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Abstract

Large-scale medical imaging datasets have accelerated deep learning (DL) for medical image
analysis. However, the large scale of these datasets poses a challenge for researchers, result-
ing in increased storage and bandwidth requirements for hosting and accessing them. Since
different researchers have different use cases and require different resolutions or formats for
DL, it is neither feasible to anticipate every researcher’s needs nor practical to store data
in multiple resolutions and formats. To that end, we propose the Medical Image Streaming
Toolkit (MIST), a format-agnostic database that enables streaming of medical images at
different resolutions and formats from a single high-resolution copy. We evaluated MIST
across eight popular, large-scale medical imaging datasets spanning different body parts,
modalities, and formats. Our results showed that our framework reduced the storage and
bandwidth requirements for hosting and downloading datasets without impacting image
quality. We demonstrate that MIST addresses the challenges posed by large-scale medical
imaging datasets by building a data-efficient and format-agnostic database to meet the
diverse needs of researchers and reduce barriers to DL research in medical imaging.
Keywords: Imaging Databases, Compression, Progressive Streaming, Data-Efficiency

1. Introduction

The curation of large-scale, publicly accessible medical imaging datasets has accelerated
the development of deep learning (DL) models for medical image analysis (Hosny et al.,
2018). However, the large scale of medical imaging datasets poses a significant challenge
for researchers both hosting or accessing them (Jia et al., 2023; Li et al., 2023; Magudia
et al.,, 2021). For researchers hosting these datasets, the growing collection of curated
datasets and increasing demand for access result in greater costs for managing storage and
networking infrastructures (Doo et al., 2024). On the other hand, researchers accessing the
datasets require sufficient compute and storage resources to download and process hundreds
of thousands of high-resolution medical images to be “DL-ready”, especially as datasets
continue to grow in scale and resolution (Jia et al., 2023; Kiryati and Landau, 2021).
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Figure 1: An overview of MIST. Suppose a researcher uploads a high-resolution DICOM
CT dataset to MIST. It is ingested and stored in a format-agnostic representation,
where the pixel data is progressively encoded and separated from its associated
metadata. This allows another researcher to access the dataset at a lower resolu-
tion in NIfTT format without data duplication.

Accessing and utilizing large-scale medical imaging datasets for DL research presents
several challenges, particularly in terms of data storage, bandwidth limitations, and pre-
processing requirements. For instance, training a DL model for early-stage lung cancer
detection using the NLST dataset (Team, 2011) would require downloading over 11 TB of
CT scans, which presents substantial storage challenges for many research environments.
Furthermore, limited bandwidth can result in download times spanning several days, creat-
ing significant logistical bottlenecks. Beyond storage and bandwidth constraints, researchers
often require data in different formats depending on their specific tasks. For example, 3D
segmentation models necessitate preprocessing raw DICOM series into NIfTT format (Li
et al., 2016), while CNN-based classification models may require lower-resolution inputs,
such as 224x224 images. Unfortunately, this inefficiency scales with the number of re-
searchers accessing the dataset. Given the diversity of research needs, it is neither feasible
to anticipate all possible data configurations nor practical for each researcher to store, pre-
process, and manage such large-scale datasets independently. These inefficiencies highlight
the need for scalable, adaptive data access solutions that can accommodate varying research
requirements while minimizing redundant computational and storage overhead.

To that end, we propose the Medical Image Streaming Toolkit (MIST), a format-agnostic
imaging database that enables streaming of medical images at different resolutions and for-
mats from a single high-resolution copy (Figure 1). Our goal is to address the challenges
posed by large-scale medical imaging datasets by building a data-efficient and format-
agnostic database to meet the diverse needs of researchers in the medical imaging with
DL community. The purpose of this study is to evaluate MIST for reducing the storage
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and bandwidth requirements for hosting and downloading eight large-scale medical imaging
datasets spanning different body parts, modalities, and formats, without impacting image
quality.

