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ABSTRACT

Accurate prediction of extreme wind velocities has substantial significance in in-
dustry, particularly for the operation management of wind power plants. Although
the state-of-the-art data-driven models perform well for general meteorological
forecasting, they may exhibit large errors for extreme weather—for example, sys-
tematically underestimating the magnitudes and short-term variation of extreme
winds. To address this issue, we conduct a theoretical analysis of how the data
frequency spectrum influences errors in extreme wind prediction. Based on these
insights, we propose a novel loss function that incorporates a gradient penalty
to mitigate the magnitude shrinkage of extreme weather. To capture more pre-
cise short-term wind velocity variations, we design a novel structure of physics-
embedded machine learning models with frequency reweighting. Experiments
demonstrate that, compared to the baseline models, our approach achieves signifi-
cant improvements in predicting extreme wind velocities while maintaining robust
overall performance.

1 INTRODUCTION

Wind velocity field prediction is crucial to both academic research and industrial practice (Masson-
Delmotte et al., 2021) (Kunz et al., 2010). For instance, the wind power plants require accurate
predictions of the wind speed magnitude to support accurate real-time production estimation and
safe operational control, since the output power is approximately proportional to the wind magni-
tude cubed (v3), and the wind turbines will cease to work for extremely large wind (Sabzehgar et al.,
2020) (Wan et al., 2010). Traditionally, solving dynamic systems by mathematical methods, Numer-
ical Weather Prediction (NWP) has been the workhorse of wind velocity prediction (Coiffier, 2011).
However, recent advances in deep learning have revolutionized weather prediction, with models like
FourCastNet (Pathak et al., 2022) and Pangu-Weather (Bi et al., 2022) significantly outperforming
traditional NWP methods (Coiffier, 2011). Based on an extensive amount of data, these models are
specialized in producing accurate overall predictions of the wind velocity field.

One of the key challenges in wind velocity prediction is to accurately predict the amplitude changes
of the extreme wind. General data-driven models may be struggling with this challenge if they
are trained by common loss functions (like MSE) based on regular wind speed datasets (Olivetti &
Messori, 2024). For example, many data-driven forecasters systematically underestimate the ampli-
tudes of extreme winds. This bias persists even when overall (non-extreme) skill is strong, leading
to underestimated risks and missed rapid ramps in operational contexts. Therefore, addressing this
challenge in extreme wind velocity prediction is the main focus of this paper.

There exist several data-driven models specifically designed for extreme weather predictions. Some
models employ classical deep learning models such as RNN (Prasetya & Djamal, 2019), CNN
(Zhang et al., 2019), and LSTM (Gao et al., 2018) to capture spatiotemporal dependencies in weather
data. Many other models utilize generative data augmentation methods, including variational au-
toencoder (VAE) (Vega-Bayo et al., 2024) and diffusion models (Zhong et al., 2024), to address
data scarcity through weather pattern simulation. Despite these advances, critical gaps remain for
extreme wind predictions: (i) most approaches offer little theoretical (or even intuitive) explanation
of why errors arise significantly for extreme winds; (ii) many methods implicitly rely on abundant
training data that include extreme cases, whereas such cases are intrinsically scarce in real datasets;
(iii) to better capture the dynamics of sharply-changing pattern, the data-driven models may re-
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quire much more complicated model structure than overall prediction; and (iv) depending mainly on
large data, some models may be insufficient for capture the intrinsic dynamics and still suffer from
uncontrollable regional errors for extreme weather prediction (Zhou et al., 2024).

To resolve the challenge, we conduct a detailed theoretical analysis of the error behavior in the
frequency domain. Based on proper simplification, we separate the traditional mean-squared error
(MSE) into three terms: amplitude shrinkage error, pattern translation error, and noise. We show that
while training with standard MSE as a loss function, small pattern deviations will lead to significant
amplitude shrinkage for the high-frequency wind field components, causing the underestimation
of extreme amplitude and blurred short-term variability in prediction. Inspired by the analysis,
we propose a gradient-penalized loss function upweighting the amplitude shrinkage error, which
encourages the model to capture the change of wind velocity magnitude more accurately. To more
effectively reduce the pattern translation error, as well as improve parameter efficiency, we design
a physics-embedded structure for the neural network, with a backbone of the Navier-Stokes (NS)
equation. The equations reveal how the motion of a fluid, such as the atmosphere, is affected by a
combination of external forces, pressures within the fluid, and viscous effects (Marion & Temam,
1998). Moreover, we utilize a frequency separation and reweighting mechanism to coordinate the
impact of high- and low-frequency components to the loss function. Based on the above frequency-
informed modification of the loss function and neural network structure, our model overcomes the
amplitude shrinkage challenge in wind prediction and achieves a significant improvement in extreme
wind velocity prediction accuracy.

Our research makes the following significant contributions to the field of extreme wind prediction:

• Frequency-theoretic explanation of underestimation. We provide a Fourier-domain
analysis showing how small spatial shifts and scaling yield a wavenumber-dependent MSE,
theoretically accounting for underestimation of extreme amplitudes and smearing of short-
term variability.

• Gradient-penalized objective for extremes. We propose a simple, implementation-ready
loss that augments MSE with gradient matching, equivalently reweighting high-frequency
errors to mitigate spectral shrinkage and recover sharp ramps.

• Frequency separation & reweighting with a physics-embedded backbone. We design
a spectral pipeline (Fourier masking, band-specific branches, learnable fusion) atop a sim-
plified NS block with continuity regularization, targeting precise short-horizon dynamics
while preserving stability and data efficiency.

