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Abstract

The real world is messy and unstructured. Uncovering critical information often
requires active, goal-driven exploration. It remains to be seen whether Vision-
Language Models (VLMs), which recently emerged as a popular zero-shot tool in
many difficult tasks, can operate effectively in such conditions. In this paper, we
answer this question by introducing FlySearch, a 3D, outdoor, photorealistic envi-
ronment for searching and navigating to objects in complex scenes. We define three
sets of scenarios with varying difficulty and observe that state-of-the-art VLMs
cannot reliably solve even the simplest exploration tasks, with the gap to human
performance increasing as the tasks get harder. We identify a set of central causes,
ranging from vision hallucination, through context misunderstanding, to task plan-
ning failures, and we show that some of them can be addressed by finetuning. We
publicly release the benchmark, scenarios, and the underlying codebase.

1 Introduction

Vision-Language Models (VLMs) have rapidly emerged as state-of-the-art performers in tasks ranging
from image captioning [32, 69] to robotics [7, 44]. However, real-world decision-making requires
curiosity, adaptability, and a goal-oriented mindset. Nevertheless, the ability of VLMs to operate in
realistic, open-ended environments remains largely untested. In this paper, we propose a benchmark
to understand and enhance the exploratory capabilities of VLMs. We draw inspiration from the field
of Object Navigation (ObjectNav), which focuses on creating embodied agents capable of finding
a specific object in a simulated environment and navigating to it. The object may not be visible from
the agent’s initial perspective, meaning the agent must perform a careful search to locate it.

There are several significant differences between our benchmark FlySearch and existing counterparts.
First, we measure the exploration capabilities of VLMs themselves rather than analyzing more
complex systems built on them. Understanding these capabilities is important because gathering
information is a crucial aspect of the emerging agentic systems [45]. Second, while most ObjectNav
benchmarks take place indoors, we focus on finding objects in a large outdoor space using an
Unmanned Aerial Vehicle (UAV). This allows us to examine how VLMs explore large, diverse, and
unstructured areas and how they control the altitude to change the search granularity. Finally, we
focus on a zero-shot open-ended search setting, i.e., a tested method should not make any prior
assumptions about the testing environment, the categories of objects, or the search process itself. For
example, methods that use detectors of specific objects are out of the scope of our research.
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Prompt: Navigate UAV to locate orange car.

Reasoning: I see a road, the car could be there. Need to follow it.
Action: MOVE 10 m north, 5 m down.

Reasoning: Two orange objects visible. Check the first one.
Action: MOVE 5 m east, 20 m down.

Reasoning: Not a car. Check the second object.
Action: MOVE 10 m west, 5 m down.

Reasoning: I'm positioned directly over an orange car.
Action: FOUND.
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Figure 1: FlySearch is a benchmark that evaluates exploration skills using vision-language reasoning.
To complete each assessment scenario, a model must locate an object specified in natural language.
The agent controls an Unmanned Aerial Vehicle (UAV) by observing images obtained from successive
locations of the UAV and providing text commands describing the next move.

FlySearch1 aims to evaluate the extent to which VLMs can autonomously reason and explore, as well
as characterize the limitations of their current capabilities. In FlySearch, the agent (tested method)
controls a UAV flying over urban or natural environments to search for objects of interest, such
as specific cars, fires, lost people waiting to be rescued, or piles of garbage (see Figure 1). It is
built from scratch using the realistic Unreal Engine 5 [15], widely used for video games, providing
dynamic 3D scenes with many assets. Moreover, procedural generation allows the generation of an
unlimited number of scenarios with varying environmental characteristics, such as time of day, forest
density, and UAV launch altitude. The benchmark runs efficiently in headless mode on both modern
consumer-grade GPUs (NVIDIA RTX) and standard deep learning clusters (A100/H100), lowering
the entry barrier for researchers and practitioners.

FlySearch consists of 3 standardized scenario sets with varying levels of difficulty. FS-1 tests basic
perception and navigation skills, FS-Anomaly-1 additionally probes the capability of agents to
understand the context of the environment, while FS-2 requires executing a consistent exploration
strategy involving a large number of steps to find the object of interest. We evaluate 3 closed-weight
and 6 open-weight models on these scenarios and compare the results to scores obtained by humans.
We find that VLMs strongly underperform humans on both FS-1 and FS-2. Additionally, while the
performance drop between FS-1 and FS-2 is relatively low for humans (≈ 9%), it is massive for
VLMs (≈ 90%). Therefore, despite possessing basic navigation and visual comprehension skills,
current VLM models fail to form and execute proper exploration strategies, even after GRPO-based
fine-tuning.

Our contributions can be summarized as follows:

• We release two high-fidelity outdoor environments built with Unreal Engine 5, enabling
realistic and scalable evaluation of embodied agents in complex, unstructured settings.

• We define a suite of object-based exploration challenges designed to isolate and measure the
exploration capabilities of VLMs and humans in open-world scenarios.

• We benchmark several popular VLMs in a zero-shot setting and identify consistent failure
modes across vision, grounding, and reasoning. Our analysis reveals that these limitations
persist even with fine-tuning, suggesting fundamental gaps in current VLM architectures.

2 Related work

ObjectNav. Our environment is focused on Object-Goal Navigation (ObjectNav or ObjectGoal)
task, where the goal is to navigate to a specific object type in a given environment [3, 6]. Using
this environment, we instantiate challenges that tie into Language-Driven Zero-Shot ObjectNav [12,
17, 39] tasks, as we expect tested methods to be able to perform search for an arbitrary text-based

1https://github.com/gmum/FlySearch
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Table 1: Other benchmarks: We compare FlySearch with other benchmarks focused on VLM
evaluation and ObjectNav challenges. We denote cases of partial criterion satisfaction with ✔.

Environment Photorealistic Outdoor Exploration-focused 3D Focus on VLM eval

Habitat Nav. Challenge [66] ✔ ✗ ✔ ✔ ✗
RoboTHOR [11] ✗ ✗ ✔ ✔ ✗

AgentBench [35] ✗ ✗ ✗ ✗ ✔
LMAct [51] ✗ ✗ ✗ ✗ ✔
SmartPlay [63] ✗ ✔ ✗ ✗ ✔
BALROG [45] ✗ ✔ ✗ ✗ ✔
VisualAgentBench [36] ✔ ✔ ✗ ✔ ✔
OpenEQA [40] ✔ ✗ ✗ ✔ ✔

FlySearch (ours) ✔ ✔ ✔ ✔ ✔

object description. Currently, Habitat-Sim [52, 66], AI2-THOR [11, 25], Gibson Env [64] are the
most commonly used environments for the ObjectNav task [57]. All of these environments are
indoor-focused, while in FlySearch the agent is embodied within a UAV in an outdoor scenario.

