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ABSTRACT

We present a novel loss formulation for efficient learning of complex dynam-
ics from governing physics, typically described by partial differential equations
(PDEs), using physics-informed neural networks (PINNs). In our experiments,
existing versions of PINNs are seen to learn poorly in many problems, especially
for complex geometries, as it becomes increasingly difficult to establish appro-
priate sampling strategy at the near boundary region. Overly dense sampling can
adversely impede training convergence if the local gradient behaviors are too com-
plex to be adequately modelled by PINNs. On the other hand, if the samples are
too sparse, PINNs may over-fit the near boundary region, leading to incorrect so-
lution. To prevent such issues, we propose a new Boundary Connectivity (BCXN)
loss function which provides local structure approximation at the boundary. Our
BCXN-loss can implicitly or explicitly impose such approximations during train-
ing, thus facilitating fast physics-informed learning across entire problem domains
with order of magnitude fewer training samples. This method shows a few or-
ders of magnitude smaller errors than existing methods in terms of the standard
L2-norm metric, while using dramatically fewer training samples and iterations.
Our proposed BCXN-PINN method does not pose any requirement on the dif-
ferentiable property of the networks, and we demonstrate its benefits and ease of
implementation on both multi-layer perceptron and convolutional neural network
versions as commonly used in current physics-informed neural network literature.

1 INTRODUCTION

Physics-informed neural networks (PINNs) have emerged as a promising method for learning the
solution of dynamical system from the governing physics (Raissi et al., 2019). PINNs have recently
been studied for a wide range of physical phenomena and applications across science and engineer-
ing domains — electromagnetic, fluid dynamics, heat transfer, etc (Karniadakis et al., 2021; Cuomo
et al., 2022). The distinctive feature of PINNs is the use of governing physics law, typically in the
form of partial differential equations (PDEs), as the learning objective. This physics-informed learn-
ing constrains the PINN from violating the underlying physics at all training points sampled from
the problem domain.

Existing PINNs evaluate the PDE constraints in their training loss by either automatic differentia-
tion (AD) or numerical differentiation (ND)-type method (Wandel et al., 2020). While both methods
have their pros and cons, ND-type PDE loss can be flexibly implemented across many different neu-
ral network (NN) architectures, including both multi-layer perceptrons (MLPs) and convolutional
neural networks (CNNs), because they do not require the NN to retain differentiability, unlike AD.
Recent studies (Gao et al., 2021; Fang, 2021; Chiu et al., 2022) have also suggested that ND-loss
can more robustly and efficiently produce accurate solutions with fewer training samples, whereas
conventional AD-loss are prone to failure during training . This is because ND-type methods ap-
proximate high order derivatives using PINN output from neighbouring samples, hence, they can
effectively connect sparse samples into piecewise regions via these local approximations, thereby
facilitating fast physics-informed learning across the entire domain with less dense samples.

When dealing with irregular geometries, it becomes increasingly difficult for existing PINNs to
perfectly connect training samples in the domain’s interior to the boundary. Failing to do so can
cause undesirable training failure as the PINN starts to over-fit at the near boundary region. Since
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many PDEs of practical interest are boundary-value problems, it is desirable to have the PINNs
model the correct boundary behaviors. While adding dense samples to better refine the piecewise
local regions near the boundary may improve accuracy, the extent to which sampling needs to be
increased is empirical, and a denser sampling strategy may adversely impede training convergence.

Hence, we propose a loss function formulation in this work that helps provide an approximation to
the local gradient behaviour at the boundary, thereby restoring connectivity between domain bound-
ary and near boundary interior samples. This new boundary connectivity (BCXN)-loss function is
key to a novel class of BCXN-PINN method which can more efficiently learn the solution to PDEs
with fewer training samples, regardless of domain geometry; see example in Fig. 1. In addition, this
method can be jointly implemented with other PINN advances such as in loss balancing, domain
decomposition, adaptive sampling and other improved optimization methods (Zeng et al., 2022).

Figure 1: PINNs learning the solution of 2D N-S equations in a complex geometry (wavy channel
flow problem, Re = 100). Our BCXN-PINN method can learn accurate solution with faster speed
(50% less training iterations) and fewer (50% less) training samples.

In the rest of this work, we present two versions of this BCXN-loss: i) a soft forcing approach
which imposes a linear approximation constraint via an additional loss term, and ii) a direct forcing
approach which strongly enforces a linear constraint during the evaluation of PDE loss at near-
boundary samples. With the latter approach, there is no longer a need to explicitly evaluate the
boundary samples as the exact BCs have been implicitly “infused” into the near-boundary samples.
Moreover, the direct forcing BCXN-loss can be beneficial to CNN-type architectures which utilize a
structured grid and lack the ability to model exact domain boundaries for irregular geometries.

We present comprehensive experiments to demonstrate i) the flexible implementation of BCXN-
PINN method for both MLP and CNN architectures; and ii) the effectiveness of BCXN-PINN for
learning multiple complex fluid dynamical systems, spanning forward, inverse and meta-model
problems in two-dimensions (2D) and three-dimensions (3D). Compared to conventional PINNs
with the AD- and ND-loss, our BCXN-PINNs with BCXN-loss are shown to be capable of tack-
ling challenging PDE problems while using fewer training samples, hence expanding the exciting
potential of PINNs for learning complex dynamical evolutions encountered in the real-world.

2 RELATED WORK

Efficient sampling in PINNs. The theoretical limit of physics-informed loss learning in relation to
training samples has been provided by prior studies (Lu et al., 2021c; Mishra & Molinaro, 2022).
With the goal of improving the PINN training speed for practical applications (Markidis, 2021),
several studies have focused on efficient sampling strategies such as importance sampling, adaptive
sampling, and sequential sampling to reduce the amount of training samples being required during
PINN trainings (Anitescu et al., 2019; McClenny & Braga-Neto, 2020; Wight & Zhao, 2020; Nabian
et al., 2021; Lu et al., 2021a; Lye et al., 2021; Daw et al., 2022; Mattey & Ghosh, 2022; Wu et al.,
2023). Domain decomposition and parallelization strategies have also been explored to speed up the
training (Jagtap et al., 2020; Jagtap & Karniadakis, 2021; Shukla et al., 2021; Dong & Li, 2021; Li
et al., 2019; Kharazmi et al., 2021). Our method differs from these works in that we make physics-
informed learning more robust in the sparse sample regime via a newly-proposed BCXN-loss.
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CNN architecture and numerical differentiation (ND)-type loss for PINNs. CNN-based formu-
lation allows us to design and train larger, more powerful networks, hence it has potential to be
scalable for more complex, large-scale PDE problem (Wandel et al., 2020; Gao et al., 2021; Wandel
et al., 2021; Ranade et al., 2021; Wandel et al., 2022; Ren et al., 2022). However, cumbersome
coordinate transformations may need to be performed to better handle the irregular domain. CNN-
architecture PINNs usually utilize ND methods for computing the PDE loss on their input grid,
which is much cheaper to compute as compared to AD-based loss (Gao et al., 2021). Hybrid frame-
works that couple both AD- and ND-type loss have also been proposed for MLP architecture PINNs
to unify the advantages of both methods (Jagtap et al., 2020; Kharazmi et al., 2021; Mitusch et al.,
2021; Fang, 2021; Chiu et al., 2022). Our method further augments the efficiency and applicability
of ND-type loss on irregular geometries.

Enforcing BC constraint in PINN loss. It is important for the PINNs to prioritize learning the
correct boundary behaviors (Shin et al., 2020; Wang et al., 2022). The BCs are usually enforced into
the PINN loss as a soft constraint using penalty method. Various strategies have been explored in
this context to dynamically calibrate the relative important between PDE and BC constraints during
PINN training (Elhamod et al., 2020; Bischof & Kraus, 2021; Jin et al., 2021; Thanasutives et al.,
2021; Maddu et al., 2022; de Wolff et al., 2022; van der Meer et al., 2022; Xiang et al., 2022;
Huang et al.; Wang et al., 2021a). There are also other approaches to bypass the loss balancing
issue. For example, one can either devise an ansatz function such that the BCs are exactly satisfied
by construction or implicitly formulate the BC constraints into the PDE loss (Lagaris et al., 1998;
2000; McFall & Mahan, 2009; Berg & Nyström, 2018; Nabian & Meidani, 2019; Karumuri et al.,
2020; Wang & Zhang, 2020), leaving only single loss term from PDE residuals to be optimized.
Another example is the use of augmented Lagrangian method to impose the BC constraints into
PINN loss (Lu et al., 2021b). Our method implicitly incorporates BCs into the PDE loss via a
different strategy.

3 PRELIMINARY

3.1 GOVERNING PHYSICS - INCOMPRESSIBLE NAVIER-STOKES (N-S) EQUATIONS

The present study focuses on learning fluid dynamics with PINNs. Fundamentally, PINNs have been
shown to be applicable to many different physical systems. We consider fluid problems where the
governing physics are the steady-state, incompressible N-S equations derived from the conservation
of mass and momentum:

∇ · u⃗ = 0 (1a)

(⃗u ·∇) u⃗ = Re−1
∆⃗u−∇p (1b)

In the above PDEs, the primitive variables u⃗ and p are velocity vector and pressure while Reynolds
number (Re) represents the ratio of inertial to viscous forces. u⃗ consists of 2 components (u,v) for
a 2D case and 3 components (u,v,w) for a 3D case. While Cartesian coordinates are used in this
work, this formulation is extendable to other coordinate systems.

