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ABSTRACT

Estimating conditional treatment effects has been a longstanding challenge for
fields of study such as epidemiology or economics that require a treatment-dosage
pair to make decisions, but may not be able to run randomized trials to precisely
quantify their effect. This may be due to financial restrictions or ethical consid-
erations. In the context of representation learning, there is an extensive literature
relating model architectures with regularization techniques to solve this problem
using observational data. However, theoretically motivated loss functions and
bounds on generalization errors only exist in selected circumstances, such as in
the presence of binary treatments. In this paper, we introduce new bounds on
the counterfactual generalization error in the context of multiple treatments and
continuous dosage parameters, which subsume existing results. This result, in a
principled manner, guides the definition of new learning objectives that can be
used to train representation learning algorithms. We show empirically new state-
of-the-art performance results across several benchmark datasets for this problem,
including in comparison to doubly-robust estimation methods.

1 INTRODUCTION

Treatment effect estimation is the problem of predicting the effect of an intervention (e.g. a treatment-
dosage pair) on an outcome of interest to guide decision-making. The challenge for prediction models
is to learn this map from observational data, which is formally generated from a different structural
causal model in which treatment assignment varies according to an individual’s covariates, instead
of being fixed by the decision-maker. Counterfactuals define the outcome that would have been
observed had the assigned treatment been different. For concreteness, consider designing a policy for
the administration of chemotherapy regiments; not all cancer patients in the available data are equally
likely to be offered the same type and dosage, with varied factors, e.g. age, wealth, etc., involved in
the decision-making process. Evaluating a new treatment combination for a given patient is a data
point that is invariably under-represented in the empirical distribution of the data.

Treatment effect estimation is studied under a wide range of assumptions, including experimental de-
signs that feature ignorability (Imbens, 2000; Imai & Van Dyk, 2004), multiple treatments, sequential
decision-making problems, and different generative models encoded in general causal graphs (Pearl,
2009). There is a growing literature on several parts of this problem in the field of machine learning
that attempts to define loss functions that are conducive to learning representations of covariates
predictive of both observed and counterfactual outcomes. Existing methods could be generally
categorized by the theoretical guarantees that inspire training objectives, driven either by bounds for
the generalization error or by doubly-robustness guarantees. In the first line of research, Shalit et al.
(2017); Johansson et al. (2020) showed in the binary treatment setting that the counterfactual error,
that is not computable from data by design, could be instead bounded by the in-sample error plus a
term that quantifies the difference in distributions between treated and untreated populations, leading
to a differentiable loss function that can be used to train expressive neural networks. Several papers
used this insight to investigate different neural network architectures for this problem. For example,
Johansson et al. (2016) proposed to use separate feed-forward prediction heads on top of a common
representation, Zhang et al. (2022) use transformers, De Brouwer et al. (2022); Seedat et al. (2022)
use neural differential equations. In turn, doubly-robust estimators combine expressive function
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approximators and inverse probability weighting leveraging statistical non-parametric asymptotic
guarantees of both estimators (Funk et al., 2011; Kennedy, 2016; 2020). In particular, when the
direct estimate of the outcome is biased, such as when using nonparametric or high-dimensional
regression, the doubly robust estimator weights the model residuals by inverse propensity weights in
order to remove the bias. Its convergence and consistency for treatment effect estimation requires
only that one of the estimators is consistent. In principle, any consistent function approximator could
be used, which in the context of neural networks has led to several adaptations of loss functions and
architectures. For example, Shi et al. (2019) adapted the architecture of Johansson et al. (2016) for
this purpose introducing targeted regularization, and Nie et al. (2020) proposed varying coefficient
networks in the context of continuously-valued dosage parameters. In both cases, however, the authors
provide guarantees for population average treatment effect estimation, in contrast with conditional
average treatment effect estimation.

Despite the generality of these results, no guarantees and no theoretically motivated loss functions
exist for learning representations for counterfactual estimation in the general setting of multiple
treatment types and/or continuous treatment values or dosages. The challenge in the context of
representation learning is that there is no notion of treatment group as each individual gets assigned a
potentially different and unique treatment value. Lack of overlap in finite samples and subsequently
large estimation variance for counterfactual predictions are exacerbated in this setting to the extreme
that adjustments for distributional differences are, in principle, not applicable. In particular, the
intuition for reducing variance by regularization deviates from previous proposals (that regularize
representations of covariates to match distributions among groups with different treatment types
(Shalit et al., 2017)) as a potentially infinite set of counterfactuals for each individual must be
considered. Even the analysis of multiple categorical treatments is currently an open question
as, while pairwise comparisons between treatment specific distributions could be implemented in
principle, it is not computationally tractable to do so in practice. At this moment, only heuristic
neural network architectures for this problem have been proposed, including Dose Response networks
that consist of multi-task layers for dosage sub-intervals defined on top of a common representation
(Schwab et al., 2020), variants of generative adversarial networks (Bica et al., 2020), and varying
coefficient networks (Nie et al., 2020).

In this paper, we investigate the design of representation learning-based algorithms for predicting
(conditional average) treatment effects in the context of multiple treatments and continuous dosage
parameters. Our analysis starts by extending definitions of loss and generalization error to this broader
setting, over all possible treatment-dosage pairs. We then show by using the definition of integral
probability metrics that the generalization error can be bounded by a term that is computable from
data and that involves the factual error and a term that quantifies the statistical dependence between
the pair of treatment-dosage random variables and observed confounders. In principle, any treatment
space on which we can define a probability measure is consistently accounted for, which gives well-
defined bounds on the generalization error for treatments with multiple types and continuous values,
and in particular, our bound includes as a special case existing guarantees in the binary treatment
case (Shalit et al., 2017). This bound suggests new training objectives for learning representations
conducive to counterfactual estimation. Moreover, such objectives are tractable: both avoiding
combinatorial numbers of pairwise comparisons and avoiding binning dosage values into different
sub-intervals. A further contribution we make is to design extensive numerical comparisons that
compare both methods driven by bounds on the generalization error (that typically target conditional
average treatment effects) and methods driven by doubly-robust guarantees (that typically target
average treatment effects). Moreover, we do so independently of the adopted neural architecture
which provides the first analysis of different objectives for the problem of treatment effect estimation
with multiple, continuously-valued treatments. We hope these results can give some insight into
the trade-offs of different approaches to this problem and demonstrate the ability of representation
learning techniques to tackle wider ranging scenarios within treatment effect estimation.

2 BACKGROUND

We start by introducing the notation and definitions used throughout the paper. In particular, we use
capital letters for random variables pXq, small letters for their values pxq, bold letters for sets of
variables pXq and their values pxq, and Ω for the spaces where they are defined pΩXq if not explicitly
stated. To simplify notation, we consistently use the shorthand P pxq to represent probabilities or
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densities P pX “ xq and similarly P py | xq to represent P pY “ y | X “ xq. For three sets of
variables X,Y,Z the conditional independence statement "X is conditionally independent of Y
given Z “ z" is written as X |ù Y|Z.