VLN. There also exists a related broad field of vision-and-language navigation (VLN), mainly
concerned with embodied agents following natural language instructions that specify a route from
point A to point B [70]. We note the existence of outdoor UAV-centric environments for VLN
tasks, such as AerialVLN [34], TRAVEL [61] or CityNav [28]. AerialVLN is an example of a VLN
task with high-level UAV control and a simulated environment, which follows the above definition.
TRAVEL aims to make drone-based VLN more low-level by modifying the agent’s action space
for direct UAV control. CityNav introduces a VLN environment based on scans of real-life cities
from SensatUrban [21] (instead of simulating them). These papers focus on instruction following
in navigation (i.e., VLN), while our benchmark puts emphasis on finding objects without further
instructions (i.e., ObjectNav).

AirSim and OUTDOOR. Microsoft AirSim [54] is an Unreal Engine 4 plugin that can be used to
create UAV simulators, which can also be used for ObjectNav tasks in an outdoor setting. However,
to the best of our knowledge, only OUTDOOR [65] considers such application of this software,
as ObjectNav is generally dominated by indoor environments. However, even though OUTDOOR
considers using UAVs, the action space is still 2-dimensional (horizontal movement only), while
FlySearch has a 3-dimensional exploration space (the UAV can also move up and down). This
emphasises dynamic altitude control to manage uncertainty and avoid redundant exploration, as the
level of visual detail and the size of the visible area varies depending on the altitude. As such, success
in FlySearch requires an efficient, emergent search strategy, where the agent must reason about where
the object is likely to be, when looking from high altitude. Overall, this is a much more complex
problem, requiring pre-existing knowledge of the real world to understand the contextual cues to
exploit a wide field of view at high altitudes and fly low only in promising areas.

AVE. Additionally, the problem of exploration is considered from a different perspective in Active
Visual Exploration (AVE) tasks [46, 47, 53], where a stationary agent is provided with partial
observations derived from a large static image, simulating a limited field of view.

VLM benchmarks. Vision question-answering (VQA) datasets that contain pairs of images and
textual questions are among the most popular approaches to assess the capabilities and limitations
of VLMs. There are many examples of VQA-oriented benchmarks, such as [19, 23, 37, 41, 56, 68].
However, to fully evaluate VLM’s performance, benchmarks that can measure their performance in
practical tasks are needed [22, 33]. Recently, benchmarks that require interaction with an environment
have gained popularity in the context of evaluating the capabilites of different VLMs. For example,
BALROG [45], VisualAgentBench [36] and LMAct [51] evaluate VLM-based agents on several
different environments with visual and textual representations. MineDojo [16] can be used to test
different VLM-based agents in an interactive, 3D environment based on the popular Minecraft game.
Other examples of benchmarks include SmartPlay [63] and AgentBench [35], although these are
limited only to the textual modality (with images being "encoded" into natural language). There are
also examples of embodied question-answering benchmarks for VLMs, such as OpenEQA [40]. We
differ from other benchmarks by specifically focusing on gauging VLMs in the ObjectNav, which
allows us to evaluate exploration capabilities of VLMs with a high degree of independence from their
other capabilities.
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Figure 2: Evaluation pipeline: FlySearch consists of three parts besides the vision-language model.
The simulator renders near-photorealistic views of a large open-world map and handles basic physics
such as collisions. The evaluation controller handles the communication between the evaluated vision-
language model and the simulator and performs the evaluation. The scenario generator (functionally
integrated with the controller and simulator) procedurally generates new evaluation scenarios.

VLMs in ObjectNav. Recently, we have seen a surge in applications of VLM foundation models
in ObjectNav [9, 10, 12, 26, 67] and related tasks [38, 62, 72]. However, we note that these papers
use VLMs as tools to create more intricate methods and they do not aim to measure the exploration
capabilities of VLMs themselves, which are still largely unknown [57]. In this paper, we attempt to
gauge VLMs’ performance by treating FlySearch as a VLM benchmark meant to compare different
models and to understand their shortcomings.

3 FlySearch

The goal of FlySearch is to evaluate the visual-spatial reasoning and information-gathering abilities
of vision-language models. To achieve this, the model is given control of a simulated multirotor
unmanned aerial vehicle equipped with a camera and tasked with finding an object described in
natural language, see Figure 1.

3.1 Evaluation task

Environment. The evaluation environment is a square outdoor area consisting of a fragment of a
photorealistic procedurally generated map. The agent starts in the center of the area, at a randomly
chosen altitude. Somewhere within the fragment is a target object. The agent must locate it within a
limited number of steps and report success.

Starting prompt. The model is given a detailed prompt describing its task, including a brief textual
description of the object to be located, e.g. a red pickup truck. The prompt also describes the
communication format, including how to format the responses. We allow the model to preface each
of its responses with a description of its reasoning, effectively allowing a chain of reasoning. We
provide the prompt template in Appendix G.

Observation. At each exploration step, we provide the agent with a 500×500 pixel RGB image from
the simulated UAV camera. To simplify the task, the camera is always facing the ground. The camera
image is overlaid with a grid of coordinates to help the model understand movement directions and
distances [29]. Additionally, we provide the agent with its height above the ground. In case of FS-2,
we also provide the agent with the image specifying how searched object should look like from above;
that is done to focus FS-2 more on search. All data except the images is provided in XML format.

Action. We assume that the simulated UAV is equipped with an autopilot system. Therefore, the
agent does not need to provide any low-level control signals. Instead, it can focus on exploration
by providing simple text commands with the tag <action>(X, Y, Z)</action>, where each of
the coordinates represents a relative position change in meters in the corresponding direction. We
introduce a collision avoidance system that stops the movement if an obstacle is detected within a 0.5
meter radius of the camera position, or if it tries to move out of the fly zone. When the agent decides
that it has completed the task, it should respond with the FOUND text and end the exploration. If at
any point the model response cannot be parsed, the episode is terminated.
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(a) Forest environment. (b) City environment.

Figure 3: Environments: Our benchmark consists of two types of evaluation environments, forest
and city. For each environment, we can generate an infinite number of procedurally generated test
scenarios. The top row shows a preview of the environment, exhibiting the visual fidelity of the
simulation. Below are top-down views of objects, matching the perspective of the agent.

Metrics. An episode is considered successfully completed (i.e., the object is found) if the object’s
center point is within the agent’s camera field of view, the agent’s position is at most 10 m above the
highest point belonging to the object, and the agent returns the FOUND action. This metric is related
to the one defined in [6], although we use the altitude difference and field of view instead of the
Euclidean distance, as it is easier to estimate for human testers and VLMs – one only needs to make
sure that the altitude is not higher than 10 m and the object is visible. We provide details on the
implementation of the success criterion in Appendix F.

3.2 Evaluation pipeline

The FlySearch system consists of two main components: a simulator based on Unreal Engine 5 and a
controller module. The controller is responsible for scenario generation, communication between
benchmarked VLMs and the simulator, and result aggregation, as seen in Figure 2.