• Empirical validation on regional extremes. Across diverse regions and strong baselines
(including classical PINN variants), our method substantially improves extreme-wind pre-
diction while maintaining robust overall performance under normal conditions.

The remainder of this paper is structured as follows: Section 2 includes problem formulation, phys-
ical backgrounds, and our theoretical analysis on predictive error. Section 3 displays our methodol-
ogy, including the novel loss function formulation and the new network design. Section 4 describes
our experiments and corresponding results. Section 5 contains the conclusion with limitations and
future directions. Detailed specifications are provided in the appendices.

2 PRELIMINARIES AND INSIGHTS

2.1 PROBLEM FORMULATION

In this paper, we mainly consider the wind velocity field prediction within certain rectangular re-
gions, which can be discretized into N × M points. Let u(x, t) = [v(x, y, t), w(x, y, t)] de-
note the wind velocity field in this region, where x = (x, y) is the two-dimensional spatial do-
main and t is the temporal domain;v and w represent the velocity components in the longitude
and latitude directions, respectively. We denote historical wind data sequences by u[t1:tN ] =
{u(x, y, t1),u(x, y, t2), . . . ,u(x, y, tN )}.

Let ũ(x, t) denote the prediction of u given by a certain model at time t. Then our objective to
predict the wind velocity field at the next time can be expressed as follows:

ũtN+1
= ũ(x, y, tN+1) = fθ(u[t1:tN ], other data), (1)
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where fθ is the model we intend to train, and ”other data” contains other data sequences that might
also contribute to wind velocity prediction (like surface pressure, which will be explained later). The
error between u and ũ evaluates the performance of the predictive model.

Temporal and Spatial Scale for Extreme Prediction. In atmospheric forecasting, temporal and
spatial scales are tightly coupled: short-term predictions are typically associated with short-range
dynamics (Jung & Broadwater, 2014) (Zhu et al., 2019). In this paper, we adopt the convention
of extreme wind velocity prediction that focuses on short-period and regional prediction, while the
temporal and spatial resolutions are also higher compared to global weather forecasting to resolve
rapidly evolving, small-scale features.

2.2 PHYSICAL BACKGROUNDS

As a fundamental assumption in meteorology, atmospheric systems’ dynamics generally satisfy the
Navier-Stokes (NS) equations (Holton & Hakim, 2013). The Navier-Stokes equations are a set
of nonlinear partial differential equations (PDEs) that describe the relationship between the motion
of a fluid and the forces acting upon it. For a two-dimensional domain with wind velocity field
u = [v(x, y, t), w(x, y, t)], the NS equation is shown as follows:

∂u

∂t
= −u · ∇u− 1

ρ
∇P + ν∇2u+ F (2)

where u · ∇u is the advective acceleration; − 1
ρ∇P refers to the pressure gradient force; ν∇2u

denotes the viscous friction (ν: kinematic viscosity); and F is the external body forces. The body
force term may vary in different scenarios, with typical examples including gravity and the Coriolis
force (Holton & Hakim, 2013).

2.3 INSIGHTS FROM FREQUENCY DOMAIN ANALYSIS

When solving and analyzing PDEs, a standard method is to apply the Fourier transform (often with
respect to spatial domains) to convert the PDEs into ODEs. Let ·̂ denote the Fourier operator, and
k = (kx, ky) denote the frequency domain coordinates. For example, applying the Fourier transform
to a simplified version of the NS equation equation 2 with advection and diffusion:

∂tu(x, t) +U·∇u(x, t) = ν∇2u(x, t) + f(x, t),

we will get
∂tû(k, t) + i (k·U) û(k, t) = − ν∥k∥2û(k, t) + f̂(k, t), (3)

which is an ODE with respect to û. Equation equation 3 shows that the advection of air may
appear as a phase shift e−ik·U t, corresponding to a spatial translation in physical space. Moreover,
diffusion may induce amplitude damping at a rate proportional to ∥k∥2 (stronger for high frequency).

Motivated by this idea, we apply a 2-dimensional Fourier transform to the wind velocity fields
and analyze how the frequency spectrum affects the prediction error. By equation equation 3 and
statistical convention, we assume that the prediction error is mainly caused by three factors: scaling,
translation, and noise. Therefore, the relationship between ũ and u can be illustrated as follows:

ũ(x) = au(x+∆) + ε(x), (4)

where a is the scaling magnitude of wind speed amplitude, and ∆ corresponds to the deviation
amount of the data pattern. We may also assume ε ∼ N (0, σ2) to be a Gaussian noise.

Now, let’s consider the mean squared error (MSE) of the prediction and the ground-truth. By
Rayleigh’s energy theorem, we can show that the MSE of the original data in the spatial domain
is equivalent to the MSE of the Fourier-transformed data in the (double) frequency domain:

MSE(u, ũ) =
1

NM

∑
x

|u− ũ|2 =
1

(NM)2

∑
k

∣∣∣û− ˆ̃u
∣∣∣2 .

We denote θk = 2π
(

kx∆x

N +
ky∆y

M

)
, and we assume θk is sufficiently small. Then the Fourier

transform of the prediction is ˆ̃u(k) = aeiθk û(k) + ε(k), and the expectation of the MSE will be:
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E[MSE(u, ũ)] = C1

∑
k

(
1− aeiθk

)2 ||û(k)||2 + σ2;

= C1

∑
k

(
a2 + 1− 2aE[cos θk]

)
· ||û(k)||2 + σ2;

= C1

∑
k

{a− E[cos θk]}2||û(k)||2︸ ︷︷ ︸
scaling error

+ {1− E2[cos θk]}||û(k)||2︸ ︷︷ ︸
translation error

+ σ2︸︷︷︸
noise

,

(5)

where C1 is a constant depend on N and M .

