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Abstract

Recent explorations of large-scale pre-trained001
language models (PLMs) such as GPT-3002
have revealed the power of PLMs with huge003
amounts of parameters, setting off a wave of004
training ever-larger PLMs. However, train-005
ing a large-scale PLM requires tremendous006
amounts of computational resources, which is007
time-consuming and expensive. In addition,008
existing large-scale PLMs are mainly trained009
from scratch individually, ignoring the avail-010
ability of many existing well-trained PLMs.011
To this end, we explore the question that how012
can previously trained PLMs benefit training013
larger PLMs in future. Specifically, we intro-014
duce a novel pre-training framework named015
“knowledge inheritance” (KI), which com-016
bines both self-learning and teacher-guided017
learning to efficiently train larger PLMs. Ex-018
perimental results demonstrate the superiority019
of our KI framework. We also conduct empir-020
ical analyses to explore the effects of teacher021
PLMs’ pre-training settings, including model022
architecture, pre-training data, etc. Finally, we023
show that KI can well support lifelong learn-024
ing and knowledge transfer. All source code025
and model parameters will be available to ad-026
vance further research explorations.027

1 Introduction028

Recently, huge efforts have been devoted to pre-029

trained language models (PLMs), targeting at ac-030

quiring versatile syntactic and semantic knowledge031

from large-scale corpora (Radford et al., 2018; De-032

vlin et al., 2019; Raffel et al., 2019). By taking033

full advantage of the rich knowledge distributed034

in these PLMs, the state-of-the-art across a wide035

range of NLP tasks is continuously being pushed.036

Up to now, it has become a consensus in the NLP037

community to use PLMs as the backbone for down-038

stream tasks. Despite the great follow-up efforts039

of exploring various pre-training techniques and040

model architectures, researchers find that simply041

enlarging the model capacity, data size, and train- 042

ing steps can further improve the performance of 043

PLMs (Kaplan et al., 2020). This discovery sets 044

off a wave of training large-scale PLMs, from GPT- 045

3 (Brown et al., 2020) with hundreds of billions of 046

parameters, to Switch-Transformer (Fedus et al., 047

2021) with trillions of parameters. 048

Although these huge PLMs have shown awe- 049

some performance, especially the amazing ability 050

of zero-shot and few-shot learning, training large- 051

scale PLMs requires tremendous amounts of com- 052

putational resources. For example, about 10, 000 053

GPUs were used to train GPT-3, costing millions 054

of dollars at a rough estimate. Therefore, severe 055

environmental concerns on the prohibitive compu- 056

tational costs have been raised. Moreover, existing 057

PLMs are generally trained from scratch individu- 058

ally, ignoring the availability of many well-trained 059

PLMs. In contrast, humans can leverage the knowl- 060

edge summarized by their predecessors to learn 061

new tasks, so that the learning process could be- 062

come efficient. This leaves us an important ques- 063

tion: how can previously trained PLMs benefit 064

learning larger PLMs in future? 065

We argue that the implicit knowledge distributed 066

in different PLMs is inheritable. In order to train a 067

larger PLM, it is worth reusing the knowledge sum- 068

marized and organized by an existing well-trained 069

PLM, which is similar to the learning process of hu- 070

man beings. More specifically, different from learn- 071

ing from scratch, we introduce a novel pre-training 072

framework, named “knowledge inheritance” (KI), 073

which combines both self-learning and teacher- 074

guided learning to efficiently train larger PLMs. 075

Intuitively, such a process of inheriting knowledge 076

from teachers is much more efficient and effective 077

than the common practice of self-learning. 078

To some extent, the process of KI is similar to 079

Knowledge Distillation (KD) (Hinton et al., 2015), 080

which transfers the knowledge from a high-capacity 081

teacher model to a more compact student model. 082
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However, conventional KD methods presume that083

teacher models play pivotal roles in mastering084

knowledge, and student models with smaller ca-085

pacities generally cannot match their teachers in086

performance. When it comes to the scenario of087

KI, since student models have larger capacities,088

the performance of teacher models is no longer an089

“upper bound” of student models, leading to many090

challenges that have not been encountered in KD.091

In addition, as more and more PLMs with dif-092

ferent pre-training settings (model architectures,093

training data, training strategies, etc) emerge, it is094

unclear how these different settings will affect the095

performance of KI. Besides, human beings excel096

at learning knowledge in a lifelong manner, that is,097

incrementally acquiring, refining, and transferring098

knowledge. In real scenarios where data is stream-099

ing, whether larger PLMs can continuously inherit100

the special skills from multiple smaller teachers101

and evolve is unanswered. Lastly, the ability to102

hand down knowledge from generation to genera-103

tion is also vital for PLMs, which is not considered104

in conventional KD methods either.105

In this paper, we propose a general KI framework106

that leverages previously trained PLMs for training107

larger ones. We carry out thorough experiments to108

rigorously evaluate the feasibility of KI. We also109

systematically conduct empirical analyses to show110

the effects of various teacher pre-training settings,111

which may indicate how to select the most appro-112

priate PLM as the teacher for KI. We further ex-113

tend the above framework and show that an already114

trained large PLM can continuously inherit new115

knowledge from multiple models pre-trained on dif-116

ferent specific domains; the newly learned knowl-117

edge can further be passed down to descendants.118

This demonstrates that our KI framework can well119

support lifelong learning and knowledge transfer,120

providing a promising direction to share and ex-121

change the knowledge learned by different models122

and continuously promote their performance.123

2 Knowledge Inheritance Framework124

Background. A PLM M generally consists of125

an embedding layer and N Transformer lay-126

ers. Given a textual input x = {x1, . . . , xn}127

and the corresponding label y ∈ RK , where128

K is the number of classes for the specific129

pre-training task, e.g., the vocabulary size for130

masked language modeling (MLM) (Devlin et al.,131

2019), M first converts x to an embedding ma-132

trix H0 = [h1
0, ...,h

n
0 ], which is then encoded 133

by the Transformer layers into representations 134

Hl = [h1
l , ...,h

n
l ] at different levels as follows: 135

[h1
l , . . . ,h

n
l ] = Transformerl([h1

l−1, . . . ,h
n
l−1]), 136

where l ∈ {1, 2, ..., N}. Upon these representa- 137

tions, a classifier F is applied to produce task- 138

specific logits zj = [zj1, ..., z
j
K ] = F(hjN ) for to- 139

ken xj . Each logit is converted to a probability dis- 140

tribution P(xj ; τ) = [p1(x
j ; τ), ..., pK(xj ; τ)] by 141

comparing with other logits using a softmax func- 142

tion with temperature τ .M is pre-trained with the 143

objective LSELF(x,y) = H(y,P(x; τ)), whereH 144

is the loss function, e.g., cross-entropy for MLM. 145

Knowledge Inheritance. The goal of knowl- 146

edge inheritance is to train a large PLM ML 147

on the corpora DL = {(xi,yi)}|DL|
i=1 . The com- 148

mon practice of training ML is to directly opti- 149

mize LSELF on DL. We first consider a simple 150

scenario that we have a well-trained small PLM 151

MS optimized on DL with the self learning ob- 152

jective (such as MLM) LSELF. Since we have 153

already trained a smaller PLM MS , it is worth 154

inheriting the knowledge summarized and orga- 155

nized by MS , so that ML can at least achieve 156

the same performance as the teacher requiring mi- 157

nor effort. Such a process is far more efficient 158

than learning on ML’s own, which is aligned 159

with humans’ learning experience that, having a 160

knowledgeable teacher to guide students and clar- 161

ify their faults is more effective than self-learning. 162

More specifically, impartingMS ’s knowledge to 163

ML on DL is implemented by minimizing the 164

Kullback-Leibler (KL) divergence between two 165

probability distributions output byMS andML 166

on the same input xi ∈ DL, i.e., LKI(xi;MS) = 167

τ2KL(PMS
(xi; τ)||PML

(xi; τ))). In addition to 168

teacher-guided learning,ML is also encouraged to 169

conduct self-learning by optimizing LSELF(xi,yi). 170

To control how much we want to trust the knowl- 171

edge from the teacher, we set an inheritance rate α 172

to balance LSELF and LKI: 173

L(DL;MS) =
∑

(xi,yi)∈DL

(1− α)LSELF(xi, yi) + αLKI(xi;MS) 174

175=
∑

(xi,yi)∈DL

(1− α)H(yi,PML(xi; 1))

+ ατ2KL(PMS (xi; τ)||PML(xi; τ))).