Simulator. To ensure realistic image input for the evaluated tasks, we chose Unreal Engine 5 as the
simulation engine. It provides near-photorealistic graphics through real-time ray tracing and dynamic
global illumination, while also supporting large, detailed open worlds. The platform is compatible
with all major operating systems, and has an open-source codebase, enabling customization for
machine learning applications. Additionally, its procedural content generation facilitates environment
randomization by integrating parts of the scenario generator directly into the server, allowing us to
place tens of thousands of object meshes in seconds. We also leveraged Unreal’s extensive online
marketplace of free assets to create evaluation scenarios. As such, these assets can be easily used to
further extend the benchmark with new environments, scenarios, or objects of interest.

The simulator can be run using any modern consumer-grade graphics card as well as deep learn-
ing dedicated solutions (provided Vulkan is supported), and the engine runs in headless/offscreen
mode (without a monitor). As such, we found it to perform well on standard computing clusters.
Communication between the Unreal Engine simulator and the evaluation controller is handled via
standard TCP/IP networking. The simulator-side implementation is provided as a native Unreal
Engine plugin. We build upon the UnrealCV project [50], extending its functionality to allow full use
of the aforementioned Unreal Engine 5 features.

Evaluation controller. The final component of FlySearch is the evaluation controller, implemented in
Python. This module oversees the entire lifecycle of the benchmarking process, including setting up
scenarios and calculating performance metrics. It also handles communication between the simulator
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and the evaluated vision-language model (VLM). Details of the prompts and message templates
used in FlySearch are provided in Appendix G. FlySearch supports multiple VLMs, as described
in Section 4.1. Additional models can be integrated easily by adding simple adapter code to the
controller module or using the open-source vLLM inference server [27].

3.3 Evaluation environments

The benchmark consists of two distinct evaluation environment types, a forest and a city, see
Figure 3. Each of them has its own set of target objects to find. Forest environment is based on the

“Electric Dreams Environment” Unreal Engine product demo [14]. It consists of sparse forest scenery,
including randomly placed rock formations. The map is procedurally generated entirely at runtime
by the scenario generator. Moreover, all vegetation on the map is subject to wind changes. City
environment is a large, modern, American-style city, based on the “City sample” Unreal Engine
demo [13]. The city layout is a large, semi-procedurally generated map of roughly 4× 4 km. New
maps can be generated with the tools provided at build time. Furthermore, random distractor assets
(parked cars and walking pedestrians) are spawned by the scenario generator at runtime.

4 Evaluation

FlySearch can be used to generate scenarios suited to the user’s needs, e.g., finding cars at night in
the city or locating stranded people in a very dense forest. However, to facilitate further research and
enable fair comparisons, we propose three standardized challenges, i.e., sets of reproducible scenes
that can be used to evaluate agents under the same conditions. Although standardized, it’s important
to highlight that these challenges are not static datasets, as the environment will dynamically react to
the actions of the agent.

FS-1 contains 400 scenes of finding particular objects in the city and forest environments. The agent
is explicitly instructed to find an object with a unique description in at most 10 actions. Certain
distracting objects may appear, e.g., if we ask the model to find a yellow sports car, there might
be cars of other colors or types in the scene. The goal of this challenge is to measure the general
search capabilities of the model across a wide array of objects that might be encountered in various
UAV applications, e.g., search-and-rescue missions and fire detection. The search area is limited to
400 × 400 × 120 m, and the starting altitude to between 30 and 100 m, and the agent may not fly
outside its field of view. We ensure, that the target object is within the field of view of the starting
position and its center is not obscured by hard obstacles (it may not be distinguishable due to distance).
The agent has to find one of the following:

• in the city: road construction works, crowd, large trash pile, fire, vehicle (variable type).
• in the forest: campsite, trash pile, person, forest fire, building.

In both scenarios, all target objects are positioned on the ground, in semantically correct locations,
e.g., a car will be placed in a parking spot, not on the roof. All objects have multiple variations,
randomly selected on scenario generation.

FS-Anomaly-1 is a set of 200 scenes in the city and the forest, where the agent is instructed to find
an object that seems out of place, e.g., a giraffe in the city or a UFO in the forest. The goal of this
challenge is to measure both the search capabilities of the models as well as their knowledge about
what is and is not expected in certain environments. All other settings follow those of the previously
mentioned FS-1. Anomalies are placed on the ground level. The anomalous objects to be located are:

• in the forest: UFO (flying saucer), small airplane, helicopter, large dinosaur, airliner,
• in the city: UFO (flying saucer), small airplane, helicopter, medium dinosaur, tank, giraffe.

FS-2 consists of 200 additional harder scenarios in the city environment. Base setting is the same
as in FS-1; however, starting altitude range is raised to between 100 and 125 m and the search are
is limited to (-starting altitude, +starting altitude) range in X and Y axis. Moreover, dynamic scene
lightning is enabled, simulating different times of day and the maximum allowed altitude is 300 m.
Most importantly, we allow the object to be obscured by obstacles (but still visible from the sky)
and we allow the model to move beyond its field of view at each step to check models navigation
capabilities.
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Table 2: Benchmark results: Success rates (± standard errors) of the evaluated models for FS-1
and FS-2 challenges. We observe that, overall, Gemini 2.0 Flash outperforms all evaluated models.
Notably, small open-source models largely fail to solve the test scenarios, while larger models such
as the Pixtral 124B achieve better performance. Note that the last row shows the model fine-tuned
on the Forest environment (but not the specific FS-1 scenarios), which might lead to overfitting. To
signal this, we mark the corresponding result gray.

Model FS-1 FS-2

Overall (%) Forest (%) City (%) Overall (%)

Human (untrained) – – 66.7± 4.5 60.8± 6.9

GPT-4o 39.5± 2.4 45.5± 3.5 33.5± 3.3 3.5± 0.9
Claude 3.5 Sonnet 41.2± 2.5 52.0± 3.5 30.5± 3.3 6.5± 1.2
Gemini 2.0 flash 42.0± 2.5 42.5± 3.5 41.5± 3.5 6.0± 1.1

Phi 3.5 vision 0.0± 0.0 0.0± 0.0 0.0± 0.0 –
InternVL-2.5 8B MPO 2.0± 0.7 2.5± 1.1 1.5± 0.9 –
Llava-Interleave-7b 0.8± 0.4 0.0± 0.0 1.5± 0.9 –
Qwen2.5-VL 7B 3.8± 1.0 6.0± 1.7 1.5± 0.9 0.0± 0.0

Qwen2-VL 72B 17.2± 1.9 16.5± 2.6 18.0± 2.7 –
Llava-Onevision 72b 9.5± 1.5 12.5± 2.3 6.5± 1.7 –
Pixtral-Large 29.8± 2.3 38.0± 3.4 21.5± 2.9 3.0± 0.8

Qwen2.5-VL 7B, GRPO on Forest – 57.0± 3.5 27.0± 3.1 0.0± 0.0

4.1 Baselines

We evaluate a range of popular models. We select three proprietary models: OpenAI GPT-4o (2024-08-
06 release) [2, 24], Anthropic Claude 3.5 Sonnet [4], and Google Gemini 2.0 flash (experimental) [18,
58]. Furthermore, we select four small open-weight models, with below 11B parameters: Phi-3.5-
vision [1], InternVL2.5-8B-MPO [60], Llava-Interleave-Qwen-7B-dpo-hf [31], and Qwen2.5-VL
7B [5]. Finally, we select three more open-weight models with more than 11B parameters: Qwen2-
VL-72B-Instruct [59], Llava-Onevision-Qwen2-72B-ov-hf [30], and Pixtral-Large-Instruct-2411
124B [43]. All models were selected based on their ability to process a full evaluation run, keeping all
steps in context. During selection, we tested and rejected Llama-3.2 [42]. Although it architecturally
supports handling multiple images, the publicly available model fails to form coherent responses
when there is more than one image in the context.

