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Abstract

This paper addresses the problem of selective clas-
sification for deep neural networks, where a model
is allowed to abstain from low-confidence predic-
tions to avoid potential errors. We focus on so-
called post-hoc methods, which replace the confi-
dence estimator of a given classifier without modi-
fying or retraining it, thus being practically appeal-
ing. Considering neural networks with softmax
outputs, our goal is to identify the best confidence
estimator that can be computed directly from the
unnormalized logits. This problem is motivated by
the intriguing observation in recent work that many
classifiers appear to have a “broken” confidence
estimator, in the sense that their selective classifi-
cation performance is much worse than what could
be expected by their corresponding accuracies. We
perform an extensive experimental study of many
existing and proposed confidence estimators ap-
plied to 84 pretrained ImageNet classifiers avail-
able from popular repositories. Our results show
that a simple p-norm normalization of the logits,
followed by taking the maximum logit as the con-
fidence estimator, can lead to considerable gains
in selective classification performance, completely
fixing the pathological behavior observed in many
classifiers. As a consequence, the selective clas-
sification performance of any classifier becomes
almost entirely determined by its corresponding
accuracy. Moreover, these results are shown to be
consistent under distribution shift.

1 INTRODUCTION

Consider a machine learning classifier that does not reach
the desired performance for the intended application, even
after significant development time. This may occur for a

variety of reasons: the problem is too hard for the current
technology; more development resources (data, compute
or time) are needed than what is economically feasible for
the specific situation; or perhaps the target distribution is
different from the training one, resulting in a performance
gap. In this case, one is faced with the choice of deploying
an underperforming model or not deploying a model at all.

A better tradeoff may be achieved by using so-called selec-
tive classification [Geifman and El-Yaniv, 2017, El-Yaniv
and Wiener, 2010]. The idea is to run the model on all inputs
but reject predictions for which the model is least confident,
hoping to increase the performance on the accepted predic-
tions. The rejected inputs may be processed in the same way
as if the model were not deployed, for instance, by a human
specialist or by the previously existing system. This offers a
tradeoff between performance and coverage (the proportion
of accepted predictions) which may be a better solution than
any of the extremes. In particular, it could shorten the path
to adoption of deep learning in safety-critical applications,
such as medical diagnosis and autonomous driving, where
the consequences of erroneous decisions can be severe [Zou
et al., 2023, Neumann et al., 2018].

A key element in selective classification is the confidence
estimator that is thresholded to decide whether a prediction
is accepted. In the case of neural networks with softmax
outputs, the natural baseline to be used as a confidence esti-
mator is the maximum softmax probability (MSP) produced
by the model, also known as the softmax response [Geifman
and El-Yaniv, 2017, Hendrycks and Gimpel, 2016]. Several
approaches have been proposed attempting to improve upon
this baseline, which generally fall into two categories: ap-
proaches that require retraining the classifier, by modifying
some aspect of the architecture or the training procedure,
possibly adding an auxiliary head as the confidence estima-
tor [Geifman and El-Yaniv, 2019, Liu et al., 2019, Huang
et al., 2020]; and post-hoc approaches that do not require
retraining, thus only modifying or replacing the confidence
estimator based on outputs or intermediate features pro-
duced by the model [Corbière et al., 2022, Granese et al.,
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Figure 1: A comparison of RC curves made by three models selected in [Galil et al., 2023], including examples of highest
(ViT-L/16-384) and lowest (EfficientNet-V2-XL) AUROC. An RC curve shows the tradeoff between risk (in this case,
error rate) and coverage. The initial risk for any classifier is found at the 100% coverage point, where all predictions are
accepted. Normally, the risk can be reduced by reducing coverage (which is done by increasing the selection threshold); for
instance, a 2% error rate can be obtained at 36.2% coverage for the ViT-B/32-224-SAM model and at 61.9% coverage for
the ViT-L/16-38 model. However, for the EfficientNet-V2-XL model, this error rate is not achievable at any coverage, since
its RC curve is lower bounded by 5% risk. Moreover, this RC curve is actually non-monotonic, with an increasing risk as
coverage is reduced, for low coverage. Fortunately, this apparent pathology in EfficientNet-V2-XL completely disappears
after a simple post-hoc tuning of its confidence estimator (without the need to retrain the model), resulting in significantly
improved selective classification performance. In particular, a 2% error rate can then be achieved at 55.3% coverage.