2. Background

One core challenge is the lack of interoperability of DICOM with popular DL frameworks
(e.g., PyTorch) due to its complex multi-file structure and varying metadata tags, necessi-
tating extensive domain expertise to preprocess DICOM series prior to training DL models
(Galbusera and Cina, 2024; Botnari et al., 2024). As a result, “DL-ready” formats (e.g.,
NIfTI) that are easier to use with DL frameworks have become popular among researchers.
However, datasets curated as part of clinical studies with applications beyond DL are often
released as DICOM databases, due to the widespread use of DICOM in clinical settings
and its rich, clinically relevant metadata. The difference between formats, based on their
clinical relevance and ease of use, has created a distinct format hierarchy. As a result, some
collections, such as UPENN-GBM (Bakas et al., 2022), have released both DICOM and
NIfTT versions of the dataset to meet the diverse needs of researchers using them. However,
this results in data duplication by hosting the same dataset in multiple different formats,
requiring additional storage to do so (Jiménez-Sanchez et al., 2024).

Another challenge is that many researchers may not need high-resolution medical images
for developing DL models, as images are often downsampled to lower resolutions to reduce
computational costs and potentially improve generalizability to unseen data (Sabottke and
Spieler, 2020). Consider MIMIC-CXR, a dataset containing 4.7 TB of chest x-rays (CXRs)
with mean resolution 2500 x 3056 (Johnson et al., 2019). If a researcher wanted to use this
dataset for training a CNN-based classifier, they would have to downsample the CXRs by
more than 100 times to 224 x 224. This approach is highly inefficient because not only
does this necessitate downloading and storing the full 4.7 TB dataset, but also requires
considerable computational resources to downsample the CXRs.

In our prior work, we explored solutions to both challenges using progressive encoding in
order to accelerate DL inference in clinical deployment, where latency is critical (Kulkarni
et al., 2024). Here, we primarily focus on building a flexible and scalable framework for
hosting and sharing medical imaging datasets in research settings, with a focus on reducing
data storage and transmission. Our approach is not intended for real-time DL applications,
but rather for efficient data access across diverse research settings, where datasets are
typically downloaded before being used for DL tasks.

3. Methods
3.1. Medical Image Streaming Toolkit

MIST is a format-agnostic database for hosting large-scale medical imaging datasets for
developing DL models. Our framework allows a researcher to stream medical images at
different resolutions and formats from a single high-resolution copy. Compared to existing
solutions, MIST differs in three key aspects (Figure 2):

Format Hierarchy: At the core of MIST is its format-agnostic design. We ingested and
stored medical images in a format-agnostic representation, separating the pixel data from
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Figure 2: (a) An illustration of MIST’s format hierarchy, where medical images are always
“converted down” to other formats. (b) Medical images are compressed by pro-
gressively encoding pixel data into a bytestream using HTJ2K. (c) HTJ2K allows
sub-resolution images to be accessed by decoding a partial bytestream.

associated metadata (Figure 1). Similar approaches have been used by AWS HealthImaging?
and the NCI Imaging Data Commons (Fedorov et al., 2021) for hosting medical image
datasets in DICOM. Our method differs by allowing medical images in DICOM, NIfTI, or
other non-medical imaging formats (e.g., JPEG, PNG) to be ingested and stored in the
same format-agnostic representation.

The format-agnostic representation allows medical images to be “converted down” into
other formats using the pixel data and associated metadata when streaming to researchers.
To achieve this, we followed a strict format hierarchy, based on the availability of metadata,
to govern how a medical image in one format is streaming in a different format (Figure 2a).
Specifically, a DICOM series can be streamed in DICOM, NIfTI, or other non-medical
imaging formats, whereas a NIfTT series can only be streamed in NIfTI or other non-
medical imaging formats. This limitation is because NIfTT lacks the metadata to “convert
up” to DICOM, while DICOM can “convert down” to NIfTI. Similarly, non-medical imaging
formats can only be streamed in other non-medical imaging formats.