We use the semantics of the Rubin-Neyman potential outcomes framework, see e.g. Section 2
in Rubin (2005). We assume that for an individual with observed covariates x P ΩX, and tuple
T “ pW,Sq defining the treatment type out of k distinct treatments W P ΩW “ tw1, . . . , wku

and dosage parameter S P ΩS “ R, there is a corresponding potential outcome Yt that would have
been observed had the assigned treatment been T “ t. With observational data only one of these
potential outcomes is observed for each unit depending on the treatment assignment. We will refer
to the unobserved potential outcomes as counterfactuals. Let Y denote the observed outcome and
ΩT “ tpw, sq : w P ΩW , s P Ru denote the set of all treatment options. The goal is to derive
estimates of the expected potential outcomes for a given set of input covariates: ErYt | xs, for any
value of t and x. Under the following standard assumptions (Rubin, 2005), it is well understood
that the treatment effect between two selected treatment options t1 and t2 reduces to a contrast of
conditional distributions, presented in Prop. 1 below.
Assumption 1 (Unconfoundedness). The treatment assignment, t “ pw, sq P ΩT , and potential
outcomes, Yt, are conditionally independent given the covariates x, i.e. YT |ù T | X.

Assumption 2 (Overlap). For any x P ΩX such that P pxq ą 0, we have 1 ą P pt | xq ą 0 for each
t P ΩT .

Assumption 3 (Consistency). The observed outcome is the potential outcome, as a function of
treatment, when the treatment is set to the observed exposure, i.e. Y “ Yt if T “ t for any t P ΩT .

Proposition 1 (Identifiability). Under assumptions 1 and 3, and any t1, t2 P ΩT ,

ErYt1 ´ Yt2 | xs “ ErY | x, t1s ´ ErY | x, t2s, (1)

which is composed entirely of observable quantities and can be estimated from data given Assump. 2.

We refer to the quantity ErYt1 ´ Yt2 | xs as the conditional (or individual if the conditioning set
identifies a unit) treatment effect (CATE), and the ErYt1 ´Yt2s as the average, or population, treatment
effect (ATE). Our results rely on defining representation functions ϕ : ΩX Ñ ΩR, where ΩR is
the representation space, that preserve unconfoundedness and overlap, and the identifiability of the
treatment effect. For this purpose, it is sufficient to assume ϕ to be injective1.
Corollary 1 (Identifiability given representation). Under the assumption that the representation ϕ
is injective, 1 ą P pt | ϕpxqq ą 0 and YT |ù T | ϕpXq, that is unconfoundedness and overlap hold
conditional on features ϕpxq.

Without loss of generality we will assume that ΩR is the image of ΩX under ϕ. We will write P also
to denote the distribution induced by ϕ over ΩR and let h : ΩR ˆΩT Ñ ΩY be a prediction function
defined over ΩR. Next, we define two complimentary loss functions: one is the standard machine
learning loss, which we will call the factual error on the estimation at the observed treatment type
and dosage tuple, and the other is the counterfactual error, as an average error over all other treatment
assignment options, made for an individual with a particular treatment type and dosage tuple.
Definition 1. For a given loss function L : ΩY ˆ ΩY Ñ R`, the expected factual and counterfactual
losses of h and ϕ at treatment t P ΩT are defined as,

LF ptq “

ż

ΩX

ż

ΩY

Lpyt, hpϕpxq, tqqP pyt|xqP px|tqdxdyt, (2)

LCF ptq “ Et1„P

ż

ΩX

ż

ΩY

Lpyt, hpϕpxq, tqqP pyt|xqP px|t1qdxdyt. (3)

The counterfactual error defines the average error made for the counterfactual prediction at treatment
tuple t “ pw, sq on all individuals that are observed to be assigned a different treatment t1 ‰ t. This

1The remark has been made that injectivity of representation is difficult to enforce (Zhang et al., 2020;
Johansson et al., 2019). An algorithmic solution, discussed by Zhang et al. (2020), is to include a decoder from
the representation to the input domain and reconstruction loss in the training objective to encourage solutions
with invertible latent representations. A reconstruction loss and encoder-decoder architecture can be included on
top of the regularization terms proposed in this paper.

3



Under review as a conference paper at ICLR 2023

definition extends the binary treatment case to assess the quality of counterfactual predictions at
t P ΩT . Similarly, we define an average measure of factual and counterfactual performance over all
possible treatment options t P ΩT .
Definition 2. The average factual and counterfactual error over all treatment options are defined.

LF “

ż

ΩT

LF ptqP ptqdt, LCF “

ż

ΩT

LCF ptqP ptqdt. (4)

Next we define the error made on the estimation of a counterfactual contrast for a given pair of
treatments, instead of an average over all counterfactual treatment options.
Definition 3. Let the treatment effect between two different treatments tuples t1, t2 P ΩT be given
by τpt1,t2qpxq “ ErYt1 | xs ´ ErYt2 | xs. The error in treatment effect estimation is then defined as,

Lpt1,t2q :“

ż

ΩX

Lpτpt1,t2qpxq, τ̂pt1,t2qpxqqP pxqdx, (5)

where τ̂pt1,t2q : ΩX Ñ ΩY denotes its estimate.

3 REPRESENTATION LEARNING FOR COUNTERFACTUAL ESTIMATION

As is apparent in the presence of multiple treatments and continuously-valued dosages, there is no
notion of treatment group as each individual gets assigned a potentially different and unique treatment
value. The intuition for reducing variance by regularization deviates from previous proposals as a
potentially infinite set of counterfactuals for each individual must be considered Shalit et al. (2017).
The following theorem shows that the average counterfactual error defined in Def. 2 can be bounded
by terms that are explicitly computable from observational data.
Theorem 1 (Bound on average counterfactual generalization error). Under the assumption that ϕ is
injective, it holds that,

LCF ď LF ` λ ¨ sup
gPΩg

ˇ

ˇ

ˇ

ż

ΩT

ż

ΩR

gpr, tq ¨ pP prqP ptq ´ P pr, tqqdrdt
ˇ

ˇ

ˇ
. (6)

Ωg defines a space of functions g : ΩR ˆ ΩT Ñ R expressive enough to include
ş

ΩY
Lpyt, hpϕpxq, tqqP pyt|xqdyt{λ as a function of ϕpxq and t, where λ ą 0 depends on the

choice of representation function ϕ.

This theorem states that the average counterfactual error is upper-bounded by the factual error plus a
term that quantifies the dependence between treatment tuple T and covariates X. As the treatment
tuple contains multiple treatment types w, as well as continuous dosages s, this single bound is valid
for multiple treatment values as well as continuous dosages.