As the last line of equation 5 shows, the MSE has been separated into three components: The scaling
error reflects the magnitude difference between the prediction and the ground-truth; the translation
error is caused by the pattern deviation ∆; the noise is assumed to be independent of both a and ∆.

The Cause of Amplitude Shrinkage. The scaling error term is highly related to the pattern de-
viation factor ∆, and the theoretically optimal amplitude scaling will be a = E[cos θk]. Given the
existence of the pattern derivation ∆, we will have E[cos θk] < 1, causing the shrinkage in the
amplitude of the predicted wind speed. Therefore, we also name the scaling error as shrinkage
error.

Moreover, if we assume that ∆ is small, then the optimal a will be:

aopt = E[cos θk] = 1− C2(k ·∆)2

2
+ o(||k||2),

which is decreasing as k becomes higher and C2 is a scalar. Therefore, the amplitude shrinkage
phenomenon will theoretically tend to be more severe for high-frequency spectrum data.

When trained with mean squared error (MSE), the estimator reduces the squared discrepancy be-
tween the prediction and the target, effectively acting on a decomposition of error into translation,
scaling, and stochastic noise. If model capacity or optimization is insufficient to avoid the translation
component (∆ > 0), gradients can still decrease the objective by attenuating the field’s amplitude
(i.e., driving a < 1). This mechanism explains why general MSE-trained models may underesti-
mate wind-speed amplitudes and dampen short-term variability, thereby degrading performance on
extreme-wind prediction. These results yield three practical insights for improving extreme-wind
prediction:

• Upweight scaling error. Increase the relative weight of the amplitude (scaling) component
in the loss to counteract shrinkage.

• Reduce translation error. Incorporate mechanisms that explicitly address misalignment
∆ so the optimizer need not compensate by damping amplitudes.

• Frequency-aware weighting. Reweight residuals by frequency spectrums to mitigate
high-frequency attenuation and preserve short-term variability.

3 METHODOLOGY

Guided by the insights from Section 2 on frequency-domain error behavior, we propose a new
gradient-penalized loss function that mitigates MSE-induced amplitude shrinkage under pattern de-
viation, and we design a neural framework that combines a physics-embedded structure (simplified
Navier–Stokes backbone with continuity regularization) and frequency separation & reweighting
(Fourier masking with band-specific processing and learnable fusion). The model architecture is
shown in Figure 1.

3.1 GRADIENT-PENALIZED LOSS FUNCTION

Building on the previous analysis in section 2.3, the amplitude shrinkage phenomena under MSE
mainly arise from pattern deviation between the predicted and true wind fields. One idea to solve the
problem is to modify MSE by a correction term, which should be insensitive to such deviation, but
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capture the field’s general spatial change. One of the intuitive approaches is encouraging the norm
of the prediction gradient ∥∇ũ∥ to match that of the ground-truth ∥∇u∥. Therefore, we propose our
novel Gradient-Penalized Loss Function as follows:

Lgp(ũ,u) = MSE(ũ,u) + λ
∣∣∣ ∥∇ũ∥2 − ∥∇u∥2

∣∣∣. (6)

The coefficient λ > 0 balances pointwise fit against global variation matching: a larger λ more
strongly discourages amplitude shrinkage and preserves high-frequency variability; a smaller λ ap-
proaches plain MSE.

Connection with error decomposition. Due to the amplitude shrinkage phenomena studied in
2.3, ∥∇ũ∥2 is likely less than ∥∇u∥2 in practice. When this happens, minimizing equation equa-
tion 6 is equivalent to minimizing the following simplified version:

Lgp(ũ,u) = MSE(ũ,u)− λ∥∇ũ∥2. (7)

Applying the Fourier transform to ∇ũ and using the Rayleigh’s energy theorem as in 2.3, we get the
following correspondence:

∥∇ũ∥2 ∝
∑
k

∥k∥2
∥∥̂̃u(k)∥∥2. (8)

On the other hand, suppose that ∆ is sufficiently small, then the decomposition equation equation 5
will also yield

E[MSE] ≈ C1

∑
k

(a− 1)2∥û(k)∥2 + C2
2 a cos ⟨k,∆⟩∥∆∥2∥k∥2 ∥û(k)∥2 + σ2,

where the second term is proportional to
∑

k cos ⟨k,∆⟩∥∆∥2

a ∥k∥2 ∥ˆ̃u(k)∥2, and thus proportional to
∥∇ũ∥2 in equation 8. Therefore, the essential effect of the gradient-penalization can be explained as
follows: By tuning λ, the loss Lgp increases the effective weight on shrinkage error relative to pattern
translation error. Consequently, when optimization hits a bottleneck in reducing the translation
mismatch, the model will be more likely to optimize on the shrinkage error and thus improve the
extreme prediction performance.

3.2 PHYSICS-EMBEDDED STRUCTURE

To more effectively reduce the translation error highlighted at the end of 2.3, we introduce a physics-
embedded structure that leverages the Navier–Stokes (NS) equations as inductive bias. The trans-
lation error predominantly stems from uncertainty in the direction and magnitude of the wind-field
shift at the next time step. Traditional neural networks do not impose explicit constraints on such
pattern transport: they attempt to learn it implicitly via the loss. In contrast, using an (appropriately
simplified) physics embedded backbone provides a first-principles estimate of the dominant trans-
port and deformation of the field (e.g., advection and diffusion), yielding a rough but informative
pattern forecast. This explicit physical guidance both constrains translation error more directly and
reduces the burden on the learnable components, thereby lowering parameter and training costs.