(1) 176

Dynamic Inheritance Rate. However, since 177

larger models generally converge faster and can 178

achieve better final performance (Li et al., 2020b), 179

the PLM ML can be seen as a student, who is 180
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a fast learner, but with poorer knowledge at first.181

This is different from conventional KD, where the182

teacher’s ability is the upper bound for the student.183

In KI, since the student’s learning ability is better184

than the teacher, it becomes more and more knowl-185

edgeable during the learning process, and will sur-186

pass the teacher eventually. Thus, it is necessary187

to encourageML increasingly learning knowledge188

on its own, not only memorizing the teacher’s in-189

structions. This can be done by dynamically chang-190

ing the inheritance rate α to balance LSELF and LKI.191

Additionally, afterML has surpassed its teacher, it192

no longer needs the guidance fromMS and should193

conduct pure self-learning from then on. To imple-194

ment this, for a total training steps of T , we choose195

the αt that is linearly decayed with a slope of αT
T196

and the student only inherits knowledge from the197

teacher for T
αT

steps, and then conducts pure self-198

learning, i.e., αt = max(1 − αT × t
T , 0). Specif-199

ically, at step t, the loss function for inheriting200

knowledge ofMS on DL is formulated as follows:201

202
L(DL;MS) =

∑
(xi,yi)∈DL

(1−αt)LSELF(xi, yi)+αtLKI(xi;MS).

(2)203

Note the logits of MS on DL can be pre-204

computed and saved offline so that we do not need205

to re-compute the inference ofMS when training206

ML. This process is done once and for all. KI207

does not require the access to MS’s parameters,208

which may be not available due to privacy issues.209

Diverse Teachers & Domains. In real world sce-210

narios, we generally have a series of well-trained211

smaller PLMsMS = {M1
S , ...,M

NS
S }, each hav-212

ing been optimized on DS = {D1
S , ...,D

NS
S }, re-213

spectively, and thus gained sufficient knowledge214

on the corresponding corpus. Considering that the215

PLMs in MS , consisting of varied model archi-216

tectures, are pre-trained on different corpora of217

various sizes and domains with arbitrary strategies,218

thus the knowledge they master is also manifold,219

making it beneficial to letML continuously absorb220

knowledge from each teacher. In addition,ML’s221

pre-training data DL may also consist of massive,222

heterogeneous corpora from multiple sources, i.e.,223

DL = {D1
L, ...,D

NL
L }. Due to the difference be-224

tweenDL andDS ,MS may be required to transfer225

its knowledge on instances unseen during its pre-226

training. Ideally, we wantMS to teach the courses227

it is skilled in so that ML can make the best of228

teacher models. To better summarize the hybrid229

knowledge of DL, it is essential to choose the most230

appropriate teacher M∗S = optimal(MS |D∗L) 231

for each composition D∗L ∈ DL, where optimal 232

denotes the teacher selection strategy. We will 233

analyze the effects that contribute to the optimal 234

strategy in the next section. The overall formula- 235

tion for inheriting knowledge fromMS on DL is: 236

237
L(DL;MS) =

NL∑
i=1

L(Di
L;optimal(MS |Di

L)) (3) 238

3 Experiments 239

In this section, we first present a preliminary exper- 240

iment to demonstrate the effectiveness of KI frame- 241

work in § 3.1. Then we conduct empirical analyses 242

to show the effects of different pre-training settings 243

of the teacher models in § 3.2. Finally, we show 244

KI can well support lifelong learning and knowl- 245

edge transfer so that PLMs can continuously absorb 246

knowledge from multiple teachers in § 3.3, and 247

PLMs can accumulate knowledge over generations 248

in § 3.4. All these results show that our KI frame- 249

work can make training larger PLMs effective and 250

efficient by taking advantage of existing smaller 251

PLMs. For a fair comparison, we train all models in 252

the same computation environment with 8 NVIDIA 253

32GB V100 GPUs. Detailed hyper-parameters for 254

pre-training are listed in our appendix. 255

3.1 Preliminary Experiments 256

Setting. Our KI framework is agnostic to the spe- 257

cific self-supervised pre-training task. Without loss 258

of generality, we focus on the representative MLM 259

task in the main paper and discuss auto-regressive 260

language modeling in our appendix. We use the 261

model structure of RoBERTa (Liu et al., 2019). 262

In § 3.1, we first choose RoBERTaBASE (denoted 263

as BASE) as the teacher (MS) architecture and 264

RoBERTaLARGE (denoted as LARGE) as the student 265

(ML) architecture. 266

For pre-training data, we use the concatenation 267

of Wikipedia and BookCorpus (Zhu et al., 2015) 268

same as BERT (Devlin et al., 2019), with roughly 269

3, 400M tokens in total. The training-validation 270

ratio is set to 199 : 1. All models are trained for 271

125k steps, with a batch size of 2, 048 and a se- 272

quence length of 512, and we ensure that they have 273

well converged in the end. Note the whole training 274

computational cost is approximately equivalent to 275

that of BERT. We first pre-trainMS and then pre- 276

train ML by inheriting MS’s knowledge under 277

KI (denoted as “BASE→ LARGE”). We compare 278

it with “LARGE” that only conducts self-learning 279

from beginning to end. 280
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Figure 1: From left to right: (1) the validation PPL curve for pre-training ML under KI framework (BASE →
LARGE) and the self-learning baseline (LARGE). The teacher’s (BASE) performance is 4.18. (2) Pre-training
BASE under KI with three strategies for the inheritance rate αt: Linear, Heviside and Constant. The
teacher’s (MEDIUM) performance is 4.95. (3) Pre-training BASE under KI with top-K logits, we vary K in
{10, 50, 100, 1000}, respectively. (4) Effects ofMS’s model architecture (width).

For evaluation, we report the MLM validation281

perplexity (PPL) during pre-training and the down-282

stream performance on development sets of eight283

GLUE (Wang et al., 2019) tasks. Note compared284

with the self-learning baseline, in KI, the logits285

output by ML are additionally used to calculate286

LKI, we empirically find that the additional compu-287

tations caused by it are almost negligible compared288

with the cumbersome computations in Transformer289

blocks. Therefore, it requires almost the same com-290

putational cost between KI and the baseline for291

each step. Hence, we report the performance w.r.t292

training step (Li et al., 2020a), while the perfor-293

mance w.r.t. FLOPs (Schwartz et al., 2019) and294

wall-clock time (Li et al., 2020b) can be roughly295

obtained by stretching the figure horizontally.296

Overall Results. As shown in Figure 1 and Ta-297

ble 1, we can find that: (1) training ML under298

KI framework converges faster than the self-299

learning baseline, indicating that inheriting the300

knowledge from an existing teacher is far more ef-301

ficient than solely learning such knowledge. That302

is, to achieve the same level of validation PPL, KI303

requires fewer computational costs. Specifically,304

with the guidance ofMS , whose validation PPL is305

4.18, BASE → LARGE achieves a validation PPL306

of 3.41 at the end of pre-training, compared with307

baseline (LARGE) 3.58. After BASE → LARGE308

breaks away from teacher-guided learning at step309

40k, it improves the validation PPL from 4.60310

(LARGE) to 4.28, which is almost the performance311

when the baseline LARGE conducts self-learning312

for 55k steps, thus saving roughly 27.3% pre-313

training computational costs1. (2)ML trained un-314

1If we load BASE and compute its inference during pre-
training, 18.7% FLOPs can be saved roughly, since the for-

der KI framework achieves better performance 315

than the baseline on downstream tasks at each 316

step. We also found empirically that, under the 317

same setting (e.g., data, hyper-parameters and 318

model architectures), lower validation PPL gener- 319

ally indicates better downstream task performance. 320

Since the performance gain in downstream tasks is 321

consistent with that reflected in the validation PPL, 322

we only show the latter for the remaining experi- 323

ments due to the length limit. (3) More evident 324

improvements for larger PLMs. We experiment 325

on different sizes ofMS andML in our appendix 326

to further demonstrate the universal superiority of 327

KI over self-learning. We also find that with the 328

size of bothMS andML growing, the improve- 329

ments from KI become more evident. Concerning 330

the energy cost, for the remaining experiments, un- 331

less otherwise specified, we choose MEDIUM (9 332

layers, 576 hidden size) asMS and BASE asML. 333

Effects of Inheritance Rate. In KI, we set αt in 334

Eq. (2) to be linearly decayed (denoted as Linear) 335

to gradually encourageML exploring knowledge 336

on its own. We analyze whether this design is es- 337

sential for our framework by comparing it with two 338

other strategies: the first is to only learn from the 339

teacher at first and change to pure self-learning (de- 340

noted as Heviside) at the 35k-th step; the second 341

is to use a constant ratio (1 : 1) between LSELF and 342

LKI throughout the whole training process (denoted 343

as Constant). We can conclude from Figure 344

1 that: (1) annealing at first is necessary. The 345

validation PPL curve of Linear converges the 346

fastest, while Heviside tends to increase after 347

ML stops learning from the teacher, indicating 348

ward passes of the small teacher also take up a small part.
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Step Model CoLA MNLI QNLI RTE SST-2 STS-B MRPC QQP Avg