2021, Shen et al., 2022, Galil et al., 2023]. The latter is
arguably the most practical scenario, especially if tuning the
confidence estimator is sufficiently simple.

In this paper, we focus on the simplest possible class of
post-hoc methods, which are those for which the confidence
estimator can be computed directly from the network un-
normalized logits (pre-softmax output). Our main goal is
to identify the methods that produce the largest gains in
selective classification performance, measured by the area
under the risk-coverage curve (AURC); however, as in gen-
eral these methods can have hyperparameters that need to
be tuned on hold-out data, we are also concerned with data
efficiency. Our study is motivated by an intriguing problem
reported in [Galil et al., 2023] and illustrated in Fig. 1: some
state-of-the-art ImageNet classifiers, despite attaining excel-
lent predictive performance, nevertheless exhibit appallingly
poor performance at detecting their own mistakes. Can such
pathologies be fixed by simple post-hoc methods?

To answer this question, we consider every such method to
our knowledge, as well as several variations and novel meth-
ods that we propose, and perform an extensive experimental
study using 84 pretrained ImageNet classifiers available
from popular repositories. Our results show that, among
other close contenders, a simple p-norm normalization of
the logits, followed by taking the maximum logit as the con-
fidence estimator, can lead to considerable gains in selective
classification performance, completely fixing the pathologi-
cal behavior observed in many classifiers, as illustrated in
Fig. 1. As a consequence, the selective classification perfor-
mance of any classifier becomes almost entirely determined

by its corresponding accuracy.

The main contributions of this work are summarized as
follows:

• We perform an extensive experimental study of many
existing and proposed confidence estimators, obtaining
considerable gains for most classifiers. In particular,
we find that a simple post-hoc estimator can provide up
to 62% reduction in normalized AURC using no more
than one sample per class of labeled hold-out data;

• We show that, after post-hoc optimization, the selective
classification performance of any classifier becomes al-
most entirely determined by its corresponding accuracy,
eliminating the seemingly existing tradeoff between
these two goals reported in previous work.

• We also study how these post-hoc methods perform
under distribution shift and find that the results re-
main consistent: a method that provides gains in the in-
distribution scenario also provides considerable gains
under distribution shift.

2 RELATED WORK

Selective prediction is also known as learning with a reject
option (see [Zhang et al., 2023, Hendrickx et al., 2021] and
references therein), where the rejector is usually a thresh-
olded confidence estimator.1 Essentially the same problem

1An interesting application is enabling efficient inference with
model cascades [Lebovitz et al., 2023], although the literature on
those topics appears disconnected.



is studied under the equivalent terms misclassification de-
tection [Hendrycks and Gimpel, 2016], failure prediction
[Corbière et al., 2022, Zhu et al., 2022], and (ordinal) rank-
ing [Moon et al., 2020, Galil et al., 2023]. Uncertainty esti-
mation is a more general term that encompasses these tasks
(where confidence may be taken as negative uncertainty)
as well as other tasks where uncertainty might be useful,
such as calibration and out-of-distribution (OOD) detec-
tion, among others [Gawlikowski et al., 2022, Abdar et al.,
2021]. These tasks are generally not aligned: for instance,
optimizing for calibration may harm selective classification
performance [Ding et al., 2020, Zhu et al., 2022, Galil et al.,
2023]. Our focus here is on in-distribution selective classi-
fication, although we also study robustness to distribution
shift.

Most approaches to selective classification consider the base
model as part of the learning problem [Geifman and El-
Yaniv, 2019, Huang et al., 2020, Liu et al., 2019], which
we refer to as training-based approaches. While such an
approach has a theoretical appeal, the fact that it requires
retraining a model is a significant practical drawback. Alter-
natively, one may keep the model fixed and only modify or
replace the confidence estimator, which is known as a post-
hoc approach. Such an approach is practically appealing
and perhaps more realistic, as it does not require retraining.
Some papers that follow this approach construct a meta-
model that feeds on intermediate features of the base model
and is trained to predict whether or not the base model is
correct on hold-out samples [Corbière et al., 2022, Shen
et al., 2022]. However, depending on the size of such a meta-
model, its training may still be computationally demanding.