Human study. Furthermore, we provide a human baseline for FS-1 City and FS-2 based on a user
study of respectively 111 and 51 samples. The study was conducted using an online service, where
participants were provided with the benchmark prompt and had to perform the same actions as the
VLM. We provide more details about human baselines in Appendix D.

4.2 Results

FS-1. Table 2 contains the main aggregated results of our study. We find that the state-of-the-art
VLMs achieve significantly worse results than non-trained humans on FS-1. While humans score
67% on average, the best-performing Gemini 2.0 manages to find the object in 42% of cases, with
Claude and GPT-4o closely following. Large open-weight models fall behind significantly, with
Pixtral, the best-performing model in this category, losing 10 percentage points on average to the
proprietary models. Finally, the small open-weight models do not show any signal at all, as none of
them exceeded 4%. We find that their poor performance can be largely attributed to their inability
to follow instructions. Figure 4 shows that small models often do not claim that they have found
the object even if it is within range at the end of the episode. As such, we exclude the small models
from further analysis. We provide additional results, including measuring the impact of the action
representation and the grid overlay, in Appendix H.

FS-2. Strikingly, the situation looks much different on FS-2. While on FS-1 humans outperformed
best VLMs by 60%, on FS-2 this number is closer to 835%. We attribute this gap to the lack of
systematic exploration abilities in VLMs. Since in FS-1 the object should be visible in the initial
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Table 3: FS-Anomaly-1 results: Success rates
(± standard errors) of the evaluated models. Full
results are in Appendix H.

Model FS-Anomaly-1

Overall (%)

GPT-4o 27.0± 3.1
Claude 3.5 Sonnet 27.5± 3.2
Gemini 2.0 flash 35.5± 3.4

Phi 3.5 vision 0.0± 0.0
InternVL-2.5 8B MPO 3.5± 1.3
Llava-Interleave-7b 0.0± 0.0
Qwen2.5-VL 7B 2.8± 1.2

Qwen2-VL-72B 7.5± 1.9
Llava-Onevision 72b 8.5± 2.0
Pixtral-Large 15.0± 2.5
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Figure 4: Not claimed successes in FS-1: In this
figure we compare the number of cases, where
the agent located the object, but failed to claim the
FOUND action. We observe, that small models often
fail to format the text output to report success.

Table 4: Performance of Gemini 2.0 Flash and Pixtral-Large in ablation studies. Surprisingly,
increasing the number of steps might lead to worse performance. Additionally, explicitly specifying
the object type in FS-Anomaly-1 improves the results as the task becomes easier.

Setting City Forest Overall

Gemini Pixtral Gemini Pixtral Gemini Pixtral

FS-1
5 steps limit 34.5% 15.5% 41.5% 33.5% 38.0% 24.5%
10 steps limit (baseline) 41.5% 21.5% 42.5% 38.0% 42.0% 29.8%
20 steps limit 33.5% 13.5% 45.5% 36.0% 39.5% 24.8%

FS-Anomaly-1 Searching for an anomaly (baseline) 25.0% 4.0% 46.0% 26.0% 35.5% 15.0%
Searching for explicit object types 34.0% 7.0% 59.0% 34.0% 46.5% 20.5%

frame, it requires mostly object recognition and spatial reasoning abilities. On the other hand, since
the object might not be within the field of view in FS-2, it requires the agent to implement a strategy
that extensively explores the environment over multiple timesteps. While humans intuitively start
following the streets in search of the object in question, VLMs mostly wander aimlessly in random
directions. The problem is exacerbated due to difficulties with handling long contexts, see the episode
length ablation in a later paragraph.

Fine-tuning results. We find that although some of these shortcomings can be addressed through
simple fine-tuning, the problems with systematic exploration are more fundamental. We finetune
Qwen2.5-VL-7B [5] using GRPO [55] on Forest environment in an offline mode, using a synthetic set
of randomly generated flight trajectories, see details in Appendix E. The resulting model, presented
in the last rows in Table 2, vastly improves upon the base model’s performance on FS-1 City scenario,
boosting the score by 14 times, from roughly 1.5% to 21.5%. However, the fine-tuning does not
impact the results on FS-2 at all, where we still never see any successes.

Qualitative analysis. We perform further qualitative analysis of the larger models, see Figure 6
and Appendix J for example trajectories. By manually analyzing failed exploration trajectories on
FS-1, we observe that even the most advanced models struggle with spatial reasoning. For instance,
when a model loses sight of an object, it often backtracks its moves or starts hallucinating rather than
moving toward the object’s last known location. In case of FS-2, these issues are aggravated by the
additional need of carrying out a systematic search. For example, GPT-4o often flies to the ground
and hallucinates the existence of a searched object, whilst not performing any reasonable exploration
pattern at all. Moreover, all models fail to handle collisions properly, often attempting to redo the
same action when it previously resulted in hitting an object. In one of the trajectories, Gemini states
"I am unable to navigate without hitting the building. I guess I will give up."

Object-specific analysis. In Figure 5 we zoom in on the specific object classes that appear in FS-1.
As expected, classes with large objects, such as buildings have a higher success rate than those with
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Figure 5: Success rate per class: In this figure, we show the model success rate per each target class
for both the Forest and the City environments. Classes with large visible objects such as Building for
Forest or Crowd for City are significantly easier for most models to locate. On the other hand, classes
that are difficult to distinguish from the background, such as both garbage classes, are only located
by more advanced models. Human baseline for City is marked with dashed line.

Step 1 Step 2 Step 3

MOVE (X: 0, Y: 0, Z: -64) MOVE (X: 5, Y: 0, Z: 0) FOUND

Figure 6: Example of a successful trajectory in FS-1: GPT-4o navigates to red sports car object by
first descending and then moving to the right. The first row shows the model’s visual inputs, and the
second actions it has taken. Note the presence of the grid overlay on images. Best viewed zoomed in.

smaller figures, such as single persons. However, even finding a building poses a significant challenge
since the best-performing Claude 3.5 Sonnet does not manage to find approximately 30% of objects
in this class. Interestingly, VLMs tend to be more successful at finding trash piles in the forest rather
than in the city, where they are more visible from a distance. Lastly, the road construction site class is
one of the hardest classes, even though the name provides a clue as to where the model should look.