5k
LARGE 0.0 73.5 81.7 53.0 81.7 45.8 71.4 87.5 61.8

BASE→ LARGE 17.4 75.8 83.4 54.7 85.7 72.0 72.6 88.6 68.8

45k
LARGE 61.8 84.9 91.7 63.4 92.9 88.6 87.7 91.5 82.8

BASE→ LARGE 64.3 85.9 92.2 75.3 93.2 89.3 89.4 91.5 85.2

85k
LARGE 64.5 86.8 92.7 69.7 93.5 89.9 89.7 91.7 84.8

BASE→ LARGE 65.7 87.2 93.0 77.0 94.3 90.0 90.4 91.8 86.2

125k
LARGE 64.3 87.1 93.2 73.4 94.1 90.3 90.1 91.8 85.5

BASE→ LARGE 67.7 87.7 93.1 74.9 94.8 90.6 88.2 91.9 86.1

Table 1: Downstream performances on GLUE tasks (dev). Our KI framework takes fewer pre-training steps to get
a high score after fine-tuning. More detailed results at different pre-training steps are illustrated in our appendix.

that, due to the difference between teacher-guided349

learning and self-learning, annealing at first is nec-350

essary so that the performance won’t decay at the351

transition point (35k-th step). (2) Teacher-guided352

learning is redundant afterML surpassesMS .353

Although Constant performs well in the begin-354

ning, its PPL gradually becomes even worse than355

the other two strategies. The reason is that, after356

ML has already surpassedMS , it will be encum-357

bered by keeping following guidance fromMS .358

Saving Storage Space with Top-K Logits.359

Loading the teacher MS repeatedly for knowl-360

edge inheritance is cumbersome, and an alterna-361

tive way is to pre-compute and save the predic-362

tions of MS offline once and for all. We show363

that using the information of top-K logits (Tan364

et al., 2019) can reduce the memory footprint with-365

out much performance decrease. Specifically, we366

save only top-K probabilities of PS(xj ; τ) fol-367

lowed by re-normalization, instead of the full dis-368

tribution over all tokens. For RoBERTa, the di-369

mension of PS(xj ; τ) is decided by its vocabulary370

size, which is around 50, 000. We thus vary K in371

{10, 50, 100, 1000} to see its effects in Figure 1,372

from which we observe that: top-K logits contain373

the vast majority of information. Choosing a rel-374

atively small K (e.g., 10) is already good enough375

for inheriting knowledge from the teacher without376

much performance decrease compared with the full377

distribution. It demonstrates that, for P(xj ; τ), the378

vast majority of information is contained in the top-379

K probabilities, while the tail probabilities tend380

to be some noise, which is aligned with previous381

observations (Tan et al., 2019) to some extent.382

3.2 The Effects ofMS’s Pre-training Setting383

Existing PLMs are typically trained under quite dif-384

ferent settings, and it is unclear how these different385

settings will affect the performance of KI. To this 386

end, we conduct thorough experiments to analyze 387

the effects of several representative factors: model 388

architecture, pre-training data,MS’s pre-training 389

step (appendix) and batch size (appendix). 390

Effects of Model Architecture. Large PLMs 391

generally converge faster and achieve lower valida- 392

tion PPL, which means they are fast learners with 393

more knowledge acquired through pre-training, and 394

thus serving as more competent teachers. We ex- 395

periment with two widely chosen architecture vari- 396

ations, i.e., width (hidden size) and depth (num- 397

ber of layers), to explore the effects of different 398

model architectures. We choose BASE (12 layer, 399

768 hidden size) asML’s architecture, and choose 400

the architecture of MS to differ from ML in ei- 401

ther width or depth. Specifically, forMS , we vary 402

the width in {384, 480, 576, 672}, and the depth in 403

{4, 6, 8, 10}, respectively, and pre-trainMS under 404

the same setting asML. The validation PPL curve 405

for each teacher model is shown in our appendix, 406

from which we observe that deeper / wider teachers 407

with more parameters converge faster and achieve 408

lower final validation PPL during pre-training. Af- 409

ter that, we pre-train ML under KI leveraging 410

these teacher models. As shown in Figure 1 and 411

2, choosing a wider / deeper teacher further ac- 412

celerates ML’s convergence, demonstrating the 413

benefits of learning from a more knowledgeable 414

teacher. Since the performance of PLMs is weakly 415

related to model shape but highly related to model 416

sizes (Li et al., 2020b), it is always a better strat- 417

egy to choose the teacher with more parameters if 418

other settings are kept the same. In experiments, 419

we also find empirically that, the optimal duration 420

for teacher-guided learning should be longer for 421

larger teachers, which means it takes more time to 422

learn from a more knowledgeable teacher. 423
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Figure 2: From left to right: (1) effects ofMS’s model architecture (depth). (2) Effects ofMS’s pre-training data
size. (3) Effects ofMS’s data domain. (4) Knowledge inheritance over generations.

Effects of Pre-training Data. In previous exper-424

iments, we assumeML is pre-trained on the same425

corpus asMS , i.e., DL = DS . However, in real426

world scenarios, it may occur that the pre-training427

corpus used by bothML andMS is mis-matched,428

due to several factors: (1) data size. When train-429

ing larger models, the pre-training corpus is often430

enlarged to improve downstream performance, i.e.,431

|DS | � |DL|; (2) data domain. PLMs are trained432

on heterogeneous corpora from various sources433

(e.g., news articles, literary works, etc.) with dif-434

ferent genres, i.e., PDS
6= PDL

. The different435

knowledge contained in each domain may affect436

PLMs’ generalization in downstream tasks. The437

existence of the above factors may hinder the suc-438

cessful knowledge transferring by requiringMS439

to teach courses it is not skilled in. We thus design440

experiments to analyze the effects of these factors,441

with two observations concluded:442

• Obs. 1: PLMs can image the big from443

the small for in-domain data. To evaluate the444

effects of data size, we first pre-train teacher445

models on different partitions of the original446

training corpus under the same setting by ran-447

domly sampling { 1
16 ,

1
8 ,

1
4 ,

1
2 ,

1
1} of it, resulting448

in teacher models with final validation PPL of449

{5.43, 5.15, 5.04, 4.98, 4.92}, respectively. The fi-450

nal validation PPL increases as we shrink the size451

of MS’s pre-training corpus, which implies that452

training with less data weakens the teacher’s abil-453

ity. Next, we compare the differences when their454

knowledge is inherited by ML. As reflected in455

Figure 2, however, the performance of KI is not456

substantially undermined until only 1
16 of the origi-457

nal data is leveraged by the teacher. This indicates458

that PLMs can well image the overall data distri-459

bution even if it only sees a small part. Hence,460

when training larger PLMs, unless the data size is461

extensively enlarged, its impact can be ignored.462

• Obs. 2: Inheriting on similar domain im- 463

proves performance. To evaluate the effects of 464

data domain, we experiment on the cases where the 465

pre-training corpus used byMS andML has do- 466

main mis-match. Specifically, keeping data size the 467

same, we mix Wikipedia and BookCorpus (WB) 468

used previously with computer science (CS) pa- 469

pers from S2ORC (Lo et al., 2020), whose domain 470

is very different from WB, using different propor- 471

tions, i.e., WB : CS = {1 : 2, 2 : 1, 3 : 1, 4 : 1}, 472

respectively. We pre-trainMS on the constructed 473

corpora, then test the performance whenML inher- 474

its these teachers’ knowledge on the WB domain 475

data. As shown in Figure 2, with the domain of 476

the constructed corpusMS is trained on becom- 477

ing gradually similar to WB, the benefits from KI 478

become more obvious, which means it is essential 479

that bothMS andML are trained on similar do- 480

main of data, so thatMS can successfully impart 481

knowledge toML by teaching the “right” course. 482

We further study the data privacy issue in our ap- 483

pendix and find that, as long as DL and DS share 484

the same domain, whether they have data overlap 485

or not is not a serious issue forMS to teachML. 486

This is extremely meaningful when organizations 487

aim to share the knowledge of their trained PLMs 488

without exposing either the pre-training data or the 489

model parameters due to privacy concerns. 490

3.3 Continual Knowledge Inheritance across 491

Domain 492

With streaming data of various domains continu- 493

ously increasing rapidly, training domain-specific 494

PLMs and storing the model parameters for each 495

domain can be prohibitively expensive. To this end, 496

researchers recently demonstrate the feasibility of 497

adapting PLMs to the target domain through con- 498

tinual pre-training (Gururangan et al., 2020). In 499

this section, we further extend our KI framework 500
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Ntokens 3, 400M 200M 100M 40M 20M