Bias Variance tradeoff Counterfactual estimation would be unbiased by minimizing factual
losses LF by Prop. 1, but the variance in the estimation of counterfactuals for treatment-dosage
pairs that are not heavily represented in observational data will be high. This will contribute
to larger generalization error and is captured in the supremum in the second term of Eq. (6). In
particular, the supremum quantifies an imbalance in the association of T and R by using distributional
distances between joint distributions and the product of marginals. |P prqP ptq ´ P pr, tq| is large
if not all treatment and feature combinations are evenly represented in the data. This observation
recovers an interesting intuition if Ωg is chosen to be expressive enough. The observation being

that supgPΩg

ˇ

ˇ

ˇ

ş

ΩT

ş

ΩR
gpr, tq ¨ pP prqP ptq ´ P pr, tqqdrdt

ˇ

ˇ

ˇ
“ 0 if and only if the representation is

independent of treatment assignment, i.e. ϕpXq |ù T . This extreme case leads to lower variance
as counterfactuals for a treatment-dosage tuple have the same effective sample size as that of the
observational data. The hyperparamter λ controls the tradeoff between the bias and the variance
of the counterfactuals. Two choices for Ωg we consider are the space of functions in a universal
Reproducing Kernel Hilbert Space (RKHS) with characteristic kernels (Sriperumbudur et al., 2011),
which recovers the well-known Hilbert Schmidt Independence Criterion (Gretton et al., 2007), and
the space of Lipschitz functions with Lipschitz constant bounded by 1 which recovers the Wasserstein
distance (Villani, 2009).
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Binary treatment case One insight from Thm. 1 is that bias in the treatment assignment in the
context of a general treatment choices, such as multiple treatment types or continuously-valued
treatments, takes the form of high statistical dependence between random variables, that is more
general than differences between distributions. In particular, differences in distributions between
treatment groups as defined by Shalit et al. (2017) in the binary treatment case can be formulated as
statistical dependence between random variables. The following corollary recovers the generalization
bound of Shalit et al. (2017) as a special case.
Corollary 2. Let ΩT “ t0, 1u. Then, by Thm. 1,

LCF ď LF ` λ ¨ sup
gPΩg

ˇ

ˇ

ˇ

ż

ΩR

gprq ¨ pP pr | T “ 1q ´ P pr | T “ 0qqdr
ˇ

ˇ

ˇ
, (7)

and is equivalent to (Shalit et al., 2017, Lemma 1).

We show next a similar result that gives generalization bounds for the treatment effect comparing two
specific treatment options, instead of an average over all possible counterfactual options, that may be
of interest in applications specifically comparing two treatment options.
Theorem 2. Let t1, t2 P ΩT be two treatment tuples to be compared. Then,

Lpt1,t2q{2 ď LF pt1q ` sup
gPΩg

ˇ

ˇ

ˇ

ż

ΩR

gprq ¨ pP prq ´ P pr | T “ t1qqdr
ˇ

ˇ

ˇ
` LF pt2q

` sup
gPΩg

ˇ

ˇ

ˇ

ż

ΩR

gprq ¨ pP prq ´ P pr | T “ t2qqdr
ˇ

ˇ

ˇ
´ σYt1

´ σYt2
, (8)

where σYt1
and σYt2

stand for the variance of the random variables Yt1 and Yt2 , respectively, under
the distribution P pxq.

3.1 ARCHITECTURES AND ALGORITHMS FOR COUNTERFACTUAL ESTIMATION

This section discusses the architectures of the representation and prediction functions used, as well as
training objectives to leverage the generalization bound in Thm. 1. The training objective that we
define can be used with any neural network architecture that parameterizes a representation function
ϕη : ΩX Ñ ΩR and a separate prediction function hθ : ΩR ˆ ΩT Ñ ΩY with sets of parameters η
and θ respectively.

Following the discussion in Sec. 3, we learn a representation ϕ and prediction function h to minimize
a trade-off between predictive accuracy and imbalance in the representation space using the following
objective:

min
θ,η

N
ÿ

n“1

´

ypnq ´ hθpϕηpxpnqq, tpnqq

¯2

` γ ¨ IPMΩg pϕpXq, T q, (9)

where γ ě 0 is a hyperparameter, n is the number of samples, and IPMΩg
pϕpXq, T q :“

supgPΩg

ˇ

ˇ

ˇ

ş

ΩT

ş

ΩR
gpr, tq ¨ pP prqP ptq ´ P pr, tqqdrdt

ˇ

ˇ

ˇ
is the integral probability metric for a chosen

space of functions Ωg .

Concretely, we wish to increase the predictive accuracy while making the representation as indepen-
dent of the treatment as possible. We consider the Hilbert Schmidt Independence Criterion (HSIC)
and the Wassertein distance as choices for the integral probability metric. In practice, the HSIC can
be approximated with a finite data sample using (Gretton et al., 2007, Eq. (3)). For the Wasserstein
distance, we simulate a sample with joint distribution P prqP ptq by randomly permuting the observed
treatment-dosage pair across individuals to generate a sample tprpnq, tpσpnqqq : n “ 1, . . . , Nu, where
σ : t1, . . . , Nu Ñ t1, . . . , Nu is a bijective function. The original data tprpnq, tpnqq : n “ 1, . . . , Nu

is drawn from the distribution P pr, tq. The two empirical distributions are compared using the
arguments in (Cuturi & Doucet, 2014). Both these regularization terms are differentiable and all
parameters can be updated using stochastic gradient descent.

Each treatment type w corresponds to a separate prediction network head, i.e. hθ :“ th
pwq

θ uwPΩW
,

while the representation layer is common across all treatment types. In particular, this implies that each
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Figure 1: Sketch of the architecture.

sample pxpnq, wpnq, spnq, ypnqq is used to update only the prediction network hpwpnq
q

θ corresponding
to the observed treatment wpnq, while all samples are used to update the representation layer ϕη. A
sketch of this training routine is given in Fig. 1.

The following network architectures for the prediction functions thpwquwPΩW
have been proposed in

the literature.

Dose Response Networks (DRNet) Schwab et al. (2020) propose Dose Response Networks for
predicting the effect of dosage on an outcome of interest. The architecture takes the form of a multi-
task network with a shared set of layers and multiple task-specific heads. In this context, the range of
dosage values is split into separate bins and each of them is associated with a separate head. Each
task-specific network in addition takes the dosage value as input, but crucially the parameterization
of the prediction function is common to all dosages belonging to the same sub-interval. For example,
the range of dosage values for treatment type w could be divided into 5 sub-intervals, thus using 5
task-specific heads hpwq

θ “ ph
pw,1q

θ , . . . , h
pw,5q

θ q, hpw,iq
θ : ΩR ˆ ΩT Ñ ΩY , i “ 1, . . . , 5. To some

extent this approach accounts for the heterogeneity in the dose-response function but remains limited
by the binning choice and may be vulnerable to abrupt changes in the prediction on the dosage values
that separate two bins, as demonstrated by Nie et al. (2020).

