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Abstract

Recent explorations of large-scale pre-trained
language models (PLMs) such as GPT-3
have revealed the power of PLMs with huge
amounts of parameters, setting off a wave of
training ever-larger PLMs. However, train-
ing a large-scale PLM requires tremendous
amounts of computational resources, which is
time-consuming and expensive. In addition,
existing large-scale PLMs are mainly trained
from scratch individually, ignoring the avail-
ability of many existing well-trained PLMs.
To this end, we explore the question that how
can previously trained PLMs benefit training
larger PLMs in future. Specifically, we intro-
duce a novel pre-training framework named
“knowledge inheritance” (KI), which com-
bines both self-learning and teacher-guided
learning to efficiently train larger PLMs. Ex-
perimental results demonstrate the superiority
of our KI framework. We also conduct empir-
ical analyses to explore the effects of teacher
PLMs’ pre-training settings, including model
architecture, pre-training data, etc. Finally, we
show that KI can well support lifelong learn-
ing and knowledge transfer. All source code
and model parameters will be available to ad-
vance further research explorations.

1 Introduction

Recently, huge efforts have been devoted to pre-
trained language models (PLMs), targeting at ac-
quiring versatile syntactic and semantic knowledge
from large-scale corpora (Radford et al., 2018; De-
vlin et al., 2019; Raffel et al., 2019). By taking
full advantage of the rich knowledge distributed
in these PLMs, the state-of-the-art across a wide
range of NLP tasks is continuously being pushed.
Up to now, it has become a consensus in the NLP
community to use PLMs as the backbone for down-
stream tasks. Despite the great follow-up efforts
of exploring various pre-training techniques and
model architectures, researchers find that simply

enlarging the model capacity, data size, and train-
ing steps can further improve the performance of
PLMs (Kaplan et al., 2020). This discovery sets
off a wave of training large-scale PLMs, from GPT-
3 (Brown et al., 2020) with hundreds of billions of
parameters, to Switch-Transformer (Fedus et al.,
2021) with trillions of parameters.

Although these huge PLMs have shown awe-
some performance, especially the amazing ability
of zero-shot and few-shot learning, training large-
scale PLMs requires tremendous amounts of com-
putational resources. For example, about 10, 000
GPUs were used to train GPT-3, costing millions
of dollars at a rough estimate. Therefore, severe
environmental concerns on the prohibitive compu-
tational costs have been raised. Moreover, existing
PLMs are generally trained from scratch individu-
ally, ignoring the availability of many well-trained
PLMs. In contrast, humans can leverage the knowl-
edge summarized by their predecessors to learn
new tasks, so that the learning process could be-
come efficient. This leaves us an important ques-
tion: how can previously trained PLMs benefit
learning larger PLMs in future?

We argue that the implicit knowledge distributed
in different PLMs is inheritable. In order to train a
larger PLM, it is worth reusing the knowledge sum-
marized and organized by an existing well-trained
PLM, which is similar to the learning process of hu-
man beings. More specifically, different from learn-
ing from scratch, we introduce a novel pre-training
framework, named “knowledge inheritance” (KI),
which combines both self-learning and teacher-
guided learning to efficiently train larger PLMs.
Intuitively, such a process of inheriting knowledge
from teachers is much more efficient and effective
than the common practice of self-learning.

To some extent, the process of KI is similar to
Knowledge Distillation (KD) (Hinton et al., 2015),
which transfers the knowledge from a high-capacity
teacher model to a more compact student model.



However, conventional KD methods presume that
teacher models play pivotal roles in mastering
knowledge, and student models with smaller ca-
pacities generally cannot match their teachers in
performance. When it comes to the scenario of
KI, since student models have larger capacities,
the performance of teacher models is no longer an
“upper bound” of student models, leading to many
challenges that have not been encountered in KD.

In addition, as more and more PLMs with dif-
ferent pre-training settings (model architectures,
training data, training strategies, etc) emerge, it is
unclear how these different settings will affect the
performance of KI. Besides, human beings excel
at learning knowledge in a lifelong manner, that is,
incrementally acquiring, refining, and transferring
knowledge. In real scenarios where data is stream-
ing, whether larger PLMs can continuously inherit
the special skills from multiple smaller teachers
and evolve is unanswered. Lastly, the ability to
hand down knowledge from generation to genera-
tion is also vital for PLMs, which is not considered
in conventional KD methods either.

In this paper, we propose a general KI framework
that leverages previously trained PLMs for training
larger ones. We carry out thorough experiments to
rigorously evaluate the feasibility of KI. We also
systematically conduct empirical analyses to show
the effects of various teacher pre-training settings,
which may indicate how to select the most appro-
priate PLM as the teacher for KI. We further ex-
tend the above framework and show that an already
trained large PLM can continuously inherit new
knowledge from multiple models pre-trained on dif-
ferent specific domains; the newly learned knowl-
edge can further be passed down to descendants.
This demonstrates that our KI framework can well
support lifelong learning and knowledge transfer,
providing a promising direction to share and ex-
change the knowledge learned by different models
and continuously promote their performance.

2 Knowledge Inheritance Framework

Background. A PLM M generally consists of
an embedding layer and N Transformer lay-
ers. Given a textual input x = {z!',... 2"}
and the corresponding label y € R, where
K is the number of classes for the specific
pre-training task, e.g., the vocabulary size for
masked language modeling (MLM) (Devlin et al.,
2019), M first converts x to an embedding ma-

trix Hyp = [h},...,h}], which is then encoded
by the Transformer layers into representations
H, = [hll, ..., h}'] at different levels as follows:
[h},...,h?] = Transformer;([h} |,...,h ]),
where [ € {1,2,...,N}. Upon these representa-
tions, a classifier F is applied to produce task-
specific logits z/ = [z{, s z%(] = ]:(hgv) for to-
ken 27. Each logit is converted to a probability dis-
tribution P(z7;7) = [p1(27;7), ..., p (z7; 7)] by
comparing with other logits using a softmax func-
tion with temperature 7. M is pre-trained with the
objective Lsprr(x,y) = H(y, P(x; 7)), where H
is the loss function, e.g., cross-entropy for MLM.

Knowledge Inheritance. The goal of knowl-
edge inheritance is to train a large PLM M|,
on the corpora Dy, = {(x;, yl)}Eﬁ‘ The com-
mon practice of training M, is to directly opti-
mize Lsgrp on Dy. We first consider a simple
scenario that we have a well-trained small PLM
Mg optimized on Dy, with the self learning ob-
jective (such as MLLM) Lgsgrp. Since we have
already trained a smaller PLM Mg, it is worth
inheriting the knowledge summarized and orga-
nized by Mg, so that M}, can at least achieve
the same performance as the teacher requiring mi-
nor effort. Such a process is far more efficient
than learning on Mjp’s own, which is aligned
with humans’ learning experience that, having a
knowledgeable teacher to guide students and clar-
ify their faults is more effective than self-learning.
More specifically, imparting Mg ’s knowledge to
My, on Dy, is implemented by minimizing the
Kullback-Leibler (KL) divergence between two
probability distributions output by Mg and M,
on the same input x; € Dy, i.e., Lxi(Xi; Mg) =
T KL(Patg (%53 7)||Pasy, (%45 7))). In addition to
teacher-guided learning, M, is also encouraged to
conduct self-learning by optimizing Lsgrr(X;, )
To control how much we want to trust the knowl-
edge from the teacher, we set an inheritance rate
to balance Lsgr and Lkr:

L(Dr; Ms) = Z (1 — a)Lserr(Xs,y;) + alxi(xi; Ms)
(xi,¥;)€DL
= Z (1 = a)H(yi, Prmy (xi51))
(x;,¥;)EDL, e