Metrics F1 PPL F1 PPL F1 PPL F1 PPL F1 PPL

CS
SL 69.8 3.12 71.7 3.17 71.4 3.24 68.3 3.51 67.5 4.07
KI 72.9 3.06 72.6 3.09 71.9 3.11 71.1 3.21 70.8 3.37

BIO
SL 84.0 2.67 82.8 2.72 83.2 2.83 83.3 3.16 82.7 3.81
KI 84.5 2.65 83.4 2.66 83.9 2.69 83.6 2.82 83.5 3.01

Table 2: The validation PPL (PPL) and downstream performance (F1) on the target domain (CS / BIO) after
BASE_WB is post-trained for 4k steps with self-learning (SL) or knowledge inheritance (KI). We experiment with
different sizes of domain corpus. All downstream experiments are repeated 10 times with different seeds.

to a continual setting and demonstrate that domain501

adaptation for PLM can benefit from inheriting502

knowledge of existing domain experts.503

Specifically, instead of training large PLMs504

from scratch, we focus on adapting BASE_WB,505

which has been well-trained on the concatenation506

of Wikipedia and BookCorpus (WB domain) for507

125k steps, to two target domains, i.e., computer508

science (CS) and biomedical (BIO) papers from509

S2ORC (Lo et al., 2020). The proximity (vocab-510

ulary overlap) of three domains is listed in our511

appendix. We assume the existence of two domain512

experts MEDIUM_CS and MEDIUM_BIO, which513

have been trained on CS and BIO domain for 125k514

steps. Note their training computation is far less515

than BASE_WB due to fewer model parameters.516

Hence, either MEDIUM_CS or MEDIUM_BIO is517

no match for BASE_WB in WB domain but has518

richer knowledge in CS / BIO domain. For eval-519

uation, we compare both (1) the MLM valida-520

tion PPL on the target domain and (2) the perfor-521

mance (test F1) on downstream tasks, i.e. ACL-522

ARC (Jurgens et al., 2018) for CS domain and523

CHEMPROT (Kringelum et al., 2016) for BIO do-524

main. Before adaptation, BASE_WB achieves a525

PPL of 5.41 / 4.86 and F1 of 68.5 / 81.6 on CS526

/ BIO domain, while MEDIUM_CS achieves 2.95527

(PPL) and 69.4 (F1) on CS domain, MEDIUM_BIO528

achieves 2.55 (PPL) and 83.6 (F1) on BIO domain.529

This demonstrates the superiority of two teachers530

over the student in their own domain despite their531

smaller model capacity.532

We compare two strategies for continual pre-533

training: (1) only conducting self-learning on534

the target domain and (2) inheriting knowledge535

from well-trained domain teachers. Specifically,536

BASE_WB is post-trained for additional 4k steps on537

either CS or BIO domain to learn new knowledge.538

In addition, considering that in real world scenarios,539

it can be hard to retrieve enough pre-training data540

for a special domain, due to some privacy issues, 541

hence, we conduct experiments with different sizes 542

of domain corpus. The results are listed in Table 2, 543

from which we observe that: 544

(1) KI is more training-efficient. Compared 545

with self-learning, inheriting knowledge from do- 546

main teachers achieves lower final validation PPL 547

and improved performance in domain-specific 548

downstream tasks, indicating that, for domain 549

adaptation, KI is more training-efficient than self- 550

learning so that large PLMs can absorb more 551

domain knowledge under the same training bud- 552

get. By inheriting knowledge from domain teach- 553

ers, large PLMs can further surpass their teach- 554

ers in dealing with the specific domain. (2) KI is 555

more data-efficient. The validation PPL gap be- 556

tween KI and SL is further enlarged when there is 557

less domain-specific data available for adaptation, 558

which means KI is more stable and data-efficient 559

especially in low-resource settings, where domain 560

data is relatively hard to collect. In other words, 561

since the domain teacher has acquired rich knowl- 562

edge, only providing a portion of domain-specific 563

data is enough for satisfactory adaptation perfor- 564

mance under KI, while self-learning exhibits over- 565

fitting to some extent. We further show in appendix 566

that (1) there may exist catastrophic forgetting prob- 567

lem (McCloskey and Cohen, 1989) on the source 568

domain during adaptation, and (2) large PLMs can 569

simultaneously absorb knowledge from multiple 570

domain teachers and thus become omnipotent. 571

3.4 Knowledge Inheritance over Generations 572

Human beings can inherit the knowledge from 573

their antecedents, refine it and pass it down to 574

their offsprings, so that knowledge can gradually 575

accumulate over generations. Inspired by this, 576

we investigate whether PLMs also have this kind 577

of pattern. Specifically, we experiment with the 578

knowledge inheritance among three generations of 579

7



PLMs with roughly 1.7x growth in model size: G1580

(BASE, 125M), G2 (BASE_PLUS, 211M) and G3581

(LARGE, 355M), whose architectures are listed in582

our appendix. All models are trained for 125k steps583

with a batch size of 2, 048 on the same corpus. We584

compare the differences among (1) self-learning585

for each generation (denoted as G1, G2 and G3),586

(2) knowledge inheritance over two generations587

(denoted as G1 → G2, G1 → G3 and G2 → G3),588

and (3) knowledge inheritance over three genera-589

tions (denoted as G1 → G2 → G3), where G2 first590

inherit the knowledge from G1, refine it by addi-591

tional self-exploring and pass its knowledge down592

to G3. The results are drawn in Figure 2. Com-593

paring the performance of G2 and G1 → G2, G3594

and G1 → G3, or G3 and G2 → G3, we can again595

demonstrate the superiority of KI over self-training596

as concluded before. Comparing the performance597

of G1 → G3 and G1 → G2 → G3, or G2 → G3598

and G1 → G2 → G3, it is observed that the per-599

formance of G3 benefits from the involvements of600

both G1 and G2, which means knowledge is accu-601

mulating through more generations’ involvements.602

4 Related Work603

Pre-training models on the unlabeled text and604

then performing task-specific fine-tuning have be-605

come the dominant method for NLP field, such as606

GPT (Radford et al., 2018), BERT (Devlin et al.,607

2019) and XLNet (Yang et al., 2019b). Thence-608

forth, numerous efforts have been devoted to inves-609

tigate better PLMs, including designing effective610

model architectures (Tay et al., 2021), formalizing611

novel pre-training objectives (Raffel et al., 2019;612

Clark et al., 2020; Lewis et al., 2020), applying ad-613

ditional supervision from knowledge base (Zhang614

et al., 2019; Qin et al., 2021; Wang et al., 2021;615

Peters et al., 2019), etc. In spite of these efforts,616

researchers find that the performance of PLMs can617

be improved by directly increasing the model size,618

data size and training steps (Liu et al., 2019; Raffel619

et al., 2019; Kaplan et al., 2020; Radford et al.,620

2019; Lan et al., 2020), sparking a recent wave of621

training ever-larger PLMs. For instance, the revolu-622

tionary OpenAI GPT-3 (Brown et al., 2020), which623

contains 175 billion parameters and is pre-trained624

on 570GB textual data, shows strong capabilities625

for language understanding and generation.626

Nevertheless, larger models require greater com-627

putational demands (Patterson et al., 2021). To628

this end, researchers propose to accelerate pre-629

training by mixed-precision training (Shoeybi et al., 630

2019; Micikevicius et al., 2018), distributed train- 631

ing (Shoeybi et al., 2019; Huang et al., 2019; 632

Shazeer et al., 2018), large batch optimization (You 633

et al., 2020) and architecture innovation (layer shar- 634

ing (Lan et al., 2020) and progressive layer drop- 635

ping (Zhang and He, 2020)). Another line of meth- 636

ods (Gong et al., 2019; Gu et al., 2021) proposes 637

to pre-train larger PLMs progressively. They first 638

train a small PLM, and then gradually increase the 639

depth or width of the network based on parameter 640

initialization. However, they have strict require- 641

ments of the architectures of both models, which 642

makes progressive training hard to be implemented 643

practically for the goal of KI. In addition, progres- 644

sive training is not applicable for absorbing knowl- 645

edge from multiple teacher models and continual 646

KI. More detailed comparisons between KI and 647

progressive training are explained in our appendix. 648

Our work is also related to Knowledge Distilla- 649

tion (KD) (Hinton et al., 2015), which aims to com- 650

press a large model into a fast-to-execute one. KD 651

has renewed a surge of interest in PLMs recently. 652

Some explore KD at different training phases, e.g., 653

pre-training (Sanh et al., 2019), downstream fine- 654

tuning (Sun et al., 2019; Krishna et al., 2020), or 655

both of them (Jiao et al., 2020); others explore dis- 656

tilling not only the final logits output by the large 657

PLM, but also the intermediate hidden representa- 658

tions (Sun et al., 2019; Sanh et al., 2019; Jiao et al., 659

2020; Sun et al., 2020; Zhang et al., 2020). Previ- 660

ous work also indicates the relation between KD 661

and label smoothing (Shen et al., 2021), however, 662

we show in our appendix that the improvements of 663

KI are not because of benefiting from optimizing 664

smoothed targets, which impose regularization. 665

5 Conclusion 666

In this work, we propose a general KI framework 667

that leverages previously trained PLMs for training 668

larger ones, and conduct thorough experiments to 669

demonstrate its feasibility. In addition, we compre- 670

hensively analyze various pre-training settings of 671

the teacher model that may affect KI’s performance. 672

Finally, we extend KI and show that it can well 673

support continual learning and knowledge trans- 674

fer so that large PLMs can continuously absorb 675

knowledge from multiple small teachers. In gen- 676

eral, we provide a promising direction to share and 677

exchange the knowledge learned by different mod- 678

els and continuously promote their performance. 679
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Appendices1007