3.2 MLP- AND CNN-ARCHITECTURE PINNS

We use a fully connected DNN architecture (e.g., MLP, CNN) to represent the solution of the dy-
namical process U = [⃗u, p]T . For MLP architecture, the input x⃗ is a point coordinate in 2D or 3D
spatial domain. For CNN architecture, the input X is a tensor with a fixed shape, comprising the
entire (discretized) spatial domain. The accuracy of the PINN outputs U(⃗x;w) given input x⃗ is de-
termined by the network parameters w, which are optimized w.r.t. the PINN loss function during
training. The PINN loss function is defined as the composition of a PDE loss component (LPDE)
and a BC loss component (LBC):

LPINN = λPDELPDE +λBCLBC (2a)

LPDE =
∥∥∇ · u⃗(⃗x;w)

∥∥2
Ω
+
∥∥ (⃗u(⃗x;w) ·∇) u⃗(⃗x;w)−Re−1

∆⃗u(⃗x;w)+∇p(⃗x;w)
∥∥2

Ω
(2b)

LBC =
∥∥B[u(⃗x;w)]− u⃗(⃗x)

∥∥2
∂Ω

(2c)
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The PDE loss penalizes deviation from governing N-S equations for the PINN output U(⃗x;w) over
the fluid domain x⃗ ∈Ω, whereas the BC loss penalizes deviation from the desired Dirichlet boundary
condition u⃗BC (⃗x) which constrains the velocity field at the domain boundary x⃗ ∈ ∂Ω. The relative
weights λPDE and λBC in Eq. (2) a control the trade-off between different loss components.

The PDE and BC loss components are defined over a continuous domain, but for practical reasons,
we evaluate the discretized PINN loss from a finite set of n samples D = {(⃗xi)}n

i=1 during training.
The CNN-architecture PINNs naturally acquire an input with equidistantly spaced grid where all the
samples are coming from. For the MLP-architecture PINNs, it is also convenient to design training
samples based on equidistantly spaced grid, then m(< n) samples can be randomly drawn to compute
the PINN loss during each stochastic gradient descent (SGD) mini-batch training iteration.

Although it is ideal for a PINN to satisfy the PDE constraint on a very dense set of samples, i.e.,
∆⃗x→ 0 where ∆⃗x is the distance between two adjacent sample points, training such PINN may not be
computationally feasible even with the state-of-the-art SGD variants. For a more complex physics
problem, the training on dense samples is naturally more computationally expensive, and is also
more likely to become unsuccessful due to adverse impact by some local region with very complex
gradient behaviours, e.g., abnormally high gradient (Fuks & Tchelepi, 2020; Michoski et al., 2020;
Ramabathiran & Ramachandran, 2021; Ji et al., 2021; Lucor et al., 2021; Huang et al.). Given the
same problem, training PINNs on fewer samples means fewer restrictions (the PDE constraint that
needs to be satisfied) and an increased likelihood of avoiding problematic gradient points, thereby
accelerating training. The relaxation of PDE constraint via reducing the sample density makes
learning physically meaningful solution feasible, although it may introduce some approximation
error to the solution. Note that there is still an open question as to how to strike the best balance
between sample density and solution accuracy. PINN methods that can consistently produce more
accurate solutions with fewer training samples are nevertheless hugely advantageous for learning
complex dynamical evolutions encountered in the real-world.

3.3 LEARNING PINNS ON FEWER SAMPLES

Conventional PINNs evaluate their PDE constraints with either AD or ND. On a simple 1D
convection-diffusion equation problem as exemplified in Fig.2, PINNs with both AD- and ND-loss
exhibit incorrect solution when sparse samples are used for training. Note that this is not the only
possible failure mode for PINNs (Krishnapriyan et al., 2021). The issue is that although the training
is fast and the convergence is good (training losses are close to machine precision, i.e., < 1e-10),
their final solutions are incorrect. Moreover, their failure patterns are different.

Figure 2: Schematic of different PINNs learning the solution of 1D convection-diffusion equation.
For PINN with ND- and BCXN-loss, external stencil points (x-marked) are evaluated for computing
the PDE constraint at near boundary samples. The ground truth solution is the dashed line.

Failure pattern of AD-loss PINN. AD has become a popular method for evaluation of the PDE
constraint in PINN loss because it can exactly compute the derivative terms at any sample location
directly from the input and the network weights. However, the AD-loss requires dense samples
to guide the correct training. When samples are sparse relative to the local complexity, a highly
flexible, over-parameterized PINN “over-fits” in between regions, leading to incorrect solution even
as the PDE constraint is fulfilled at all sample points (Fig. 2 example).
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Failure pattern of ND-loss PINN. On the contrary, ND-loss are more robust to sample density. The
fundamental difference is that ND-type methods approximate the derivative terms by using PINN
output from neighbouring samples, e.g., a finite difference-type stencil, which connects sparse sam-
ples into piecewise continuous regions to facilitate fast training across the entire problem domain.
The use of lower order approximation to the derivative terms also provides certain structural bias for
PINNs to be more easily trained. For example, abnormally high gradients are regularized so that it
is easier for PINNs to learn the solution, with the accuracy being dependent on the approximation
employed. Moreover, ND methods do not pose any requirement on differentiability of the network,
and they naturally fit the CNN-architecture which utilizes a connected set of grid points as input.

The example in Fig. 2 demonstrates that ND-loss can still be subject to undesired training failure.
The reason here is because the near-boundary training samples do not perfectly connect to the do-
main boundary through their stencils (as illustrated in Fig. 3). Instead, their stencils fall outside
the boundary. Their outputs essentially act as free parameters during optimization for satisfying the
PDE constraint at near-boundary samples, and the PINN training may “over-fit” the near-boundary
region to more easily jointly satisfy the PDE and BC constraints. This becomes a major issue for
ND-loss when dealing with irregular geometries, because it is almost impossible to design sample
locations such that their stencils perfectly connect the domain boundary to other training samples.

One potential solution is to increase the sampling density near the boundary, i.e., ∆⃗x → 0, to avoid
such over-fitting. This however increases the complexity of the optimization problem and can cause
adverse effects on training. It is also very challenging to locally refine the sampling density for
PINNs with CNN-architecture. To resolve this issue without increasing the sample density, we
propose BCXN-PINN to impose local structure to govern the near boundary gradient behaviour and
restore connectivity between domain boundary and near-boundary samples.

(a) Stencil points connect to boundary (b) Stencil points fall outside domain (c) Extrapolation along normal direction

Figure 3: (a)-(b) Schematic of a near-boundary training sample (red circle) and its stencil points
(square) typically used for evaluating PDE constraint in ND-loss. BC information is passed to
stencils in fluid domain (blue square) (a) successfully in regular domain; and (b) unsuccessfully in
an irregular domain due to under-defined stencils (unfilled square) outside the domain. (c) Schematic
of related definitions under the present BCXN-PINN framework. BCXN-loss enforces a constraint
across 3 points: external stencil point A, boundary point P, and mirror point Q inside fluid domain.

4 METHOD

4.1 ENFORCING LINEAR CONSTRAINT AT NEAR-BOUNDARY SAMPLES

This section outlines the proposed BCXN-PINN method. Here we denote the external (out-of-
domain) stencil of a near-boundary sample as ES point(s). As per Fig. 3c, the boundary condition
u⃗BC and field value u⃗MI are defined at the boundary point P and a chosen mirror point Q inside the
domain, while the field value u⃗ES at the ES point A is the value to be determined.

By employing Taylor series expansion on points A and Q relative to point P along AQ with respect
to local coordinate n (normal direction of solid surface), the following equations can be derived:

u⃗ES = u⃗BC +AP
∂⃗uBC

∂n
+

AP2

2
∂2u⃗BC

∂n2 +O(AP3
) (3a)

u⃗MI = u⃗BC −PQ
∂⃗uBC

∂n
+

PQ2

2
∂2u⃗BC

∂n2 +O(PQ3
) (3b)
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where AP and PQ are the distances between A and P and between P and Q, and AQ = AP+PQ. By
further manipulation of the above equations, the field value u⃗ES at point A can be derived as:

u⃗ES = u⃗MI +(⃗uBC − u⃗MI)×
AQ
PQ

+O(AQ2
) (4)

From the above equation, it can be seen that u⃗ES is linearly constrained by u⃗BC and u⃗MI . While the
mirror point Q can be conveniently chosen at the center of stencil, i.e., the near-boundary sample
location, we choose mirror point Q along the normal direction of boundary P (ref. to Fig. 3c) as it is
more general and performs better in our experiments. Hence, AP = PQ, and Eq. (4) becomes:

u⃗ES = 2⃗uBC − u⃗MI (5)

A similar process can be applied for the derivation of corresponding linear constraints for Neumann
type and Robin boundary conditions, as detailed in Appendix Section A.1. In addition, PINN meth-
ods generally require a routine to sample inside the geometry of interest and at the boundary. As
compared to conventional PINNs, BCXN-PINN involves additional steps. We describe the steps to
compute the mirror point location (along normal direction) in Appendix Section A.2.

4.2 BOUNDARY CONNECTIVITY (BCXN)-LOSS WITH DIRECT FORCING APPROACH

Essentially, the use of a linear constraint can connect under-defined external stencil points to the
BCs and the solutions from inside the boundary. We can directly apply Eq. (5) to compute the field
value u⃗ES for any external stencil point during the evaluation of PDE constraint on near-boundary
samples with ND-type schemes. This direct forcing approach has an association to the direct forcing
immersed boundary methods in numerical computing. We can then use the following df-BCXN-loss:

LPINN(d f−BCXN) = LPDE(d f−BCXN) (6)

where LPDE(d f−BCXN) is our BCXN-PINN’s PDE loss term whereby the PDE constraint on near-
boundary samples is modulated by the direct forcing approach. In such an implementation, the BCs
are implicitly “infused” into the training loss through the linear constraint and there is no longer a
need to explicitly evaluate the BC loss.