+ am?KL(Pag (x5 7) || Py, (%63 7))).-

Dynamic Inheritance Rate. However, since
larger models generally converge faster and can
achieve better final performance (Li et al., 2020b),
the PLM M, can be seen as a student, who is



a fast learner, but with poorer knowledge at first.
This is different from conventional KD, where the
teacher’s ability is the upper bound for the student.
In KI, since the student’s learning ability is better
than the teacher, it becomes more and more knowl-
edgeable during the learning process, and will sur-
pass the teacher eventually. Thus, it is necessary
to encourage M, increasingly learning knowledge
on its own, not only memorizing the teacher’s in-
structions. This can be done by dynamically chang-
ing the inheritance rate « to balance Lsgr g and L.
Additionally, after M, has surpassed its teacher, it
no longer needs the guidance from Mg and should
conduct pure self-learning from then on. To imple-
ment this, for a total training steps of 7', we choose
the oy that is linearly decayed with a slope of
and the student only inherits knowledge from the
teacher for % steps, and then conducts pure self-
learning, i.e., oy = max(1 — ar x %,0). Specif-
ically, at step t, the loss function for inheriting
knowledge of Mg on Dy, is formulated as follows:

L(Dp; Ms) = Z (1—ove) Lserr(Xa, y;) e Lxa(xi; Ms).
(xi,y;)€DL

@)

Note the logits of Mg on Dy can be pre-

computed and saved offline so that we do not need
to re-compute the inference of Mg when training

M. This process is done once and for all. KI

does not require the access to Mg’s parameters,
which may be not available due to privacy issues.

Diverse Teachers & Domains. Inreal world sce-
narios, we generally have a series of well-trained
smaller PLMs Mg = { M3, ..., ./\/lgs}, each hav-
ing been optimized on Dg = {D}q, . Dévs}, re-
spectively, and thus gained sufficient knowledge
on the corresponding corpus. Considering that the
PLMs in Mg, consisting of varied model archi-
tectures, are pre-trained on different corpora of
various sizes and domains with arbitrary strategies,
thus the knowledge they master is also manifold,
making it beneficial to let M, continuously absorb
knowledge from each teacher. In addition, M ’s
pre-training data D, may also consist of massive,
heterogeneous corpora from multiple sources, i.e.,
Dy = {D},..., D]LV L1, Due to the difference be-
tween D7, and Dg, M g may be required to transfer
its knowledge on instances unseen during its pre-
training. Ideally, we want M g to teach the courses
it is skilled in so that M, can make the best of
teacher models. To better summarize the hybrid
knowledge of Dy, it is essential to choose the most

appropriate teacher M% = optimal(Mg|Dj)
for each composition D} € Dy, where optimal
denotes the teacher selection strategy. We will
analyze the effects that contribute to the optimal
strategy in the next section. The overall formula-

tion for inheriting knowledge from Mg on Dy, is:
Np,

L(Dr; Ms) =Y L(Dy;optimal(Ms|Dy))  (3)

i=1

3 Experiments

In this section, we first present a preliminary exper-
iment to demonstrate the effectiveness of KI frame-
work in § 3.1. Then we conduct empirical analyses
to show the effects of different pre-training settings
of the teacher models in § 3.2. Finally, we show
KI can well support lifelong learning and knowl-
edge transfer so that PLMs can continuously absorb
knowledge from multiple teachers in § 3.3, and
PLMSs can accumulate knowledge over generations
in § 3.4. All these results show that our KI frame-
work can make training larger PLMs effective and
efficient by taking advantage of existing smaller
PLMs. For a fair comparison, we train all models in
the same computation environment with 8 NVIDIA
32GB V100 GPUs. Detailed hyper-parameters for
pre-training are listed in our appendix.

3.1 Preliminary Experiments

Setting. Our KI framework is agnostic to the spe-
cific self-supervised pre-training task. Without loss
of generality, we focus on the representative MLM
task in the main paper and discuss auto-regressive
language modeling in our appendix. We use the
model structure of RoBERTa (Liu et al., 2019).
In § 3.1, we first choose ROBERTaz,sr (denoted
as BASE) as the teacher (M) architecture and
RoBERTa; arqr (denoted as LARGE) as the student
(M) architecture.

For pre-training data, we use the concatenation
of Wikipedia and BookCorpus (Zhu et al., 2015)
same as BERT (Devlin et al., 2019), with roughly
3,400M tokens in total. The training-validation
ratio is set to 199 : 1. All models are trained for
125k steps, with a batch size of 2,048 and a se-
quence length of 512, and we ensure that they have
well converged in the end. Note the whole training
computational cost is approximately equivalent to
that of BERT. We first pre-train M g and then pre-
train M, by inheriting Mg’s knowledge under
KI (denoted as “BASE — LARGE”). We compare
it with “LARGE” that only conducts self-learning
from beginning to end.
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Figure 1: From left to right: (1) the validation PPL curve for pre-training M under KI framework (BASE —
LARGE) and the self-learning baseline (LARGE). The teacher’s (BASE) performance is 4.18. (2) Pre-training
BASE under KI with three strategies for the inheritance rate o;: Linear, Heviside and Constant. The
teacher’s (MEDIUM) performance is 4.95. (3) Pre-training BASE under KI with top-K logits, we vary K in
{10, 50, 100, 1000}, respectively. (4) Effects of M g’s model architecture (width).

For evaluation, we report the MLM validation
perplexity (PPL) during pre-training and the down-
stream performance on development sets of eight
GLUE (Wang et al., 2019) tasks. Note compared
with the self-learning baseline, in KI, the logits
output by M, are additionally used to calculate
Lki, we empirically find that the additional compu-
tations caused by it are almost negligible compared
with the cumbersome computations in Transformer
blocks. Therefore, it requires almost the same com-
putational cost between KI and the baseline for
each step. Hence, we report the performance w.r.t
training step (Li et al., 2020a), while the perfor-
mance w.r.t. FLOPs (Schwartz et al., 2019) and
wall-clock time (Li et al., 2020b) can be roughly
obtained by stretching the figure horizontally.

Overall Results. As shown in Figure 1 and Ta-
ble 1, we can find that: (1) training M ; under
KI framework converges faster than the self-
learning baseline, indicating that inheriting the
knowledge from an existing teacher is far more ef-
ficient than solely learning such knowledge. That
is, to achieve the same level of validation PPL, KI
requires fewer computational costs. Specifically,
with the guidance of M g, whose validation PPL is
4.18, BASE — LARGE achieves a validation PPL
of 3.41 at the end of pre-training, compared with
baseline (LARGE) 3.58. After BASE — LARGE
breaks away from teacher-guided learning at step
40k, it improves the validation PPL from 4.60
(LARGE) to 4.28, which is almost the performance
when the baseline LARGE conducts self-learning
for 55k steps, thus saving roughly 27.3% pre-
training computational costs'. (2) M, trained un-

'Tf we load BASE and compute its inference during pre-
training, 18.7% FLOPs can be saved roughly, since the for-

der KI framework achieves better performance
than the baseline on downstream tasks at each
step. We also found empirically that, under the
same setting (e.g., data, hyper-parameters and
model architectures), lower validation PPL gener-
ally indicates better downstream task performance.
Since the performance gain in downstream tasks is
consistent with that reflected in the validation PPL,
we only show the latter for the remaining experi-
ments due to the length limit. (3) More evident
improvements for larger PLMs. We experiment
on different sizes of Mg and M, in our appendix
to further demonstrate the universal superiority of
KI over self-learning. We also find that with the
size of both Mg and M, growing, the improve-
ments from KI become more evident. Concerning
the energy cost, for the remaining experiments, un-
less otherwise specified, we choose MEDIUM (9
layers, 576 hidden size) as Mg and BASE as M.