When a medical image is encoded by MIST, we extracted and stored its associated
metadata tags in a separate JSON file. Format conversion is handled by mapping the
relevant metadata tags from the source format to equivalent tags in the target format
(e.g., pixel spacing when converting from DICOM to NIfTT). This enables metadata to be
preserved when converting to a different format, even when the target format is a non-
medical imaging one (e.g., PNG).

Medical Image Compression: Medical image compression is used to reduce the file
size of medical images, thereby requiring less resources to store and transmit large-scale
medical image datasets (Koff and Shulman, 2006). It works by encoding pixel data into
a bytestream that can be decoded to reconstruct the original pixel data. We used the

1. https://aws.amazon.com/healthimaging
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High-Throughput JPEG 2000 (HTJ2K) codec to encode pixel data (Figure 2b). HTJ2K is
a progressive encoding format that encodes pixel data as a series of lossy decompositions,
with each subsequent one having a higher resolution (Taubman et al., 2019, 2020). When
fully decoded, the pixel data is reconstructed without any data loss.

We used OpenJPHpy? to encode pixel data as lossless with 16-bit depth, 64 x 64 block
size, n decomposition levels, tile-part divisions by resolution, and tile-part markers to iden-
tify the location of decompositions within the bytestream. The number of decomposition
levels n was calculated for each medical image by (Kulkarni et al., 2024):

{logz min(f’ N)J (1)

where M x N was the pixel data resolution and o = 64 was an arbitrarily set lower
bound such that the first decomposition will not reconstruct an image smaller than 64 x 64.
For a DICOM series and other non-medical imaging formats (e.g., JPEG, PNG), each image
(e.g., slice in a volume) was encoded and stored separately. On the other hand, NIfTT stores
the entire volume in a single file. To maintain consistency, we encoded and stored each slice
of the NIfTT volume separately. We computed rescaling intercept and slope before encoding
the pixel data because existing HTJ2K implementations support up to uint16 pixel data.

Access to Sub-Resolution Images: An advantage of progressive encoding is the
ability to access sub-resolution images from partial bytestreams of a single high-resolution
copy (Foos et al., 2000; Noumeir and Pambrun, 2011). Pixel data encoded using HTJ2K
with n decompositions levels contains n + 1 decompositions, where ith decomposition has a
resolution that is 1/2"T1= of the original resolution (Figure 2c). For example, an abdominal
CT scan of resolution 512 x 512, encoded with n = 3 decomposition levels, can be decoded
at sub-resolutions 64 x 64, 128 x 128, 256 x 256, and 512 x 512.

If the pixel data is encoded with tile-part divisions by resolution and the bytes required to
reconstruct the ith decomposition are available, the image can be decoded at decomposition
level i — 1 and all previous levels without needing the complete bytestream (Kulkarni et al.,
2024). This allows researchers to download sub-resolution images using a partial bytestream.
For example, a CXR with resolution 1024 x 1024 can be streamed at resolution 256 x 256
using the first 35 KB of the complete 448 KB bytestream.

To achieve this, we created a new entry to each medical image’s metadata that mapped
decompositions to the location of tile-part markers in the bytestream. The tile-part markers
define the extent of the bytestream required to decode a specific decomposition. They were
identified by the start of tile-part marker (bytes 0xFF90) and end of codestream marker
(bytes 0xFFD9) (Boliek et al., 2000). Once the pixel data is decoded at a sub-resolution, the
metadata for the affine transformation matrix and voxel size is rescaled to ensure accurate
transformation to world coordinates.

n =

3.2. Experiments

In this study, we evaluated MIST for reducing the storage and bandwidth requirements
for hosting and downloading using eight popular, large-scale medical imaging datasets for
developing DL models, spanning different body parts, modalities, and formats (Table 1).

2. https://github.com/BioIntelligence-Lab/openjphpy
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Table 1: Summary of datasets.