4.3 BOUNDARY CONNECTIVITY (BCXN)-LOSS WITH SOFT FORCING APPROACH

The df-BCXN-loss strongly enforces the linear constraint during the evaluation of PDE constraint
at near-boundary samples. However, the linear condition described by Eq. (5) does not guarantee
the best approximation to the local gradient behaviour. The imposition of such an over-simplified
constraint can be inappropriate in some scenarios, hence slowing convergence or reducing accuracy
in certain instances. To alleviate the issue, we propose to relax the linear constraint — which may
be in conflict with the local gradients — used for propagating BCs to the near-boundary samples in
BCXN-PINN by introducing an additional loss term, in an approach referred to as soft forcing.

Let us denote u⃗ESi as the field value computed at the i-th external stencil point by Eq. (5), and
u⃗ESi (⃗x;w) as PINN output at corresponding external stencil point. We then define BCXN-loss as:

LBCXN =
1

nES
Σ

nES
i=1

(⃗
uESi − u⃗ESi (⃗x;w)

)2
(7)

for all the ES points i = 1, . . . ,nES which are required for evaluating the PDE constraint using ND-
type schemes. The newly introduced LBCXN specifies the relation at near boundary points, it also
explicitly “infuses” the BC information into the PDE samples, hence helping to propagate the correct
BC information during training. The new sf-BCXN-loss is then defined as:

LPINN(s f−BCXN) = λPDELPDE +λBCLBC +λBCXNLBCXN (8)

with additional weight, λBCXN , controlling the relative importance of the loss term LBCXN in the loss
function. When λBCXN → 0, the LPINN(s f−BCXN) reverts to the conventional ND-PINN loss LPINN .

5 RESULTS

We first study the performance of the proposed BCXN-PINN on diverse 2D and 3D fluid dynam-
ics test cases under forward and inverse problem settings using MLP architecture (inverse problem
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results are in Appendix A.12). Then, we demonstrate its efficacy on CNN architecture for both for-
ward and meta-modelling problems. We also demonstrate that BCXN-PINN is broadly applicable to
different ND-type training losses, including finite difference-type schemes and coupled-automatic-
numerical differentiation (CAN) scheme.

The BCXN-PINN is compared with baseline PINNs which use ND-loss and AD-loss based on mean
squared error (MSE) of the respective PINN solutions’ velocity vector u⃗ relative to ground truth. To
facilitate comparison, identical network architectures, initialization distribution, and training settings
are employed and summarized in Table 1 and Table 3 in Appendix A.3. For each experiment, we
perform and present results based on 10 independent runs with different initialization. The ground
truth solutions are obtained by an in-house numerical solver based on the improved divergence-free
condition compensated (IDFC) method (Chiu, 2018). The 4 fluid dynamics test cases (schematics
in Appendix A.4) presented are:

• 2D semi-circle lid-driven cavity flow, Re = 1000. The fluid flow inside the semi-circle
cavity is driven by a lid velocity ulid = 1,vlid = 0 at the top wall. No-slip condition (u =
v = 0) is applied to the other wall. There is a primary eddy near the cavity’s center.

• 2D lid-driven cavity flow, Re = 1000. The fluid flow inside a 1× 1 unit square cavity is
driven by a lid velocity ulid = 1,vlid = 0 at the top wall. No-slip condition is applied to the
other walls. The lid-driven cavity flow has been widely chosen as a benchmark case for
many numerical methods due to the complex physics encapsulated within. At Re = 1000,
there is a primary eddy near the center of the cavity, with secondary and tertiary eddies at
the bottom-right and bottom-left regions. This test case has a regular domain, but we chose
sample locations such that the near boundary samples have their stencils fall outside the
domain to show that the proposed method can be useful for this kind of scenarios.

• 2D wavy channel flow, Re = 100. The fluid flow passing through a long wavy channel
is studied. The inlet profile at left boundary is defined as u(0,y) = − 3

2 y2 + 3
2 ,v = 0. A

non-slip condition is applied to the top and bottom walls, while outlet boundary conditions
( ∂u

∂x = ∂v
∂x = p = 0) are applied to the right boundary.

• 3D bend tube flow, Re= 100. The fluid flow passing through a 90o bending circular tube is
studied. The circular channel diameter (D) for the pipe is set as 1, while the mean curvature
of the bending curve (R) is set as 3. For this problem, the inlet velocity is specified as a
fully developed parabolic profile with bulk velocity equal to unity. The length before the
bend curve (L1) is set as 3.5, while the length after the bend curve (L2) is set as 10.

5.1 2D AND 3D FORWARD PROBLEMS WITH MLP-ARCHITECTURE BCXN-PINN

In the forward problem experiment, we train PINN models to learn the solution directly from the
governing law using different loss functions, i.e., df-BCXN- and sf-BCXN-loss for BCXN-PINNs,
and AD- and ND-loss for baseline PINNs. We perform 10 independent runs with different initial-
ization for each PINN model. Their learning outcomes on all 4 test cases are shown in Fig. 4, in
which we observe a noticeable improvement in solution accuracy (>2 orders of magnitude lower u⃗
MSE) with the BCXN-PINN methods. Fig. 9, Fig. 10 and Fig. 11 in Appendix A.5 visualize the
velocity magnitude ∥⃗u∥ and pressure p contours for the median solutions. Visually, the solutions
obtained from both df-BCXN- and sf-BCXN-loss have a very good agreement with the ground truth.
The results indicate that our present BCXN-PINN method can successfully learn a good solution
with low MSE across a diverse set of problems with irregular domains and complex physics. Both
the conventional ND- and AD-loss PINNs fail to produce a reasonable solution, i.e., they cannot
properly learn the correct flow with current sampling density and training iteration. In addition, we
apply our method to a i) real-world relevant problem of flow past an airfoil and ii) multi-physics
coupled heat and flow problem. Similar improvements are observed, and results are presented in
Appendix A.6 and A.7. We discuss the benefits of this connectivity in Appendix A.8.

Experiment with different sampling density. We study the 2D lid-driven cavity flow and 3D
bend tube channel flow problems to understand the trade-off between the convergence in accuracy
and sampling density. We train the same PINN model on a denser (i.e., 3-4x) set of samples until
the accuracy of the ND- and AD-loss PINNs start to improve. Note that denser sampling requires
larger training iteration and batch size, and the tuning of these training hyper-parameters can be
very time consuming. Fig. 5a-b compare the convergence trends in terms of u⃗ MSE between sparse
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Figure 4: Distribution of u⃗ MSE from BCXN-PINNs (df-BCXN- and sf-BCXN-loss) and PINNs
(ND- and AD-loss) while using MLP-architecture for the 4 forward problem test cases.

Figure 5: PINNs learning the solution of (a-b) 3D bend tube channel flow and (c-d) 2D lid-driven
cavity flow under sparse and dense training scenarios respectively. The convergence trends of u⃗
MSE are plotted. Bold lines indicate the median convergence path, and the shaded areas indicate the
inter-percentile range from their 10th −90th percentiles.

(i.e., the one shown in previous section) and dense sampling training scenarios for the 3D bend
tube channel flow problem. BCXN-PINN learns more accurate solutions (>1 order of magnitude
lower u⃗ MSE) than the conventional PINNs with faster speed (50% less training iterations), while
using fewer (<50%) training samples. A similar trend is observed for the 2D lid-driven cavity flow
problem (Fig. 5c), where we observe that BCXN-PINN quickly learns an accurate solution under
sparse sample training. Although all PINN models can eventually achieve improved accuracy in this
test case, Fig. 5d indicates that it is much harder and slower to learn from a dense set of samples,
thereby demonstrating the benefits of BCXN-PINN. Additional details are in Appendix A.9.

Hyper-parameter tuning. We use settings as per Table 1 in Appendix A.3, and do not exhaus-
tively search for best set of hyper-parameters for the individual PINN models. Apart from sampling
density, we observe that PINN learning is sensitive to NN capacity, batch size and learning rate. An-
other important hyper-parameter for PINNs is the relative weights λPDE and λBC in the loss function
LPINN . Specifically, we can further decompose λPDE into λDIV for the divergence free condition
(Eq. (1a)) and λMOM for the conservation of momentum equations (Eq. (1b)) in the PDE loss. A
properly tuned λDIV can further improve the solution accuracy of BCXN-PINN by another half order
of magnitude in u⃗ MSE for the 2D wavy channel flow (λDIV = 5) and 3D bend tube channel flow
(λDIV = 20). We provide more details in Appendix A.11.

5.2 CNN-ARCHITECTURE BCXN-PINN: FORWARD AND META-MODELLING PROBLEMS

The BCXN-PINN method does not pose any requirement on the differentiable property of the net-
works hence it can be freely implemented in any neural network architecture, including CNN. We
demonstrate this by using the df-BCXN-loss for learning the solution of a 2D semi-circle lid-driven
cavity flow problem with U-Net architecture. We show that the df-BCXN-loss can benefit CNN-
architecture PINNs by remedying training issues stemming from being unable to exactly resolve
complex geometries due to the use of a discretized input. We also test the BCXN-PINN method
with df-BCXN-loss on a 2D lid-driven cavity flow problem to demonstrate its superior performance.
The U-Net architecture and training settings are summarized in Appendix A.3 Table 3. We train the
forward BCXN-PINN models on a single discretized 2D input which consists of 3 channels, namely
the x-, y-coordinate, and an indicator to differentiate fluid and non-fluid domain.