FS-Anomaly-1. The results for FS-Anomaly-1, presented in Table 3 are on average significantly
lower than in FS-1, suggesting that the models struggle with the additional challenge of figuring
out which object is out of place. Indeed, as we confirm on a subset of the models, the performance
substantially increases once we explicitly name the anomaly object to be found, see Appendix H.
Without explicit instructions, more often than not, VLMs find one of many typical, although visually
distinct objects to be out of place, while ignoring obvious anomalies. For example, in one of the city
scenarios, all closed-source VLMs wrongly identified a yellow taxi to be the anomaly, ignoring a tank
standing next to it. Moreover, we find that the models sometimes tend to misidentify the anomaly
objects as something more expected in a given situation, e.g., one of the models assumed that a giraffe
walking around city streets is a dog.
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Impact of the number of steps. Finally, we study the impact of changing the length of each episode
in FS-1, i.e., the number of actions that can be taken before the trajectory automatically ends in
failure. We find that reducing the number of steps from the baseline 10 to 5 reduces the results by
10% (4pp) for Gemini and 17% (5pp) for Pixtral. More interestingly, we also observe performance
deterioration as we increase the step limit to 20 – Gemini’s performance falls by 6% (2.5pp) and
Pixtral’s by 17% (5pp). Breaking these results by category, we find that increasing the number of
steps only leads to significant deterioration in the visually cluttered City environment. We discover
that models tend to fail when expected to reason and gather information over longer timeframes,
which we also observed in FS-2. See more details in Table 4 and Appendix H.

5 Conclusion

In this paper, we introduce FlySearch, a dynamic benchmark designed for evaluating exploration
capabilities of VLMs. Navigating three-dimensional environments and finding objects of interest are
everyday real-world tasks that remain underrepresented in VLM benchmarking. To address this gap,
FlySearch leverages Unreal Engine 5, a highly realistic video game engine to procedurally generate
scenarios of searching for objects in urban and natural environments. Using the three standardized
challenges, FS-1, FS-Anomaly-1, and FS-2, we show that VLMs underperform compared to human
baseline, especially when it comes to more complex exploration tasks. At the same time, this study has
certain limitations that offer interesting directions for future work. In this paper, we purposefully avoid
testing more sophisticated ObjectNav methods [9, 26, 67], since our main focus lies in understanding
pure VLM capabilities. At the same time, checking their performance in FlySearch could bring
interesting insights to the field. Additionally, we use a simple prompting technique, and one could
possibly get better results out of VLMs by leveraging few-shot learning [8, 48] or prompt optimization
tools [49, 73].
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C Benchmark specification

In this section we present the parameters of benchmark scenario generation and evaluation details.

C.1 Scenario parameters

Table S1: Parameters in scenario generation: In this table, we present value ranges for variables
that have an impact on the search trajectory. We sample from them uniformly at random while
creating a scenario. FS-Anomaly-1 has identical value ranges to FS-1, except for the searched object
type and searched object asset. Furthermore, in FS-1 and FS-Anomaly-1 there will be a clear line of
sight from the starting position of the agent to the object. In FS-2, we relax this condition and only
validate that the object is not under an obstacle (e.g. is not hidden under a bridge, but can be behind
a building). Lastly, objects can be placed anywhere in the forest environment and in one of 31852
semantically correct locations in the city environment.

Parameter
FS-1 FS-2

Value range (Forest) Value range (City) Value range (City)

Seed N ∩ [0, 1000000000] N ∩ [0, 1000000000] N ∩ [0, 1000000000]

Agent’s starting height (h) [m] N ∩ [30, 100] N ∩ [30, 100] N ∩ [100, 125]
Agent’s starting position offset [m] [−0.5h, 0.5h] [−0.5h, 0.5h] [−0.95h, 0.95h]

Searched object type {campsite, trash, person, fire, building} {construction works, crowd, trash, fire, car}
Searched object coordinates Anywhere on the map 38152 possible placements
Searched object asset Dependent on the object type Dependent on the object type

Sun elevation angle [10, 90]° over horizon 45° over horizon [10, 90]° over horizon
Sun azimuth angle [0, 360]° 110° [0, 360]°
Tree density [0.0, 0.3] N/A N/A
Rock density [0.0, 0.1] N/A N/A

Object visibility Visible from agent’s starting position Not under an obstacle

We present all variables that can be used to generate a new scenario in Table S1, such as whether the
searched object should be visible from the UAV’s initial location. In Table S2, we describe additional
parameters that do not impact the scenario generation, but govern details of evaluation – such as:
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• Search area bounds – a rectangle centered on agent’s initial position, describing bounds
inside of which agent can move. Note that this only serves as a limitation on agent’s
movement and does not impact the scenario generation process,

• Maximum altitude – if an agent’s action would bring it above that threshold, it is considered
invalid and the agent is asked to issue a new instruction,

• Whether agent can move beyond its current view – in FS-1 and FS-Anomaly-1 the agent is
prevented from leaving visible area, discouraging hallucination,

• Number of available actions,

• Number of possible consecutive retries if agent’s action is considered invalid and needs to
be redone,

• Whether the agent should also receive an image showcasing how the target object should
look like from above.

Table S2: Additional parameters: In this table, we present configurations used during evaluations in
FS-1, FS-Anomaly-1 and FS-2. Number of possible retries in case of invalid action was introduced to
prevent LLMs from "hanging" by constantly performing invalid actions. As such, this limit was not
present while evaluating human baselines. Similarly, we allow humans to fly out of their current view
even in FS-1. We note that FS-1 and FS-Anomaly-1 use the exact same configuration, while more
search-oriented FS-2 uses a slightly different one. In this table, h denotes starting height of the UAV.

Parameter FS-1 / FS-Anomaly-1 FS-2

Search area bounds [m] 400 × 400 2h × 2h
Maximum altitude [m] 120 300
Agent can move beyond its current view No (Yes for humans) Yes
Number of available actions 10 20
Number of possible retries if action is invalid 5 (∞ for humans) 5 (∞ for humans)
Object type specification modality Text Text + Image

C.2 Target details

The targets in the City environment are as follows:

• Road construction works – a construction zone at the side of a road,

• Crowd – a group of over 30 randomly generated people standing close together,

• Large trash pile – a random pile of trash (bags, car tires, barrels, metal sheets, etc.),

• Fire – a burning car or pile of trash with fire and smoke,

• Car – a randomized car or truck with a specific color (we provide the agent with the color
and type).

While in the Forest the goal is to find:

• Campsite – a randomly generated set of camping equipment, including at least one tent,

• Trash pile – a pile of car tires, barrels, metal scrap, and other waste (different than in the
forest environment),

• Person – a human laying flat on the ground, representing an injured hiker,

• Forest fire – a burning forest area, emitting a large cloud of smoke,

• Building – an abandoned building in various styles.

