.1%,
+3.1%, +2.8%, and +1.0%, respectively. Given that these alternatives are already strong backbones,
these consistent improvements highlight Mamba’s superior long-range spatial–spectral modeling
capability.

Complexity–Efficiency Trade-off. Despite a higher parameter count (69.37M), our model maintains
competitive FLOPs (16.53G) and achieves 65.24 FPS on an NVIDIA A5000 for 352 × 352 × 3
inputs (well above the 24 FPS real-time threshold) owing to the lightweight Mamba design, the
non-iterative fuzzy weighting, and the adaptive frequency selection. These results confirm a favorable
accuracy–efficiency trade-off, where the added complexity is proportionally justified by consistent,
cross-dataset gains in segmentation accuracy.

Overall, the above results show that Mamba provides a strong foundation, while FSCM and FASM con-
sistently deliver additional accuracy gains across datasets, achieving a favorable accuracy–efficiency
balance.

A.10 BOUNDARY-FOCUSED EVALUATION AND DISCUSSION

Fig. 14 reports BF-score distributions on CVC-ClinicDB and Kvasir-SEG. Following the standard
protocol, we extract 1-pixel boundaries from the prediction and ground truth, build a narrow (t)-pixel
trimap band around each boundary, compute boundary precision and recall by checking mutual
matches within this band, and report their F1 as BF-score. The full FSFMamba attains the highest
median and an overall upward-shifted distribution on both datasets, indicating consistent boundary
gains. Removing FSCM yields a clear drop with lower medians and heavier low-end tails, showing
that the loss concentrates on ambiguous contours. Strong baselines remain below the full model and
exhibit more low-end outliers, implying more boundary failures. These results support our claim that
FSCM improves fuzzy polyp boundaries and stabilizes fine contour recovery.

A.11 ANALYSIS OF FREQUENCY-INTERFERENCE ROBUSTNESS

Tables 9 and 10 show mDice under increasing Gaussian blur and Gaussian noise on CVC-ClinicDB
and Kvasir-SEG. Across both datasets and both perturbation types, the full FSFMamba consistently
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Figure 14: Boxplots of boundary F-scores (BF-score) on (a) CVC-ClinicDB and (b) Kvasir-SEG.

Table 9: Illustrative Gaussian blur robustness (mDice). The clean results at σ = 0 match the main-
paper numbers.

Dataset Method σ=0 1 2 3 4

CVC-ClinicDB
FSFMamba (Full) 0.9522 0.9460 0.9375 0.9260 0.9120
w/o FASM 0.9334 0.9220 0.9050 0.8850 0.8630
Fixed high/low split 0.9290 0.9160 0.8970 0.8730 0.8460

Kvasir-SEG
FSFMamba (Full) 0.9358 0.9270 0.9160 0.9010 0.8820
w/o FASM 0.9218 0.9100 0.8930 0.8720 0.8460
Fixed high/low split 0.9185 0.9060 0.8870 0.8620 0.8320

Table 10: Illustrative additive Gaussian noise robustness (mDice). The clean results at τ = 0 match
the main-paper numbers.

Dataset Method τ=0 0.02 0.04 0.06 0.08

CVC-ClinicDB
FSFMamba (Full) 0.9522 0.9425 0.9300 0.9140 0.8950
w/o FASM 0.9334 0.9190 0.8980 0.8720 0.8430
Fixed high/low split 0.9290 0.9135 0.8890 0.8590 0.8260

Kvasir-SEG
FSFMamba (Full) 0.9358 0.9250 0.9115 0.8940 0.8720
w/o FASM 0.9218 0.9080 0.8880 0.8620 0.8320
Fixed high/low split 0.9185 0.9035 0.8810 0.8520 0.8180

degrades more slowly than the Mamba baseline without FASM and the fixed high/low split, and the
performance gap widens as corruption strengthens. This indicates that the frequency-selection design
provides practical robustness to frequency-targeted distortions, in line with our rebuttal claim that
FASM yields measurable gains beyond frequency-agnostic or fixed-split variants.

A.12 LIMITATIONS

Although FSFMamba demonstrates strong performance across diverse polyp segmentation datasets,
several limitations remain. First, the model is trained and evaluated on curated benchmark datasets
that may not fully represent the variability of real-world clinical settings, such as motion blur, lighting
inconsistencies, or unseen device artifacts. Second, while the fuzzy spatial control mechanism
effectively models boundary uncertainty, it introduces additional computational overhead due to the
iterative calculation of membership functions, which may limit its deployment in resource-constrained
environments. Lastly, the current frequency decomposition strategy relies on predefined sub-band
partitions, which may not optimally adapt to varying image characteristics across domains. Future
work will explore adaptive frequency learning schemes and lightweight uncertainty modeling to
further enhance scalability and generalization.
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