A popular tool in the uncertainty literature is the use of en-
sembles [Lakshminarayanan et al., 2017, Teye et al., 2018,
Ayhan and Berens, 2018], of which Monte-Carlo dropout
Gal and Ghahramani [2016] is a prominent example. While
constructing a confidence estimator from ensemble compo-
nent outputs may be considered post-hoc if the ensemble
is already trained, the fact that multiple inference passes
need to be performed significantly increases the computa-
tional burden at test time. Moreover, recent work has found
evidence that ensembles may not be fundamental for uncer-
tainty but simply better predictive models [Abe et al., 2022,
Cattelan and Silva, 2022, Xia and Bouganis, 2022]. Thus,
we do not consider ensembles here.

In this work we focus on simple post-hoc confidence esti-
mators for softmax networks that can be directly computed
from the logits. The earliest example of such a post-hoc
method used for selective classification in a real-world ap-
plication seems to be the use of LogitsMargin in [Le Cun
et al., 1990]. While potentially suboptimal, such methods
are extremely simple to apply on top of any trained clas-
sifier and should be natural choice to try before any more
complex technique. In fact, it is not entirely obvious how a
training-based approach should be compared to a post-hoc

method. For instance, Feng et al. [2023] has found that, for
some state-of-the-art training-based approaches to selective
classification, after the main classifier has been trained with
the corresponding technique, better selective classification
performance can be obtained by discarding the auxiliary
output providing confidence values and simply use the con-
ventional MSP as the confidence estimator. Thus, in this
sense, the MSP can be seen as a strong baseline.

Post-hoc methods have been widely considered in the con-
text of calibration, among which the most popular approach
is temperature scaling (TS). Applying TS to improve cali-
bration (of the MSP confidence estimator) was originally
proposed in [Guo et al., 2017] based on the negative log-
likelihood. Optimizing TS for other metrics has been ex-
plored in [Mukhoti et al., 2020, Karandikar et al., 2021,
Clarté et al., 2023] for calibration and in [Liang et al., 2023]
for OOD detection, but had not been proposed for selective
classification. A generalization of TS is adaptive TS (ATS)
[Balanya et al., 2023], which uses an input-dependent tem-
perature based on logits. The post-hoc methods we consider
here can be seen as a special case of ATS, as logit norms
may be seen as an input-dependent temperature; however
Balanya et al. [2023] investigate a different temperature
function and focuses on calibration. (For more discussion
on this and other post-hoc methods inspired by calibration,
please see Appendix H.) Other logit-based confidence esti-
mators proposed for calibration and OOD detection include
[Liu et al., 2020, Tomani et al., 2022, Rahimi et al., 2022,
Neumann et al., 2018, Gonsior et al., 2022].

Normalizing the logits with the L2 norm before applying
the softmax function was used in [Kornblith et al., 2021]
and later proposed and studied in [Wei et al., 2022] as a
training technique (combined with TS) to improve OOD
detection and calibration. A variation where the logits are
normalized to unit variance was proposed in [Jiang et al.,
2023] to accelerate training. In contrast, we propose to use
logit normalization as a post-hoc method for selective clas-
sification, extend it to general p-norm, consider a tunable p
with AURC as the optimization objective, and allow it to
be used with confidence estimators other than the MSP, all
of which are new ideas which depart significantly from
previous work.

Benchmarking of models in their performance at selective
classification/misclassification detection has been done in
[Galil et al., 2023, Ding et al., 2020], however these works
mostly consider the MSP as the confidence estimator. In
particular, a thorough evaluation of potential post-hoc es-
timators for selective classification as done in this work
had not yet appeared in the literature. The work furthest
in that direction is the paper by Galil et al. [2023], who
empirically evaluated ImageNet classifiers and found that
TS-NLL improved selective classification performance for
some models but degraded it for others. In the context of
calibration, Wang et al. [2021] and Ashukha et al. [2020]



have argued that models should be compared after simple
post-hoc optimizations, since models that appear worse than
others can sometimes easily be improved by methods such
as TS. Here we advocate and provide further evidence for
this approach in the context of selective classification.