Varying Coefficient networks (VCNet) Varying Coefficient networks (Nie et al., 2020) are
proposed for dose-response estimation, but a multi-task architecture can be designed as a special
case. In particular, the authors define the parameters θ for each prediction network hpwq

θ :“ h
pwq

θpsq
:

ΩR Ñ ΩY to be functions θpsq “ pθ1psq, . . . , θdθ psqq of dosage themselves, where dθ is the total
number of parameters. Each scalar parameter θi : ΩS Ñ R is given by a linear combination
θipsq “

řL
l“1 αi,lψlpsq of polynomial basis functions tψlu

L
l“1 defined on the space of dosage values

ΩS . The coefficients tαi,l : i “ 1, . . . , dθ, l “ 1, . . . , Lu define the trainable parameters and the map
h

pwq

θ pr, sq :“ h
pwq

θpsq
pr, sq is differentiable with respect to tαi,l : i “ 1, . . . , dθ, l “ 1, . . . , Lu. For

example, DRNets are recovered by choosing tψlu
L
l“1 to be a piece-wise constant functions spline basis

of the form 1psi ď t ă sjq with different si, sj . More general choices can be made, such as B-splines,
that lead to continuous dose response curves. The influence of the dosage parameter is different to
that of a covariate and thus ensures dosage information is not lost in high-dimensional representations,
which in practice has been shown to lead to better counterfactual prediction performance.

4 EXPERIMENTS

This section conducts controlled experiments on synthetic and semi-synthetic datasets previously
used in the literature. Overall, we found that simulation results support our generalization guarantees
with different architectures benefiting from the proposed regularization strategy using both the HSIC
and Wasserstein distances.

4.1 BASELINES AND METRICS

We consider several baselines for comparison, including different neural network architectures
without regularization and with doubly-robust regularization techniques. In particular, we consider a
standard multilayer perceptron (MLP) that optimises the (factual) squared error loss objective to learn
the weights of the network, a standard VCNet (Nie et al., 2020), and DRNet (Schwab et al., 2020). In
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the context of doubly-robust optimization, Shi et al. (2019); Nie et al. (2020) propose to learn a joint
representation ϕpxq that is conducive to both counterfactual h1 : ΩR ˆ ΩT Ñ ΩY and propensity
score estimation h2 : ΩR Ñ ΩT by a using a loss function that trades-off the two objectives, e.g.,

1

N

N
ÿ

n“1

´

ypnq ´ h1pϕpxpnqq, tpnqq

¯2

` α ¨ CrossEntropy
´

h2pϕpxpnqqq, tpnq
¯

, (10)

If h1 and h2 are consistent estimators of the outcome and propensity scores respectively, as well as
satisfy the non-parametric estimating equation,

1

N

N
ÿ

n“1

µpypnq, tpnq,xpnq; ĥ1, ĥ2, ϵ̂q “ 0, (11)

where ϵ denotes a perturbation term that is optimized and where (in the binary treatment case for
simplicity),

µpy, t,x;h1, h2, ϵq “ h1px, 1q ´ h1px, 0q `

ˆ

t

h2pxq
´

1 ´ t

1 ´ h2pxq

˙

¨ py ´ h1px, tqq ´ ϵ, (12)

then the resulting estimator will have desirable asymptotic properties for average treatment effect
(Shi et al., 2019; Kennedy, 2016). We consider h1 parameterized by both VCNets and DRNets.
Algorithms trained to minimize Eq. (10) are denoted VCNet-PS, DRNet-PS, and algorithms trained
to minimize both Eqs. (10) and (11) (also known as Targeted Regularization), are referred to as
VCNet-TR, DRNet-TR. Finally, we consider Generalized Propensity Scores (GPS) (Imbens, 2000;
Imai & Van Dyk, 2004) that fit a linear model using inverse propensity scores. Our proposed methods
are labeled DRNet-HSIC, DRNet-Wass, VCNet-HSIC, and VCNet-Wass, which combine existing
architectures with the proposed regularization methods. We include details on network architectures,
hyperparameters optimisation and computational time in Appendix C.

For performance comparisons, we consider the Mean Integrated Squared Error (MISE),

MISE “
1

N

1

k

N
ÿ

n“1

ÿ

wPΩW

E
„

´

y
pnq

pw,sq
´ ŷ

pnq

pw,sq

¯2
ȷ

, (13)

where we use the notation ypnq

pw,sq
and ŷpnq

pw,sq
for the true and predicted outcome for individual n

given treatment-dosage pairs pw, sq P ΩT , and the expectation is taken with respect to the dosage
parameter, i.e. E

”

y
pnq

pw,sq

ı

“
ş

ΩS
y

pnq

pw,sq
P psqds. Intuitively, MISE calculates how well an algorithm

is at estimating individual level dose response and thus accounts for the heterogeneity in treatment
response. In contrast, the Average Mean Squared Error (AMSE) evaluates population average
counterfactual prediction by taking sums and integrals before comparisons between predicted and
true outcomes. We define and evaluate AMSE in Appendix D.

4.2 DATASETS

The nature of the treatment-effects estimation problem does not allow for meaningful evaluation on
real-world datasets. This is simply because we never observe a counterfactual for a given unit. There
are, however, established synthetic and semi-synthetic datasets that have been used by Schwab et al.
(2020); Bica et al. (2020); Nie et al. (2020). Following these proposals we use,

• Fully synthetic. A data generating mechanism with a total of 6 randomly generated covariates and a
single treatment with dosage ranging from 0 to 1 that involve complex functions for both treatment
assignment and outcome function, as defined by Nie et al. (2020).

• IHDP-continuous. The original semi-synthetic IHDP dataset from Hill (2011) contains binary
treatments with 747 observations on 25 covariates. We adapt this dataset to the continuous dosage
context by changing the treatment assignment and outcome function. We generate these in a similar
way to Nie et al. (2020).

• News. The News dataset consists of 3000 randomly sampled news items from the NY Times corpus
(Newman, 2008), which was originally introduced as a benchmark in the binary treatment setting.
We generate a continuously-valued treatment and corresponding outcome in a similar way as Bica
et al. (2020).
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(a) Synthetic.
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(b) IHDP-continuous.

Figure 2: Out-of-sample MISE error versus IPM regularization, relative to the error at γ “ 0 (no regularisation),
on 50 realizations of Synthetic (a) and IHDP-continuous (b) datasets. Average values (dot markers) and one
standard deviation (shaded areas) are shown.

In each of our experiments we generate 50 independent realizations from each of the above datasets
(20 for News), with samples split into a train/validation/test set with ratios 0.6/0.2/0.2. Further details
on the data generating mechanisms, as well as about networks architecture, hyper-parameters tuning
and training times are provided in Appendix C.

4.3 EFFECTIVENESS OF REGULARISATION

Our first experiment tests the effectiveness of the proposed regulariser by evaluating counterfactual
prediction performance as a function of γ that determines the influence of the independence constraint
in feature space in Eq. (9).