The performance of BCXN-PINN and baseline PINN (i.e., using ND-loss) on the 2 test cases are
compared in Fig. 6. Like the MLP experiment, BCXN-PINN has a noticeable improvement in the
solution accuracy (2-3 orders of magnitude lower u⃗ MSE). Visually, the solutions obtained from the

8
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BCXN-PINN have a very good agreement with the ground truth, while the baseline PINN fails to
produce a reasonable solution (in Appendix A.13 Fig. 19). Additional results for a transient version
of 2D semi-circle lid-driven cavity flow problem are presented in Appendix A.15 along with details
on the impact of Re on model error and training time in Appendix A.16.

0 50k 100k 150k 200k
No. iteration

10 5

10 3

10 1
u 

 m
se

w/o BCXN w/ BCXN

(a) 2D semi-circle lid-driven cavity flow

0 50k 100k 150k 200k
No. iteration

10 5

10 3

10 1

u 
 m

se

w/o BCXN w/ BCXN

(b) 2D lid-driven cavity flow

Figure 6: The convergence trends of u⃗ MSE for PINN models using CNN architecture are plotted.

Meta-PINN model. The CNN-architecture BCXN-PINN represent the entire spatial domain as a
single input. We can train the model on multiple samples, each representing a different scenario
such as changes in geometry or physical behaviour. Such a meta-PINN model can be used to predict
new scenarios. Hence, we further study the ability of BCXN-PINN to learn the solutions to multiple
2D semi-circle lid-driven cavity flow scenarios concurrently (spanning Re = 50−1000). The model
architecture and training setting is given in Appendix A.3 Table 3. The df-BCXN-PINN model is
used to predict Re= 300,500,600,700,900 scenarios which are not used during training. The results
are summarized in Fig. 7. The present BCXN-PINN method successfully learns a good solution with
low u⃗ MSE (i.e., <1e-4) for most of the Re scenarios, and achieves good prediction accuracy.

Figure 7: BCXN-PINN learning the solutions of multiple 2D semi-circle lid-driven cavity flow
scenarios concurrently, using CNN architecture. The u⃗ MSE between ground truth and BCXN-
PINN solution for train and test Re are plotted. Inset are u- and v-velocity contours of the ground
truth and BCXN-PINN solutions for Re = 600 and Re = 900.

6 CONCLUSION

We present a BCXN-PINN method which can more efficiently learn the solution to PDEs for com-
plex geometry with fewer training samples. This is accomplished by enforcing a linear constraint
during the training implicitly and explicitly via direct forcing and soft forcing approaches. While
linear constraints are applied in this work due to truncation of the Taylor series expansion in the
derivation, it is worth studying if different, higher order approximations can also be utilized to
achieve better performance in future work. Nonetheless, our comprehensive experimental studies
demonstrate practical advantages of BCXN-PINN on diverse test problems in fluid dynamics, span-
ning both forward and inverse problems in 2D and 3D, and a meta-model problem, improving the
accuracy of solutions by orders of magnitude even while requiring much less training iterations and
samples.
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A APPENDIX

A.1 DERIVATION OF LINEAR CONSTRAINT FOR NEUMANN TYPE AND ROBIN TYPE
BOUNDARY CONDITION

Based on Eq. 3, the linear constraint for Neumann type boundary condition can be similarly derived
utilizing Eqn 3(a) - 3(b):

u⃗ES − u⃗MI = AQ
∂⃗uBC

∂n
+

(AP2 −PQ2
)

2
∂2u⃗BC

∂n2 +O(AQ3
) (9)

or

u⃗ES = u⃗MI +AQ
∂⃗uBC

∂n
+O(AP2 −PQ2

) (10)

For the homogeneous Neumann boundary condition ( ∂⃗uBC
∂n = 0), Eq. (10) can be further simplified

as

u⃗ES = u⃗MI (11)
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A similar treatment can be used to derive a corresponding linear constraint for problems with Robin
type boundary condition:

u⃗BC +β
∂⃗uBC

∂n
= c (12)

It is then possible to obtain an appropriate expression by substituting the above expression into Eq.
(4):

u⃗ES = u⃗MI +((c−β
∂⃗uBC

∂n
)− u⃗MI)×

AQ
PQ

(13)

In the above, ∂⃗uBC
∂n is approximated by Eq. (10).

We forward demonstrate the ability of the current proposed method to handle various combinations
of Dirichlet and Neumann type boundary conditions in Appendix A.14.

A.2 PROCEDURE TO EVALUATE THE FIELD VALUE u⃗MI AT MIRROR POINT

Note that PINN methods in general require a routine to sample from inside the geometry of interest
as well as the boundary. As compared to conventional PINNs, BCXN-PINN involves additional
steps. We first describe the steps to compute the mirror point location (along normal direction):

• Determine whether a stencil is external. In this study, we first construct a level set func-
tion φ of the geometry of interest (Osher & Paragios, 2003), where the shortest distance
AP between the stencil point A and boundary point P can be found. From the sign of level
set function, we can determine whether a stencil is external.

• Compute mirror point location for external stencil. Once AP is determined, we compute
the location of mirror point Q inside the fluid domain, with the distance AP = PQ.

In practice, given a fixed set of training samples, all the external stencil points and their mirror
locations can be pre-computed. On the other hand, the field value u⃗MI at mirror points depends on
the PINN’s output and are evaluated inside a training iteration:

• MLP-architecture PINN. The u⃗MI value can be directly obtained by evaluating u⃗MI (⃗x;w)
at the mirror point.

• CNN-architecture PINN. The location of mirror point may not coincide with the CNN
grid. In such case, the following inverse-distance-weighted interpolation function has been
utilized to obtain the u⃗MI value at mirror point (Chiu & Poh, 2021).

u(x̃, ỹ) = Σu(x,y)φ′
(x− x̃

h

)
φ
′
(y− ỹ

h

)
(14a)

φ
′
(x− x̃

h

)
= φ

(x− x̃
h

)
/Σφ

(x− x̃
h

)
(14b)

φ
′
(y− ỹ

h

)
= φ

(y− ỹ
h

)
/Σφ

(y− ỹ
h

)
(14c)

φ(r) =


1
8

(
3−2|r|+

√
1+4|r|+4r2

)
, |r| ≤ 1

1
8

(
5−2|r|−

√
−7+12|r|−4r2

)
, 1 < |r| ≤ 2

0, |r|> 2

(14d)

(x̃, ỹ) is the location of mirror point to be interpolated, while (x,y) is the location of training samples
inside the fluid domain. In this study, h is chosen as ∆x, which leads to a 2∆x interpolation radius.
Once u⃗MI and u⃗BC are evaluated, we can compute u⃗ES based on Eq. (5) during training.
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A.3 MLP AND CNN EXPERIMENTAL SETTINGS

Table 1: PINN (MLP) architecture and training settings used for experiments in Section 5.1
Forward
Problem 1 2 3 4

Test case

2D semi-circle
lid-driven

cavity flow,
Re = 1000

2D lid-driven
cavity flow,
Re = 1000

2D wavy
channel flow,

Re = 100

3D bend tube
channel flow,

Re = 100

Governing
physics eqns.

2D
incompressible

NS eqns.

2D
incompressible

NS eqns.

2D
incompressible

NS eqns.

3D
incompressible

NS eqns.

MLP
architecture for
BCXN-PINN,
ND-PINN &

AD-PINN

(x,y)−
64–30–30–30–
[30–30–30–(û),
30–30–30–(v̂),
30–30–30–(p̂)]

(x,y)−
128–30–30–30–
[30–30–30–(û),
30–30–30–(v̂),
30–30–30–(p̂)]

(x,y)−
128–40–40–40–
[40–40–40–(û),
40–40–40–(v̂),
40–40–40–(p̂)]

(x,y,z)−
128–30–30–30–
[30–30–30–(û),
30–30–30–(v̂),
30–30–30–(ŵ),
30–30–30–(p̂)]

ND scheme for
BCXN-PINNs
& ND-PINN

CAN & finite
difference CAN CAN Finite

difference

Training
sample

(equidistantly
spaced samples
@ fluid domain

& boundary)

3,930+300 10,000+400 14,400+800 223,612+
22,384

Batch size 1,000 2,000 1,000 500

Training
iterations 300,000 300,000 300,000 1,000,000

(I) For the MLP architecture, the numbers in between input and output represent the number of
nodes in each hidden layer. For example, (x)–64–20–20–20–(û) indicates a single input x,
followed by 4 hidden layers with 64, 20, 20 and 20 nodes in each layer, and a single output û.

(II) We incorporate the sinusoidal mapping (Wong et al., 2022) into the first hidden layer of
PINN and initialize its weights by sampling from a normal distribution N(0,σ2),σ = 1. The
subsequent hidden layers use “sine” activation, except a “linear” activation function is used in
the final (output) layer, and their weights are initialized by He uniform distribution.

(III) Batch size: number of random sample used for 1 evaluation of LPINN(= λPDE LPDE +
λBC LBC), LPINN(d f−BCXN)(= λPDE LPDE(d f−BCXN)), and LPINN(s f−BCXN)(= λPDE LPDE +
λBCXN LBCXN + λBC LBC). We used a default λPDE = 1, λBC = 1, and λBCXN = 1, unless
otherwise mentioned.

(IV) A training iteration: 1 evaluation of LPINN , LPINN(d f−BCXN) or LPINN(s f −BCXN) for back-
propagating the weight gradients. We use an initial learning of 1e-3 and reduce it on plateau-
ing, until a min. learning rate of 5e-6 is reached.
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Table 2: PINN (MLP) architecture and training settings used for experiments described in Appendix
Forward
Problem 5 6 7

Test case
2D flow past
airfoil shape,

Re = 500

2D lid-driven
cavity flow and

heat transfer
with a cylinder

inside,
Re = 100

1D convection
diffusion
problem

Governing
physics eqns.