D Human baselines

In order to evaluate human performance on FlySearch we provide a web-based interface for human
testers. The interface is designed to be consistent with VLM evaluation procedure, while allowing
for efficient human interaction. Therefore, instead of using XML formatted text for communication,
the interface uses standard HTML forms and buttons. In Fig. S1 the welcome screen is presented.
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The user is shown the model prompt (with XML formatting instructions omitted) and can select
the between FS-1 and FS-2. In Fig. S2 and Fig. S3 the communication screens for FS-1 and FS-2
respectively are shown. On each step the evaluator has to either fill in X, Y, Z action coordinates and
press the MOVE button, or if they believe they have fulfilled the task criterion they have to press the
FOUND button. Finally, after clicking FOUND or exhausting possible moves the user is notified if they
have succeeded or failed the scenario. During the entire evaluation, users can report any issues with a
built-in bug report form.

Source code of the interface and associated back-end server is included in FlySearch codebase. The
study was conducted with participation of human manual software testers (employees). The study did
not pose any risks to participants. No Personally Identifiable Information was gathered in the process.
The study was conducted according to institutional regulations on data gathering and processing and
was subject to internal approval process.

Figure S1: Human study – start screen: Screenshot of the FlySearch human interface welcome
screen, containing instructions derived from the benchmark prompt. The screen also contains a field
for the participant identifier (nickname), a scenario generator switch (FS-1/FS-2), connection button
and bug report button.

E Fine-tuning details

To provide a reasonable baseline score for fine-tuning VLMs for spatial reasoning we train the Qwen
VL 2.5 7B [5] model on the Forest environment and evaluate it on the City environment in both FS-1
and FS-2. The Qwen VL 2.5 7B model is selected as it is the best performing model in the small
open-source model category in our evaluation. Since the City and Forest environments share almost
no graphical assets and are vastly different visually, training the model on Forest allows for a fair
comparison with other models on the City environment. That is, the model cannot learn to visually
recognize relevant objects and their placement in the evaluated scenario.
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Figure S2: Human study – FS-1 screen: Screenshot of the FlySearch human interface FS-1 screen.
The page contains the target description, agent camera view, altitude, object and boundary collision
information, and action controls. The image is overlaid with grid coordinates, exactly as the image
provided to the evaluated VLM. All state and action elements are the same as those provided to the
model, but for the formatting (a form instead of XML formatted text).

Using the Forest environment, we generate 6750 unique exploration scenarios. In each scenario,
we pre-record a flight trajectory from the starting point to the target. The trajectory is created by
sampling 30 evenly spaced steps over a straight line. To each flight step a random position offset
in range of [−10, 10] m, and capture camera views using our simulator. Finally, we augment the
dataset by generating 10 new trajectories from each captured episode, randomly dropping some of the
flight steps. Resulting trajectories have between 1 and 10 steps, depending on the distance between
start and target. Each trajectory is further cut at random step and formatted as a conversation to be
completed by the VLM, resulting in 67500 training samples.

Standard supervised fine-tuning does not provide sufficient improvement in results (11.1% on FS-1
City, compared to 1.5% of the base model). This is likely due to the fact, that each scenario can be
solved in multiple ways, not just the ideal trajectory. Therefore, we apply GRPO fine-tuning [55]
in step-wise, offline manner. That is, using the pre-generated training dataset we train the model to
predict one next action. We define the reward function for the step with the following pseudo-code:

Listing 1: Reward for GRPO fine-tuning (pseudo-code).
def reward(model_output):

if model_output is not parsable:
return 0

reasoning, action = parse(model_output)

reasoning_reward = min(1, len(reasoning) / 100)
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Figure S3: Human study – FS-2 screen: Screenshot of the FlySearch human interface FS-2 screen.
The page contains the same elements as for FS-1 plus an additional visual description of the target (a
neutral background and lightning picture, not an actual image of the searched object).

if action == ’FOUND’:
if target_located:

return 1 + reasoning_reward
else:

return 0 + reasoning_reward

action_reward = (current_distance - next_distance) / current_distance
action_reward = max(min(action_reward, 1), 0) # clip between 0 and 1

if target_located:
# action should be FOUND, decrease reward for further moves
mod = max(0., (altitude - targed_height compare)) / 10
action_reward = (mod ** .5) * action_reward

return reasoning_reward + action_reward

Therefore, the model is incentivized to both provide at least 100 tokens of reasoning output and to
move closer to the target in each step. When the model can respond with FOUND action the reward for
further moves towards the target is decreased. Finally, if the agent responds with FOUND it receives a
binary reward based on the success.

We perform the GRPO fine-tuning using the Swift library [71], and use LoRA [20] to speed up the
training. Moreover, we freeze the vision encoder part of the model to prevent overfitting on visual
features. Bellow are the full parameters of the training:
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Listing 2: GRPO fine-tuning command.
NPROC_PER_NODE=2 CUDA_VISIBLE_DEVICES=0,1,2,3 swift rlhf \
--rlhf_type grpo \
--model Qwen/Qwen2.5-VL-7B-Instruct \
--train_type lora \
--dataset $DATA_PATH \
--num_train_epochs 1 \
--per_device_train_batch_size 8 \
--per_device_eval_batch_size 8 \
--learning_rate 1e-5 \
--gradient_accumulation_steps 1 \
--eval_steps 100 \
--save_steps 100 \
--save_total_limit 2 \
--logging_steps 5 \
--dataloader_num_workers 4 \
--attn_impl flash_attn \
--use-hf \
--torch_dtype bfloat16 \
--deepspeed zero2 \
--target_modules all-linear lm_head \
--lora_alpha 32 \
--lora_rank 8 \
--external_plugins rewardplugin.py \
--reward_funcs fly_search \
--max_completion_length 1024 \
--warmup_ratio 0.05 \
--num_generations 16 \
--dataset_num_proc 4 \
--temperature 0.9 \
--log_completions true \
--use_vllm true \
--vllm_gpu_memory_utilization 0.9 \
--vllm_limit_mm_per_prompt ’{"image": 10}’ \
--num_infer_workers 2 \
--async_generate true \
--seed 42 \
--split_dataset_ratio 0

The entire process takes several hours using 4 NVIDIA H100 GPUs. After fine-tuning the model
is evaluated with standard FS-1 City and FS-2 settings, achieving 27.0% and 0.0% accordingly.
Moreover, it achieves 57.0% accuracy on the Forest environment it was trained upon.

F Success criterion implementation

45°45°

Agent’s location

h

hh

Figure S4: Success criterion illustration: The searched object’s center must be inside of the camera’s
cone of view. We assume the camera’s field of view is 90°.
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For a trajectory to be considered successful, at the end of it the agent must be located less than
10 meters above the object’s highest point. Furthermore, the object must be seen from the agent’s
location.

To check whether the agent can see the object, we calculate agent’s cone of view and check whether
object’s center is inside of the cone of view. This calculation is straightforward, because camera’s
field of view is 90°. It easily follows that agent at altitude h sees an area of 2h × 2h meters. We
provide a drawing to illustrate that fact in Fig. S4.

In some cases, this implementation may cause misclassifications as a failure, due to the agent „seeing”
an object in a human sense (e.g. a significant part of it’s edges), but not having object’s center in
its cone of view. To avoid this issue, we specify in the prompt that agent should be centered on the
object.