3 BACKGROUND

3.1 SELECTIVE CLASSIFICATION

Let P be an unknown distribution over X × Y , where
X is the input space and Y = {1, . . . , C} is the label
space, and C is the number of classes. The risk of a clas-
sifier h : X → Y is R(h) = EP [ℓ(h(x), y)], where
ℓ : Y ×Y → R+ is a loss function, for instance, the 0/1 loss
ℓ(ŷ, y) = 1[ŷ ̸= y], where 1[·] denotes the indicator func-
tion. A selective classifier [Geifman and El-Yaniv, 2017] is
a pair (h, g), where h is a classifier and g : X → R is a con-
fidence estimator (also known as confidence score function
or confidence-rate function), which quantifies the model’s
confidence on its prediction for a given input. For some fixed
threshold t, given an input x, the selective model makes a
prediction h(x) if g(x) ≥ t, otherwise the prediction is re-
jected. A selective model’s coverage ϕ(h, g) = P [g(x) ≥ t]
is the probability mass of the selected samples in X , while
its selective risk R(h, g) = EP [ℓ(h(x), y) | g(x) ≥ t]
is its risk restricted to the selected samples. In particu-
lar, a model’s risk equals its selective risk at full cover-
age (i.e., for t such that ϕ(h, g) = 1). These quantities
can be evaluated empirically given a given a test dataset
{(xi, yi)}Ni=1 drawn i.i.d. from P , yielding the empirical
coverage ϕ̂(h, g) = (1/N)

∑N
i=1 1[g(xi) ≥ t] and the em-

pirical selective risk

R̂(h, g) =

∑N
i=1 ℓ(h(xi), yi)1[g(xi) ≥ t]∑N

i=1 1[g(xi) ≥ t]
. (1)

Note that, by varying t, it is generally possible to trade off
coverage for selective risk, i.e., a lower selective risk can
usually (but not necessarily always) be achieved if more
samples are rejected. This tradeoff is captured by the risk-
coverage (RC) curve [Geifman and El-Yaniv, 2017], a plot
of R̂(h, g) as a function of ϕ̂(h, g). While the RC curve
provides a full picture of the performance of a selective
classifier, it is convenient to have a scalar metric that sum-
marizes this curve. A commonly used metric is the area
under the RC curve (AURC) [Ding et al., 2020, Geifman
et al., 2019], denoted by AURC(h, g). However, when com-
paring selective models, if two RC curves cross, then each
model may have a better selective performance than the
other depending on the operating point chosen, which can-
not be captured by the AURC. Another interesting metric,
which forces the choice of an operating point, is the selec-
tive accuracy constraint (SAC) [Galil et al., 2023], defined
as the maximum coverage allowed for a model to achieve a

specified accuracy.

Closely related to selective classification is misclassification
detection [Hendrycks and Gimpel, 2016], which refers to
the problem of discriminating between correct and incorrect
predictions made by a classifier. Both tasks rely on ranking
predictions according to their confidence estimates, where
correct predictions should be ideally separated from incor-
rect ones. A usual metric for misclassification detection is
the area under the ROC curve (AUROC) [Fawcett, 2006]
which, in contrast to the AURC, is blind to the classifier
performance, focusing only on the quality of the confidence
estimates. Thus, it may also be used to evaluate confidence
estimators for selective classification [Galil et al., 2023].

3.2 CONFIDENCE ESTIMATION

From now on we restrict attention to classifiers that can be
decomposed as h(x) = argmaxk∈Y zk, where z = f(x)
and f : X → RC is a neural network. The network output z
is referred to as the (vector of) logits or logit vector, due to
the fact that it is typically applied to a softmax function to
obtain an estimate of the posterior distribution P [y|x]. The
softmax function is defined as

σ : RC → [0, 1]C , σk(z) =
ezk∑C
j=1 e

zj
, k ∈ {1, . . . , C}

(2)
where σk(z) denotes the kth element of the vector σ(z).