Effects of Inheritance Rate. In KI, we set «; in
Eq. (2) to be linearly decayed (denoted as Linear)
to gradually encourage M, exploring knowledge
on its own. We analyze whether this design is es-
sential for our framework by comparing it with two
other strategies: the first is to only learn from the
teacher at first and change to pure self-learning (de-
noted as Heviside) at the 35k-th step; the second
is to use a constant ratio (1 : 1) between Lsgr g and
Lx1 throughout the whole training process (denoted
as Constant). We can conclude from Figure
1 that: (1) annealing at first is necessary. The
validation PPL curve of Linear converges the
fastest, while Heviside tends to increase after
M, stops learning from the teacher, indicating

ward passes of the small teacher also take up a small part.



Step Model CoLA MNLI QNLI RTE SST-2 STS-B MRPC QQP Avg
LARGE 0.0 73.5 81.7 53.0 81.7 458 714 875 61.8
5k BASE —+ LARGE 174 758 834 547 857 1720 726 88.6 68.8
LARGE 61.8 849 917 634 929 886 87.7 915 828
45k  BaASE —» LARGE 64.3 859 922 753 932 893 894 915 85.2
LARGE 645 86.8 927 69.7 93.5 899  89.7 91.7 84.8
85k BASE — LARGE 65.7 87.2 93.0 77.0 943 900 904 91.8 86.2
LARGE 643 871 932 734 941 90.3 90.1 91.8 855
125k BASE — LARGE 67.7 87.7 931 749 948 906 882 919 86.1

Table 1: Downstream performances on GLUE tasks (dev). Our KI framework takes fewer pre-training steps to get
a high score after fine-tuning. More detailed results at different pre-training steps are illustrated in our appendix.

that, due to the difference between teacher-guided
learning and self-learning, annealing at first is nec-
essary so that the performance won’t decay at the
transition point (35k-th step). (2) Teacher-guided
learning is redundant after M, surpasses Mg.
Although Constant performs well in the begin-
ning, its PPL gradually becomes even worse than
the other two strategies. The reason is that, after
M, has already surpassed Mg, it will be encum-
bered by keeping following guidance from Mg.

Saving Storage Space with Top-K Logits.
Loading the teacher Mg repeatedly for knowl-
edge inheritance is cumbersome, and an alterna-
tive way is to pre-compute and save the predic-
tions of Mg offline once and for all. We show
that using the information of top-K logits (Tan
et al., 2019) can reduce the memory footprint with-
out much performance decrease. Specifically, we
save only top-K probabilities of Pg(x/;7) fol-
lowed by re-normalization, instead of the full dis-
tribution over all tokens. For RoBERTa, the di-
mension of Pg(z7; 7) is decided by its vocabulary
size, which is around 50, 000. We thus vary K in
{10, 50,100,1000} to see its effects in Figure 1,
from which we observe that: top-K logits contain
the vast majority of information. Choosing a rel-
atively small K (e.g., 10) is already good enough
for inheriting knowledge from the teacher without
much performance decrease compared with the full
distribution. It demonstrates that, for P(27; 7), the
vast majority of information is contained in the top-
K probabilities, while the tail probabilities tend
to be some noise, which is aligned with previous
observations (Tan et al., 2019) to some extent.

3.2 The Effects of M g’s Pre-training Setting

Existing PLMs are typically trained under quite dif-
ferent settings, and it is unclear how these different

settings will affect the performance of KI. To this
end, we conduct thorough experiments to analyze
the effects of several representative factors: model
architecture, pre-training data, Mg’s pre-training
step (appendix) and batch size (appendix).

Effects of Model Architecture. Large PLMs
generally converge faster and achieve lower valida-
tion PPL, which means they are fast learners with
more knowledge acquired through pre-training, and
thus serving as more competent teachers. We ex-
periment with two widely chosen architecture vari-
ations, i.e., width (hidden size) and depth (num-
ber of layers), to explore the effects of different
model architectures. We choose BASE (12 layer,
768 hidden size) as M ,’s architecture, and choose
the architecture of Mg to differ from My, in ei-
ther width or depth. Specifically, for Mg, we vary
the width in {384,480, 576, 672}, and the depth in
{4,6,8,10}, respectively, and pre-train Mg under
the same setting as M . The validation PPL curve
for each teacher model is shown in our appendix,
from which we observe that deeper / wider teachers
with more parameters converge faster and achieve
lower final validation PPL during pre-training. Af-
ter that, we pre-train M, under KI leveraging
these teacher models. As shown in Figure 1 and
2, choosing a wider / deeper teacher further ac-
celerates M ’s convergence, demonstrating the
benefits of learning from a more knowledgeable
teacher. Since the performance of PLMs is weakly
related to model shape but highly related to model
sizes (Li et al., 2020b), it is always a better strat-
egy to choose the teacher with more parameters if
other settings are kept the same. In experiments,
we also find empirically that, the optimal duration
for teacher-guided learning should be longer for
larger teachers, which means it takes more time to
learn from a more knowledgeable teacher.
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Figure 2: From left to right: (1) effects of M g’s model architecture (depth). (2) Effects of M g’s pre-training data
size. (3) Effects of M g’s data domain. (4) Knowledge inheritance over generations.

Effects of Pre-training Data. In previous exper-
iments, we assume M, is pre-trained on the same
corpus as Mg, i.e., D;, = Dg. However, in real
world scenarios, it may occur that the pre-training
corpus used by both M, and Mg is mis-matched,
due to several factors: (1) data size. When train-
ing larger models, the pre-training corpus is often
enlarged to improve downstream performance, i.e.,
|Ds| < |Dr|; (2) data domain. PLMs are trained
on heterogeneous corpora from various sources
(e.g., news articles, literary works, etc.) with dif-
ferent genres, i.e., Ppgy # Pp,. The different
knowledge contained in each domain may affect
PLMs’ generalization in downstream tasks. The
existence of the above factors may hinder the suc-
cessful knowledge transferring by requiring Mg
to teach courses it is not skilled in. We thus design
experiments to analyze the effects of these factors,
with two observations concluded:

e Obs. 1: PLMs can image the big from
the small for in-domain data. To evaluate the
effects of data size, we first pre-train teacher
models on different partitions of the original
training corpus under the same setting by ran-
domly sampling {1—16, %, i, %,% of it, resulting
in teacher models with final validation PPL of
{5.43,5.15,5.04,4.98,4.92}, respectively. The fi-
nal validation PPL increases as we shrink the size
of Mg’s pre-training corpus, which implies that
training with less data weakens the teacher’s abil-
ity. Next, we compare the differences when their
knowledge is inherited by M. As reflected in
Figure 2, however, the performance of KI is not
substantially undermined until only 1—16 of the origi-
nal data is leveraged by the teacher. This indicates
that PLMs can well image the overall data distri-
bution even if it only sees a small part. Hence,
when training larger PLMs, unless the data size is
extensively enlarged, its impact can be ignored.

e Obs. 2: Inheriting on similar domain im-
proves performance. To evaluate the effects of
data domain, we experiment on the cases where the
pre-training corpus used by Mg and M, has do-
main mis-match. Specifically, keeping data size the
same, we mix Wikipedia and BookCorpus (WB)
used previously with computer science (CS) pa-
pers from S20RC (Lo et al., 2020), whose domain
is very different from WB, using different propor-
tions, i.e., WB : CS = {1:2,2:1,3:1,4: 1},
respectively. We pre-train M g on the constructed
corpora, then test the performance when My, inher-
its these teachers’ knowledge on the WB domain
data. As shown in Figure 2, with the domain of
the constructed corpus Mg is trained on becom-
ing gradually similar to WB, the benefits from KI
become more obvious, which means it is essential
that both Mg and M, are trained on similar do-
main of data, so that Mg can successfully impart
knowledge to M, by teaching the “right” course.
We further study the data privacy issue in our ap-
pendix and find that, as long as Dy, and Dg share
the same domain, whether they have data overlap
or not is not a serious issue for Mg to teach M.
This is extremely meaningful when organizations
aim to share the knowledge of their trained PLMs
without exposing either the pre-training data or the
model parameters due to privacy concerns.