G Prompt templates

In this section we present the prompt templates for all benchmark tasks.

G.1 Prompt template for FS-1 and FS-Anomaly-1

Listing 3: Prompt template for FS-1 and FS-Anomaly-1.
<Context>

You are in command of a UAV, tasked with finding {TARGET}.
</Context>

<Objective>
You should fly BELOW 10 meters above the object and then reply with "FOUND".
Being lower (closer to the object) (like 9, 8, or less meters) is good, being
higher than that (like 11, 12, or more meters) is bad.

You may not be able to see the object in the first image, so you need to perform
a careful search. Your performance will be evaluated based on whether the

object was at most 10 meters below the drone when you replied with "FOUND". The
object MUST be in your field of view when you reply with "FOUND". You must be

centered on the object.
</Objective>

<Coordinates>
There is a grid overlaid on each image you are presented with. It is meant to (
roughly) communicate which point will be in drone’s center of vision if you
move in that direction. Note that height of the drone is not represented in the
grid.

</Coordinates>

<Controls>
<Action space>

To move the drone in a certain direction, use the following format:
<Action>(x, y, z)</Action>. For example, if you want to fly to the place

denoted as (10, 10) on the grid without changing the altitude, you should reply
with <Action>(10, 10, 0)</Action>.

x and y are the coordinates on the grid, and z is the altitude difference.
For example, <Action>(0, 0, -10)</Action> means that you are moving 10 meters
down. This is especially important, since you need to get close to the object
in question.

</Action space>

<Formatting>

Your each response should contain XML <Reasoning> tag and <Action> tag.
<Reasoning> tag should contain your reasoning for the move you are making.
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<Action> tag should contain the move you are making.

If you find the object, fly below 10 meters relative to it and reply with "
FOUND". Remember, it must be in your field of view when you reply with "FOUND"
and you must be 10 meters above it or closer. Being too far away is not
acceptable.

For example:

<Reasoning>This yellow point might be the object in question. I need to go
lower to check for that. If it’s not the object in question, I will continue
the search. I will also slightly go to the north.</Reasoning>

<Action>(5, 0, -30)</Action>

</Formatting>

<Limitations>
You shouldn’t move into coordinates that are outside of your view. Otherwise,

you may hit something which is not ideal.
You can make at most 9 moves. Your altitude cannot exceed 120 meters. Your

search area is 400x400m from the drone’s starting position.
</Limitations>

</Controls>

G.2 Prompt template for FS-2

Listing 4: Prompt template for FS-2.
<Context>

You are in command of a UAV, tasked with finding {TARGET}.
</Context>

<Objective>
You should fly BELOW 10 meters above the object and then reply with "FOUND".
Being lower (closer to the object) (like 9, 8, or less meters) is good, being
higher than that (like 11, 12, or more meters) is bad.

You may not be able to see the object in the first image, so you need to perform
a careful search. Your performance will be evaluated based on whether the

object was at most 10 meters below the drone when you replied with "FOUND". The
object MUST be in your field of view when you reply with "FOUND". You must be

centered on the object.
</Objective>

<Coordinates>
There is a grid overlaid on each image you are presented with. It is meant to (
roughly) communicate which point will be in drone’s center of vision if you
move in that direction. Note that height of the drone is not represented in the
grid.

</Coordinates>

<Controls>
<Action space>

To move the drone in a certain direction, use the following format: <Action
>(x, y, z)</Action>. For example, if you want to fly to the place denoted as
(10, 10) on the grid without changing the altitude, you should reply with <
Action>(10, 10, 0)</Action>.

x and y are the coordinates on the grid, and z is the altitude difference.
For example, <Action>(0, 0, -10)</Action> means that you are moving 10 meters
down. This is especially important, since you need to get close to the object
in question.

</Action space>
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<Formatting>

Your each response should contain XML <Reasoning> tag and <Action> tag.
<Reasoning> tag should contain your reasoning for the move you are making.
<Action> tag should contain the move you are making.

If you find the object, fly below 10 meters relative to it and reply with "
FOUND". Remember, it must be in your field of view when you reply with "FOUND"
and you must be 10 meters above it or closer. Being too far away is not
acceptable.

For example:

<Reasoning>This yellow point might be the object in question. I need to go
lower to check for that. If it’s not the object in question, I will continue
the search. I will also slightly go to the north.</Reasoning>

<Action>(5, 0, -30)</Action>

</Formatting>

<Limitations>
You shouldn’t move into coordinates that are outside of your view. Otherwise,

you may hit something which is not ideal.
You can make at most {glimpses - 1} moves. Your altitude cannot exceed 300

meters.

The search area is limited to what would be visible from the starting
position if there were no buildings or obstacles. The object is within this
area. You may not fly outside of it.
</Limitations>

</Controls>

Furthermore, along with the textual description of the searched object we pass the image, showcasing
how it should look like from above, with a following annotation:

Listing 5: Annotation of searched object’s image in FS-2.
The object you’re looking for is similar to this. This is NOT the drone’s current

view.

H Additional Experiments

In this section we present additional experimental results, evaluating design choices of our benchmark.

Table S3: Performance of Gemini 2.0 Flash and Pixtral-Large on ablations.

Setting City Forest

Gemini Pixtral Gemini Pixtral

FS-1
Baseline 41.5% 21.5% 42.5% 38.0%
Compass actions 17.5% 21.0% 17.5% 22.0%
No grid overlay 17.0% 15.5% 31.5% 20.0%

FS-Anomaly Baseline 25.0% 4.0% 46.0% 26.0%
Anomaly with ID 34.0% 7.0% 59.0% 34.0%

Impact of the action space. We test how changing the action format affects performance by
replacing the default Cartesian (x, y, z) movements with compass-style commands that specify a
direction (north, south, east, west, up, down) and distance. This type of action space is common
in previous works. As shown in Table S3, this change significantly degrades performance for both
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Table S4: FS-Anomaly-1 results: Success rates (± standard errors) of the evaluated models.

Model FS-Anomaly-1

Overall (%) Forest (%) City (%)

GPT-4o 27.0± 3.1 39.0± 4.9 15.0± 3.6
Claude 3.5 Sonnet 27.5± 3.2 37.0± 4.9 18.0± 3.9
Gemini 2.0 flash 35.5± 3.4 46.0± 5.0 25.0± 4.4

Phi 3.5 vision 0.0± 0.0 0.0± 0.0 0.0± 0.0
InternVL-2.5 8B MPO 3.5± 1.3 6.0± 2.4 1.0± 1.0
Llava-Interleave-7b 0.0± 0.0 0.0± 0.0 0.0± 0.0
Qwen2.5-VL 7B 2.8± 1.2 3.7± 2.1 2.0± 1.4

Qwen2-VL-72B 7.5± 1.9 10.0± 3.0 5.0± 2.2
Llava-Onevision 72b 8.5± 2.0 11.0± 3.1 6.0± 2.4
Pixtral-Large 15.0± 2.5 26.0± 4.4 4.0± 2.0
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Figure S5: Success rate per starting altitude interval: In this figure, we plot the success rates of
the models as a function of the initial altitude interval for both the Forest and the City environments
in the FS-1 challenge. The performance drop that comes with increasing altitude is more pronounced
for the City environment.