The most popular confidence estimator is arguably the max-
imum softmax probability (MSP) [Ding et al., 2020], also
known as maximum class probability [Corbière et al., 2022]
or softmax response [Geifman and El-Yaniv, 2017]

g(x) = MSP(z) ≜ max
k∈Y

σk(z) = σŷ(z) (3)

where ŷ = argmaxk∈Y zk. However, other functions of
the logits can be considered. Some examples are the soft-
max margin [Belghazi and Lopez-Paz, 2021, Lubrano et al.,
2023], the max logit [Hendrycks et al., 2022], the logits
margin [Streeter, 2018, Lebovitz et al., 2023], the negative
entropy2 [Belghazi and Lopez-Paz, 2021], and the nega-
tive Gini index [Granese et al., 2021, Gomes et al., 2022],
defined, respectively, as

SoftmaxMargin(z) ≜ σŷ(z)− max
k∈Y:k ̸=ŷ

σk(z) (4)

MaxLogit(z) ≜ zŷ (5)

LogitsMargin(z) ≜ zŷ − max
k∈Y:k ̸=ŷ

zk (6)

NegativeEntropy(z) ≜
∑
k∈Y

σk(z) log σk(z) (7)

NegativeGini(z) ≜ −1 +
∑
k∈Y

σk(z)
2. (8)

2Note that any uncertainty estimator can be used as a confi-
dence estimator by taking its negative.



Note that, in the scenario we consider, DOCTOR’s Dα and
Dβ discriminators [Granese et al., 2021] are equivalent to
the negative Gini index and MSP confidence estimators,
respectively, as discussed in more detail in Appendix A.

It is worth mentioning that, as shown by Chow [1970] and
Franc et al. [2023], if indeed σy(z) = P [y|x] for all y ∈ Y ,
then the MSP is the optimal confidence estimator for the 0/1
loss, known in this case as Chow’s rule. Thus, in the general
case, it emerges as a natural baseline.

4 METHODS

4.1 TUNABLE LOGIT TRANSFORMATIONS

In this section, we introduce a simple but powerful frame-
work for designing post-hoc confidence estimators for se-
lective classification. The idea is to take any parameter-free
logit-based confidence estimator, such as those described
in Section 3.2, and augment it with a logit transformation
parameterized by one or a few hyperparameters, which are
then tuned (e.g., via grid search) using a labeled hold-out
dataset not used during training of the classifier (i.e. vali-
dation data). Moreover, this hyperparameter tuning is done
using as objective function not a proxy loss but rather the
exact same metric that one is interested in optimizing, for
instance, AURC or AUROC. This approach forces us to be
conservative about the hyperparameter search space, which
is important for data efficiency.

4.1.1 Temperature Scaling

Originally proposed in the context of post-hoc calibration,
temperature scaling (TS) [Guo et al., 2017] consists in trans-
forming the logits as z′ = z/T , before applying the softmax
function. The parameter T > 0, which is called the temper-
ature, is then optimized over hold-out data.

The conventional way of applying TS, as proposed in [Guo
et al., 2017] for calibration and referred to here as TS-NLL,
consists in optimizing T with respect to the negative log-
likelihood (NLL) [Murphy, 2022]. Here we instead opti-
mize T using AURC and the resulting method is referred to
as TS-AURC.

Note that TS does not affect the ranking of predictions for
MaxLogit and LogitsMargin, so it is not applied in these
cases.

4.1.2 Logit Normalization

Inspired by Wei et al. [2022], who show that logits norms
are directly related to overconfidence and propose logit nor-
malization during training, we propose logit normalization
as a post-hoc method. Additionally, we extend the normal-

ization from the 2-norm to a general p-norm, where p is a
tunable hyperparameter and, similarly to the method pro-
posed in [Jiang et al., 2023], we propose to centralize the
logits before normalization. (For more context on logit nor-
malization, as well as intuition and theoretical justification
for our proposed modifications, see the Appendix B. For
an ablation study on the centralization, see Appendix G.)
Thus, (centralized) logit p-normalization is defined as the
operation

z′ =
z− µ(z)

τ∥z− µ(z)∥p
(9)

where ∥z∥p ≜ (|z1|p + · · · + |zC |p)1/p, p ∈ R, is the p-
norm of z, µ(z) = 1

C

∑C
j=1 zj is the mean of the logits, and

τ > 0 is a temperature scaling parameter. Note that, when
the softmax function is used, this transformation becomes a
form of adaptive TS [Balanya et al., 2023], with an input-
dependent temperature τ∥z− µ(z)∥p.