2D
incompressible

NS eqns.

2D
incompressible

NS eqns. +
energy equation
for temperature

20ux = uxx

MLP
architecture for
BCXN-PINN,
ND-PINN &

AD-PINN

(x,y)−
64–40–40–40–
[40–40–40–(û),
40–40–40–(v̂),
40–40–40–(p̂)]

(x,y)−
64–30–30–30–
[30–30–30–(û),
30–30–30–(v̂),
30–30–30–(p̂),
30–30–30–(Θ̂)]

(x,y)−
64–40–40–40–(û)

ND scheme for
BCXN-PINNs
& ND-PINN

CAN CAN CAN & finite
difference

Training
sample

(equidistantly
spaced samples
@ fluid domain

& boundary)

78,690+1,450 2,184+250 30+2

Batch size 500 1,000 15

Training
iterations 500,000 100,000 50,000

(I) For the MLP architecture, the numbers in between input and output represent the number of
nodes in each hidden layer. For example, (x)–64–20–20–20–(û) indicates a single input x,
followed by 4 hidden layers with 64, 20, 20 and 20 nodes in each layer, and a single output û.

(II) We incorporate the sinusoidal mapping (Wong et al., 2022) into the first hidden layer of
PINN and initialize its weights by sampling from a normal distribution N(0,σ2),σ = 1. The
subsequent hidden layers use “sine” activation, except a “linear” activation function is used in
the final (output) layer, and their weights are initialized by He uniform distribution.

(III) Batch size: number of random sample used for 1 evaluation of LPINN(= λPDE LPDE +
λBC LBC), LPINN(d f−BCXN)(= λPDE LPDE(d f−BCXN)), and LPINN(s f−BCXN)(= λPDE LPDE +
λBCXN LBCXN + λBC LBC). We used a default λPDE = 1, λBC = 1, and λBCXN = 1, unless
otherwise mentioned.

(IV) A training iteration: 1 evaluation of LPINN , LPINN(d f−BCXN) or LPINN(s f −BCXN) for back-
propagating the weight gradients. We use an initial learning of 1e-3 and reduce it on plateau-
ing, until a min. learning rate of 5e-6 is reached.
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Table 3: PINN (CNN) architecture and training settings used in the experiments in Section 5.2
Problem type Forward Forward Meta-modelling

Test case
2D semi-circle

lid-driven cavity
flow, Re = 1000

2D lid-driven cavity
flow, Re = 1000

2D semi-circle
lid-driven cavity
flow,Re = 1000

Governing physics
eqns.

2D incompressible
NS eqns.

2D incompressible
NS eqns.

2D incompressible
NS eqns.

CNN (U-Net)
architecture for
BCXN-PINN &

ND-PINN

(X(56×112×3))–,
8–8– ↓ –16–16– ↓ –,
32–32– ↑ –64–64– ↑

–, 32–32– ↑
–16–16– ↑ –[,

8–8–8–(Ûu,56×112),
8–8–8–(Ûv,56×112),
8–8–8–(Ûp,56×112)

(X(104×104×3))–,
8–8– ↓ –16–16– ↓ –,
32–32– ↑ –64–64– ↑

–, 32–32– ↑
–16–16– ↑ –[,

8–8–8–(Ûu,104×104),
8–8–8–(Ûv,104×104),
8–8–8–(Ûp,104×104)

(X(56×112×4))–,
8–8– ↓ –16–16– ↓ –,
32–32– ↑ –64–64– ↑

–, 32–32– ↑
–16–16– ↑ –[,

8–8–8–(Ûu,56×112),
8–8–8–(Ûv,56×112),
8–8–8–(Ûp,56×112)

Kernel size 4×4 6×6 6×6

ND scheme for
BCXN-PINNs &

ND-PINN
Finite difference Finite difference Finite difference

Training sample
/ batch size 1 / 1 1 / 1 6 / 1

Training iterations 200,000 200,000 500,000

(I) For the U-net architecture, the numbers in between input and output represent the number of
filters in each hidden layer. Each hidden layer consists of convolution operation, batch nor-
malization, and nonlinear “sine” activation. Also, ↓ represents a 2×2 max-pooling operation,
and ↑ represents a 2× 2 up-sampling operation. The network weights are initialized by He
uniform distribution.

(II) Batch size: number of sample used for 1 evaluation of LPINN(= λPDE LPDE +λBC LBC) and
LPINN(d f−BCXN)(= λPDE LPDE(d f−BCXN)). We used a default λPDE = 1 and λBC = 1, unless
otherwise mentioned.

(III) A training iteration: 1 evaluation of LPINN , LPINN(d f−BCXN) or LPINN(s f−BCXN) for backprop-
agating the weight gradients. We use an initial learning of 1e-3 and reduce it on plateauing,
until a min. learning rate of 5e-6 is reached.

(IV) The semi-circle and regular lid-driven cavity geometries consist of 3,930 and 10,000 interior
points which belong to the fluid domain respectively.

17



Under review as a conference paper at ICLR 2023

Table 4: PINN (CNN) architecture and training settings used in the experiments described in Ap-
pendix

Problem type Forward Forward

Test case 2D Taylor-Couette
flow, Re = 1000

2D transient
semi-circular

lid-driven cavity
flow, Re = 500

Governing physics
eqns.

2D incompressible
NS eqns.

2D transient
incompressible NS

eqns.

CNN (U-Net)
architecture for
BCXN-PINN &

ND-PINN

(X(56×56×3))–,
8–8– ↓ –16–16– ↓ –,
32–32– ↑ –64–64– ↑

–, 32–32– ↑
–16–16– ↑ –[,

8–8–8–(Ûu,56×56),
8–8–8–(Ûv,56×56),
8–8–8–(Ûp,56×56)

(X(56×112×4))–,
8–8– ↓ –16–16– ↓ –,
32–32– ↑ –64–64– ↑

–, 32–32– ↑
–16–16– ↑ –[,

8–8–8–(Ûu,56×112),
8–8–8–(Ûv,56×112),
8–8–8–(Ûp,56×112)

Kernel size 4×4 4×4

ND scheme for
BCXN-PINNs &

ND-PINN
Finite difference Finite difference

Training sample
/ batch size 1 / 1 21 / 2

Training iterations 50,000 100,000

(I) For the U-net architecture, the numbers in between input and output represent the number of
filters in each hidden layer. Each hidden layer consists of convolution operation, batch nor-
malization, and nonlinear “sine” activation. Also, ↓ represents a 2×2 max-pooling operation,
and ↑ represents a 2× 2 up-sampling operation. The network weights are initialized by He
uniform distribution.

(II) Batch size: number of sample used for 1 evaluation of LPINN(= λPDE LPDE +λBC LBC) and
LPINN(d f−BCXN)(= λPDE LPDE(d f−BCXN)). We used a default λPDE = 1 and λBC = 1, unless
otherwise mentioned.

(III) A training iteration: 1 evaluation of LPINN , LPINN(d f−BCXN) or LPINN(s f−BCXN) for backprop-
agating the weight gradients. We use an initial learning of 1e-3 and reduce it on plateauing,
until a min. learning rate of 5e-6 is reached.

(IV) The Taylor-Couette geometry consists of 1,216 interior points in the fluid domain while the
transient semi-circle lid-driven cavity problem consists of 3,930 interior spatial points and 21
temporal snapshots (∆t = 0.1) respectively.

In addition, we summarize the training results across different problems and model architectures in
2 Summary Tables in Appendix A.18.

A.4 PROBLEM SCHEMATIC FOR FLUID DYNAMIC CASE STUDIES

The following figure is schematics of the fluid dynamic case studies in this work, depict the 2D
semi-circle lid-driven cavity, 2D lid-driven cavity, 2D wavy channel and 3D bend tube respectively.
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(a) (b)

(c) (d)

Figure 8: Schematic of the investigated problem. (a) 2D semi-circle lid-driven cavity flow problem;
(b) 2D lid-driven cavity flow problem; (c) 2D wavy channel flow problem; (d) 3D bend tube flow
problem.

A.5 CONTOUR PLOTS FOR FORWARD PROBLEM WITH MLP-ARCHITECTURE BCXN-PINN

The following figures are visualizations of the velocity and pressure contours obtained from the
problems described in Section 5.1. Fig. 9, Fig. 10 and Fig. 11 are visualizations of the velocity
magnitude ∥⃗u∥ and pressure p contours for the median solutions.

A.6 ADDITIONAL FORWARD PROBLEM ON 2D FLOW PAST AIRFOIL SHAPE, Re = 500

To further validate the applicability and efficacy of the present BCXN-loss method for more real-
world complex geometries, we also applied the MLP-architecture BCXN-PINN to the modelling of
incompressible flow past an airfoil, similar to other previous work (Pfaff et al., 2020).

As shown in Fig. 12, an airfoil with a NACA0012 profile is placed in a modelling domain
(x,y) = (−3 ∼ 5,−2 ∼ 2) with zero angle of attack. A uniform inlet velocity, uinlet = 1, is specified
at x =−3, and a zero pressure outlet boundary condition is specified at x = 5. Typical slip boundary
conditions are specified at the side walls. The PINN model details are described in Table 3. Briefly,
the total training samples for this problem is 79,886, with the sample spacing in the domain corre-
sponding to ∆x = ∆y = 1/50. In addition, the weight for BCXN-loss is set to be 0.1. Contour plots
of the obtained velocities for these experiments are shown in Fig. 13.
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Figure 12: Schematic of 2D flow past airfoil shape problem.
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Figure 13: Contour plots of velocity fields obtained from 4 models: (Top) CFD, (2nd from Top)
BCXN-loss, (2nd from Bottom) ND-loss, (Bottom) AD-loss.
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Based on these numerical experiments, we similarly notice that the incorporation of a BCXN-loss
improves the PINN’s ability to learn the flow profile around the airfoil by an order of magnitude.
Quantitative results are provided in Table 5.