We consider both DRNets and VCNets architectures, with both HSIC and Wasserstein regularizers
on the Synthetic and IHDP-continuous datasets. Fig. 2 compares MISE performance results for
these models with varying values of γ relative to γ “ 0 (without regularisation). Both datasets
include confounding factors which induce bias or imbalance in the treatment assignment T for
different covariate subgroups X. On both plots we observe that the proposed regularization term
(with increasing γ ą 0 relative to γ “ 0) confers an advantage to training with a regularization term
that explicitly corrects for this imbalance for the purpose of predicting counterfactuals. The gain of
some γ ą 0 is consistent across different neural network architectures and across different datasets,
which illustrates our generalization guarantees but also shows that some form of regularisation may
broadly be applicable in practice.

4.4 PERFORMANCE COMPARISONS

In this section we conduct a wide-range comparison against the benchmark prediction algorithms
using the three data generating mechanisms described in Section 4.2. Table 1 reports average values
and standard deviations of

?
MISE over 50 (20) realizations of Synthetic and IHDP-continuous

(News) datasets. On average, the proposed regularization technique, using either the HSIC or
Wasserstein distances between distributions, outperforms all other regularization techniques on both
choices of neural network architecture. Several trends are interesting to discuss in more detail.

Existing representation learning algorithms that optimise doubly-robust objectives are not always
optimal. The results show that, in terms of the MISE, our regularisation based on counterfactual
generalisation outperforms doubly robust methods. This can be explained by the fact that doubly
robust methods have guarantees when estimating average treatment effects, and not individual or
conditional treatment effects. The proposed regularization techniques, with guarantees for coun-
terfactual generalization error, instead, are designed for good performance in conditional average
treatment effect estimation and often substantially outperform in terms of MISE. We believe that
this discrepancy is due to the doubly robust methods discarding information that helps predict the
individual outcome, resulting in a worse MISE performance. This also emphasizes the fact that
estimating average counterfactuals and individual counterfactuals can require different objectives.
Indeed, the cross-entropy term in Eq. (10) encourages the representation to retain information that is
predictive of the treatment; hence, it encourages the discarding of information that is predictive of

8
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Synthetic IHDP-continuous News
GPS 2.80 (0.51) 4.91 (0.87) -

MLP 0.72 (0.09) 0.74 (0.07) 1.05 (0.07)

DRNet 0.34 (0.06) 0.60 (0.06) 0.84 (0.04)

DRNet-PS 0.43 (0.07) 0.66 (0.15) 0.84 (0.04)

DRNet-TR 0.41 (0.03) 2.07 (3.54) 0.82 (0.05)

DRNet-HSIC 0.39 (0.06) 0.52 (0.05) 0.87 (0.04)

DRNet-Wass 0.38 (0.07) 0.51 (0.08) 0.86 (0.04)

VCNet 0.33 (0.03) 0.56 (0.09) 0.85 (0.05)

VCNet-PS 0.62 (0.42) 0.59 (0.11) 0.98 (0.09)

VCNet-TR 0.42 (0.12) 0.64 (0.39) 0.99 (0.06)

VCNet-HSIC 0.28 (0.04) 0.56 (0.09) 0.87 (0.05)

VCNet-Wass 0.38 (0.03) 0.55 (0.10) 0.81 (0.05)

Table 1: Average values and standard deviations (within brackets) of
?

MISE across 50 (20) realizations of
Synthetic, IHDP-continuous (News) datasets. Bold notation highlights the best-performing algorithm on each
dataset.

the outcome but not the treatment, which is simply noise when predicting the treatment. On average
there is also a significant gain by considering more expressive neural network architectures, for
instance DRNet outperforms MLP and VCNet outperforms DRNet on all metrics and data generating
mechanisms. Finally, we note that GPS requires matrix inversion which was not feasible to compute
on the high-dimensional News dataset.

5 CONCLUSION

In this paper, we investigate the task of estimating the conditional average causal effect of dosage from
a combination of observational data and assumptions on the causal relationships in the underlying
system. When these assumptions hold, we give new bounds on the counterfactual generalization
error in the context of multiple treatment types and continuously-valued dosage parameters that
subsume generalization guarantees from the binary treatment case. Using this result, we provide new
learning objectives that can be used to guide the training of representation learning algorithms. We
show empirically new state-of-the-art performance results across several benchmark datasets for this
problem. To our knowledge, this is the first paper exploring representation learning and regularization
for conditional average counterfactual estimation in the context of multiple, continuous-valued
treatments in a principled manner. We hope these results can demonstrate the ability of representation
learning techniques to tackle wider ranging scenarios within treatment effect estimation.
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A RELATED WORK ON DOUBLY ROBUST ESTIMATION OF THE AVERAGE
TREATMENT EFFECT

Thm. 1 suggests that the imbalance in the distribution of X across treatment dosage pairs is relevant
for the expected generalization error of fitted models. Estimators inspired from the semi-parametric
literature, known as doubly robust estimators (Van Der Laan & Rubin, 2006; Chernozhukov et al.,
2017), instead try to optimize average treatment effects (ATE), e.g. EXErY1 | xs ´ EXErY0 | xs, by
constructing a prediction function h1 : ΩX ˆΩT Ñ ΩY , a propensity score function h2 : ΩX Ñ ΩT ,
and perturbation term ϵ, satisfying the non-parametric estimating equation,

1

N

N
ÿ

n“1

µpypnq, tpnq,xpnq; ĥ1, ĥ2, ϵ̂q “ 0, (14)

where (in the binary treatment case for simplicity),

µpy, t,x;h1, h2, ϵq “ h1px, 1q ´ h1px, 0q `

ˆ

t

h2pxq
´

1 ´ t

1 ´ h2pxq

˙

¨ py ´ h1px, tqq ´ ϵ. (15)

h1px, tq is an estimator of ErYt | xs, while h2pxq is an estimator of the probability of treatment
P pt | xq and ϵ P ΩT is a perturbation term that is optimized. In the literature, a common estimation
approach is to rely on (task-agnostic) fitted models ĥ1 and ĥ2, and then choose ϵ so that this equation
is satisfied. If h1 and h2 are consistent estimators of the outcome and propensity scores respectively,
as well as satisfy Eq. (14), the resulting estimator of the ATE will have desirable asymptotic properties
(Shi et al., 2019; Kennedy, 2016). However, as these guarantees are on the average treatment effects,
they do not necessarily guarantee accurate estimates of conditional treatment effects.

In the context of neural networks, Shi et al. (2019); Nie et al. (2020) propose to learn a joint
representation ϕpxq that is conducive to both counterfactual h1 : ΩR ˆ ΩT Ñ ΩY and propensity
score estimation h2 : ΩR Ñ ΩT by a using a loss function that trades-off the two objectives, e.g.,

1

N

N
ÿ

n“1

´

ypnq ´ h1pϕpxpnqq, tpnqq

¯2

` α ¨ CrossEntropy
´

h2pϕpxpnqqq, tpnq
¯

, (16)

as in (Nie et al., 2020, Eq. (1)) or (Shi et al., 2019, Eq. (2.2)). The motivation is that: "If the average
treatment effect is identifiable conditioning on the propensity score [. . . ] it suffices to adjust for only
the information in x that is relevant for predicting the treatment", see (Shi et al., 2019, Theorem 2.1).
Intuitively, the cross entropy term in Eq. (16) encourages the representation to retain information that
is predictive of the treatment. Hence, it encourages the discarding of information that is predictive of
the outcome but not the treatment, which is simply noise when predicting the treatment.