Dataset Modality Body Part # Series Format Size (GB)
NIH-ChestX-rayl4 (Wang et al., 2017) CR Chest 112,120 PNG 41.96
MSD-Liver (Antonelli et al., 2022) CT Abdomen 332 NIfTT 26.94
AMOS (Ji et al., 2022) CT, MR Abdomen 960 NIfTI 22.59
LIDC-IDRI (Armato III et al., 2011) CT Chest 1,308 DICOM 124.00
NSCLC-Radiomics (Aerts et al., 2014) CT Lung 422 DICOM 33.32
TCGA-KIRC (Shinagare et al., 2015) CT, MR Kidney 2,654 DICOM 85.28
TCGA-BRCA (Guo et al., 2015) MG, MR Breast 1,877 DICOM 82.08
UPENN-GBM (Bakas et al., 2022) MR Brain 3,680 DICOM 129.83

Detailed descriptions of each dataset is provided in Appendix A. Our code is available at:
https://github.com/BioIntelligence-Lab/MIST.

We encoded every medical image in a dataset using HTJ2K and stored them in the
format-agnostic representation. Any series that failed to encode was excluded from our
analysis. A series may fail due to a lack of pixel data (e.g., SEG DICOM files) or unsup-
ported pixel data (e.g., exceeding 16-bit depth, floating point data). Then, we measured
the amount of data stored and transmitted by hosts. We also measured the amount of
data transmitted across all decompositions. Finally, we evaluated image quality by com-
paring all decompositions with the pixel data using the structural similarity index measure
(SSIM) and peak signal-to-noise ratio (PSNR). These quantitative metrics were measured
by downsampling the pixel data to the sub-resolution (using bilinear interpolation) and
rescaling pixel values to range 0-1 using scikit-image. The SSIM between pixel data X and
sub-resolution image Y across windows = and y is defined as (Wang et al., 2004):

(2tapty + k1) (204y + K3)
(W2 + p + k12)(02 4 02 + k3)

SSIM(a, ) = @)

where (1, 02) and (py, 05 ) are statistics of pixel values in windows = and y respectively,
Oy is covariance of pixel values in windows x and y, k1 = 0.01, and ko = 0.03. The PSNR
between pixel data X and sub-resolution image Y of fixed resolution M x N is defined as:

MN
PSNR(X,Y) = 10log;, 7 ~ (3)
Em:l En:l(Xm,n - Ym,n>2
where X, , and Y,, , are pixel values of X and Y at index (m,n) respectively. If X
and Y are equal (in the case of lossless reconstruction), then PSNR is infinity. As a result,
the mean PSNR for a decomposition only considers the non-infinite PSNR, values.

4. Results

Medical Image Compression: We observed that MIST successfully encoded all eight
datasets, with the exception of N = 28 (2.92%) from AMOS, N = 7 (0.26%) series from
TCGA-KIRC, and N = 20 (1.07%) series from TCGA-BRCA. Excluding these series from
our analysis, our method reduced the total amount of data stored and transmitted by
hosts from 536.68 GB to 234.77 GB, a decrease of 56.22% (Figure 3a). We observed that
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Figure 3: (a) Decrease in data storage due to medical image compression. (b) Decrease in
data transmission due to sub-resolution image access. Image quality measured
using (c¢) mean SSIM and (d) mean PSNR values across all decompositions,
stratified by the maximum decomposition for an image.
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TCGA-BRCA had the greatest decrease, from 81.30 GB to 23.13 GB (71.55%), while NTH-
ChestX-ray14 had the least decrease, from 41.96 GB to 40.29 GB (4%). On average, MIST
reduced data storage by 49.79 4 23.27%. Detailed results are provided in Table B.1.

Access to Sub-Resolution Images: We observed that downloading datasets at sub-
resolutions led to a further decrease in the total amount of data transmitted (Figure 3b).
At the smallest sub-resolution (i.e., decomposition level 1), MIST reduced total data trans-
mission to 22.59 GB (95.79%), ranging from 98.93% for NIH-ChestX-ray14 to 90.36% for
UPENN-GBM, with an average reduction of 96.10 + 3.20%. At the largest sub-resolution
(varies across datasets; see Table B.1), our method reduced total data transmission to 189.76
GB (64.62%), ranging from 89.60% for NSCLC-Radiomics to 30.41% for AMOS, with an
average reduction of 66.04 + 17.63%. Detailed results are provided in Appendix B.