3.3 Continual Knowledge Inheritance across
Domain

With streaming data of various domains continu-
ously increasing rapidly, training domain-specific
PLMs and storing the model parameters for each
domain can be prohibitively expensive. To this end,
researchers recently demonstrate the feasibility of
adapting PLMs to the target domain through con-
tinual pre-training (Gururangan et al., 2020). In
this section, we further extend our KI framework



Niokens 3,400M 200M 100M 40M 20M
Metrics F1 PPL  Fl PPL  FI PPL  Fl PPL  Fl PPL
SL 69.8 312 717 317 714 324 683 351 675 4.07
CS KI 729 306 726 309 719 311 711 321 708 3.37
SL 84.0 267 828 272 832 283 833 316 827 3.81
BIO K1 845 265 834 266 839 269 836 282 835 3.01

Table 2: The validation PPL (PPL) and downstream performance (F1) on the target domain (CS / BIO) after
BASE_WB is post-trained for 4k steps with self-learning (SL) or knowledge inheritance (KI). We experiment with
different sizes of domain corpus. All downstream experiments are repeated 10 times with different seeds.

to a continual setting and demonstrate that domain
adaptation for PLM can benefit from inheriting
knowledge of existing domain experts.

Specifically, instead of training large PLMs
from scratch, we focus on adapting BASE_WB,
which has been well-trained on the concatenation
of Wikipedia and BookCorpus (WB domain) for
125k steps, to two target domains, i.e., computer
science (CS) and biomedical (BIO) papers from
S20RC (Lo et al., 2020). The proximity (vocab-
ulary overlap) of three domains is listed in our
appendix. We assume the existence of two domain
experts MEDIUM_CS and MEDIUM_BRIO, which
have been trained on CS and BIO domain for 125k
steps. Note their training computation is far less
than BASE_WB due to fewer model parameters.
Hence, either MEDIUM_CS or MEDIUM_ BIO is
no match for BASE_WB in WB domain but has
richer knowledge in CS / BIO domain. For eval-
uation, we compare both (1) the MLM valida-
tion PPL on the target domain and (2) the perfor-
mance (test F1) on downstream tasks, i.e. ACL-
ARC (Jurgens et al., 2018) for CS domain and
CHEMPROT (Kringelum et al., 2016) for BIO do-
main. Before adaptation, BASE_WB achieves a
PPL of 5.41 / 4.86 and F1 of 68.5 / 81.6 on CS
/ BIO domain, while MEDIUM_CS achieves 2.95
(PPL) and 69.4 (F1) on CS domain, MEDTIUM_BTIO
achieves 2.55 (PPL) and 83.6 (F1) on BIO domain.
This demonstrates the superiority of two teachers
over the student in their own domain despite their
smaller model capacity.

We compare two strategies for continual pre-
training: (1) only conducting self-learning on
the target domain and (2) inheriting knowledge
from well-trained domain teachers. Specifically,
BASE_WB is post-trained for additional 4k steps on
either CS or BIO domain to learn new knowledge.
In addition, considering that in real world scenarios,
it can be hard to retrieve enough pre-training data

for a special domain, due to some privacy issues,
hence, we conduct experiments with different sizes
of domain corpus. The results are listed in Table 2,
from which we observe that:

(1) KI is more training-efficient. Compared
with self-learning, inheriting knowledge from do-
main teachers achieves lower final validation PPL
and improved performance in domain-specific
downstream tasks, indicating that, for domain
adaptation, KI is more training-efficient than self-
learning so that large PLMs can absorb more
domain knowledge under the same training bud-
get. By inheriting knowledge from domain teach-
ers, large PLMs can further surpass their teach-
ers in dealing with the specific domain. (2) KI is
more data-efficient. The validation PPL gap be-
tween KI and SL is further enlarged when there is
less domain-specific data available for adaptation,
which means KI is more stable and data-efficient
especially in low-resource settings, where domain
data is relatively hard to collect. In other words,
since the domain teacher has acquired rich knowl-
edge, only providing a portion of domain-specific
data is enough for satisfactory adaptation perfor-
mance under KI, while self-learning exhibits over-
fitting to some extent. We further show in appendix
that (1) there may exist catastrophic forgetting prob-
lem (McCloskey and Cohen, 1989) on the source
domain during adaptation, and (2) large PLMs can
simultaneously absorb knowledge from multiple
domain teachers and thus become omnipotent.

3.4 Knowledge Inheritance over Generations

Human beings can inherit the knowledge from
their antecedents, refine it and pass it down to
their offsprings, so that knowledge can gradually
accumulate over generations. Inspired by this,
we investigate whether PLMs also have this kind
of pattern. Specifically, we experiment with the
knowledge inheritance among three generations of



PLMs with roughly 1.7x growth in model size: G1
(BASE, 125M), G5 (BASE_PLUS, 211M) and G
(LARGE, 355M), whose architectures are listed in
our appendix. All models are trained for 125k steps
with a batch size of 2, 048 on the same corpus. We
compare the differences among (1) self-learning
for each generation (denoted as GG1, G2 and (G's),
(2) knowledge inheritance over two generations
(denoted as G1 — Go, G1 — G3 and G9 — G3),
and (3) knowledge inheritance over three genera-
tions (denoted as G1 — G9 — G3), where G first
inherit the knowledge from G, refine it by addi-
tional self-exploring and pass its knowledge down
to 3. The results are drawn in Figure 2. Com-
paring the performance of G2 and G; — Ga, G3
and G; — Gj, or G5 and Gy — (3, we can again
demonstrate the superiority of KI over self-training
as concluded before. Comparing the performance
OfG1 — G3 and G1 — GQ — G3, OI‘GQ — G3
and G; — Go — (3, it is observed that the per-
formance of G3 benefits from the involvements of
both G and G2, which means knowledge is accu-
mulating through more generations’ involvements.

4 Related Work

Pre-training models on the unlabeled text and
then performing task-specific fine-tuning have be-
come the dominant method for NLP field, such as
GPT (Radford et al., 2018), BERT (Devlin et al.,
2019) and XLNet (Yang et al., 2019b). Thence-
forth, numerous efforts have been devoted to inves-
tigate better PLMs, including designing effective
model architectures (Tay et al., 2021), formalizing
novel pre-training objectives (Raffel et al., 2019;
Clark et al., 2020; Lewis et al., 2020), applying ad-
ditional supervision from knowledge base (Zhang
et al., 2019; Qin et al., 2021; Wang et al., 2021;
Peters et al., 2019), etc. In spite of these efforts,
researchers find that the performance of PLMs can
be improved by directly increasing the model size,
data size and training steps (Liu et al., 2019; Raffel
et al., 2019; Kaplan et al., 2020; Radford et al.,
2019; Lan et al., 2020), sparking a recent wave of
training ever-larger PLMs. For instance, the revolu-
tionary OpenAl GPT-3 (Brown et al., 2020), which
contains 175 billion parameters and is pre-trained
on 570GB textual data, shows strong capabilities
for language understanding and generation.
Nevertheless, larger models require greater com-
putational demands (Patterson et al., 2021). To
this end, researchers propose to accelerate pre-

training by mixed-precision training (Shoeybi et al.,
2019; Micikevicius et al., 2018), distributed train-
ing (Shoeybi et al., 2019; Huang et al., 2019;
Shazeer et al., 2018), large batch optimization (You
et al., 2020) and architecture innovation (layer shar-
ing (Lan et al., 2020) and progressive layer drop-
ping (Zhang and He, 2020)). Another line of meth-
ods (Gong et al., 2019; Gu et al., 2021) proposes
to pre-train larger PLMs progressively. They first
train a small PLM, and then gradually increase the
depth or width of the network based on parameter
initialization. However, they have strict require-
ments of the architectures of both models, which
makes progressive training hard to be implemented
practically for the goal of KI. In addition, progres-
sive training is not applicable for absorbing knowl-
edge from multiple teacher models and continual
KI. More detailed comparisons between KI and
progressive training are explained in our appendix.
Our work is also related to Knowledge Distilla-
tion (KD) (Hinton et al., 2015), which aims to com-
press a large model into a fast-to-execute one. KD
has renewed a surge of interest in PLMs recently.
Some explore KD at different training phases, e.g.,
pre-training (Sanh et al., 2019), downstream fine-
tuning (Sun et al., 2019; Krishna et al., 2020), or
both of them (Jiao et al., 2020); others explore dis-
tilling not only the final logits output by the large
PLM, but also the intermediate hidden representa-
tions (Sun et al., 2019; Sanh et al., 2019; Jiao et al.,
2020; Sun et al., 2020; Zhang et al., 2020). Previ-
ous work also indicates the relation between KD
and label smoothing (Shen et al., 2021), however,
we show in our appendix that the improvements of
KI are not because of benefiting from optimizing
smoothed targets, which impose regularization.