A Additional Experiments and Analysis1008

A.1 Effects of Model Size1009

We experiment on four PLMs with roughly 1.7x1010

growth in model size: M1 (RoBERTaMEDIUM,1011

73.5M), M2 (RoBERTaBASE, 125M), M31012

(RoBERTaBASE_PLUS, 211M) and M41013

(RoBERTaLARGE, 355M), whose architectures are1014

listed in Table 6. We first pre-train a teacher1015

PLM Mi (MS) for 125k steps with a batch1016

size of 2, 048 under the same setting then train1017

a larger one Mi+1 (ML) by inheriting Mi’s1018

knowledge under KI framework (denoted as1019

Mi → Mi+1, i ∈ {1, 2, 3}). We compare1020

Mi → Mi+1 with Mi+1 that conducts self-1021

learning from beginning to end. As shown in1022

Figure 3, the superiority of KI is observed across1023

all models. In addition, with the overall model1024

size of MS and ML gradually increasing, the1025

benefits of KI become more evident, reflected in1026

the broader absolute gap between the PPL curve of1027

Mi →Mi+1 andMi+1 when i gradually grows.1028

This implies that with the advance of computing1029

power in future, training larger PLMs will benefit1030

more and more from our KI framework.1031

A.2 Effects ofMS’s Pre-training Steps1032

Longer pre-training has been demonstrated as1033

an effective way for PLMs to achieve better1034

performance (Liu et al., 2019) and thus be-1035

come more knowledgeable. To evaluate the ben-1036

efits of more pre-training steps for MS , we1037

first vary RoBERTaMEDIUM’s pre-training steps in1038

{62.5k, 125k, 250k, 500k}, and keep all other1039

settings the same. After pre-training, these1040

teacher models achieve the final validation PPL1041

of {5.25, 4.92, 4.72, 4.51}, respectively. Then we1042

compare the performances when RoBERTaBASE1043

learn from these teacher models and visualize1044

the results in Figure 3, from which we can con-1045

clude that, inheriting knowledge from teachers with1046

longer pre-training time (steps) helpsML converge1047

faster. However, such a benefit is less and less ob-1048

vious asMS’s pre-training steps increase, which1049

means after enough training computations invested,1050

the teacher model enters a plateau of convergence1051

in validation PPL, and digging deeper in knowledge1052

becomes even harder. The bottleneck more lies in1053

other factors, e.g., the size and diversity of pre-1054

training data, which hinder MS from becoming1055

more knowledgeable. We also found empirically 1056

that, after being pre-trained for 125k steps on the 1057

corpus with a batch size of 2, 048, all the models 1058

used in this paper have well converged, and longer 1059

pre-training only results in limited performance 1060

gain in either PPL or downstream performance. 1061

A.3 Effects ofML’s Batch Size 1062

Batch size is highly related to PLM’s training ef- 1063

ficiency, and previous work (Liu et al., 2019; Li 1064

et al., 2020b; You et al., 2019) found that slow-but- 1065

accurate large batch sizes can bring improvements 1066

to model training, although the improvements be- 1067

come marginal after increasing the batch size be- 1068

yond a certain point (around 2, 048). BERT (Devlin 1069

et al., 2019) is pre-trained for 1, 000k steps with 1070

a batch size of 256, and the computational cost is 1071

equivalent to training for 125k steps with a batch 1072

size of 2, 048 (Liu et al., 2019), which is the pre- 1073

training setting chosen in our main paper. Choos- 1074

ing RoBERTaMEDIUM as the teacher model and 1075

RoBERTaBASE as the student model, in Figure 3 we 1076

compare the validation PPL as we vary the batch 1077

size in {256, 512, 1024, 2, 048}, controlling for the 1078

number of passes through the pre-training corpus. 1079

We also vary the peak learning rate in {1.0 × 1080

10−4, 2.5×10−4, 3.8×10−4, 5.0×10−4} and pre- 1081

train for {1, 000k, 500k, 250k, 125k} steps, respec- 1082

tively, when increasing the batch size. We observe 1083

that increasing the batch size results in improved 1084

final validation PPL, which is aligned with previ- 1085

ous findings (Liu et al., 2019). When adjusting 1086

batch size, KI accelerates the convergence unani- 1087

mously, and its benefits become more evident when 1088

training with a smaller batch size, reflected in the 1089

absolute improvement in final validation PPL. We 1090

hypothesize that this is because learning from the 1091

smoothed target probability of KI, containing rich 1092

secondary information (Yang et al., 2019a) or dark 1093

knowledge (Furlanello et al., 2018), makes the pre- 1094

training process more stable. The student PLM is 1095

prevented from fitting to unnecessarily strict distri- 1096

butions and can thus learn faster. 1097

A.4 Experiments on GPT 1098

To demonstrate that our KI framework is agnostic 1099

to the specific self-supervised pre-training task, in 1100

addition to the experiments on MLM in the main 1101

paper, we conduct experiments on auto-regressive 1102

language modeling and choose GPT (Radford et al., 1103

2018) as the PLM structure. Specifically, ex- 1104

perimenting on the same pre-training corpus, we 1105
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Figure 3: Left: effects ofML’s model size. Middle: effects ofMS’s number of pre-training steps. Right: effects
ofML’s batch size.

10k 20k 30k 40k 50k
Number of gradient steps

25

30

35

40

45

M
LM

 v
al

id
at

io
n 

pe
rp

le
xi

ty

GPTBASE
GPTBASE_PLUS
GPTMEDIUM GPTBASE
GPTBASE GPTBASE_PLUS

1k 2k 3k 4k 5k
Number of gradient steps

3.0

3.1

3.2

3.3

3.4

3.5

3.6

M
LM

 v
al

id
at

io
n 

pe
rp

le
xi

ty
RoBERTaCS_40M
RoBERTaBASE_WB CS_40M
RoBERTaCS_100M
RoBERTaBASE_WB CS_100M
RoBERTaCS_200M
RoBERTaBASE_WB CS_200M
RoBERTaCS_3400M
RoBERTaBASE_WB CS_3400M

1k 2k 3k 4k 5k
Number of gradient steps

2.6

2.7

2.8

2.9

3.0

3.1

3.2

M
LM

 v
al

id
at

io
n 

pe
rp

le
xi

ty

RoBERTaBIO_40M
RoBERTaBASE_WB BIO_40M
RoBERTaBIO_100M
RoBERTaBASE_WB BIO_100M
RoBERTaBIO_200M
RoBERTaBASE_WB BIO_200M
RoBERTaBIO_3400M
RoBERTaBASE_WB BIO_3400M

Figure 4: Left: experiments of auto-regressive language modeling for GPT. Middle & Right: adapting
RoBERTaBASE_WB to CS (middle) / BIO (right) domain with different number of training steps on different
sizes of domain data. We compare two strategies: self-learning and KI. For example, RoBERTaCS_3400M de-
notes post-training RoBERTaBASE_WB with the self-learning strategy on the 3, 400M token CS domain corpus.
RoBERTaBASE_WB→CS_3400M denotes post-training RoBERTaBASE_WB with the KI strategy on the 3, 400M token
CS domain corpus.

choose three architectures: GPTMEDIUM, GPTBASE1106

and GPTBASE_PLUS with their architecture hyper-1107

parameters specified in Table 6. We experiment1108

with GPTMEDIUM → GPTBASE and GPTBASE →1109

GPTBASE_PLUS, and compare them with the self-1110

training baseline GPTBASE and GPTBASE_PLUS, re-1111

spectively. All the teacher models are pre-trained1112

for 62.5k steps with a batch size of 2, 048. As1113

reflected in Figure 4, training larger GPTs under1114

our KI framework converges faster than the self-1115

learning baseline, which demonstrates KI is agnos-1116

tic to the specific pre-training task and PLM struc-1117

ture chosen. We expect future work to explore KI1118

with other pre-training tasks and PLM structures.1119

A.5 Additional Experiments for Continual1120

Knowledge Inheritance across Domain1121

Different Number of Post-training Steps. In1122

the main paper, we adapt RoBERTaBASE_WB to ei-1123

ther CS or BIO domain by post-training it for 4k1124

steps. We further vary the number of training steps1125

in {1k, 2k, 3k, 4k, 5k} and visualize the validation1126

PPL in Figure 4. We also experiment on different1127

sizes of domain corpus, i.e., 3, 400M, 200M, 100M,1128

Domain Strategy 3, 400M 200M 100M 40M

CS
SL 6.71 7.01 7.39 8.77
KI 8.63 9.39 9.48 9.87

BIO
SL 7.29 6.61 8.16 10.34
KI 10.74 10.78 10.93 11.66

Table 3: The validation PPL on the source domain
(WB) after RoBERTaBASE_WB is post-trained on the tar-
get domain (CS / BIO) with self-learning (SL) and
knowledge inheritance (KI).