Logit p-normalization introduces two hyperparameters, p
and τ , which should be jointly optimized; in this case, we
first optimize τ for each value of p considered and then pick
the best value of p. This transformation, together with the
optimization of p and τ , is here called pNorm. The optimiz-
ing metric is always AURC and therefore it is omitted from
the nomenclature of the method.

Note that, when the underlying confidence estimator is
MaxLogit or LogitsMargin, the parameter τ is irrelevant
and is ignored.

One key benefit of centralization is that it enables logit p-
normalization to be applied even if we only have access to
the softmax probabilities instead of the original logits. This
can be done by computing the logits as z̃ = log(σ(z)) =

z− c, where c = log(
∑C

j=1 e
zj ). Then we have z̃−µ(z̃) =

z−c−µ(z−c) = z−µ(z) from which (9) can be computed.

4.2 EVALUATION METRICS

4.2.1 Normalized AURC

A common criticism of the AURC metric is that it does not
allow for meaningful comparisons across problems [Geif-
man et al., 2019]. An AURC of some arbitrary value, for
instance, 0.05, may correspond to an ideal confidence es-
timator for one classifier (of much higher risk) and to a
completely random confidence estimator for another clas-
sifier (of risk equal to 0.05). The excess AURC (E-AURC)
was proposed by Geifman et al. [2019] to alleviate this prob-
lem: for a given classifier h and confidence estimator g, it is
defined as E-AURC(h, g) = AURC(h, g)− AURC(h, g∗),
where g∗ corresponds to a hypothetically optimal confidence
estimator that perfectly orders samples in decreasing order
of their losses. Thus, an ideal confidence estimator always
has zero E-AURC.



Unfortunately, E-AURC is still highly sensitive to the clas-
sifier’s risk, as shown by Galil et al. [2023], who suggested
the use of AUROC instead. However, using AUROC for
comparing confidence estimators has an intrinsic disadvan-
tage: if we are using AUROC to evaluate the performance of
a tunable confidence estimator, it makes sense to optimize it
using this same metric. However, as AUROC and AURC are
not necessarily monotonically aligned [Ding et al., 2020],
the resulting confidence estimator will be optimized for a
different problem than the one in which we were originally
interested (which is selective classification). Ideally, we
would like to evaluate confidence estimators using a metric
that is a monotonic function of AURC.

We propose a simple modification to E-AURC that elimi-
nates the shortcomings pointed out in [Galil et al., 2023]:
normalizing by the E-AURC of a random confidence esti-
mator, whose AURC is equal to the classifier’s risk. More
precisely, we define the normalized AURC (NAURC) as

NAURC(h, g) =
AURC(h, g)− AURC(h, g∗)

R(h)− AURC(h, g∗)
. (10)

Note that this corresponds to a min-max scaling that maps
the AURC of the ideal classifier to 0 and the AURC of the
random classifier to 1. The resulting NAURC is suitable for
comparison across different classifiers and is monotonically
related to AURC.

4.2.2 MSP Fallback

A useful property of MSP-TS-AURC (but not MSP-TS-
NLL) is that, in the infinite-sample setting, it can never
have a worse performance than the MSP baseline, as long
as T = 1 is included in the search space. It is natural to
extend this property to every confidence estimator, for a
simple reason: it is very easy to check whether the estimator
provides an improvement to the MSP baseline and, if not,
then use the MSP instead. Formally, this corresponds to
adding a binary hyperparameter indicating an MSP fallback.

Equivalently, when measuring performance across different
models, we simply report a (non-negligible) positive gain in
NAURC whenever it occurs. More precisely, we define the
average positive gain (APG) in NAURC as

APG(g) =
1

|H|
∑
h∈H

[NAURC(h,MSP)− NAURC(h, g)]+ϵ

(11)
where [x]+ϵ is defined as x if x > ϵ and is 0 otherwise,
H is a set of classifiers and ϵ > 0 is chosen so that only
non-negligible gains are reported.