Variables that affect the outcome and not treatment are referred to as effect modifiers in the literature,
see e.g. (Hernán & Robins, 2010). By definition, the treatment effect varies across different
conditioning sets of these effect modifiers. As effect modifiers are responsible for the heterogeneity of
treatment effects, it is necessary to condition on them to obtain accurate conditional treatment effects.
Thus, to compute conditional average or "individualized" treatment effects such representations may
be too restrictive because they tend to ignore effect modifiers.

In contrast, our regularizer penalizes the dependence between the representation and the treatment
distributions explicitly. Loosely speaking we discard covariate information predictive of treatment but
outcome information is retained. Hence, our regularizer should preserve these effect modifiers leading
to more accurate estimates of conditional treatment effects. We conclude that, in general, optimal
average treatment effects does not necessarily imply optimal conditional average treatment effects as
measured by expected losses in Definitions 1 and 22. We verify this intuition in our experiments.

2Definitions 1 and 2 also involve averages but makes a head to head comparisons between observed outcomes
and predicted outcomes for each individual px, tq in the term

ş

ΩY
Lpyt, hpϕpxq, tqqP pyt|xqdyt (which are then

averaged across individuals) instead of averaging predicted counterfactuals across the whole population before
comparison with average true outcomes across different dosage levels.
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B PROOFS

Theorem 1 (Generalization bound for the average counterfactual error). Under the assumption that ϕ
is one to one, it holds that,

LCF ď LF ` λ ¨ sup
gPΩg

ˇ

ˇ

ˇ

ż

ΩT

ż

ΩR

gpr, tq ¨ pP prqP ptq ´ P pr, tqqdrdt
ˇ

ˇ

ˇ
. (17)

Ωg defines a space of functions g : ΩR ˆ ΩT Ñ R expressive enough to include
ş

ΩY
Lpyt, hpϕpxq, tqqP pyt|xqdyt{λ as a function of ϕpxq and t, where λ ą 0 depends on the

choice of representation function ϕ.

Proof. Let ψ : ΩR Ñ ΩX be the inverse of ϕ and let lh,ϕpx, tq :“
ş

ΩY
Lpyt, hpϕpxq, tqqP pyt|xqdyt.

The following derivations show the claim.

LCF ´ LF “

ż

ΩT

ż

ΩX

lh,ϕpx, tqP pxqP ptqdxdt´

ż

ΩT

ż

ΩX

lh,ϕpx, tqP px|tqP ptqdxdt

“

ż

ΩT

ż

ΩX

lh,ϕpx, tq ¨ pP pxqP ptq ´ P px, tqqdxdt

“

ż

ΩT

ż

ΩR

lh,ϕpψprq, tq ¨ pP pψprqqP ptq ´ P pψprq, tqqdψprqdt

“

ż

ΩT

ż

ΩR

lh,ϕpψprq, tq ¨ pP prqP ptq ´ P pr, tqqJψJ
´1
ψ drdt

ď λ ¨ sup
gPΩg

ˇ

ˇ

ˇ

ż

ΩT

ż

ΩR

gpr, tq ¨ pP prqP ptq ´ P pr, tqqdrdt
ˇ

ˇ

ˇ
.

For the third equality, the distribution P over ΩR ˆ ΩT can be obtained by the standard change of
variables formula, using the determinant of the Jacobian of ψprq, denoted Jψ giving P pψprq, tq “

P pr, tqJψ (which cancels with the inverse Jacobian that appears after the change of variables in the
differential term). The last inequality comes from the assumption that lh,ϕpx, tq{λ P Ωg, which is
justified and extensively discussed in Shalit et al. (2017).

To prove Thm. 2, we will use the following lemma.

Lemma 2. For convenience, we write mpt,xq :“ ErYt | xs and we define its estimate given a
prediction function f : ΩR ˆ ΩX Ñ ΩY by fpt,xq. If L is the square loss, it then holds that,

LCF ptq “

ż

ΩX

ż

ΩY

Lpyt, hpϕpxq, tqqP pyt|xqP pxqdytdx (18)

“

ż

ΩX

ż

ΩY

pyt ´ fpx, tqq2P pyt | xqP pxqdytdx (19)

“

ż

ΩX

ż

ΩY

pfpx, tq ´mpx, tqq2P pyt | xqP pxqdytdx (20)

`

ż

ΩX

ż

ΩY

pmpx, tq ´ ytq
2P pyt | xqP pxqdytdx (21)

` 2

ż

ΩX

ż

ΩY

pfpx, tq ´mpx, tqqpmpx, tq ´ ytqP pYt | xqP pxqdytdx (22)

“

ż

ΩX

pfpx, tq ´mpx, tqq2P pxqdx ` σYt . (23)

The third term in the third equality evaluates to zero because mpx, tq :“
ş

ΩY
ytP pyt | xqdyt and we

have defined the variance of Yt with respect to the distribution P pxq as σYt
:“

ş

ΩX

ş

ΩY
pmpx, tq ´

ytq
2P pyt | xqP pxqdytdx.
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Theorem 2 (Generalization bound for selected treatment tuples t1 and t2). Let t1, t2 P ΩT be two
treatment tuples to be compared. Then,

Lpt1,t2q{2 ď LF pt1q ` sup
gPΩg

ˇ

ˇ

ˇ

ż

ΩR

gprq ¨ pP prq ´ P pr | T “ t1qqdr
ˇ

ˇ

ˇ
` LF pt2q

` sup
gPΩg

ˇ

ˇ

ˇ

ż

ΩR

gprq ¨ pP prq ´ P pr | T “ t2qqdr
ˇ

ˇ

ˇ
´ σYt1

´ σYt2
, (24)

where σYt1
and σYt2

stand for the variance of the random variables Yt1 and Yt2 , respectively, under
the distribution P pxq.

Proof.