Evaluation of Image Quality: We observed that MIST did not impact the image
quality of all eight datasets encoded in our study, with a mean SSIM of 1.00 £ 0.00 and
mean PSNR of infinity. When accessing sub-resolution images, our results show that each
subsequent decomposition results in increased image quality as indicated with increasing
mean SIIM and PSNR values (Figure 3c-d). At the smallest sub-resolution, we measured
a mean SSIM of 0.83 4+ 0.06, ranging from 0.75 4+ 0.17 for MSD-Liver to 0.93 + 0.04 for
UPENN-GBM. We measured a mean PSNR of 23.77 + 2.11, ranging from 21.18 4+ 1.96 for
LIDC-IDRI to 27.22 + 3.02 for UPENN-GBM.

In addition to quantitative metrics of image quality, we performed a preliminary set of
DL experiments across 2D classification and 3D segmentation tasks (Appendix C). Examples
of sub-resolution images from each dataset are provided in Figure D.1.

5. Discussion

We demonstrated that MIST can reduce the storage and bandwidth requirements for hosting
and downloading large-scale medical imaging datasets across different body parts, modal-
ities, and formats. While the decrease in data storage and transmission varies from one
dataset to another, our results consistently showed a significant improvement in data-
efficiency despite differences in pixel bit depth, resolution, and formats. We observed that
MIST-encoded DICOM datasets had the greatest decrease in data storage followed by NIfTI
and PNG. This is primarily for two reasons: 1) The DICOM datasets in our study stored
uncompressed pixel data, resulting in a high compression ratio. 2) The NIfTI and PNG
formats use lossless compression to encode pixel data. However, MIST is able to exceed the
compression ratio of NIfTT while closely matching that of PNG (Elhadad et al., 2024).

Our method goes a step further by also allowing streaming of medical images at different
resolutions and formats from a single format-agnostic, high-resolution copy. Since every
researcher has different needs and use cases, eliminating the preprocessing steps of image
resizing and format conversion (e.g., DICOM to NIfTI) before training DL models can lead
to greater resource-efficiency (Jia et al., 2023). Moreover, streaming sub-resolution images
inherently leads to reduced data transmission to download medical imaging datasets. For
example, if a researcher wanted to train a DL model using transfer learning (at resolution
224 x 224) with the NIH-ChestX-ray14 dataset, they would have to download 92% less data
compared to current solutions.
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Despite decreasing the amount of data stored and transmitted, we demonstrated that
MIST-encoded datasets preserved image quality, indicated by a lossless reconstruction of
pixel data, across different body parts, modalities, and formats. However, accessing sub-
resolution images led to a decrease in image quality due to the lossy reconstruction of pixel
data from partial bytestreams. When comparing with the original pixel data, differences
in image quality metrics were due to variations in resizing methods, such as compression
artifacts from progressive decoding vs bilinear interpolation in conventional downsampling.
However, this does not inherently indicate a loss of image quality, but rather reflects the
differences in resizing techniques (Botnari et al., 2024). In Appendix C and our prior work,
we showed that sub-resolution images did not impact the performance of DL models across
2D classification and 3D segmentation tasks (Kulkarni et al., 2024).

There are some limitations of our work: 1) While we observe no impact on image quality
using quantitive metrics, such as SSIM and PSNR, there is a need to further validate MIST-
encoded datasets for training DL models. 2) Since we measured data-efficiency metrics for
the entire dataset, where each image can have a different resolution and, thus, number of
decomposition levels, the decrease in data storage and transmission may dramatically vary
from one image to another. 3) Due to limitations in current HTJ2K implementation, we
excluded series that contained unsupported pixel data. For example, n = 28 MRI volumes
from AMOS exceeded the 16-bit pixel depth, potentially due to the presence of artifacts,
and were excluded. 4) For NIfTT volumes, each slice is encoded and decoded as a separate
image, adding an additional step to reconstruct the volume after decoding. 5) Further
evaluation is required to identify the best approach of handling complex DICOM metadata.
In our experiments, we used JSON to store metadata, but this may not scale efficiently
when the metadata is complex. For future work, we intend to address these limitations and
plan to extensively validate MIST in real-world research settings.