Table 5: Model Performance for NACA 0012
Model MSE Rel. Error

sf-BCXN-CAN 4.65×10−5 8.10×10−2

CAN 3.32×10−4 1.92×10−1

sf-BCXN-ND 5.03×10−5 6.93×10−2

ND 3.54×10−4 1.84×10−1

AD 1.18×10−3 3.17×10−1

A.7 ADDITIONAL FORWARD PROBLEM ON 2D LID-DRIVEN CAVITY FLOW WITH HEAT
TRANSFER, Re = 100

We further proposed to validate the applicability of the proposed method to a multi-physics example.
In this instance, we applied the MLP-architecture BCXN-PINN to the modelling of incompressible
flow with heat transfer under Boussinesq approximation:

∇ · u⃗ = 0 (15a)

(⃗u ·∇) u⃗ = Re−1
∆⃗u−∇p+RiΘ⃗e (15b)

(⃗u ·∇)Θ = Re−1Pr−1
∆Θ (15c)

in the above, Pr is Prandtl number, Ri is Richardson number, and e⃗ = (0,1).
In the present study, there is a 2D lid-driven cavity domain with a stationary cylinder of radius 0.2
in the centre of the domain, while Pr is set as 0.7 and Ri is set as 1. For the boundary conditions,
the bottom wall is set as the hot surface(Θ = 1) and top wall is set as the cold surface (Θ = 0). In
addition, the side walls and cylinder surface are specified as adiabatic boundary conditions. The
PINN model details are described in detail in Table 3 while final results are presented in Table 6.

Table 6: Model Performance

MLP-Model Variable dΘ/dn = 0 dΘ/dn = 1
MSE Rel Err MSE Rel Err

df-BCXN-CAN u⃗ 1.31×10−4 3.42×10−4 4.45×10−4 2.00×10−2

Θ⃗ 5.06×10−2 3.77×10−2 8.81×10−2 2.64×10−1

CAN u⃗ 2.32×10−4 4.40×10−4 6.87×10−4 2.02×10−2

Θ⃗ 6.76×10−2 4.27×10−2 1.07×10−1 2.66×10−1

AD u⃗ 3.41×10−2 1.85×10−1 3.89×10−2 2.21×10−1

Θ⃗ 8.23×10−1 8.77×10−1 8.65×10−1 8.80×10−1

Based on our numerical experiments, the BCXN-loss appears to also yield some benefit on multi-
physics problems, with consistently lower MSE and relative L2 errors than the baseline comparisons.
However, more thorough experiments need to be conducted to fully validate situations whereby the
BCXN-loss may be more beneficial.

A.8 CASE STUDY OF INFORMATION PROPAGATION

Information propagation from the boundary to the inner domain has been suggested to be critical
for successful PINN modelling. Hence, we investigate the evolution of the PDE residual across
multiple training runs for the 2D semi-circle lid-driven cavity with and without the imposition of
the BCXN-loss to better understand the impact of enhanced connectivity imposed by the BCXN-loss.
Illustrative contour plots of the PDE residuals and the corresponding velocity contours at various
training iterations are provided in Fig. 14 and Fig. 15.

24



Under review as a conference paper at ICLR 2023

0.2 0.4 0.6 0.8

0.4

0.3

0.2

0.1

PDEs residual after 5 k iter.

0.00

0.12

0.24

0.36

0.48

0.60

0.72

0.84

0.96

0.2 0.4 0.6 0.8

0.4

0.3

0.2

0.1

10 k

0.00

0.12

0.24

0.36

0.48

0.60

0.72

0.84

0.96

0.2 0.4 0.6 0.8

0.4

0.3

0.2

0.1

50 k

0.00

0.12

0.24

0.36

0.48

0.60

0.72

0.84

0.96

0.2 0.4 0.6 0.8

0.4

0.3

0.2

0.1

100 k

0.00

0.12

0.24

0.36

0.48

0.60

0.72

0.84

0.96

0.2 0.4 0.6 0.8

0.4

0.3

0.2

0.1

300 k

0.00

0.12

0.24

0.36

0.48

0.60

0.72

0.84

0.96

0.2 0.4 0.6 0.8

0.4

0.3

0.2

0.1

|u|

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.2 0.4 0.6 0.8

0.4

0.3

0.2

0.1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.2 0.4 0.6 0.8

0.4

0.3

0.2

0.1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.2 0.4 0.6 0.8

0.4

0.3

0.2

0.1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.2 0.4 0.6 0.8

0.4

0.3

0.2

0.1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Figure 14: Contour plots of (Top) PDE error residual and (Bottom) velocity for ND-PINN.
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Figure 15: Contour plots of (Top) PDE error residual and (Bottom) velocity for BCXN-PINN.

As described in the previous sections, the ND-PINN typically fails to converge to a good model even
after 300,000 training iterations, but this can be improved via the addition of a BCXN-loss during
training. The velocity contours clearly illustrate the improved convergence. In addition, there is
a striking difference in the distribution of the PDE residuals across the domain during the early
stages of the training. In a typical ND-PINN, the PDE residuals rapidly reduce to zero, especially
in the parts of the domain far away from the boundary condition. This also corresponds to the
ND-PINN velocity profile converging to a wrong solution, and is indicative of the information from
the boundary condition being lost within the domain. On the other hand, the PDE residuals within
the domain persist for a much longer period when the BCXN-loss is included which is indicative
of information from the top boundary being persistently transmitted to the inner domain until the
PINN model has converged. This is also consistent with the physical dynamics of the system, as we
note that the lid-driven cavity flow problem, as the name suggests, is heavily dependent on the top
boundary’s motion to drive the dynamical flow within the entire domain.

A.9 SAMPLING EFFECT ON 2D LID-DRIVEN CAVITY FLOW

To illustrate the impact of having near-boundary stencil points outside of the domain, we further
investigate the impact of two different sets of sampling points: i) Cell-centered (whereby near-
boundary points need support points outside the domain) and ii) Node-centered (whereby near-
boundary points use support points that are coincident with the domain boundary).

These two sets of sampling points are tested on a 2D lid-driven cavity flow at Re = 1000 with differ-
ent training batch sizes and point sampling density for the df-BCXN-CAN, CAN and AD models, and
are trained for 300,000 iterations each. The model MSE and L2 relative errors are collated across 5
independent runs and tabulated in Table 7.

In the above table, cells are colored according to the model MSE at the end of 300,000 training
iterations. Brown cells indicate scenarios under which no meaningful convergence was observed
(with MSE > 1e-2). Yellow, green and blue cells indicate scenarios with increasingly good model
performance, with each band indicating an order of magnitude improvement in MSE.
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Table 7: Model Performance for Different Sampling Densities. [C] and [N] refer to cell-centered
and node-centered sampling point arrangements.

Batch Size Points Model 50×50 100×100
MSE Rel Error MSE Rel Error

500
[C] df-BCXN-CAN 2.63×10−4 7.75×10−2 3.06×10−3 2.63×10−1

CAN & AD 3.79×10−2 9.30×10−1 3.58×10−2 8.98×10−1

[N] CAN 4.14×10−2 9.91×10−1 3.86×10−2 9.46×10−1

AD 4.05×10−2 9.80×10−1 4.02×10−2 9.66×10−1

1000
[C] df-BCXN-CAN 2.23×10−4 7.13×10−2 3.97×10−4 9.47×10−2

CAN & AD 3.65×10−2 9.11×10−1 3.36×10−2 8.72×10−1

[N] CAN 4.06×10−2 9.82×10−1 3.56×10−2 9.08×10−1

AD 4.16×10−2 9.94×10−1 3.60×10−2 9.08×10−1

2000
[C] df-BCXN-CAN 2.36×10−4 7.34×10−2 7.14×10−5 4.02×10−2

CAN & AD 3.80×10−2 9.31×10−1 3.32×10−2 8.65×10−1

[N] CAN 7.41×10−4 1.32×10−1 3.36×10−2 8.82×10−1

AD 3.84×10−2 9.53×10−1 3.55×10−2 9.02×10−1

4000
[C] df-BCXN-CAN 2.38×10−5 2.31×10−2

CAN & AD 3.23×10−2 8.54×10−1

[N] CAN 2.94×10−4 8.24×10−2

AD 3.50×10−2 8.97×10−1

From this experiment, we notice that a 4x increase in sampling density (from 50×50 to 100×100)
can improve model performance, but this also requires the use of a larger batch size, which also add
computational cost.

In addition, the node-centered CAN-PINN model has improved performance relative to the cell-
centered CAN-PINN version. This further emphasizes our hypothesis that accurate modelling of the
boundary conditions is an important factor in obtaining good PINN performance. As this is a square
domain, the use of a sampling point distribution that has perfect connectivity with the boundary of
the domain naturally leads to improved performance.

Interestingly though, the inclusion of our proposed BCXN-loss on a cell-centered model can im-
prove model performance to achieve a lower error than the properly aligned baseline PINN model.
This does suggest that the use of this proposed method can afford flexibility in the choice of sam-
pling strategies, whereas conventional sampling strategies may still require sampling that takes into
account the ability to maintain connectivity with the boundaries.