Lpt1,t2q “

ż

ΩX

pfpt1,xq ´ fpt2,xq ´mpt1,xq `mpt2,xqq2P pxqdx (25)

ď 2

ż

ΩX

pfpt1,xq ´mpt1,xqq2P pxqdx ` 2

ż

ΩX

pfpt2,xq ´mpt2,xqq2P pxqdx (26)

“ 2pLCF pt1q ´ σYt1
q ` 2pLCF pt2q ´ σYt2

q (27)

ď 2

˜

LF pt1q ` sup
gPΩg

ˇ

ˇ

ˇ

ż

ΩR

gprq ¨ pP prq ´ P pr|T “ t1qqdr
ˇ

ˇ

ˇ
´ σYt1

¸

(28)

` 2

˜

LF pt2q ` sup
gPΩg

ˇ

ˇ

ˇ

ż

ΩR

gprq ¨ pP prq ´ P pr|T “ t2qqdr
ˇ

ˇ

ˇ
´ σYt2

¸

. (29)

The first inequality holds by the fact that pa` bq2 ď 2a2 ` 2b2 for any a, b P R. The second equality
holds by Lemma 2 and the last inequality holds by the same arguments used in Theorem 1.

C EXPERIMENTAL DETAILS

C.1 DATA GENERATING MECHANISMS

This section describes the data generating mechanisms used in our experiments.

Synthetic. We generate synthetic data similar to Nie et al. (2020). With covariates x P R6 all drawn
from a uniform distribution between 0 and 1, we generate the continuous dosages and outcomes as
follows,

s̃|x “
10 sinpmaxpx1, x2, x3qq ` maxpx3, x4, x5q3

1 ` px1 ` x5q2
` sinp0.5x3qp1 ` exppx4 ´ 0.5x3qq`

(30)

x23 ` 2 sinpx4q ` 2x5 ´ 6.5 ` N p0, 0.25q,

y|x, s “ cosp2πps´ 0.5qq

ˆ

s2 `
4maxpx1, x6q3

1 ` 2x23
sinpx4q

˙

` N p0, 0.25q, (31)

where s “ p1 ` expp´s̃qq´1.

IHDP Continuous. The IHDP dataset contains 25 covariates with binary treatments and continuous
outcomes (Hill, 2011). Disregarding original treatments and outcomes, we use the covariates to
generate new continuous dosages and outcomes to test our method. We follow the data generating
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procedure of Nie et al. (2020), namely:

s̃|x “
2x1

1 ` x2
`

2maxpx3, x5, x6q

0.2 ` minpx3, x5, x6q
` 2 tanh

ˆ

5

ř

iPI xi ´ c2
|I|

˙

´ 4 ` N p0, 0.25q, (32)

y|x, s “
sinp3πsq

1.2 ´ s

ˆ

tanh

ˆ

5

ř

iPJ xi ´ c1
|J |

˙

` exp

ˆ

0.2px1 ´ x6q

0.5 ` minpx2, x3, x5q

˙˙

` N p0, 0.25q,

(33)

c1 “ Eppxq

„ř

iPJ xi
|J |

ȷ

, (34)

c2 “ Eppxq

„ř

iPI xi
|I|

ȷ

, (35)

where s “ p1 ` expp´s̃qq´1, I “ t16, 17, 18, 19, 20, 21, 22, 23, 24, 25u, and J “

t4, 7, 8, 9, 10, 11, 12, 13, 14, 15u.

News. This dataset contains words sampled from 5000 news articles (Newman, 2008). The
covariates are word counts. We generated continuous dosage and outcomes by following the data
generation method listed in Bica et al. (2020). We first sample three vectors v1

i „ N p0, 1q, with
vi “ v1

i{||v1
i||2 for i “ 1, 2, 3. Then, dosages are drawn from a Beta distribution:

s „ Betap2, βq, β “ max

ˆ

1,

ˇ

ˇ

ˇ

ˇ

2xTv2

xTv1

ˇ

ˇ

ˇ

ˇ

˙

. (36)

Finally, outcomes are sampled according to:

y1 “ exp

ˆ
ˇ

ˇ

ˇ

ˇ

xTv2

xTv1

ˇ

ˇ

ˇ

ˇ

´ 0.3

˙

(37)

y “ 2
´

maxp´2,minp2, y1q ` 20xTv3 ˚ p4ps´ 0.5q2q ˚ sin
´πs

2

¯¯

` N p0, 0.25q. (38)

C.2 ARCHITECTURES AND TRAINING DETAILS

In both VCNet and DRNet, the representation part of the network ϕη and the prediction heads hθ
have two layers each, with 50 hidden units and ReLU activations. Following Nie et al. (2020), we use
B-spline with degree 2 and knots placed at t1{3, 2{3u for VCNet and 5 regression heads for DRNet.

For the MLP model, we use a 4-layers network to represent similar power of approximations to
ensure fair comparison. We optimise the networks using Adam (Kingma & Ba, 2014) with a weight
decay of 0.005 for regularisation and a batch size of 1000. Learning rate is chosen within the set
t0.01, 0.005, 0.001, 0.0005, 0.0001, 0.00005u using the procedure outlined in C.3. Each data set is
split into a train/validation/test set with ratios 0.6/0.2/0.2. To avoid overfitting, we stop the training if
the validation loss did not improve after 50 epochs.

Propensity score regularization (-PS methods) In addition to the representation net ϕ : ΩX Ñ

ΩR and to the prediction net h1 : ΩR ˆ ΩT Ñ ΩY , propensity score regularized methods also
include a separate head h2 : ΩR Ñ ΩT . Parameters are tuned by minimizing the loss

LPSpϕ, h1, h2q “
1

N

N
ÿ

n“1

´

ypnq ´ h1pϕpxpnqq, tpnqq

¯2

` α ¨ CrossEntropy
´

h2pϕpxpnqqq, tpnq
¯

.

(39)

In our experiments, h2 is modelled through a softmax layer over a grid of 10 bins. Average treatment
effects are then estimated by considering an additional perturbation term following Shi et al. (2019)
and Nie et al. (2020). α is treated as a hyperparameter and chosen within the set t0.5, 1u using the
procedure detailed in C.3. The implementation in practice follows the publicly available code of Nie
et al. (2020).
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Synthetic IHDP-continuous News
DRNet 55.82 (0.36) 49.82 (0.21) 82.91 (1.76)

DRNet-PS 55.83 (0.30) 50.09 (0.17) 83.47 (2.00)

DRNet-TR 87.71 (0.22) 79.65 (0.58) 125.17 (2.77)

DRNet-HSIC 83.28 (1.47) 75.86 (1.44) 134.47 (1.74)

DRNet-WASS 63.57 (0.42) 59.67 (0.30) 99.20 (1.64)

VCNet 32.73 (0.15) 29.71 (0.34) 77.51 (0.23)

VCNet-PS 32.91 (0.21) 29.79 (0.21) 76.13 (0.26)

VCNet-TR 51.82 (0.24) 43.82 (0.17) 114.03 (0.30)

VCNet-HSIC 59.43 (0.61) 53.88 (0.94) 128.23 (0.76)

VCNet-WASS 41.69 (0.29) 38.64 (0.29) 91.83 (0.52)

Table 2: Computational times (in seconds) required for 2000 epochs of training. Averages and standard deviations
(within brackets) over 10 runs (5 for News dataset) are reported.