Inspired by equation equation 2, we embed the Navier-Stokes equation into our neural network and
name it as NS Operator. The operator is decomposed into four components:

1. Advective Operator: implements the nonlinear transport term u · ∇u.

2. Viscous Operator: implements viscous diffusion ν∇2u arising from internal friction.

3. Pressure Operator : accounts for the pressure-gradient force 1
ρ∇P . Here, we will utilize

the pressure data P [t1 : tN ]. However, if the pressure data is not obtainable, we may con-
sider the pressure force as implicit and merge this operator into the Body-Force operator.

4. Body-Force Operator(conventional neural networks): because explicit short-term formu-
lations of external forces are often imprecise or unavailable, we model the body force with
learnable neural networks that capture dynamics not explained by the above three operators.

5
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Figure 1: The full architecture of our model. The input data are the wind velocity field u and the
pressure field P . The wind velocity field will be successively processed by the Frequency filter,
temporal attention module, and the NS operator to obtain the prediction of high- and low-frequency
data. Then the model will combine the two predictions to produce the final prediction results.

Remark that the body force operator is equivalent to conventional neural networks and can adopt
various structures as other pure data-driven models (but likely contains fewer layers and parameters).
During training, the first three operators will learn to generate a rough pre-prediction based on
dynamic properties and to ensure the pattern translation magnitude and direction lie in a reasonable
range, while the Body-Force operator will learn how to capture the exact wind field dynamics based
on the pre-prediction given by the other three operators.

3.3 FREQUENCY DOMAIN SEPARATION AND REWEIGHTING

Guided by the insights from section 2.3, we adopt a frequency-aware weighting strategy to counter
high-frequency attenuation and preserve short-term variability. Concretely, we design a frequency
filtering & reweighting scheme that (i) splits the wind field into low- and high-frequency compo-
nents and (ii) processes and reweights these components respectively so the model can retain rapid,
localized dynamics without sacrificing large-scale coherence.

Fourier Filter. We employ a Fourier filter (Alleyne & Cawley, 1991) (Münch et al., 2009) to
decompose wind velocity data u into low-frequency (uL) and high-frequency (uH ) components.
The filter consists of three main steps: 1) Fourier Transform: Converts wind velocity data from the
positional domain to the spatial frequency domain. 2) Frequency Masking: Separates high- and
low-frequency components using appropriate masks. 3) Inverse Fourier Transform: Transforms the
filtered components back to the positional domain. The process is mathematically represented as
follows:

û(kx, ky) = F(u) =

N−1∑
x=0

M−1∑
y=0

u(x, y) · e−2πi
(

kxx
N +

kyy

M

)
;

ûf (kx, ky) = û(kx, ky) · M(kx, ky);

uf (x, y) =
1

NM

N−1∑
kx=0

M−1∑
ky=0

ûf (kx, ky) · e
2πi

(
kxx
N +

kyy

M

)
,

where û(kx, ky) is the Fourier-transformed wind velocity at frequency (kx, ky), M(kx, ky) denotes
the frequency mask (high or low), and uf (x, y) refers to the filtered data (uL or uH ). This de-
composition enables the model to focus on distinct frequency components, enhancing its ability to
capture both large-scale trends and rapid, localized variations.

Frequency-Based Temporal Attention To refine the dynamic modeling, we design temporal at-
tention mechanisms for both high- and low-frequency data sequences. Inspired by SENet (Cheng
et al., 2016), temporal attention contains two operations: Squeeze, which compresses the data of
each time slot into a value; and Excitation, which produces weight sequences that reflect the relative
importance of each time slot for future predictions. The temporal attention is applied at different res-
olutions for high- and low-frequency components, respectively. Since high-frequency data are more
critical for short-term dynamics, they are processed with higher temporal resolution (shorter time

6
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intervals). Conversely, low-frequency sequences, which correspond to long-term trends, are han-
dled at lower temporal resolution. This differentiation ensures that the model effectively captures
the unique characteristics of both short-term and long-term dynamics.

4 EXPERIMENTAL RESULTS

We evaluated our approaches through three key experiments: 1. Effect of Gradient Penalized Loss
Function: Our novel loss function effectively resolves the amplitude shrinkage problem in extreme
wind prediction. 2. Main Prediction Results: Our model outperformed baselines in both overall
accuracy and predictions in extreme wind regions. 3. Different Frequency Masking Levels: The
results showed that intermediate masking thresholds achieved the best balance between high- and
low-frequency information, leading to more accurate predictions.

Data. We evaluate our approaches on meteorological data sampled from the 5th generation of
the ECMWF reanalysis (ERA5) database (Hersbach et al., 2020). The dataset includes three key
meteorological variables related to wind prediction: the eastward and northward components of 10-
meter wind and surface pressure. Guided by the prediction scales stated in Section 2.1, the data of
each variable is represented as a time series of two-dimensional latitude–longitude fields over the
study region, temporally ordered and co-registered on a common grid. The temporal resolution of
the data is 1 hour, while the spatial resolution is 0.25◦. For convenience, we define each 24-hour
period as a prediction unit, where the first 23 hours are used as inputs to predict the 24th hour.