A.10 EXPERIMENT WITH BCXN-PINN LOSS VARIANTS

As described in Section 4.2 and Section 4.3, there is no longer a need to explicitly evaluate the BC
loss term for the df-BCXN-loss as the BCs are implicitly “infused” into the near-boundary domain
points. We verify this point by comparing the results from a BCXN-PINN with the inclusion of BC
loss term LBC into the df-BCXN-loss:

LPINN(d f−BCXNw/BC)
= λPDELPDE(d f−BCXN)+λBCLBC (16)

Based on our observation, the inclusion of BC loss term doesn’t seem to benefit the BCXN-PINN
with df-BCXN-loss. It is believed that the imposition of unnecessary BC loss term excessively com-
plicates the training — given the fact that actual BCs are already implicitly defined and utilized
during the computation of df-BCXN-loss — thereby slowing down convergence. We further incor-
porate the loss term from sf-BCXN-loss into Eq. (16):

LPINN(d f &s f−BCXN) = λPDELPDE(d f−BCXN)+λBCXNLBCXN +λBCLBC (17)

to study the consequence of jointly using the df & sf approaches to modulate the BCXN-PINN
training loss. Interestingly, the hybrid approach performs worse than the original df- and sf-BCXN-
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loss. This may suggest that the BCXN-PINN training loss should only use either df- or sf-BCXN-
loss, but not both together, potentially because of the conflicting base assumptions underlying both
derivations.

A.11 SENSITIVITY TO λBCXN FOR FORWARD MODELS

As mentioned in Section 4.3, the BCXN weight λBCXN in sf-BCXN-loss controls the extent of linear
constraint being imposed at near boundary samples. We observe a noticeable improvement in solu-
tion quality with the appropriate tuning of λBCXN for the BCXN-PINN in the 2D wavy channel flow
(λBCXN = 0.5) and 3D bend tube channel flow (λBCXN = 5) test cases. The joint optimization results
of λBCXN and λDIV for the 2D wavy channel flow problem are presented in Fig. 16. These results fur-
ther highlight that an overly stringent imposition of a linear constraint underlying the BCXN-PINN
methodology can adversely affect convergence without an accompanying increase in the emphasis
(λDIV ) placed on the divergence free condition.

1 5 10 15
DIV

10 5

10 4

10 3

10 2

u 
 m

se

sf-BCXN, BCXN = 0.1 sf-BCXN, BCXN = 0.2 sf-BCXN, BCXN = 0.5 sf-BCXN, BCXN = 1 sf-BCXN, BCXN = 2

Figure 16: Distribution of u⃗ MSE between BCXN-PINN, when using different λBCXN and λDIV
value in its sf-BCXN-loss, and ground truth solutions for the wavy channel flow problem, Re = 100.

A.12 2D AND 3D INVERSE PROBLEM WITH MLP-ARCHITECTURE BCXN-PINN

We further demonstrate the proposed BCXN-PINNs on inverse problem, where the task is to infer
the unknown physical quantities in the governing physics based on partially available observation
data. In particular, we seek to infer the unknown Re in the incompressible N-S equations (Eq. (1)),
as well as the solution over the problem domain, by training a PINN model with respect to the
following data-constrained physics-informed loss functions:

LINV PINN = LData +λPDELPDE +λBCLBC (18a)
LINV PINN(d f−BCXN) = LData +λPDELPDE(d f−BCXN) (18b)

LINV PINN(s f−BCXN) = LData +λPDELPDE +λBCXNLBCXN +λBCLBC (18c)

In addition to the known BCs, these loss functions include additional data loss component:

LData =
1

nobs
Σ

nobs
i=1

(⃗
ui − u⃗i(⃗xi;w)

)2
(19)

to match the PINN output u⃗(⃗x;w) against target u⃗ over nobs observations.

Inverse 2D semi-circle lid-driven cavity problem. We assume the availability of limited obser-
vations (nobs = 10 or 20) of velocity u⃗. The experiment comprises of 10 independent runs, where
observations are randomly drawn (i.e. obtained from the simulation). Selected observation sets are
displayed in Fig. 17a. Besides these observations, the PINN models are trained on 3,930 equidis-
tantly spaced samples for evaluating the PDE loss and 300 BC samples. The inverse modelling
results are visualized in Fig. 17b, comprising the distribution of u⃗ MSE and inferred Re−1 for both
nobs = 10 or nobs = 20 scenarios. With nobs = 20, our inverse BCXN-PINN model consistently infers
an accurate Re which is always within 10% error from the ground truth (Re = 1000) and achieves
u⃗ MSE below 5e-5. The efficacy of df-BCXN-loss drops slightly for the more challenging nobs = 10
scenario. However, for the sf-BCXN-loss, all inferred Re values are still within 15% of the ground
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truth, and their solutions still achieve a u⃗ MSE below 5e-5. Fig. 17b also shows that baseline PINNs
using ND- and AD-loss can infer an accurate Re in this inverse problem. This may suggest that, once
a PINN model is able to correctly infer the unknown Re, it is much easier to learn the solution with
these additional observations.
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(b) Inverse modelling results

Figure 17: (a) BCXN-PINN is applied to simultaneously infer the unknown Re coefficient (ground
truth Re = 1000) in the incompressible N-S equations and to solve for the solution based on limited
observations (x-marked, nobs = 10), for inverse 2D semi-circle lid driven cavity problem. (b) The
distribution of u⃗ MSE and inferred Re−1 obtained from the inverse PINNs at nobs = 10,20. The
green dashed lines and shaded areas indicate the ground truth Re−1 and their 10% error bounds.

Inverse 3D bend tube channel flow problem. We assume limited observations of velocity u⃗
(nobs = 50,100) can be probed near the bending area Fig. 18a. Besides these observations, we
train PINN models on 19,786 equidistantly spaced PDE samples and 1,632 BC samples, for infer-
ring the unknown Re (ground truth Re = 100) and predicting the solution near the bending area. We
only apply the non-slip BC at the wall boundary since the inlet and outlet conditions are assumed to
be unknown. The experiment comprises of 10 independent runs, where observations are randomly
drawn (i.e., obtained from the simulation). The inverse modelling results from different PINN mod-
els are visualized in Fig. 18b. Again, we observe good performance from all tested PINN models,
with their inferred Re always within 15% error from the ground truth. They can achieve below 2e-4
u⃗ MSE with nobs = 50, and even better accuracy (i.e., <1e-4) with nobs = 100. Nonetheless, the
experiment demonstrates the effectiveness of BCXN-PINN for solving complex inverse problems
from limited random observations, with consistent performance across different sets of random data.
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(b) Inverse modelling results

Figure 18: (a) The problem domain of the inverse 3D bend tube flow problem for inferring the
unknown Re coefficient (ground truth Re = 100) in the incompressible N-S equations and solving
for the solution based on limited observations. (b) The distribution of u⃗ MSE and inferred Re−1

obtained from the inverse PINNs at nobs = 50,100. The green dashed lines and shaded areas indicate
the ground truth Re−1 and their 10% error bounds.

Hyper-parameter tuning. We use a same MLP architecture, ND scheme, and batch size settings as
summarized in Appendix A.3 Table 1, for the inverse problem test cases. Each batch contain at most
50 observations for computing the data loss. To ensure sufficiently accurate fit to the observations,
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we reweight the PINN loss terms (i.e., the weight of data loss to PDE loss is 10 to 1) to give more
priority to the data loss. The current inverse problem test cases require less training iterations to
converge, as compared to the pure physics-informed learning encountered in the forward problem.
The max. iteration is set as 200,000 with an initial learning rate of 5e-4 for both test cases. We do not
apply additional linear constraints to the near boundary samples if they are part of the observation
set.

A.13 VISUALIZATION OF CNN-ARCHITECTURE RESULTS
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(a) 2D semi-circle lid-driven cavity flow, Re = 1000
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(b) 2D lid-driven cavity flow, Re = 1000

Figure 19: Comparison of velocity magnitude ∥⃗u∥ and pressure p contour between the ground
truth and PINN solutions (median MSE from 10 runs) for the (a) semi-circle lid-driven cavity flow
problem, Re = 1000, and (b) lid-driven cavity flow problem, Re = 1000, using CNN architecture.
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A.14 ADDITIONAL FORWARD PROBLEM ON 2D TAYLOR-COUETTE FLOW WITH DIRICHLET
AND NEUMANN TYPE BOUNDARY CONDITION

As a demonstration of the generalizability of the current proposed method to different types of
boundary conditions based on the derivation in Section A.1, we further apply the described method
to the solution of a 2D Taylor-Couette problem.

This problem describes the flow in a fluid domain between 2 concentric cylinders. The inner cylinder
is of radius R1 = 0.45 while the outer cylinder has radius R2 = 0.96.

The analytical solution for the problem is known to be:

u(x,y) =−K((
R2

r
)2 −1)y (20)

v(x,y) = K((
R2

r
)2 −1)x (21)

p(x,y) = K2(
r2

2
− R4

2
2r2 −R2

2log(r2)) (22)

where angular velocity ω is set as 1, K =
ωR2

1
R2

2−R2
1

and r =
√

x2 − y2.

The numerical experiments are performed with Re = 1000 for four different pairs of boundary con-
dition settings for the outer (inner) cylinder: i) Dirichlet (Dirichlet); ii) Dirichlet (Neumann); iii)
Neumann (Dirichlet); and iv) Neumann (Neumann).

For all the boundary setting pairs, the training is performed with a CNN-type PINN architecture on
a 56x56 voxel domain and ∆x = ∆y = 2/50. Additional PINN model details are described in Table
4. Contour plots of the results are presented in Fig. 20 and model errors are presented in Table 8.
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Figure 20: Velocity contours of 2D Taylor-Couette flow problem with different boundary condition
settings.