40M tokens, respectively, as done in the main pa- 1129

per. We observe that generally the validation PPL 1130

on each domain decreases with the training step 1131

growing, and the performance of KI is always bet- 1132

ter than self-learning. The improvement of KI over 1133

self-learning is further enlarged when there is less 1134

target domain data available, demonstrating that 1135

KI is more data-efficient and can work well in low- 1136

resource settings. In addition, self-learning exhibits 1137

overfitting problems when the data size of the target 1138

domain is relatively small, which is not observed 1139

under our KI framework, which means KI can mit- 1140

igate overfitting under low-resource settings. 1141
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Catastrophic Forgetting on the Source Domain.1142

Table 3 lists the validation PPL on the source do-1143

main (WB) after RoBERTaBASE_WB is post-trained1144

on the target domain (CS / BIO) with self-learning1145

(SL) and knowledge inheritance (KI) for 4k steps.1146

We show the results w.r.t. different sizes of domain1147

corpus (3, 400M, 200M, 100M and 40M tokens).1148

We observe that after domain adaptation, the vali-1149

dation PPL on the source domain increases, which1150

means PLMs may forget some key knowledge on1151

the source domain when learning new knowledge1152

in the target domain, i.e., the catastrophic forget-1153

ting problem. In addition, we find that the problem1154

is more evident for KI than self-learning. Although1155

we found empirically this problem can be largely1156

mitigated by “reviewing” the lessons learned pre-1157

viously, we argue that our main goal in this paper1158

is to let large PLMs efficiently and effectively ab-1159

sorb new knowledge, and we expect future work1160

to further explore how to mitigate the catastrophic1161

forgetting thoroughly.1162

Experiments on PLM adaptation towards mul-1163

tiple domains. In the main paper, we investigate1164

the PLM adaptation towards one domain. Tak-1165

ing a step further, we explore whether KI could1166

benefit PLM adaptation towards multiple domains1167

when there exist domain teachers. Specifically,1168

keeping the experimental settings the same, we1169

adapt RoBERTaBASE_WB to synthetic domain data1170

(BIO : CS = 1 : 1) to absorb knowledge from two1171

domains simultaneously (for KI, we assumeML1172

is trained with the optimal teacher selection strat-1173

egy, i.e., each teacher imparts the knowledge on1174

its own domain data). From Table 4, we observe1175

RoBERTaBASE_WB achieves improved performance1176

on both domains after being taught by two teachers1177

simultaneously. This demonstrates large PLMs can1178

simultaneously absorb knowledge from multiple1179

domains and thus become omnipotent. Compared1180

with self-learning, KI is still a better choice. How-1181

ever, simultaneous learning overfits training data1182

more easily and its performance on either domain1183

is no match for learning only one domain at a time.1184

A.6 Detailed Downstream Performances on1185

GLUE Tasks1186

Figure 5 visualizes in detail the downstream perfor-1187

mance of RoBERTaLARGE and RoBERTaBASE →1188

RoBERTaLARGE on the dev sets of six GLUE tasks1189

at different pre-training steps with an interval of1190

5k. It can be observed that the downstream perfor-1191

mance of RoBERTaBASE → RoBERTaLARGE rises 1192

faster than the baseline, which means it takes fewer 1193

pre-training steps for our KI framework to get a 1194

high score in downstream tasks. Aligned with pre- 1195

vious findings (Li et al., 2020b), we found MNLI 1196

and SST-2 to be the most stable tasks in GLUE, 1197

whose variances are lower. 1198

We also list the average GLUE performance for 1199

RoBERTaBASE → RoBERTaLARGE and the base- 1200

line RoBERTaLARGE in Table 5, from which we 1201

observe that the baseline at 70k-th step achieves 1202

almost the same GLUE performance as our method 1203

at 40k-th step, which means our framework saves 1204

around 42.9% FLOPs, much higher than the re- 1205

ported 27.3% FLOPs saved based on the pre- 1206

training PPL metric in the main paper. In addition, 1207

our method achieves almost the same GLUE perfor- 1208

mance as the baseline at the final step (125k) with 1209

only 70k steps, which means our framework saves 1210

44% FLOPs in total. Both the perplexity in the 1211

pre-training stage and performance in downstream 1212

tasks can be chosen as the evaluation metric for 1213

measuring the computational cost savings. How- 1214

ever, in this paper, we choose the former because it 1215

is more stable and accurate than the latter. We find 1216

empirically that some GLUE tasks like CoLA have 1217

higher variances than others, which might make 1218

the measurement inaccurate. 1219

Besides, when discussing the effects of model 1220

architectures in the main paper, we only show the 1221

validation PPL of each model during pre-training, 1222

we visualize the corresponding downstream perfor- 1223

mance (MNLI) in Figure 6, from which it can be 1224

observed that learning from teacher models with 1225

more parameters helps achieve better downstream 1226

performance at the same pre-training step. In gen- 1227

eral, we observe that, under our setting, the perfor- 1228

mance gain in downstream tasks is aligned with 1229

that reflected in validation PPL during pre-training. 1230

A.7 Teacher Models’ Validation PPL Curves 1231

during Pre-training for “Effects of 1232

Model Architecture” 1233

Figure 6 visualizes the validation PPL curves for 1234

all the teacher models used in the experiments 1235

on the effects of model architecture. The teacher 1236

models differ from RoBERTaBASE in either 1237

the depth or width. Specifically, we vary the 1238

depth in {4, 6, 8, 10} (denoted as {RoBERTaH_4, 1239

RoBERTaH_6, RoBERTaH_8, RoBERTaH_10}), 1240

and the width in {384, 480, 576, 672} (de- 1241
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Ntokens 3, 400M 200M 100M 40M

Metrics F1C PPLC F1B PPLB F1C PPLC F1B PPLB F1C PPLC F1B PPLB F1C PPLC F1B PPLB

SL 71.7 3.15 83.7 2.71 70.5 3.97 82.7 3.36 67.7 5.95 81.7 4.84 68.3 11.7 81.1 10.5
KI 72.2 3.15 83.9 2.70 71.8 3.42 83.1 2.92 69.8 3.90 82.6 3.32 69.1 5.70 81.3 4.64

Table 4: The results when RoBERTaBASE_WB is post-trained on the synthetic domain data with self-learning (SL)
or knowledge inheritance (KI). We report both validation PPL (PPLB / PPLC) and downstream performance (F1B
/ F1C) for BIO / CS domain. We observe that SL exhibits serious overfitting when data is relatively scarce.
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Figure 5: Downstream performance visualization on six GLUE tasks comparing RoBERTaLARGE and
RoBERTaBASE → RoBERTaLARGE. For CoLA, RTE, SST-2 and STS-B, we repeat fine-tuning for 5 times; for
MNLI and QNLI, we repeat fine-tuning for 3 times.

Step RoBERTaBASE RoBERTaBASE → RoBERTaLARGE

5k 61.8 68.8
10k 75.6 78.1
15k 79.3 81.5
20k 80.4 82.8
25k 81.7 83.6
30k 82.4 83.9
35k 83.1 84.1
40k 83.6 84.5
45k 82.8 85.2
50k 83.9 84.6
55k 83.4 85.2
60k 84.0 85.7
65k 84.1 85.3
70k 84.3 85.5
75k 85.0 85.8
80k 84.7 85.8
85k 84.8 86.2
... ... ...