In conclusion, MIST is a crucial first step towards addressing the challenges posed by
hosting and accessing large-scale medical imaging datasets, especially as datasets continue to
grow in scale and resolution. Our work demonstrates that a data-efficient, format-agnostic
database can not only reduce data storage and transmission, but also meet the diverse needs
of researchers and reduce barriers to DL research in medical imaging.
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Appendix A. Dataset Descriptions

NIH-ChestX-ray14 The National Institutes of Health (NIH) ChestX-rayl4 dataset con-
tains n = 112,120 frontal CXRs from 30,805 patients (Wang et al., 2017). Each CXR is
annotated with the presence of up to 14 disease labels. The dataset is available in the PNG
format and spans a total size of 41.96 GB.

MSD-Liver The Medical Segmentation Decathlon (MSD) is a collection of benchmark
datasets for medical image segmentation, spanning 10 tasks across different body parts and
modalities (Antonelli et al., 2022). The MSD-Liver dataset is the third task comprising of
a subset of n = 201 abdominal portal venous phase CT scans from the 2017 Liver Tumor
Segmentation (LiTS) challenge (Bilic et al., 2023). Additionally, voxel-level annotations for
liver and liver tumors are provided for n = 131 CT scans. The dataset is available in the
NIfTT format and spans a total size of 26.94 GB.

AMOS The Abdominal Multi-Organ Segmentation (AMOS) dataset contains n = 600
abdominal CT and MRI scans (Ji et al., 2022). Additionally, voxel-level annotations for 15
abdominal structures are provided for n = 360 scans. The dataset is available in the NIfTT
format and spans a total size of 22.59 GB.

LIDC-IDRI The Lung Image Database Consortium and Image Database Resource
Initiative (LIDC-IDRI) dataset contains n = 1,308 lung CT scans (Armato III et al., 2011).
Each scan has corresponding lesion annotations from up to four radiologists. The dataset
is available in the DICOM format on TCIA and spans a total size of 124.00 GB.

NSCLC-Radiomics The Non-Small Cell Lung Cancer (NSCLC)-Radiomics dataset
comprised of n = 422 lung CT scans (Aerts et al., 2014). Each CT scans has corresponding
segmentations and 440 extracted radiomics features. The dataset is available in the DICOM
format on TCIA and spans a total size of 33.32 GB.

TCGA-KIRC The Cancer Genome Atlas Kidney Renal Clear Cell Carcinoma (TCGA-
KIRC) dataset contains n = 2,654 abdominal CT and MRI scans (Shinagare et al., 2015).
The dataset is available in the DICOM format on TCIA and spans a total size of 85.28 GB.

TCGA-BRCA The Cancer Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA)
dataset contains n = 1,877 MRI scans and mammograms (Guo et al., 2015). Each scan
has a corresponding standardized breast imaging report, genomic, and pathology data. The
dataset is available in the DICOM format on TCIA and spans a total size of 82.08 GB.

UPENN-GBM the University of Pennsylvania Glioblastoma (UPENN-GBM) dataset
contains n = 3,680 multi-parametric brain MRIs (Bakas et al., 2022). Each scan has
corresponding segmentations, radiomics, and pathology data. The dataset is available in
the DICOM format on TCIA and spans a total size of 129.83 GB.
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Appendix B. Detailed Results

Table B.1: Encoding summary of all eight datasets

Dataset Del(\:f:l(ps # Series Size (GB)
' All Excluded Encoded Original MIST

NIH-ChestX-ray14 5 112,120 0 112,120 41.96 40.29 (—4.00%)
MSD-Liver 4 332 0 332 26.94 16.07 (—40.36%)
AMOS 4 960 28 (2.92%) 932 22.23 15.47 (—30.41%)
LIDC-IDRI 6 1,308 0 1,308 124.00 52.70 (—57.50%)
NSCLC-Radiomics 4 422 0 422 25.10 8.27 (—67.04%)
TCGA-KIRC 5 2,654 7 (0.26%) 2,647 84.95 28.92 (—65.96%)
TCGA-BRCA 6 1,877 20 (1.07%) 1,857 81.30 23.13 (—71.55%)
UPENN-GBM 5 3,680 0 3,680 129.83 49.93 (—61.54%)

Table B.2: Mean data-efficiency and image quality metrics for NIH-ChestX-ray14 dataset.