Baseline Models. To study the effect of the gradient penalized loss function, we utilize the struc-
ture of a multivariate meteorological data fusion wind prediction network called MFWPN (Zhang
et al., 2025). We further compare our full model with several state-of-the-art regional weather pre-
diction approaches, including CNN, Convolutional LSTM (Tan et al., 2023), and Physics-Informed
Neural Network (PINN) (Eivazi et al., 2022). We remark that the PINN model is designed with a
revised form of the Navier-Stokes (NS) equations (the Reynolds-averaged Navier-Stokes (RANS)
equations) (Alfonsi, 2009).

Evaluation Metrics. We assess the performance of models using Root Mean Squared Error
(RMSE), one of the most commonly used metrics for overall predictions. We also evaluate the
Extreme Attentive RMSE (Ex-RMSE), which is a modified version of RMSE focusing on regions
with extreme wind velocities, calculated as:

Ex-RMSE(ũ,u) =

√√√√∑N
i=1 wi · ∥ũi − ui∥2∑N

i=1 wi

,

where wi’s are determined by the ground-truth data and assign higher weights to extreme wind
velocity regions, and ũi and ui are the predicted and ground truth wind velocities at grid point i.
The details of the above metrics can be found in the appendices.

4.1 EFFECT OF GRADIENT PENALIZED LOSS FUNCTION

To quantify the impact of the proposed gradient-penalized objective function, we compare
the performance of models trained by equation 6 and MSE over the same baseline structure,
and study the impact of different hyperparameter λ on the model performance. The base-
line model adopts the same structure as MFWPN (Zhang et al., 2025), which is a machine
learning model for short-term wind speed prediction using spatial-temporal fusion and CNN
units. We use second-order central differences along both axes to represent spatial gradients.
All other settings (optimizer, learning rate, augmentations, and early stopping criteria) are kept
identical to the baseline for a fair comparison. The choices of hyperparameters include λ ∈
{0, 0.01, 0.02, 0.03, 0.05, 0.07, 0.10, 0.15, 0.20, 0.25}.

Results. Figure 2 demonstrates the effectiveness of the gradient penalized loss function and the
trade-off between amplitude error and translation error. With a proper λ value, the models trained
by gradient-penalized loss outperform the baseline trained by MSE in general. We also observe a
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Figure 2: Effect of the gradient-penalized
loss across λ values.

consistent U-shaped curve w.r.t. λ: small posi-
tive values markedly reduce extreme attentive error
while preserving overall accuracy; too-large values
overweight high-frequency residuals and harm sta-
bility. In particular, the best performance is achieved
at λ = λ⋆. Moreover, when λ ≥ 0.15, optimization
becomes unstable and the models fail to converge
within the prescribed training budget.

The empirical trend aligns with our frequency-
domain analysis in Section 2.3 and Section 3.1. The
gradient term in equation 6 effectively penalizes the
amplitude shrinkage trend and therefore improves
the accuracy for extreme wind velocity prediction.
However, the penalized term | ∥∇ũ∥2 − ∥∇u∥2 | it-
self does not contain any information regarding po-
sitional alignment. Therefore, beyond a threshold of λ, the learned model may intend to generate
predictions with large spatial fluctuations, regardless of the positional pattern mismatch. This ex-
plains the divergence of experimental results for large values of λ.

4.2 EXTREME WIND VELOCITY PREDICTION

In this section, we evaluate the performance of our final model, which integrates all components
in the methodology section with an architecture shown in Figure 1. We compare against several
representative baselines on the same regional wind velocity prediction task. The baseline models
include: CNN, ConvLSTM, and PINN. We train all models with an initial learning rate of 1× 10−5

and the SGD optimizer. All approaches consume the same wind-velocity inputs, except that our
model additionally utilizes surface pressure P as an auxiliary field.

Model RMSE Ex-RMSE
CNN 0.4639 0.3183
ConvLSTM 0.3471 0.2294
PINN 0.3946 0.2541
NS-Op 0.7061 0.4577
Ours 0.3287 0.1868

Table 1: Comparative error results across mod-
els.

Results. Table 1 reports both overall prediction
errors and extreme wind attentive errors. Our
model achieves the best performance on both cri-
teria among all the models tested. Compared
to the CNN, ConvLSTM, and PINN baselines,
the overall RMSEs of our model decrease by
29.1%, 5.3%, and 16.7%, respectively; while
the extreme attentive RMSEs decrease by 41.3%,
18.6%, and 26.5%. These indicating that the
gradient-penalized objective and the frequency
separation & reweighting are effective for recov-
ering short-horizon, high-wavenumber dynamics.

Figure 3 provides a visual comparison of regional wind velocity amplitudes. Compared with the
PINN baseline, our predictions exhibit larger and more realistic amplitudes that are closer to the
ground truth, particularly in the most extreme zones (highlighted by red boxes). This aligns with
our frequency-domain analysis in section 2.3 and the first-stage results in section 4.1.

The above results show our model’s better performance for both extreme and overall wind velocity
predictions, mitigating the critical amplitude shrinkage problem in extreme weather prediction.

4.3 DIFFERENT FREQUENCY MASKING LEVEL

In this subsection, we investigate how different frequency masking levels affect the model’s wind
velocity prediction performance using the Fourier Frequency Filter. The results show that exces-
sively high or low masking thresholds degrade accuracy, while optimal performance is achieved at
intermediate levels, where a balance between high- and low-frequency information is maintained.