Targeted regularization (-TR methods) Methods labeled -TR use the functional targeted regular-
ization approach presented in Nie et al. (2020) which optimizes the loss function

LTRpϕ, h1, h2, ϵN q “ LPSpϕ, h1, h2q `
β

N

N
ÿ

n“1

ˆ

ypnq ´ h1pϕpxpnqq, tpnqq ´
ϵN ptpnqq

h2pϕpxpnqqq

˙2

(40)

where ϵN p¨q “
řJN
j“1 ajψjp¨q is modelled through JN spline basis functions ψj of degree 2. The

number of basis might change with the sample sizeN . Following Nie et al. (2020), we select the learn-
ing rate for ϵN p¨q, β and the number of spline knots within the sets {0.001, 0.0001}, t20, 10, 5u{

?
N

and t5, 10, 20u, respectively. Again, the implementation in practice follows the publicly available
code of Nie et al. (2020).

IPM regularization (-HSIC and -Wass methods) IPM regularized methods minimize the pro-
posed loss in Equation (13) in the main body of this paper, where the γ is selected within the set
t10i{6, i “ ´18,´17, ¨ ¨ ¨ , 9, 10u using the procedure in C.3. The implementation of Wasserstein dis-
tance regulariser follows the one available at https://github.com/clinicalml/cfrnet/
blob/master/cfr/util.py#L166. HSIC regulariser is computed according to (Greenfeld &
Shalit, 2020, Eq. 3), using two RBF kernels with length-scales t0.05, 0.1, 0.5, 1, 5, 10, 50, 100, 500u.

Generalised Propensity Score (GPS) We use our own implementation following Hirano & Imbens
(2004).

C.3 HYPER-PARAMETERS TUNING

We use grid-search to tune the hyper-parameters. Namely, we generate a dataset for each hyperpa-
rameters setting, randomly splitting it into a train/test set with a ratio of 0.8/0.2 and we choose the
hyperparameters values giving the best MISE test score.

C.4 RUN TIME COMPARISONS

Table 2 reports the computational time (in seconds) required by the algorithms compared in the
experimental section for 2000 training epochs. These results are machine and algorithm- specific
but do serve as a relative comparison of run times for different neural network architectures and
regularization techniques. In general, Wassertstein IPM regularisation is more computationally
efficient than TR and IPM regularisation through HSIC metric.
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Synthetic IHDP-continuous News
?

MISE
?

AMSE
?

MISE
?

AMSE
?

MISE
?

AMSE
GPS 2.80 (0.51) 2.75 (0.52) 4.91 (0.87) 4.88 (0.88) - -

MLP 0.72 (0.09) 0.62 (0.11) 0.74 (0.07) 0.59 (0.05) 1.05 (0.07) 0.66 (0.15)

DRNet 0.34 (0.06) 0.20 (0.04) 0.60 (0.06) 0.42 (0.05) 0.84 (0.04) 0.37 (0.09)

DRNet-PS 0.43 (0.07) 0.25 (0.06) 0.66 (0.15) 0.43 (0.12) 0.84 (0.04) 0.37 (0.09)

DRNet-TR 0.41 (0.03) 0.17 (0.02) 2.07 (3.54) 0.68 (0.70) 0.82 (0.05) 0.30 (0.10)

DRNet-HSIC 0.39 (0.06) 0.22 (0.02) 0.52 (0.05) 0.35 (0.06) 0.87 (0.04) 0.44 (0.07)

DRNet-Wass 0.38 (0.07) 0.21 (0.02) 0.51 (0.08) 0.34 (0.08) 0.86 (0.04) 0.43 (0.07)

VCNet 0.33 (0.03) 0.13 (0.06) 0.56 (0.09) 0.33 (0.09) 0.85 (0.05) 0.31 (0.11)

VCNet-PS 0.62 (0.42) 0.32 (0.30) 0.59 (0.11) 0.31 (0.12) 0.98 (0.09) 0.25 (0.13)
VCNet-TR 0.42 (0.12) 0.19 (0.11) 0.64 (0.39) 0.31 (0.13) 0.99 (0.06) 0.4 (0.08)

VCNet-HSIC 0.28 (0.04) 0.10 (0.03) 0.56 (0.09) 0.33 (0.08) 0.87 (0.05) 0.35 (0.11)

VCNet-Wass 0.38 (0.03) 0.11(0.03) 0.55 (0.10) 0.33 (0.08) 0.81 (0.05) 0.29 (0.1)

Table 3: Average values and standard deviations (within brackets) of
?

MISE and
?

AMSE across 50 (20)
realizations of Synthetic, IHDP-continuous (News) datasets. Bold notation highlights the best-performing
algorithm on each dataset.

D FURTHER EXPERIMENTS

This section includes experiments comparing performance with respect to Average Mean Squared
Error (AMSE), in addition to Mean Integrated Squared Error (MISE),

MISE “
1

N

1

k

N
ÿ

n“1

ÿ

wPΩW

E
„

´

ypnqpw, sq ´ ŷpnqpw, sq
¯2

ȷ

,

AMSE “
1

k

ÿ

wPΩW

E

«

ˆ

1

N

N
ÿ

n“1

pypnqpw, sq ´ ŷpnqpw, sqq

˙2
ff

,

where ypnqpw, sq and ŷpnqpw, sq stand for the true and predicted outcome for individual n given
treatment-dosage pairs pw, sq P ΩT , and Egpsq “

ş

ΩS
gpsqP psqds. The AMSE calculates the

accuracy of the population level dose response.

As the doubly robust methods get rid of effect modifiers, that are useful for accurate predictions,
but have theoretical guarantees for the average treatment effects, we expect these methods to get a
better AMSE. On the other hand, as the regularizers proposed in this work provide guarantees on the
counterfactual error, we expect models trained with these to achieve a better MISE score.

In Table 3 we show mean performance for both MISE (as in the main body of this paper) and
AMSE with the objective to contrast the proposed methods, designed for optimal conditional average
counterfactual prediction, i.e. MISE, and doubly-robust methods designed for population average
counterfactual prediction, i.e. AMSE. Overall, we note that the proposed regularization technique,
using either the HSIC or Wasserstein distances between distributions, is competitive across all datasets
and metrics, including AMSE.

Across all datasets, there is a clear trend showing that regularizing for optimal generalization
performance in terms of the MISE with HSIC leads to good population average performance as well,
as measured by AMSE. Doubly-robust methods (-PS, -TR) are designed for optimality in estimation
of the AMSE, and across all datasets they are either optimal or competitive compared to all other
algorithms. It is interesting to note that the performance achieved by the proposed regularisation
techniques (HSIC, Wasserstein) are very close to the optimum AMSE while, in contrast, doubly
robust methods often perform significantly worse in terms of MISE than the optima achieved by
HSIC and Wasserstein regularisation. This further confirms the intuition presented in Appendix A:
estimating average counterfactuals and individual counterfactuals can require different objectives.
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Moreover, in terms of AMSE, it still holds that neural network architectures with better expressiveness
to model heterogeneous dose-response curves perform better on all datasets.
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