Format Decomp. Size (GB) SSIM PSNR

PNG - 41.96 - -

MIST 1 0.45 (—98.93%) 0.90 £ 0.02 25.06 £ 2.59
2 1.13 (—97.30%) 0.92 + 0.02 27.40 + 3.66
3 3.53 (—91.59%) 0.95+0.01 30.46 £ 4.56
4 12.19 (—70.96%) 0.98 +0.01 36.64 £+ 4.43
5 40.29 (—4.00%) 1.00 = 0.00 inf

Table B.3: Mean data-efficiency and image quality metrics for MSD-Liver dataset.

Format Decomp. Size (GB) SSIM PSNR

NIfTI - 26.94 - -

MIST 1 1.04 (—96.14%) 0.75+£0.17 23.69 £ 3.56
2 1.95 (—92.76%) 0.85£0.11 26.28 £+ 3.45
3 5.27 (—80.43%) 0.95 + 0.04 30.46 £ 3.84
4 16.07 (—40.36%) 1.00 £ 0.00 inf

Table B.4: Mean data-efficiency and image quality metrics for AMOS dataset.

Format Decomp. Size (GB) SSIM PSNR

NIfTI - 22.23 - -

MIST 1 1.79 (—91.96%) 0.78 £0.15 24.29 £ 3.05
2 2.89 (—87.00%) 0.90 £0.08 27.13 £2.88
3 6.15 (—72.33%) 0.98 +£0.03 32.85 +3.49
4 15.47 (—30.41%) 1.00 £ 0.00 inf
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Table B.5: Mean data-efficiency and image quality metrics for LIDC-IDRI dataset.

Format Decomp. Size (GB) SSIM PSNR

DICOM - 124.00 - -

MIST 1 2.07 (—98.33%) 0.82 +0.04 21.18 = 1.96
2 4.93 (—96.03%) 0.88 £0.04 24.42 + 2.32
3 15.36 (—87.62%) 0.95 +0.03 30.76 & 2.97
4 50.80 (—59.03%) 1.00 £ 0.00 25.99 4+ 4.95
5 52.46 (—57.70%) 1.00 £ 0.00 28.97 +5.95
6 52.70 (—57.50%) 1.00 £ 0.00 inf

Table B.6: Mean data-efficiency and image quality metrics for NSCLC-Radiomics dataset.

Format Decomp. Size (GB) SSIM PSNR

DICOM - 25.10 - -

MIST 1 0.44 (—98.25%) 0.80 £0.03 21.23 £1.68
2 0.91 (—96.37%) 0.88 £ 0.02 24.86 £ 2.14
3 2.61 (—89.60%) 0.97+£0.01 31.84 £2.82
4 8.27 (—67.04%) 1.00 £ 0.00 inf

Table B.7: Mean data-efficiency and image quality metrics for TCGA-KIRC dataset.

Format Decomp. Size (GB) SSIM PSNR

DICOM - 84.95 - -

MIST 1 1.72 (—97.97%) 0.83 £ 0.05 22.31£2.53
2 3.68 (—95.66%) 0.90 £ 0.04 25.95 +3.17
3 10.17 (—88.03%) 0.97 £ 0.02 32.06 £ 3.30
4 28.91 (—65.97%) 1.00 £ 0.00 44.23 +£2.44
5 28.92 (—65.96%) 1.00 £ 0.00 inf

Table B.8: Mean data-efficiency and image quality metrics for TCGA-BRCA dataset.