To explore this, we varied the threshold for dividing high- and low-frequency components and an-
alyzed its effect on wind speed prediction accuracy. Experiments were conducted using frequency
masking levels of 0.1, 0.3, 0.5, 0.7, and 0.9, which represent the proportion of the highest frequen-
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Figure 3: The first line: the ground truth and prediction results of the baseline (PINN) and our
models. The first sub-figure in the second line: regions where wind velocity exceeds a specified
threshold, highlighted as ”Extreme Regions” (in white). The last two sub-figures: comparative
prediction errors between our model and the baseline, where bluer indicate lower prediction errors.

cies included in the high-frequency data. These experiments were performed on wind velocity field
data from four distinct regions, with the results summarized in 4.

0.1 0.3 0.5 0.7 0.9
Frequency Masking Level

0.0

0.1

0.2

0.3

0.4

0.5

RM
SE

Regions
EA
EU
AU
NA

Figure 4: Impact of frequency masking levels on prediction
accuracy across regions.

The results demonstrate that both ex-
cessively high and excessively low-
frequency masking thresholds nega-
tively impact the model’s prediction
accuracy. When the masking level
is too high, critical low-frequency in-
formation is excluded, leading to in-
complete data representation. Con-
versely, when the masking level is
too low, significant high-frequency
details are overlooked, impairing the
model’s ability to capture rapid varia-
tions in wind speed. Optimal predic-
tion performance is achieved when
the frequency masking level lies be-
tween 0.3 and 0.7, as this range effectively balances the inclusion of high- and low-frequency infor-
mation, enabling the model to better capture both large-scale and small-scale dynamics.

5 CONCLUSIONS

We conducted a comprehensive frequency-informed learning to address a key obstacle in wind ve-
locity prediction: the amplitude misalignment (particularly underestimation) of extreme wind ve-
locity prediction. From a frequency-domain perspective, we showed that small spatial pattern de-
viations combined with standard MSE training induce frequency-dependent amplitude shrinkage,
disproportionately suppressing high-frequency components. Guided by this insight, we separated
the error in different components and proposed a gradient-penalized loss function that encourages
models to emphasize amplitude misalignment. We proposed a frequency separation and reweighting
framework with a physics-embedded backbone to further enhance the capture of extreme wind dy-
namics. Empirically, the proposed methods outperform baselines on regional datasets, significantly
improving extreme-wind prediction accuracy while keeping robustness of overall wind prediction.

Limitations Our analysis relies on a simplified assumption on the factors (scaling, shifting, and
noise) that cause prediction errors, and a comprehensive study on more complex error-causing fac-
tors might be a promising direction. Moreover, generalizations to longer lead times, 3-dimensional
scenarios, and cross-region generalization may also be interesting.

9
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A ANALYSIS ON THE IMPACT OF FREQUENCY ON LOSS FUNCTION

In this section, we study how the frequency of the Fourier-transformed data affects the MSE loss
function. Suppose we discretize the 2-dimensional region by N × M points (corresponding to
longitudinal and latitudinal directions, respectively). Then the discrete Fourier transform of the
wind velocity field u on the region is given by:

û(kx, ky) = F(u) =

N−1∑
x=0

M−1∑
y=0

u(x, y) · e−2πi
(

kxx
N +

kyy

M

)
,

where ·̂ is the Fourier operator, k = (kx, ky) are the mode index in the frequency domain. For

simplicity, we let ϕk(x, y) = e
−2πi

(
kxx
N +

kyy

M

)
denote the Fourier basis. Then the inverse transform

can be written by:

u(x, y) =
1

NM

∑
k

û(k)ϕk.

Suppose we have a prediction of u denoted by ũ. The mean square error (MSE) of the prediction is
given by MSE(u, ũ) = 1

NM

∑
x,y |u− û|2 By the discrete orthogonality of the Fourier basis ϕk’s,

we have
∑

x,y ϕkϕk′ = NMδk,k′ . Therefore, we can derive the equivalent form of the MSE in the
frequency domain:

MSE(u, ũ) =
1

NM

∑
x,y

|u− û|2

=
1

NM

∑
x,y

∣∣∣∣∣ 1

NM

∑
k

(
û(k)− ˆ̃u(k)

)
ϕk(x, y)

∣∣∣∣∣
2

=
1

NM

∑
x,y

1

(NM)2

∑
k

∑
k′

(
û(k)− ˆ̃u(k)

)
·
(
û(k′)− ˆ̃u(k′)

)
ϕk(x, y)ϕk′(x, y)

=
1

(NM)3

∑
k

∑
k′

(
û(k)− ˆ̃u(k)

)
·
(
û(k′)− ˆ̃u(k′)

) ∑
x,y

ϕk(x, y)ϕk′(x, y)︸ ︷︷ ︸
NM δk,k′

=
1

(NM)2

∑
k

∣∣∣û− ˆ̃u
∣∣∣2 .

Now, let’s analyze the potential impact of frequency on MSE. Statistically, the prediction of the wind
velocity field can be modeled as a translation of the ground truth plus white noise:

ũ(x) = u(x+∆) + ε(x),

where x = (x, y); ∆ = (∆x,∆y); ε(x) ∼ N (0, σ2
x) is a Gaussian white noise that may or may not

be invariant with respect to x. It should be clarified that the real prediction scenario can be much
more complicated than this formula. However, it will be extremely difficult or even impossible to
study the real cases in detail. Besides, this simplification is enough to show some insights about the
impact of frequency on the loss function. We denote θk = 2π

(
kx∆x

N +
ky∆y

M

)
, then the Fourier

transform of the prediction is:
ˆ̃u(k) = eiθk û(k) + ε(k).