Table 8: Model Performance with Different [D]irichlet or [N]eumann Boundary Condition Settings

Metric Variable Outer / Inner Cylinder BC Type
D / D N / D D / N N / N

MSE u 2.72×10−4 4.22×10−4 5.22×10−4 3.92×10−4

v 2.73×10−4 4.16×10−4 5.22×10−4 4.12×10−4

Relative Error u 0.115 0.143 0.159 0.138
v 0.115 0.142 0.159 0.142

From the results, it can be seen that the BCXN-loss can be flexibly applied to problems with any
combination of Dirichlet and Neumann type boundary conditions, although the majority of presented
examples in this work feature Dirichlet boundary conditions.

30



Under review as a conference paper at ICLR 2023

A.15 ADDITIONAL FORWARD PROBLEM ON TRANSIENT 2D SEMI-CIRCLE LID-DRIVEN
CAVITY FLOW, Re = 500

In addition to the forward modelling of steady-state 2D semi-circle lid-driven cavity flow, we further
evaluate the improvement obtained from application of CNN-architecture BCXN-PINN to the mod-
elling of a transient version of this problem. The problem geometry and set-up is consistent with the
problem description in Section 5.2. However, the problem’s initial condition corresponds to that of
a fluid domain at rest (at t = 0). The PINN model is then used to model the evolution of the flow
within the domain from t = 0 to t = 2. Additional model settings are provided in Table 4.

The average errors for all time points between t = 0 and t = 2.0 yield MSEs of 3.95e-4 and 9.66e-
3 with and without the inclusion of BCXN-loss respectively. This also corresponds to relative L2
errors of 0.129 and 0.681 respectively. Hence, the inclusion of BCXN-loss in this transient problem
can improve MSE by more than 1 order of magnitude.

Velocity contour plots of the PINN models trained with and without BCXN-loss are provided in Fig.
21 to illustrate the differences in model convergence.
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Figure 21: Velocity contours of the transient simulation at t = 0.5, t = 1.0 and t = 2.0 for both the
BCXN-PINN and ND-PINN implementation. The velocity contours on the left, middle and right
correspond to the results from CFD, BCXN-PINN and ND-PINN respectively. The top, middle and
bottom rows are for t = 0.5, t = 1.0, and t = 2.0.

A.16 CNN-ARCHITECTURE BCXN-PINN AND BASELINE PINN PERFORMANCE ON A
FORWARD PROBLEM WITH INCREASING COMPLEXITY

For easy reference, we summarize the average MSE and relative L2 error obtained for the 2D semi-
circle lid-driven cavity experiments across 5 independent runs. These results indicate the single
model errors obtained using the settings described in Table 4. Plots of the velocity MSEs are pro-
vided in Fig. 22. We can clearly see that the performance difference is most pronounced for more
complex boundary value problems. As Re increases, the complexity of the developed flow typically
requires more sophisticated algorithms for better capture of the non-linear effects.
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Figure 22: Plot of velocity MSEs at different Re for both the df-BCXN- and ND- type CNN-
architecture PINN.

Additional quantitative comparisons at select Reynolds numbers are presented in Table 9 below for
easier reference.

Table 9: Model Performance for the 2D Semi-circular Lid-Driven Cavity Problem

Metric CNN-Model Reynolds Number
50 100 200 400 1000

MSE w/ BCXN 2.51×10−5 2.76×10−5 3.56×10−5 4.58×10−5 1.14×10−4

w/o BCXN 2.98×10−4 2.79×10−4 3.74×10−4 2.33×10−3 3.96×10−2

Relative w/ BCXN 0.0258 0.0269 0.0305 0.0335 0.0492
Error w/o BCXN 0.0823 0.0732 0.0780 0.211 0.855

Importantly, we note that although the current proposed BCXN-PINN method may nominally in-
volve more computation, the impact on training time is under 5% in our experiments. The time
taken for training a single df-BCXN-loss PINN is about 126-136 minutes while the time taken for
training the equivalent ND-PINN with similar model size and optimization parameters is 121-137
minutes. This thus further emphasizes the utility of the current proposed method. A more in-depth
description is provided in Appendix Section A.17.

A.17 IMPACT OF BCXN-LOSS ON TRAINING TIME

We further compare the time taken for training a model with and without the BCXN-loss on the
MLP-architecture and CNN-architecture models as applied to the 2D semi-circle lid-driven cavity
problem at Re = 1000. The average MSE and relative L2 error obtained are averaged across 10
independent runs, and the minimum and maximum wall-clock time are recorded. All experiments
are run with the standard Tensorflow and Keras implementation on a 20-core workstation with an
Intel Xeon Gold 6248 processor and an Nvidia RTX 2080 Ti GPU.

Quantitative comparisons for the MLP-architecture models are presented in Table 10. All models
were run for an identical number of training iterations (300,000) with the same batch size (1,000)
and had the same model size to facilitate a fair comparison.

Quantitative comparisons for the CNN-architecture model are also presented in Table 11. In addi-
tional, both models were run for an identical number of training iterations (200,000) and had the
same model size to facilitate a fair comparison.

While not a comprehensive study, we note that the inclusion of the BCXN-loss across all the cases
only slightly increases the amount of time required for model training. This was on the order of less
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Table 10: Model Performance for a MLP-architecture PINN
Model MSE Rel. Error Time (min)

df-BCXN-CAN 6.21×10−5 3.55×10−2 55−57
sf-BCXN-CAN 5.65×10−5 3.45×10−2 41−42

CAN 2.82×10−2 7.62×10−1 40−46
df-BCXN-ND 1.61×10−4 5.95×10−2 23−24
sf-BCXN-ND 2.68×10−4 7.54×10−2 22−23

ND 3.91×10−2 8.56×10−1 20−22
AD (SIREN) 1.74×10−2 5.95×10−1 58−61
AD (Vanilla) 5.46×10−2 9.83×10−1 50−55

Table 11: Model Performance for a CNN-architecture PINN
Model MSE Rel. Error Time (min)

df-BCXN 1.14×10−4 4.92×10−2 126−136
ND 3.96×10−2 8.55×10−1 121−137

than 5 % for the CNN-type architecture and the ND-MLP-type model. Similarly, the sf-BCXN-CAN
had negligible increase in training time relative to the baseline CAN-PINN model.

However, it is worth noting that while the time taken may have increased slightly, the MSE typically
decreases more than 1 order of magnitude, suggesting that this trade-off between model training
time and performance with the inclusion of a BCXN-loss may still be preferred.

A.18 SUMMARY OF BCXN-PINN AND BASELINE PINN PERFORMANCE

For easy reference, we summarize the BCXN-PINN’s model performance and compare them to
other baseline methods previously published. The average MSE and relative L2 error across multiple
independent runs are recorded in Table 12 and Table 13 for both the MLP-architecture and CNN-
architecture models respectively.
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Table 12: Model Performance Comparisons for MLP-architecture PINNs

Problem Model MSE Rel. Error

2D semi-circle lid-driven cavity, Re = 1000

df-BCXN-CAN 6.21×10−5 3.55×10−2

sf-BCXN-CAN 5.65×10−5 3.45×10−2

CAN 2.82×10−2 7.62×10−1

df-BCXN-ND 1.61×10−4 5.95×10−2

sf-BCXN-ND 2.68×10−4 7.54×10−2

ND 3.91×10−2 8.56×10−1

AD (SIREN) 1.74×10−2 5.95×10−1

AD (Vanilla) 5.46×10−2 9.83×10−1

2D lid-driven cavity, Re = 1000

df-BCXN-CAN 5.10×10−5 3.38×10−2

sf-BCXN-CAN 6.10×10−5 3.72×10−2

CAN 4.23×10−2 9.77×10−1

AD (SIREN) 3.47×10−2 8.87×10−1

2D wavy channel flow, Re = 100

df-BCXN-CAN 1.34×10−4 7.28×10−2

sf-BCXN-CAN 9.00×10−6 4.09×10−2

CAN 5.96×10−1 2.55×100

AD (SIREN) 3.52×10−2 7.19×10−1

3D bend tube channel flow, Re = 100

df-BCXN-ND 8.09×10−4 1.03×10−1

sf-BCXN-ND 8.59×10−4 9.50×10−2

ND 2.63×10−1 6.89×10−1

AD (SIREN) 2.65×10−1 6.94×10−1

2D flow past airfoil, Re = 500

sf-BCXN-CAN 4.65×10−5 8.10×10−2

CAN 3.32×10−4 1.92×10−1

sf-BCXN-ND 5.03×10−5 6.93×10−2

ND 3.54×10−4 1.84×10−1

AD (SIREN) 1.18×10−3 3.17×10−1

(I) Implementation for CAN-PINN models based on previous work (Chiu et al., 2022).
(II) Implementation for SIREN-PINN models based on previous work (Sitzmann et al., 2020;

Wang et al., 2021b; Wong et al., 2022).
(III) Implementation for vanilla PINN models based on previous work (Raissi et al., 2019).

Table 13: Model Performance Comparisons for CNN-architecture PINNs

Problem Model MSE Rel. Error

2D semi-circle lid-driven cavity, Re = 1000 df-BCXN 1.14×10−4 4.92×10−2

ND 3.96×10−2 8.55×10−1

2D lid-driven cavity, Re = 1000 df-BCXN 2.52×10−5 4.46×10−2

ND 2.38×10−2 1.00×100

Transient 2D semi-circle lid-driven cavity, Re = 500 df-BCXN 3.95×10−4 1.29×10−1

ND 9.66×10−3 6.81×10−1
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