Format Decomp. Size (GB) SSIM PSNR

DICOM - 81.30 - -

MIST 1 2.57 (—96.84%) 0.83 £0.08 25.17 £ 3.17
2 4.99 (—93.86%) 0.90 + 0.06 28.91 £ 3.89
3 12.78 (—84.28%) 0.97 £ 0.04 31.26 £3.79
4 23.05 (—71.66%) 1.00 £ 0.00 31.73 £8.54
5 23.09 (—71.60%) 1.00 £ 0.00 29.13 £ 6.83
6 23.13 (—71.55%) 1.00 £ 0.00 inf

Table B.9: Mean data-efficiency and image quality metrics for UPENN-GBM dataset.

Format Decomp. Size (GB) SSIM PSNR

DICOM - 129.83 - -

MIST 1 12.51 (—90.36%) 0.93 +£0.04 27.22 £ 3.02
2 24.12 (—81.42%) 0.99 + 0.04 28.84 £4.01
3 31.21 (—75.96%) 1.00 £ 0.02 32.96 £ 2.51
4 49.77 (—61.66%) 1.00 £ 0.00 35.75 £ 2.61
5 49.93 (—61.54%) 1.00 £ 0.00 inf
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Appendix C. Preliminary Deep Learning Experiments

We conducted two preliminary experiments to validate MIST-encoded sub-resolution images
for training DL models. In both experiments, we trained two models at a fixed input
resolution using the original and MIST-encoded images, then tested them on the original
internal and external datasets respectively. The MIST-encoded images were decoded at the
sub-resolution closest to the model’s input resolution.

C.1. 2D Classification

We randomly split the NIH-ChestX-ray14 dataset on the patient-level into train (70%,n =
78,075), validation (10%,n = 11,079), and test (20%,n = 22,966) sets. We used n =
15,000 randomly sampled frontal CXRs from the MIMIC-CXR dataset (Johnson et al.,
2019) as our external test set. Then, we trained two ImageNet-pretrained DenseNet121
models at resolution 224 x 224, one on the original PNG images and the other on the
sub-resolution images. Both models were trained for 100 epochs with binary cross-entropy
loss, 64 batch size, 5e-5 learning rate, and random augmentations. We measured the per-
formance of both models using the mean area under the receiver operating characteristic
curve (AUROC) scores of seven labels: Atelectasis, Cardiomegaly, Consolidation, Edema,
Pleural effusion, Pneumonia, and Pneumothorax. On the NIH-ChestX-rayl4 test set, we
observed that both the PNG-trained and MIST-trained models measured a mean AUROC
of 0.844+0.05. When evaluated on the external MIMIC-CXR test set, both models similarly
measured a mean AUROC of 0.76 + 0.07.

C.2. 3D Segmentation

We randomly split the MSD-Liver dataset into train (80%,n = 106) and test (20%, n = 25)
sets. We used n = 30 volumes from the BTCV dataset (Landman et al., 2015) as our
external test set. Then, we trained two 3D-UNet models at resolution 256 x 256 x 128 and
voxel spacing 1.5 x 1.5 x 2.0. Both models were trained using random foreground patches of
resolution 128 x 128 x 32 for 500 epochs with Dice loss, 2 batch size, le-4 learning rate with
cosine annealing scheduler, and random augmentations. We measured the performance of
both models using the mean Dice score. On the MSD-Liver test set, we observed that the
NIfTI-trained model measured a mean Dice score of 0.95 & 0.02, while the MIST-trained
model measured a mean Dice score of 0.94 £ 0.02. When evaluated on the external BTCV
test set, both models measured a mean Dice score of 0.93 4+ 0.02.
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Appendix D. Visualization of Sub-Resolution Images

Decompositions

NIH-ChestX-

ray14

MSD-Liver

AMOS

LIDC-IDRI

NSCLC-

Radiomics

TCGA-KIRC

TCGA-BRCA

UPENN-GBM

Figure D.1: Examples from MIST-encoded medical imaging datasets. The number of de-
compositions depends on the medical image’s resolution.
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