Therefore, the mean square error of the prediction is:

MSE(u, ũ) =
1

(NM)2

∑
k

∣∣(1− eiθk)û(k)− ε̂(k)
∣∣2 .

Since ε is Gaussian white noise, we have E[ε̂] = 0 and E[ε̂(k)ε̂(k′)] = NMσ2δk,k′ . Therefore, the
expectation of the MSE will be:

E[MSE(u, ũ)] =
1

(NM)2

∑
k

∣∣(1− eiθk)
∣∣2 |û(k)|2 + σ2.

=
1

(NM)2

∑
k

4 sin2(
θk
2
) · |û(k)|2 + σ2.
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Suppose the magnitude of the translation |∆| is sufficiently small such that θk ≪ 1. Then we can
approximate the sin(θk/2) term by θ/2:

E[MSE] ≈ 1

(NM)2

∑
k

θ2k |û(k)|
2
+ σ2

≈ C
∑
k

|k|2 · |û|2 + σ2,

where C is constant.

According to the above formula, we can separate the MSE into two parts: one is attributed to the
translation of the overall wind velocity field, and the other is attributed to the essential error from the
white noise. The error from translation is approximately proportional to the square of the magnitude
of the frequency.

The above analysis provides us with insights that the high-frequency data is more likely to affect the
MSE.

B MAXIMUM LIKELIHOOD ESTIMATION ANALYSIS OF WEIGHTED MSE

In this section, we continued to utilize the simplified ”translation + noise” model for analysis. As
mentioned in Section 2, the variances of the noise are bot likely be constant among the whole region.
As before, suppose

ũ(x) = u(x+∆) + ε(x), ε(x) ∼ N (0,Σ).

We can use a shift operator S(∆) to represent the translation: ũ = S(∆)u + ε. In this case, we
consider the θ = (Σ,∆) as the parameter, the prediction and the ground-truth as the data D. Since
the noise is Gaussian, the likelihood can be written as follows:

p(D | θ) = 1

(2π)d/2 |Σ|1/2
exp

(
− 1

2 (ũ− S(∆)u)⊤Σ−1(ũ− S(∆)u)
)
.

To maximize the above likelihood function is equivalent to minimizing the negative log-likelihood
function NLL(Σ,∆):

NLL(Σ,∆) = − log p(D | θ) = 1
2 (ũ− S(∆)u)⊤Σ−1(ũ− S(∆)u) + 1

2 log |Σ|.

The first part is equivalent to the weighted MSE with a weight W = Σ−1.

Practically, we may have different requirements for the weather system prediction. For example, in
our study of extreme wind speed prediction, we required more precision for the regions with higher
magnitude of wind speed. Therefore, we hope the variance of predictive noise become smaller,
so that our model will produce more concise prediction among these regions. By the relation of
the weight and covariance W = Σ−1, the points with small variance should correspond to heavier
weight in general, which is also intuitively true since we need to assigned more weight to the region
with larger wind speed.

It should be noticed that the above two analyses are mainly based on a simplified scenario of the
prediction. They bring precious insights into our model design, but they are not responsible for the
rigorous proof of the real-world prediction scenarios, which is too complicated for theoretical proof.

C RELATED WORKS

C.1 NUMERICAL AND DATA-DRIVEN WEATHER PREDICTION

Numerical Weather Prediction (NWP) (Bauer et al., 2015) represents traditional physical weather
forecasting methods, which rely on computational techniques to solve the physical equations gov-
erning atmospheric dynamics. For wind velocity prediction, the Navier-Stokes equations and the
continuity equation are pivotal in describing the wind velocity field dynamics within a region. NWP
models discretize these equations over a computational grid and solve them numerically using meth-
ods such as finite difference, finite volume, or spectral techniques. Despite their widespread use,
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NWP models face significant limitations, including a reliance on precise initialization data and high
computational costs. These challenges make real-time predictions and extreme weather scenario
forecasting particularly difficult.

In contrast, purely data-driven models leverage machine learning algorithms to predict wind speed
by identifying patterns in historical data. Examples include CNNs (Liu et al., 2016), LSTMs (Yu
et al., 2019), ConvLSTMs (Kim et al., 2017), GANs (Li et al., 2021), and transformers (Bi et al.,
2022). These models excel at capturing complex wind patterns and local variations, demonstrat-
ing flexibility and adaptability in learning from data. However, they lack the physical constraints
required to ensure realistic predictions, which can sometimes result in unreasonable outputs.

C.2 PHYSICS-INFORMED DATA-DRIVEN WEATHER PREDICTION

Recent advancements in weather prediction have introduced hybrid approaches that integrate phys-
ical laws with machine learning. For example, Physics-Informed Neural Networks (PINNs) (Cai
et al., 2021) incorporate differential equations into the training process to enforce physical realism.
These methods reduce dependency on large datasets and computational resources, ensure predictions
adhere to known physical laws, and enhance robustness in complex environments.

A notable example of this approach is DeepPhysiNet (Li et al., 2024), developed by W. Li et al.
This model combines physics-guided machine learning with weather prediction by constructing
physics networks based on multilayer perceptrons for meteorological variables. Partial Differential
Equations are incorporated as part of the loss function, while a hyper-network based on deep learning
directly learns weather patterns, contributing to the weights of the physics networks. This hybrid
design ensures both physical consistency and the ability to capture intricate weather patterns.