125k 85.5 86.1

Table 5: Average GLUE performance comparing both
RoBERTaBASE and RoBERTaBASE → RoBERTaLARGE
at different pre-training steps.

noted as {RoBERTaD_384, RoBERTaD_480, 1242

RoBERTaD_576, RoBERTaD_672}). Generally, 1243

PLMs with larger model parameters converge 1244

faster and achieve better final performance. 1245

A.8 Effects of Data Privacy 1246

In the main paper, we investigate the effects of both 1247

the data size and data domain for the pre-training 1248

data. However, even if both size and domain of 1249

MS andML’s data are ensured to be the same, it 1250

may be hard to retrieve the pre-training corpus used 1251

by MS due to privacy reasons, with an extreme 1252

case: DL ∩ DS = ∅, which is dubbed as data pri- 1253

vacy issue. To evaluate its effects, we experiment 1254

in an extreme case where the pre-training corpus of 1255

MS andML has no overlap at all. To avoid the in- 1256

fluences of size and domain, we randomly split the 1257

WB domain training corpus D into two halves (DA 1258

andDB) and pre-train two teacher models (denoted 1259

as RoBERTaMEDIUM_A and RoBERTaMEDIUM_B) on 1260
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Figure 6: Left & Middle: downstream performances corresponding to the experiments on effects ofMS’s model
architecture (width (left) & depth (middle)). Right: validation PPL during pre-training for the teacher models used
in experiments of effects of teacher model architecture.
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Figure 7: Effects of data privacy.

them. After pre-training, both of them achieve1261

almost the same final PPL (4.99) on the same1262

validation set. They are then inherited by1263

the student model RoBERTaBASE on DB (de-1264

noted as RoBERTaMEDIUM_A → RoBERTaBASE_B1265

and RoBERTaMEDIUM_B → RoBERTaBASE_B),1266

which is exactly the pre-training corpus of1267

RoBERTaMEDIUM_B and has no overlap with that1268

of RoBERTaMEDIUM_A. We also choose ML1269

that conducts pure self-learning on DB as the1270

baseline (denoted as RoBERTaBASE_B). It is1271

observed from Figure 7 that, there is little1272

difference between the validation PPL curves1273

of RoBERTaMEDIUM_A → RoBERTaBASE_B and1274

RoBERTaMEDIUM_B → RoBERTaBASE_B, indicat-1275

ing that whether the pre-training corpus of MS1276

andML has overlap or not is not important as long1277

as they share the same domain. This is extremely1278

meaningful when organizations aim to share the1279

knowledge of their trained PLMs without exposing1280

either the pre-training data or the model parame-1281

ters due to privacy concerns. In other words, as1282

long as the recipients prepare pre-training data in1283

similar domain, the knowledge can be successfully1284

inherited by receivingMS’s predictions.1285

B Pre-training Hyper-parameters 1286

Table 6 describes the architectures we used for 1287

all models in this paper, covering the details for 1288

the total number of trainable parameters (nparams), 1289

the total number of layers (nlayers), the number of 1290

units in each bottleneck layer (dmodel), the total 1291

number of attention heads (nheads), the inner hid- 1292

den size of FFN layer (dFFN) and the learning rate 1293

when batch size is set to 2, 048 (lr). We set the 1294

dropout rate for each model to 0.1, weight decay 1295

to 0.01 and use linear learning rate decay. We 1296

adopt Adam as the optimizer, warm up learning 1297

rate for the first 10% steps then linearly decay it. 1298

The hyper-parameters for Adam optimizer is set to 1299

1 × 10−6, 0.9, 0.98 for ε, β1, β2, respectively. As 1300

mentioned in the main paper, all experiments are 1301

done in the same computation environment with 1302

8 NVIDIA 32GB V100 GPUs and it takes around 1303

1 week to pre-train RoBERTaBASE and 2 weeks to 1304

pre-train RoBERTaLARGE. It has been shown by pre- 1305

vious work (Kaplan et al., 2020) that, within a rea- 1306

sonably broad range, the validation PPL is not sen- 1307

sitive to these parameters. All the pre-training im- 1308

plementations are based on fairseq2 (Ott et al., 1309

2019) (MIT-license). 1310

Table 7 describes the total number of pre-training 1311

steps for each (ML, MS) pair chosen in our ex- 1312

periments. Within a reasonably broad range, the 1313

performance of KI is not sensitive to its choice. 1314

C Fine-tuning Hyper-parameters 1315

Table 8 describes the hyper-parameters for ACL- 1316

ARC, CHEMPROT and GLUE tasks. The selec- 1317

tion of these hyper-parameters closely follows (Liu 1318

et al., 2019) and (Gururangan et al., 2020). The 1319

implementations of ACL-ARC and CHEMPROT 1320

2https://github.com/pytorch/fairseq
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Model Name nparams nlayers dmodel nheads dFFN lr (bs = 2, 048)

RoBERTaMEDIUM 73.5M 9 576 12 3072 5.0× 10−4

RoBERTaD_d - 12 d 12 3072 5.0× 10−4

RoBERTaH_h - h 768 12 3072 5.0× 10−4

RoBERTaBASE 125M 12 768 12 3072 5.0× 10−4

RoBERTaBASE_PLUS 211M 18 864 12 3600 3.5× 10−4

RoBERTaLARGE 355M 24 1024 16 4096 2.5× 10−4

GPTMEDIUM 72.8M 9 576 12 3072 5.0× 10−4

GPTBASE 124M 12 768 12 3072 5.0× 10−4

GPTBASE_PLUS 209M 18 864 12 3600 3.5× 10−4

Table 6: Model architectures for all the models we used in this paper.

ML MS Steps of teacher-guided learning

RoBERTaBASE

RoBERTaMEDIUM 35k
RoBERTaD_384 28k
RoBERTaD_480 40k
RoBERTaD_576 70k
RoBERTaD_672 85k
RoBERTaH_4 22k
RoBERTaH_6 35k
RoBERTaH_8 55k
RoBERTaH_10 65k

RoBERTaBASE_PLUS RoBERTaBASE 55k

RoBERTaLARGE

RoBERTaBASE 40k
RoBERTaBASE_PLUS 65k

RoBERTaBASE → RoBERTaBASE_PLUS 75k

GPTBASE GPTMEDIUM 10k

GPTBASE_PLUS GPTBASE 15k

Table 7: The total number of steps for teacher-guided learning for different (ML,MS) pairs.

are based on (Gururangan et al., 2020)3; the1321

implementations of GLUE tasks are based on1322

fairseq4 (Ott et al., 2019) (MIT-license).1323

D Domain Proximity of WB, CS and BIO1324

Table 9 lists the domain proximity (vocabulary1325

overlap) of WB, CS and BIO used in this paper.1326

E Evaluation Metrics for the1327

Computational Costs Saved1328

As stated in the main paper, training1329

RoBERTaLARGE under the knowledge inheri-1330

tance framework saves roughly 27.3% pre-training1331

computations (FLOPs) at the step of 55k, where1332

the teacher-guided learning ends. Since we trained1333

all models under the same hardware environment,1334

choosing the evaluation metric of FLOPs is1335

equivalent to wall-clock time, i.e., our framework1336

saves RoBERTaLARGE roughly 27.3% training1337

3https://github.com/allenai/
dont-stop-pretraining

4https://github.com/pytorch/fairseq

time, which is around 28.4 hours in our setting (8 1338

V100 GPU for training RoBERTaLARGE). Since for 1339

both our method and the baseline method, it takes 1340

nearly the same training time/FLOPs for each step, 1341

thus, the “training-time/FLOPs vs. PPL figure” 1342

can be easily obtained by stretching the horizontal 1343

axis linearly in “step vs. PPL figure”. 1344

In addition, since the training time of PLMs 1345

can vary greatly in different hardware environ- 1346

ments, there are many factors that should be con- 1347

sidered, e.g., the choice of the GPU, the number of 1348

GPU used, whether PLMs are trained distributedly 1349

across multiple servers (synchronizing gradients 1350

for large PLMs may involve much longer time be- 1351

tween different servers for communication), etc. 1352

Therefore, we believe the metric of FLOPs is more 1353

suitable for future research comparison. 1354

F Comparison between Knowledge 1355

Inheritance and Progressive Training 1356

“Progressive Training” first trains a small PLM, and 1357

then gradually increases the depth or width of the 1358
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HyperParam ACL-ARC & CHEMPROT GLUE

Learning Rate 2× 10−5 {1× 10−5, 2× 10−5, 3× 10−5}
Batch Size 256 {16, 32}
Weight Decay 0.1 0.1
Max Epochs 10 10
Learning Rate Decay Linear Linear
Warmup Ratio 0.06 0.06

Table 8: Hyper-parameters for fine-tuning RoBERTa on ACL-ARC, CHEMPROT and GLUE.