5 Conclusion

In this work, we propose a general KI framework
that leverages previously trained PLMs for training
larger ones, and conduct thorough experiments to
demonstrate its feasibility. In addition, we compre-
hensively analyze various pre-training settings of
the teacher model that may affect KI's performance.
Finally, we extend KI and show that it can well
support continual learning and knowledge trans-
fer so that large PLMs can continuously absorb
knowledge from multiple small teachers. In gen-
eral, we provide a promising direction to share and
exchange the knowledge learned by different mod-
els and continuously promote their performance.
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Appendices
A Additional Experiments and Analysis

A.1 Effects of Model Size

We experiment on four PLMs with roughly 1.7x
growth in model size: M; (RoBERTaugpium,
73.5M), My (RoBERTagpse, 125M), M3
(RoBERTagase r1uss 211M) and My
(RoBERTa; zrcr, 355M), whose architectures are
listed in Table 6. We first pre-train a teacher
PLM M; (Mg) for 125k steps with a batch
size of 2,048 under the same setting then train
a larger one M;; (M) by inheriting M;’s
knowledge under KI framework (denoted as
M; — M, € {1,2,3}). We compare
M; — M1 with M, that conducts self-
learning from beginning to end. As shown in
Figure 3, the superiority of KI is observed across
all models. In addition, with the overall model
size of Mg and M, gradually increasing, the
benefits of KI become more evident, reflected in
the broader absolute gap between the PPL curve of
M; — M1 and M; 1 when i gradually grows.
This implies that with the advance of computing
power in future, training larger PLMs will benefit
more and more from our KI framework.

A.2 Effects of Mg’s Pre-training Steps

Longer pre-training has been demonstrated as
an effective way for PLMs to achieve better
performance (Liu et al., 2019) and thus be-
come more knowledgeable. To evaluate the ben-
efits of more pre-training steps for Mg, we
first vary RoBERTaygprum’s pre-training steps in
{62.5k, 125k, 250k, 500k}, and keep all other
settings the same. After pre-training, these
teacher models achieve the final validation PPL
of {5.25,4.92,4.72,4.51}, respectively. Then we
compare the performances when RoBERTagagx
learn from these teacher models and visualize
the results in Figure 3, from which we can con-
clude that, inheriting knowledge from teachers with
longer pre-training time (steps) helps M 1, converge
faster. However, such a benefit is less and less ob-
vious as Mg’s pre-training steps increase, which
means after enough training computations invested,
the teacher model enters a plateau of convergence
in validation PPL, and digging deeper in knowledge
becomes even harder. The bottleneck more lies in
other factors, e.g., the size and diversity of pre-
training data, which hinder Mg from becoming
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more knowledgeable. We also found empirically
that, after being pre-trained for 125k steps on the
corpus with a batch size of 2,048, all the models
used in this paper have well converged, and longer
pre-training only results in limited performance
gain in either PPL or downstream performance.

A.3 Effects of M ’s Batch Size

Batch size is highly related to PLM’s training ef-
ficiency, and previous work (Liu et al., 2019; Li
et al., 2020b; You et al., 2019) found that slow-but-
accurate large batch sizes can bring improvements
to model training, although the improvements be-
come marginal after increasing the batch size be-
yond a certain point (around 2, 048). BERT (Devlin
et al., 2019) is pre-trained for 1,000k steps with
a batch size of 256, and the computational cost is
equivalent to training for 125k steps with a batch
size of 2,048 (Liu et al., 2019), which is the pre-
training setting chosen in our main paper. Choos-
ing RoBERTayrpryy as the teacher model and
RoBERTaz, s as the student model, in Figure 3 we
compare the validation PPL as we vary the batch
size in {256, 512, 1024, 2, 048}, controlling for the
number of passes through the pre-training corpus.
We also vary the peak learning rate in {1.0 X
1074,2.5x1074,3.8 x 107*,5.0 x 10~*} and pre-
train for {1, 000k, 500k, 250k, 125k} steps, respec-
tively, when increasing the batch size. We observe
that increasing the batch size results in improved
final validation PPL, which is aligned with previ-
ous findings (Liu et al., 2019). When adjusting
batch size, KI accelerates the convergence unani-
mously, and its benefits become more evident when
training with a smaller batch size, reflected in the
absolute improvement in final validation PPL. We
hypothesize that this is because learning from the
smoothed target probability of KI, containing rich
secondary information (Yang et al., 2019a) or dark
knowledge (Furlanello et al., 2018), makes the pre-
training process more stable. The student PLM is
prevented from fitting to unnecessarily strict distri-
butions and can thus learn faster.

A.4 Experiments on GPT

To demonstrate that our KI framework is agnostic
to the specific self-supervised pre-training task, in
addition to the experiments on MLM in the main
paper, we conduct experiments on auto-regressive
language modeling and choose GPT (Radford et al.,
2018) as the PLM structure. Specifically, ex-
perimenting on the same pre-training corpus, we
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adapting

RoBERTag,s: vz to CS (middle) / BIO (right) domain with different number of training steps on different
sizes of domain data. We compare two strategies: self-learning and KI. For example, RoBERTacs 3400m de-
notes post-training ROBERTagase ws with the self-learning strategy on the 3,400M token CS domain corpus.
ROBERTapse ws—cs_3400m denotes post-training ROBERTagase wz with the KI strategy on the 3,400M token

CS domain corpus.

choose three architectures: GPTyzprum, GPTrase
and GPTgase prys with their architecture hyper-
parameters specified in Table 6. We experiment
with GPTyzprym — GPTgasg and GPTgasg —
GPTgase prus, and compare them with the self-
training baseline GPTgasg and GPTgask prus, re-
spectively. All the teacher models are pre-trained
for 62.5k steps with a batch size of 2,048. As
reflected in Figure 4, training larger GPTs under
our KI framework converges faster than the self-
learning baseline, which demonstrates KI is agnos-
tic to the specific pre-training task and PLM struc-
ture chosen. We expect future work to explore KI
with other pre-training tasks and PLM structures.

A.5 Additional Experiments for Continual
Knowledge Inheritance across Domain

Different Number of Post-training Steps. In
the main paper, we adapt RoOBERTagase s to €i-
ther CS or BIO domain by post-training it for 4k
steps. We further vary the number of training steps
in {1k, 2k, 3k, 4k, 5k} and visualize the validation
PPL in Figure 4. We also experiment on different

sizes of domain corpus, i.e., 3, 400M, 200M, 100M,
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Domain Strategy 3,400M 200M 100M 40M
SL 6.71 7.01  7.39 877

CS KI 8.63 9.39 9.48 987
SL 7.29 6.61 8.16 10.34

BIO KI 10.74 10.78 10.93 11.66

Table 3: The validation PPL on the source domain
(WB) after ROBERTagasr_yg is post-trained on the tar-
get domain (CS / BIO) with self-learning (SL) and
knowledge inheritance (KI).