C.3 EXTREME WEATHER PREDICTION

In this paper, extreme weather refers to the outlying values of specific weather
properties. For example, wind power plants require precise predictions of wind
speeds at turbine locations, particularly the extreme values of wind speeds (Sabze-
hgar et al., 2020). According to osti983731, whenwindspeedsexceedthecut −
outspeed, windturbinesceaseoperationtopreventdamage.Assuch, accurateregionalwindspeedforecasting, especiallyforextremewindspeeds, iscriticalforoptimizingwindpowergeneration.

Recent advancements in machine learning have significantly improved predictive capabilities for
extreme weather conditions. For instance, Fuxi Extreme, developed by X. Zhong et al. (Zhong
et al., 2024), leverages a Denoising Diffusion Probabilistic Model (DDPM) to enhance accuracy and
detail in extreme weather predictions. This model combines a base weather prediction framework
with DDPM, capturing fine-scale features through a two-step process: adding noise in a forward
step and refining details in a reverse denoising step. This innovative approach has demonstrated ex-
ceptional accuracy and detail restoration, making it highly effective for forecasting extreme weather
conditions.

D ERA5 DATASET

We mainly used the ERA5 datasets for our model training and testing processes. The ERA5
datasets(Hersbach et al., 2020), developed by the European Centre for Medium-Range Weather
Forecasts (ECMWF), is a fifth-generation reanalysis of the climate and weather covering data from
1940 to the present. Although the datasets contain detailed reanalysis data globally, it provides flex-
ibility to select and obtain data in rectangular spatial region in different scales and locations. There-
fore, the datasets is suitable for studying our work on regional weather prediction. This datasets
is created through data assimilation, which combines model data with observations from various
sources worldwide, resulting in a globally consistent and comprehensive datasets. ERA5 provides
hourly estimates for a wide range of atmospheric, ocean-wave, and land-surface variables, including
uncertainty estimates using a 10-member ensemble at three-hour intervals. The data is available
on a regular latitude-longitude grid, with a horizontal resolution of 0.25◦ × 0.25◦ for atmospheric
reanalysis. The temporal resolution of ERA5 is hourly, and the data is accessible in GRIB format,
providing high-resolution information for many climate and weather applications.
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In this study, we focus on specific variables from the ERA5 dataset relevant to wind speed prediction,
namely the 10-meter wind components and surface pressure. The 10-meter u-component of wind
represents the eastward component of horizontal wind speed at 10 meters above ground level, while
the v-component represents the northward component at the same height. These components are
measured in meters per second (m/s) and can be combined to calculate the speed and direction of the
horizontal wind. Surface pressure, given in Pascals (Pa), is the atmospheric pressure at the Earth’s
surface, which reflects the weight of the air column above a specific point. These parameters together
provide essential information for modeling and predicting wind dynamics in the atmosphere.

E IMPACT OF FREQUENCY ON TEMPORAL DATA

Figure 5: Impact of high-frequency components on wind field dynamics decreases as prediction
horizon extends from 1 to 21 hours.

We conducted preliminary experiments to investigate how high- and low-frequency components of
wind data contribute to future dynamics across different temporal scales. Using Fourier filtering
techniques (detailed in Section 4), we decomposed the two-dimensional wind velocity field time
series into their respective frequency components.

Our correlation analysis examined the relationship between these decomposed components and ac-
tual future wind patterns across prediction horizons ranging from 1 to 24 hours. The results, il-
lustrated in Figure 1, reveal a clear temporal dependency pattern: For longer prediction horizons
(approaching 24 hours), low-frequency components demonstrate dominant predictive power in wind
speed pattern evolution. Conversely, at shorter intervals (approaching 1 hour), high-frequency com-
ponents become increasingly significant in determining wind pattern changes.

This observation can be theoretically explained as follows. Suppose u(x, y) is the wind velocity
field. Then the Fourier transform of the spatial gradient of wind velocity ∇u is:

∇̂u(k) = ik

∫∫
u(x, y)e−i2π(kxx+kyy) dx dy,

where k = (kx, ky) represents frequency domain coordinates and ·̂ denotes the Fourier transform.
This relationship demonstrates that higher frequencies (larger |k|) correspond to larger spatial gradi-
ents (∥∇u∥). Consequently, high-frequency components capture small-scale features characterized
by sharp gradients and abrupt changes in the wind velocity field—characteristics typically associated
with turbulence and extreme weather events.
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F DETAILS OF EVALUATION METRICS

F.0.1 ROOT MEAN SQUARED ERROR (RMSE)

The RMSE quantifies the overall accuracy of the predicted wind velocity field by measuring the
difference between the predicted and ground truth values. It is defined as:

RMSE =

√√√√ 1

N

N∑
i=1

∥ûi − ui∥2,

where:

• ûi and ui are the predicted and ground truth wind velocity vectors at the i-th grid point,
• N is the total number of grid points.

F.0.2 EXTREME REGION ERROR (EXTREMEERR)

The Extreme Region Error (ExtremeErr) focuses on the model’s accuracy in predicting extreme
weather regions, characterized by high wind velocities. It assigns larger weights to regions with
extreme wind values to emphasize their importance. Mathematically, it is defined as:

ExtremeErr =

√√√√∑N
i=1 wi · ∥ûi − ui∥2∑N

i=1 wi

,

where:

• wi is the weight assigned to the i-th grid point, with higher values for extreme wind velocity
regions,

• ûi and ui are the predicted and ground truth wind velocity vectors at the i-th grid point.

These metrics collectively assess the model’s accuracy, adherence to physical principles, and capa-
bility to predict extreme weather conditions effectively.
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