Gemini 2.0 Flash and Pixtral-Large. Gemini’s accuracy drops from 42.5% to 17.5% in Forest and
from 41.5% to 17.5% in City. Pixtral falls from 38% to 22% in Forest, with little change in City
(21.5% to 21%). These results highlight the importance of a flexible, continuous action space.
Compass-style movement restricts fine-grained control and appears to limit the models’ ability to
effectively search.

Impact of the grid overlay. To assess the importance of the grid overlay on each glimpse, we run
an ablation where glimpses are shown without the grid. As shown in Table S3, removing the grid
leads to a notable drop in performance for both Gemini 2.0 Flash and Pixtral-Large. Gemini’s success
rate falls from 42.5% to 31.5% in Forest, and more dramatically in City—from 41.5% to 17%. Pixtral
shows a similar trend, dropping from 38% to 20% in Forest and from 21.5% to 15.5% in City. These
results suggest that the grid plays a key role in helping models maintain spatial awareness, especially
in more complex environments. Without it, both localization and goal-oriented planning appear to
suffer. This result is consistent with previous works on vision-language coordination [29].

Impact of hidden vs explicit anomaly categories. In the FS-Anomaly setting, the model must
identify an object that doesn’t belong in the surrounding environment. In the base version, the

25



anomaly category is implicit, requiring the model to infer what is out of place. In this ablation, we
explicitly tell the model what object to look for.

As shown in Table S3, providing the anomaly identity significantly improves performance. Gemini’s
accuracy increases from 46% to 59% in Forest and from 25% to 34% in City. Pixtral also improves,
from 26% to 34% in Forest and from 4% to 7% in City.

This result suggests that models often struggle with anomaly detection due to semantic ambiguity
rather than visual perception. Explicitly stating the anomaly class helps disambiguate the task and
leads to more focused and successful exploration.

FS-Anomaly-1 full results. We provide full results of the FS-Anomaly-1 benchmark with distinction
between Forest and City environment performance in Table S4.

Impact of the starting height. Finally, we verify how the results vary depending on the starting
height. As seen in Figure S5, the success rate decreases as the starting altitude (and therefore distance
to the target) increases. This is particularly significant in the City environment, where the success rate
for the best models drops by half, likely due to the high number of distracting objects. In contrast,
in the generally easier Forest environment, this decline is less pronounced and occurs mainly in the
upper half of the altitude range.

I Sim2real gap

The main design goal of FlySearch is the evaluation of VLM exploration and 3D spatial reasoning
capabilities, with UAV object navigation serving as a realistic assessment task. However, we
acknowledge the fact that FlySearch can serve as a platform for testing methods designed specifically
for UAV control, including non-VLM solutions. Therefore, in this section, we discuss in depth the
differences between FlySearch and real-life UAV control, underlining issues that were simplified or
omitted in order for the problem to be addressable with existing foundational VLMs.

Environment. FlySearch uses Unreal Engine 5 to provide near-photorealistic simulation of highly
complex environments, with both procedurally generated and handcrafted content, using a vast set of
high-resolution assets and generation rules. This setup allows for world simulation on par with the
latest video games. However, the real world presents far greater complexity and unpredictability than
any video game. This might lead to discrepancies between the behavior of VLM in simulated and
real-world environments.

World dynamics. The real world contains a vast number of dynamic elements (moving cars,
walking people, flying birds, etc.) that cannot be fully simulated even with modern video game
engines. Moreover, FlySearch omits some of the flight-related dynamics, such as sudden gusts of
wind or abrupt weather changes, that were deemed too complex for current foundational VLMs.

Sensor simulation. Our benchmark limits sensor inputs to a downward-facing camera and altitude
reading with 1 m accuracy. The camera sensor is simulated using real-time ray-tracing capabilities
of the engine, accounting for camera auto-exposure, depth of view, light direction (time of the day),
fixed light cloud cover, and atmospheric haze. This enables an overall realistic simulation of a modern
digital camera, but simplifies the weather element and omits any data loss or low-light condition
emulation. Furthermore, real-life platforms may feature multiple cameras, LIDAR/RADAR, GPS
units, IMU, and other sensor modalities that are not simulated in FlySearch.

Target objects. The searched object is stationary (may be animated but remains in the same
location), unique for the scenario (visually similar but semantically different objects may exist on the
map), and visible from the top. In real-world situations, the object can move freely in the environment,
including moving inside buildings, and the description of the object provided to the agent can match
multiple objects. It may require more complex search strategies and the cooperation of multiple
agents.

UAV control. FlySearch uses high-level relative movement actions with 1 m resolution. This can be
implemented in real-life UAVs using existing autopilot software such as PX4 Autopilot or DroneKit,
which can accommodate wind changes and drift. However, a more direct control of the platform
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could speed up the exploration process in practice and make it less dependent on GPS or inertial
navigation systems. At the same time, this makes the task more complex for both VLM models and
human evaluators.

Other simplifications. The benchmark limits agent interaction with the world to up to 20 steps
due to the model context length limitations of most open-source VLMs. In real-life problems, the
location of an object in a large environment may require significantly more observations. In addition,
real-world UAVs are subject to hardware and software failures, none of which are simulated in
FlySearch. In future work, when VLMs can solve our toughest challenge set, we plan to address
some of the above limitations, making our benchmark more realistic.

J Example trajectories

The sample trajectories of different VLMs on FS-1 and FS-2 scenarios are provided in a separate
file in the supplementary material, as well as at: https://github.com/gmum/FlySearch/blob/
main/docs/example-trajectories.pdf

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims in the abstract and introduction accurately reflect the paper’s
contributions and scope, as they consistently present the research objectives, methodology,
and key findings, aligning with the detailed content and conclusions provided in the main
body of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are discussed in Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.
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• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: There are no theoretical results in the paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Experiments are described in the main body of the paper. Moreover, there are
full details in the appendix section. Full source code is provided.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
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• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The data and code are publicly available.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The full details are presented in the core paper, the appendix, or available in
the code.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
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• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The main empirical results are accompanied by standard errors.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The paper provides sufficient information about the type of compute resources
used.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research does conform with the Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

30

https://neurips.cc/public/EthicsGuidelines


• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The societal impacts are presented in Appendix A due to space restrictions.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The benchmark poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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Answer: [Yes]

Justification: The creators and original owners of assets that are used in the paper are
properly credited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: New assets are documented and the documentation is provided alongside them.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: The instructions given to human subjects are the same as those given to the
models in the benchmark. Full details are presented in Appendix D.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: The paper includes benchmark scores achieved by human manual software
testers (employees). As clarified in Appendix D, the study does not pose any risk to partici-
pants. The study was conducted according to institutional regulations on data gathering and
processing and was subject to internal approval process.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The LLMs are only used for editing and as a test subject.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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