40M tokens, respectively, as done in the main pa-
per. We observe that generally the validation PPL
on each domain decreases with the training step
growing, and the performance of KI is always bet-
ter than self-learning. The improvement of KI over
self-learning is further enlarged when there is less
target domain data available, demonstrating that
KI is more data-efficient and can work well in low-
resource settings. In addition, self-learning exhibits
overfitting problems when the data size of the target
domain is relatively small, which is not observed
under our KI framework, which means KI can mit-
igate overfitting under low-resource settings.



Catastrophic Forgetting on the Source Domain.
Table 3 lists the validation PPL on the source do-
main (WB) after RoOBERTagasy_us is post-trained
on the target domain (CS / BIO) with self-learning
(SL) and knowledge inheritance (K1) for 4k steps.
We show the results w.r.t. different sizes of domain
corpus (3,400M, 200M, 100M and 40M tokens).
We observe that after domain adaptation, the vali-
dation PPL on the source domain increases, which
means PLMs may forget some key knowledge on
the source domain when learning new knowledge
in the target domain, i.e., the catastrophic forget-
ting problem. In addition, we find that the problem
is more evident for KI than self-learning. Although
we found empirically this problem can be largely
mitigated by “reviewing” the lessons learned pre-
viously, we argue that our main goal in this paper
is to let large PLMs efficiently and effectively ab-
sorb new knowledge, and we expect future work
to further explore how to mitigate the catastrophic
forgetting thoroughly.

Experiments on PLM adaptation towards mul-
tiple domains. In the main paper, we investigate
the PLM adaptation towards one domain. Tak-
ing a step further, we explore whether KI could
benefit PLM adaptation towards multiple domains
when there exist domain teachers. Specifically,
keeping the experimental settings the same, we
adapt RoBERTagasy yp to synthetic domain data
(BIO : CS =1 :1) to absorb knowledge from two
domains simultaneously (for KI, we assume M,
is trained with the optimal teacher selection strat-
egy, i.e., each teacher imparts the knowledge on
its own domain data). From Table 4, we observe
RoBERTagssg ys achieves improved performance
on both domains after being taught by two teachers
simultaneously. This demonstrates large PLMs can
simultaneously absorb knowledge from multiple
domains and thus become omnipotent. Compared
with self-learning, K1 is still a better choice. How-
ever, simultaneous learning overfits training data
more easily and its performance on either domain
is no match for learning only one domain at a time.

A.6 Detailed Downstream Performances on
GLUE Tasks

Figure 5 visualizes in detail the downstream perfor-
mance of RoOBERTa;argr and RoBERTagasr —
RoOBERTa; arcr on the dev sets of six GLUE tasks
at different pre-training steps with an interval of
ok. It can be observed that the downstream perfor-
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mance of ROBERTagasg — RoBERTa; arcE rises
faster than the baseline, which means it takes fewer
pre-training steps for our KI framework to get a
high score in downstream tasks. Aligned with pre-
vious findings (Li et al., 2020b), we found MNLI
and SST-2 to be the most stable tasks in GLUE,
whose variances are lower.

We also list the average GLUE performance for
RoBERTagasg — ROBERTa;arcr and the base-
line RoBERTa;argr in Table 5, from which we
observe that the baseline at 70k-th step achieves
almost the same GLUE performance as our method
at 40k-th step, which means our framework saves
around 42.9% FLOPs, much higher than the re-
ported 27.3% FLOPs saved based on the pre-
training PPL. metric in the main paper. In addition,
our method achieves almost the same GLUE perfor-
mance as the baseline at the final step (125k) with
only 70k steps, which means our framework saves
44% FLOPs in total. Both the perplexity in the
pre-training stage and performance in downstream
tasks can be chosen as the evaluation metric for
measuring the computational cost savings. How-
ever, in this paper, we choose the former because it
is more stable and accurate than the latter. We find
empirically that some GLUE tasks like CoLA have
higher variances than others, which might make
the measurement inaccurate.

Besides, when discussing the effects of model
architectures in the main paper, we only show the
validation PPL of each model during pre-training,
we visualize the corresponding downstream perfor-
mance (MNLI) in Figure 6, from which it can be
observed that learning from teacher models with
more parameters helps achieve better downstream
performance at the same pre-training step. In gen-
eral, we observe that, under our setting, the perfor-
mance gain in downstream tasks is aligned with
that reflected in validation PPL during pre-training.

A.7 Teacher Models’ Validation PPL Curves
during Pre-training for “Effects of
Model Architecture”

Figure 6 visualizes the validation PPL curves for
all the teacher models used in the experiments
on the effects of model architecture. The teacher
models differ from RoBERTagpsz in either
the depth or width. Specifically, we vary the
depth in {4,6,8,10} (denoted as {RoBERTay 4,
RoBERTay 5, RoBERTay 5, RoBERTay 1¢}),
and the width in {384,480,576,672} (de-



Niokens 3,400M 200M 100M 40M
Metrics Flc PPLC FlB PPLB Flc PPLC FIB PPLB Flc PPLC FIB PPLB FIC PPLC FIB PPLB

SL 71.7 3.15 837 271 70.5 3.97 827 3.36 67.7 595 81.7 484 683 11.7 81.1 10.5
KI 72,2 3.15 839 270 71.8 3.42 831 292 69.8 3.90 82.6 3.32 69.1 570 81.3 4.64

Table 4: The results when RoOBERTag,sr_yz i8S post-trained on the synthetic domain data with self-learning (SL)
or knowledge inheritance (KI). We report both validation PPL (PPLg / PPL() and downstream performance (Flg
/ Fl¢) for BIO / CS domain. We observe that SL exhibits serious overfitting when data is relatively scarce.
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Figure 5: Downstream performance visualization on six GLUE tasks comparing RoBERTa;xzce and
RoBERTagssz — ROBERTa;rcz. For CoLA, RTE, SST-2 and STS-B, we repeat fine-tuning for 5 times; for
MNLI and QNLI, we repeat fine-tuning for 3 times.

noted as {RoBERTa, 354, ROBERTap 4g0,

Step RoBERTazase RoOBERTazase — RoBERTararee RoBERTa; 576, RoBERTap 475 }) Generally,
5k 61.8 68.8 PLMs with larger model parameters converge
10k 75.6 78.1 ;
15k 703 815 faster and achieve better final performance.
20k 80.4 82.8
25k 81.7 83.6 :
30K - 430 A.8 Effects of Data Privacy
igt Sg é gié In the main paper, we investigate the effects of'bf)th
45k 82.8 85.2 the data size and data domain for the pre-training
ggt Zgi ggg data. However, even if both size and domain of
60k 4.0 85.7 Mg and M ’s data are ensured to be the same, it
65k 84.1 85.3 may be hard to retrieve the pre-training corpus used
;gt Sgg ggg by Mg due to privacy reasons, with an extreme
S0k 847 85.8 case: Dy, N Dg = (), which is dubbed as data pri-
85k 84.8 86.2 vacy issue. To evaluate its effects, we experiment

195k g 861 in an extreme case where the pre-training corpus of

Mg and M, has no overlap at all. To avoid the in-
Table 5: Average GLUE performance comparing both ~ fluences of size and domain, we randomly split the
RoBERTa;,s; and RoOBERTas,cx — ROBERTa azg: ~ WB domain training corpus D into two halves (D 4
at different pre-training steps. and Dp) and pre-train two teacher models (denoted
as ROBERTaMEDIUM_A and ROBERTaMEDIUM_B) on

15



MNLI

=
n

%
S
n

—— ROBERTagase

ROBERTap 384 — ROBERTagase
—+— ROBERTap _4g0 — ROBERTagase
—— ROBERTap _s76 — ROBERTagase
—— RoBERTap 7, — ROBERTagase

Validation Accuracy
3
n
Validation Accuracy
3
in

725 72.5

70.0 70.0

—— ROBERTagase

ROBERTay_ s — ROBERTagase
—— ROBERTay ¢ — RoBERTagase
—— ROBERTay_g — RoBERTagase
—— ROBERTay 10 — ROBERTagase

—— ROBERTagsse
ROBERTay 4

P
o

=N
i

0_480
ROBERTap 576
RoBERFap-67>

o

o
n

MLM validation perplexity
«
=)

»
n

20k 40k 60k 80k 100k 20k 40k

Number of gradient steps

120k

60k
Number of gradient steps

»
o

80k 100k 120k 20k 40k 60k 80k 100k 120k

Number of gradient steps

Figure 6: Left & Middle: downstream performances corresponding to the experiments on effects of M g’s model
architecture (width (left) & depth (middle)). Right: validation PPL during pre-training for the teacher models used

in experiments of effects of teacher model architecture.