WB CS BIO

WB 100% 19.1% 25.6%
CS 19.1% 100% 22.5%
BIO 25.6% 22.5% 100%

Table 9: Domain proximity (vocabulary overlap)
among three domains (WB, CS, BIO) discussed in this
paper. Following (Gururangan et al., 2020), we create
the vocabulary for each domain by considering the top
10k most frequent words (excluding stopwords).

network based on parameter initialization. It is an1359

orthogonal research direction against our “knowl-1360

edge inheritance” framework, and has many limi-1361

tations while our knowledge inheritance does not1362

have as follows:1363

Architecture Mismatch. Existing parameter1364

reusing methods (Gong et al., 2019; Gu et al.,1365

2021) require that the architectures of both small1366

PLMs and large PLMs are matched to some ex-1367

tent, however, our knowledge inheritance does not1368

have such a requirement. For example, Gong et al.1369

(2019); Gu et al. (2021) either requires the number1370

of layers, or the hidden size / embedding size of a1371

large PLM to be the integer multiples of that of a1372

small PLM. Hence, it is not flexible to train larger1373

PLMs with arbitrary architectures, making param-1374

eter reusing hard to be implemented practically.1375

Besides, there are more and more advanced non-1376

trivial Transformer modifications appearing (we1377

refer to Lin et al. (2021) for details), which change1378

the inner structures of a standard Transformer, e.g.,1379

pre-normalization, relative embedding, sparse at-1380

tention, etc. It is non-trivial to directly transfer1381

the parameters between two PLMs if they have dif-1382

ferent non-trivial inner structures. Nevertheless,1383

our knowledge inheritance framework will not be1384

influenced by such architectural mismatches.1385

Inability for Multi-to-one Knowledge Inheri-1386

tance. It is non-trivial to support absorbing1387

knowledge from multiple teacher models by jointly1388

reusing their model parameters. Instead, it is easy1389

to implement for knowledge inheritance. As shown 1390

in our experiments, we demonstrate that under our 1391

framework, large PLMs can simultaneously absorb 1392

knowledge from multiple teachers. 1393

Inability for Continual Knowledge Inheritance. 1394

Parameter reusing is hard to support continual 1395

learning, which makes large PLMs absorb knowl- 1396

edge from small ones in a lifelong manner. In 1397

real-world scenarios, numerous PLMs of differ- 1398

ent architectures are trained locally with different 1399

data. These small PLMs can be seen as domain 1400

experts, and it is essential that larger PLMs can 1401

continuously benefit from these existing PLMs ef- 1402

ficiently by incorporating their knowledge so that 1403

larger PLMs can become omnipotent. As described 1404

before, it is easy to implement for our framework 1405

and we have demonstrated the effectiveness. 1406

Model Privacy. Parameter reusing requires the 1407

availability of the parameters of an existing PLM, 1408

which may be impractical due to some privacy is- 1409

sues, e.g., GPT-3 only provides API access for 1410

prediction instead of the model parameters. In- 1411

stead, our knowledge inheritance framework does 1412

not presume access to an existing model parame- 1413

ter since the predictions of the small model can be 1414

pre-computed and saved offline. This superiority 1415

will further make it possible for API-based online 1416

knowledge transfer. 1417

G Comparing Label Smoothing and 1418

Knowledge Inheritance 1419

Previous work shows the relation between label 1420

smoothing and knowledge distillation to some ex- 1421

tent (Shen et al., 2021). To demonstrate that the 1422

success of our KI is not because of learning from 1423

a more smoothed target, we conduct experiments 1424

comparing both label smoothing and our KI in Ta- 1425

ble 10. Specifically, for label smoothing, PLMs 1426

optimize a smoothed target ySi = (1 − α) ∗ yi + 1427

α ∗ ~1/(K − 1), where α = 0 denotes learning 1428

from scratch with no label smoothing, larger α 1429
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Step 20k 40k 60k 80k 100k

α = 0.3 8.68 7.29 6.90 6.57 6.26
α = 0.2 7.27 6.47 5.95 5.68 5.46
α = 0.1 6.71 5.74 5.35 5.06 4.86
α = 0 6.13 5.21 4.83 4.57 4.36

KI 5.69 5.17 4.78 4.52 4.32

Table 10: Validation loss for training RoBERTaBASE
with different strategies. KI denotes our knowledge in-
heritance framework, where RoBERTaMEDIUM is chosen
as the teacher.

means a more smoothed target for PLMs to learn1430

from, K denotes the vocabulary size. Specifically,1431

we choose α from {0.1, 0.2, 0.3}. It can be con-1432

cluded from the results in Table 10 that adding1433

label smoothing into the pre-training objectives1434

of PLMs leads to far worse performance than the1435

vanilla baseline, which shows that the improve-1436

ments of our knowledge inheritance framework are1437

non-trivial: larger PLMs are indeed inheriting the1438

“knowledge” from smaller ones, instead of bene-1439

fiting from optimizing a smoothed target, which1440

imposes regularization. To the best of our knowl-1441

edge, there is little previous work that investigates1442

the feasibility of label smoothing in the field of pre-1443

trained language models, we expect future work to1444

discuss it in detail.1445

H Limitations and Future Work1446

Being the first to systematically propose the idea of1447

“knowledge inheritance for PLMs”, we hope this1448

work could launch an entirely new research area1449

and enlighten further research attempts. Therefore,1450

this paper focus on providing a general framework1451

and a systematic empirical analysis.1452

There are some limitations which are not ad-1453

dressed in this paper and left as future work: (1)1454

hyper-parameter choice: the total number of pre-1455

training steps of teacher-guided learning is not a1456

known prior and we need to change the hyper-1457

parameter αT under different circumstances. How-1458

ever, we found empirically that estimating the op-1459

timal choice of αT is relatively easy, and within a1460

reasonably broad range, the performance of KI is1461

not sensitive to the choice of αT . (2) Catastrophic1462

forgetting problem: when adapted to a new domain,1463

PLMs exhibit catastrophic forgetting problems on1464

the source domain, which is not well-addressed1465

in our paper. (3) Data privacy problem: in the1466

main paper, we demonstrate that the knowledge1467

of an existing PLM can be successfully extracted1468

by saving its predictions on corpus unseen during 1469

its pre-training as long as the same domain is en- 1470

sured. However, it does not mean the privacy of 1471

pre-training corpus used by the existing PLM is 1472

100% preserved. In fact, it is still under-explored 1473

whether some malicious adversarial attacks can be 1474

applied to access the private data, causing poten- 1475

tial privacy concerns. We expect future work to 1476

explore this direction and design corresponding 1477

defense strategies. 1478

In general, we believe it a promising direction to 1479

share and exchange the knowledge learned by dif- 1480

ferent models and continuously promote their per- 1481

formances. In future, we aim to explore the follow- 1482

ing directions. (1) The efficiency of KI, i.e., given 1483

limited computational budget and pre-training cor- 1484

pus, how to more efficiently absorb knowledge 1485

from teacher models. Potential solutions include 1486

denoising teacher models’ predictions and utilizing 1487

more information from the teacher, i.e., the inner 1488

hidden units computed by the teacher. How to se- 1489

lect the most representative data points for KI is 1490

also an interesting topic. (2) The effectiveness of 1491

KI under different circumstances, i.e., how can KI 1492

be applied if the teachers and the students are pre- 1493

trained on different vocabularies (e.g., from BERT 1494

to RoBERTa), languages, pre-training objectives 1495

(e.g., from GPT to BERT) and even modalities. 1496

In addition, in the main paper, we systematically 1497

analyze the effects of pre-training setting of the 1498

teacher model for KI. However, in real world sce- 1499

narios, we need to consider these effects jointly to 1500

design the optimal teacher selection strategy. (3) 1501

How is PLMs trained with KI qualitatively differ- 1502

ent from the non-KI PLM apart from being faster 1503

to train, e.g. is KI PLM more robust to adversarial 1504

attacks? 1505

Finally, we believe it is vital to use fair bench- 1506

marking that can accurately and reliably judge 1507

each KI algorithm. Towards this goal, we pro- 1508

pose the following suggestions for future work: (1) 1509

Conduct all experiments under the same computa- 1510

tion environment and report the pre-training hyper- 1511

parameters and hardware deployments in detail for 1512

future comparisons. (2) Evaluate the downstream 1513

tasks with multiple different random seeds and 1514

choose tasks (e.g. MNLI) that give relatively stable 1515

and consistent results, which could serve as better 1516

indicators for PLMs’ effectiveness. In addition, it 1517

is also essential that PLMs are tested on diverse 1518

downstream tasks which evaluate PLMs’ different 1519

19



abilities. (3) Save the checkpoint more frequently1520

during pre-training and evaluate the downstream1521

performance, which can better indicate the trend of1522

PLMs’ effectiveness. (4) Open-source all the codes1523

and model parameters for future comparisons and1524

deployments. In conclusion, we hope our efforts1525

could facilitate future research attempts to improve1526

the community’s understanding and development1527

of this important research direction.1528
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