7.5
—— ROBERTagase B
2 7 RoBERTawgpium o — ROBERTagpase
5 —— ROBERTamepiym_s8 — ROBERTagase 8
565
=%
=
2
s 6
=]
s
>
=55
=
p=
5

10k 20k 30k 40k 50k

Number of gradient steps

Figure 7: Effects of data privacy.

them. After pre-training, both of them achieve
almost the same final PPL (4.99) on the same
validation set. = They are then inherited by
the student model RoBERTagasrz on Dp (de-
noted as RoOBERTaygprym o — ROBERTagasy g
and RoBERTaugpryy 5 — ROBERTagask ),
which is exactly the pre-training corpus of
RoBERTayrprum 5 and has no overlap with that
of RoBERTaygprym a. We also choose M,
that conducts pure self-learning on Dp as the
baseline (denoted as RoBERTagasg 5). It is
observed from Figure 7 that, there is little
difference between the validation PPL curves
of RoBERTaygprum » — ROBERTagase 5 and
RoBERTaygprym 5 — ROBERTagase g, indicat-
ing that whether the pre-training corpus of Mg
and M, has overlap or not is not important as long
as they share the same domain. This is extremely
meaningful when organizations aim to share the
knowledge of their trained PLMs without exposing
either the pre-training data or the model parame-
ters due to privacy concerns. In other words, as
long as the recipients prepare pre-training data in
similar domain, the knowledge can be successfully
inherited by receiving Mg’s predictions.
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B Pre-training Hyper-parameters

Table 6 describes the architectures we used for
all models in this paper, covering the details for
the total number of trainable parameters (nparams)s
the total number of layers (7njayers), the number of
units in each bottleneck layer (dpmoger), the total
number of attention heads (7npeaqs), the inner hid-
den size of FFN layer (dppn) and the learning rate
when batch size is set to 2,048 (Ir). We set the
dropout rate for each model to 0.1, weight decay
to 0.01 and use linear learning rate decay. We
adopt Adam as the optimizer, warm up learning
rate for the first 10% steps then linearly decay it.
The hyper-parameters for Adam optimizer is set to
1 x 1079,0.9,0.98 for ¢, 1, 32, respectively. As
mentioned in the main paper, all experiments are
done in the same computation environment with
8 NVIDIA 32GB V100 GPUs and it takes around
1 week to pre-train ROBERTag,sr and 2 weeks to
pre-train ROBERTay arge. It has been shown by pre-
vious work (Kaplan et al., 2020) that, within a rea-
sonably broad range, the validation PPL is not sen-
sitive to these parameters. All the pre-training im-
plementations are based on £ airseqg® (Ottetal.,
2019) (MIT-license).

Table 7 describes the total number of pre-training
steps for each (M, Mg) pair chosen in our ex-
periments. Within a reasonably broad range, the
performance of KI is not sensitive to its choice.

C Fine-tuning Hyper-parameters

Table 8 describes the hyper-parameters for ACL-
ARC, CHEMPROT and GLUE tasks. The selec-
tion of these hyper-parameters closely follows (Liu
et al., 2019) and (Gururangan et al., 2020). The
implementations of ACL-ARC and CHEMPROT

https://github.com/pytorch/fairseq
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Model Name Tlparams Tllayers dmodel ~ Mheads  dFFN Ir (bs = 2,048)
RoOBERTayzp vy 73.5M 9 576 12 3072 5.0 x 1074
RoBERTa; 4 - 12 d 12 3072 5.0 x 107*
RoBERTay 1, - h 768 12 3072 5.0 x 1074
RoBERTagzs5 125M 12 768 12 3072 5.0 x 1074
ROBERTaBASEipLUS 211M 18 864 12 3600 3.5 X 10_4
ROBERT2: azcx 355M 24 1024 16 4096 2.5 x 107*
GPTuzp1om 72.8M 9 576 12 3072 5.0 x 1074
GPTsass 124M 12 768 12 3072 5.0 x 107*
GPTaass prus 209M 18 864 12 3600 3.5%x 107*

Table 6: Model architectures for all the models we used in this paper.

My Mg Steps of teacher-guided learning
ROBERTaMEDIUM 35k
RoBERTaD_384 28k
ROBERTaD74 80 40k
RoBERTa, 576 70k
RoBERTag, sk ROBERTa[Lg 72 85k
RoBERTay_4 29k
RoBERTay ¢ 35k
RoBERTay ¢ 55k
ROBERTaH71 0 65k
RoBERTagasz_s1us RoBERTagxsk 55k
RoBERTagask 40k
RoBERTa; arce RoBERTagzsz_prus 65k
RoBERTagase — ROBERTagase p1us 75k
GPTzase GPTyeprom 10k
GPTzase_prus GPTgask 15k

Table 7: The total number of steps for teacher-guided learning for different (M, M) pairs.

are based on (Gururangan et al., 2020)%; the
implementations of GLUE tasks are based on
fairseg® (Ott et al., 2019) (MIT-license).

D Domain Proximity of WB, CS and BIO

Table 9 lists the domain proximity (vocabulary
overlap) of WB, CS and BIO used in this paper.

E Evaluation Metrics for the
Computational Costs Saved

As stated in the main paper, training
RoBERTa; rc; under the knowledge inheri-
tance framework saves roughly 27.3% pre-training
computations (FLOPs) at the step of 55k, where
the teacher-guided learning ends. Since we trained
all models under the same hardware environment,
choosing the evaluation metric of FLOPs is
equivalent to wall-clock time, i.e., our framework
saves RoBERTararce roughly 27.3% training

*https://github.com/allenai/
dont-stop-pretraining
*nttps://github.com/pytorch/fairseq

time, which is around 28.4 hours in our setting (8
V100 GPU for training ROBERTay argg). Since for
both our method and the baseline method, it takes
nearly the same training time/FLOPs for each step,
thus, the “training-time/FLOPs vs. PPL figure”
can be easily obtained by stretching the horizontal
axis linearly in “step vs. PPL figure”.

In addition, since the training time of PLMs
can vary greatly in different hardware environ-
ments, there are many factors that should be con-
sidered, e.g., the choice of the GPU, the number of
GPU used, whether PLMs are trained distributedly
across multiple servers (synchronizing gradients
for large PLMs may involve much longer time be-
tween different servers for communication), etc.
Therefore, we believe the metric of FLOPs is more
suitable for future research comparison.

F Comparison between Knowledge
Inheritance and Progressive Training

“Progressive Training” first trains a small PLM, and
then gradually increases the depth or width of the
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GLUE

HyperParam ACL-ARC & CHEMPROT
Learning Rate 2x107°

Batch Size 256

Weight Decay 0.1

Max Epochs 10

Learning Rate Decay Linear

Warmup Ratio 0.06

{1x107%,2x 10753 x 1075}
{16,32}
0.1
10
Linear
0.06

Table 8: Hyper-parameters for fine-tuning ROBERTa on ACL-ARC, CHEMPROT and GLUE.

| WB CS  BIO
WB | 100% 19.1% 25.6%
CS | 191% 100% 22.5%
BIO | 25.6% 22.5% 100%

Table 9: Domain proximity (vocabulary overlap)
among three domains (WB, CS, BIO) discussed in this
paper. Following (Gururangan et al., 2020), we create
the vocabulary for each domain by considering the top
10k most frequent words (excluding stopwords).

network based on parameter initialization. It is an
orthogonal research direction against our “knowl-
edge inheritance” framework, and has many limi-
tations while our knowledge inheritance does not
have as follows:

Architecture Mismatch. Existing parameter
reusing methods (Gong et al., 2019; Gu et al.,
2021) require that the architectures of both small
PLMs and large PLMs are matched to some ex-
tent, however, our knowledge inheritance does not
have such a requirement. For example, Gong et al.
(2019); Gu et al. (2021) either requires the number
of layers, or the hidden size / embedding size of a
large PLM to be the integer multiples of that of a
small PLM. Hence, it is not flexible to train larger
PLMs with arbitrary architectures, making param-
eter reusing hard to be implemented practically.
Besides, there are more and more advanced non-
trivial Transformer modifications appearing (we
refer to Lin et al. (2021) for details), which change
the inner structures of a standard Transformer, e.g.,
pre-normalization, relative embedding, sparse at-
tention, etc. It is non-trivial to directly transfer
the parameters between two PLMs if they have dif-
ferent non-trivial inner structures. Nevertheless,
our knowledge inheritance framework will not be
influenced by such architectural mismatches.

Inability for Multi-to-one Knowledge Inheri-
tance. It is non-trivial to support absorbing
knowledge from multiple teacher models by jointly
reusing their model parameters. Instead, it is easy
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to implement for knowledge inheritance. As shown
in our experiments, we demonstrate that under our
framework, large PLMs can simultaneously absorb
knowledge from multiple teachers.

Inability for Continual Knowledge Inheritance.
Parameter reusing is hard to support continual
learning, which makes large PLMs absorb knowl-
edge from small ones in a lifelong manner. In
real-world scenarios, numerous PLMs of differ-
ent architectures are trained locally with different
data. These small PLMs can be seen as domain
experts, and it is essential that larger PLMs can
continuously benefit from these existing PLMs ef-
ficiently by incorporating their knowledge so that
larger PLMs can become omnipotent. As described
before, it is easy to implement for our framework
and we have demonstrated the effectiveness.

Model Privacy. Parameter reusing requires the
availability of the parameters of an existing PLM,
which may be impractical due to some privacy is-
sues, e.g., GPT-3 only provides API access for
prediction instead of the model parameters. In-
stead, our knowledge inheritance framework does
not presume access to an existing model parame-
ter since the predictions of the small model can be
pre-computed and saved offline. This superiority
will further make it possible for API-based online
knowledge transfer.

G Comparing Label Smoothing and
Knowledge Inheritance

Previous work shows the relation between label
smoothing and knowledge distillation to some ex-
tent (Shen et al., 2021). To demonstrate that the
success of our KI is not because of learning from
a more smoothed target, we conduct experiments
comparing both label smoothing and our KI in Ta-
ble 10. Specifically, for label smoothing, PLMs
optimize a smoothed target yf =(1—-a)*xy, +
a % 1/(K — 1), where & = 0 denotes learning
from scratch with no label smoothing, larger «



Step 20k 40k 60k 80k 100k
a=03 868 729 690 6.57 6.26
a=02 727 647 595 568 546
a=01 671 574 535 506 4.86

a=0 6.13 521 4.83 457 4.36

KI 569 5.17 478 4.52 4.32

Table 10: Validation loss for training ROBERTagxsx
with different strategies. KI denotes our knowledge in-
heritance framework, where ROBERTayzp 1y iS chosen
as the teacher.

means a more smoothed target for PLMs to learn
from, K denotes the vocabulary size. Specifically,
we choose « from {0.1,0.2,0.3}. It can be con-
cluded from the results in Table 10 that adding
label smoothing into the pre-training objectives
of PLMs leads to far worse performance than the
vanilla baseline, which shows that the improve-
ments of our knowledge inheritance framework are
non-trivial: larger PLMs are indeed inheriting the
“knowledge” from smaller ones, instead of bene-
fiting from optimizing a smoothed target, which
imposes regularization. To the best of our knowl-
edge, there is little previous work that investigates
the feasibility of label smoothing in the field of pre-
trained language models, we expect future work to
discuss it in detail.

H Limitations and Future Work

Being the first to systematically propose the idea of
“knowledge inheritance for PLMs”, we hope this
work could launch an entirely new research area
and enlighten further research attempts. Therefore,
this paper focus on providing a general framework
and a systematic empirical analysis.

There are some limitations which are not ad-
dressed in this paper and left as future work: (1)
hyper-parameter choice: the total number of pre-
training steps of teacher-guided learning is not a
known prior and we need to change the hyper-
parameter o under different circumstances. How-
ever, we found empirically that estimating the op-
timal choice of ar is relatively easy, and within a
reasonably broad range, the performance of KI is
not sensitive to the choice of ap. (2) Catastrophic
forgetting problem: when adapted to a new domain,
PLMs exhibit catastrophic forgetting problems on
the source domain, which is not well-addressed
in our paper. (3) Data privacy problem: in the
main paper, we demonstrate that the knowledge
of an existing PLM can be successfully extracted
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by saving its predictions on corpus unseen during
its pre-training as long as the same domain is en-
sured. However, it does not mean the privacy of
pre-training corpus used by the existing PLM is
100% preserved. In fact, it is still under-explored
whether some malicious adversarial attacks can be
applied to access the private data, causing poten-
tial privacy concerns. We expect future work to
explore this direction and design corresponding
defense strategies.

In general, we believe it a promising direction to
share and exchange the knowledge learned by dif-
ferent models and continuously promote their per-
formances. In future, we aim to explore the follow-
ing directions. (1) The efficiency of KI, i.e., given
limited computational budget and pre-training cor-
pus, how to more efficiently absorb knowledge
from teacher models. Potential solutions include
denoising teacher models’ predictions and utilizing
more information from the teacher, i.e., the inner
hidden units computed by the teacher. How to se-
lect the most representative data points for KI is
also an interesting topic. (2) The effectiveness of
KI under different circumstances, i.e., how can KI
be applied if the teachers and the students are pre-
trained on different vocabularies (e.g., from BERT
to RoBERTa), languages, pre-training objectives
(e.g., from GPT to BERT) and even modalities.
In addition, in the main paper, we systematically
analyze the effects of pre-training setting of the
teacher model for KI. However, in real world sce-
narios, we need to consider these effects jointly to
design the optimal teacher selection strategy. (3)
How is PLMs trained with KI qualitatively differ-
ent from the non-KI PLM apart from being faster
to train, e.g. is KI PLM more robust to adversarial
attacks?

Finally, we believe it is vital to use fair bench-
marking that can accurately and reliably judge
each KI algorithm. Towards this goal, we pro-
pose the following suggestions for future work: (1)
Conduct all experiments under the same computa-
tion environment and report the pre-training hyper-
parameters and hardware deployments in detail for
future comparisons. (2) Evaluate the downstream
tasks with multiple different random seeds and
choose tasks (e.g. MNLI) that give relatively stable
and consistent results, which could serve as better
indicators for PLMs’ effectiveness. In addition, it
is also essential that PLMs are tested on diverse
downstream tasks which evaluate PLMs’ different



abilities. (3) Save the checkpoint more frequently
during pre-training and evaluate the downstream
performance, which can better indicate the trend of
PLMs’ effectiveness. (4) Open-source all the codes
and model parameters for future comparisons and
deployments. In conclusion, we hope our efforts
could facilitate future research attempts to improve
the community’s understanding and development
of this important research direction.
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