5 EXPERIMENTS

All experiments3 in this section were performed using Py-
Torch [Paszke et al., 2019] and all of its provided classifiers
pre-trained on ImageNet [Deng et al., 2009]. Additionally,
some models of the Wightman [2019] repository were used,
particularly the ones highlighted by Galil et al. [2023]. In
total, 84 ImageNet classifiers were used. The list of all mod-
els, together with all the results per model are presented in
Appendix J. The ImageNet validation set was randomly split
into 5000 hold-out images for post-hoc optimization (which
we also refer to as the tuning set) and 45000 images for
performance evaluation (the test set). To ensure that the re-
sults are statistically significant, we repeat each experiment
(including post-hoc optimization) for 10 different random
splits and report mean and standard deviation.

To give evidence that our results are not specific to Im-
ageNet, we also performed experiments on CIFAR-100
[Krizhevsky, 2009] and Oxford-IIIT Pet [Parkhi et al., 2012]
datasets, which are presented in the Appendix D.

5.1 COMPARISON OF METHODS

We start by evaluating the NAURC of each possible combi-
nation of a confidence estimator listed in Section 3.2 with
a logit transformation described in Section 4.1, for specific
models. Table 1 shows the results for EfficientNet-V2-XL
(trained on ImageNet-21K and fine tuned on ImageNet-1K)
and VGG16, respectively, the former chosen for having
the worst confidence estimator performance (in terms of
AUROC, with MSP as the confidence estimator) of all the
models reported in [Galil et al., 2023] and the latter chosen
as a representative example of a lower accuracy model for
which the MSP is already a good confidence estimator.

As can be seen, on EfficientNet-V2-XL, the baseline MSP
is easily outperformed by most methods. Surprisingly, the
best method is not to use a softmax function but, instead, to
take the maximum of a p-normalized logit vector, leading
to a reduction in NAURC of 0.27 points or about 62%.

However, on VGG16, the situation is quite different, as
methods that use the unnormalized logits and improve the
performance on EfficientNet-V2-XL, such as LogitsMargin
and MaxLogit-pNorm, actually degrade it on VGG16. More-
over, the highest improvement obtained, e.g., with MSP-TS-
AURC, is so small that it can be considered negligible. (In
fact, gains below 0.003 NAURC are visually imperceptible
in an AURC curve.) Thus, it is reasonable to assert that none
of the post-hoc methods considered is able to outperform
the baseline in this case.

In Table 2, we evaluate the average performance of post-

3Our code is available at https://github.com/lfpc/
FixSelectiveClassification.

https://github.com/lfpc/FixSelectiveClassification
https://github.com/lfpc/FixSelectiveClassification


Table 1: NAURC (mean ±std) for post-hoc methods applied to ImageNet classifiers

Logit Transformation

Classifier Conf. Estimator Raw TS-NLL TS-AURC pNorm

EfficientNet-V2-XL

MSP 0.4402 ±0.0032 0.3506 ±0.0039 0.1957 ±0.0027 0.1734 ±0.0030
SoftmaxMargin 0.3816 ±0.0031 0.3144 ±0.0034 0.1964 ±0.0046 0.1726 ±0.0026
MaxLogit 0.7680 ±0.0028 - - 0.1693 ±0.0018
LogitsMargin 0.1937 ±0.0023 - - 0.1728 ±0.0020
NegativeEntropy 0.5967 ±0.0031 0.4295 ±0.0057 0.1937 ±0.0023 0.1719 ±0.0022
NegativeGini 0.4486 ±0.0032 0.3517 ±0.0040 0.1957 ±0.0027 0.1732 ±0.0030

VGG16

MSP 0.1839 ±0.0006 0.1851 ±0.0006 0.1839 ±0.0007 0.1839 ±0.0007
SoftmaxMargin 0.1900 ±0.0006 0.1892 ±0.0006 0.1888 ±0.0006 0.1888 ±0.0006
MaxLogit 0.3382 ±0.0009 - - 0.2020 ±0.0012
LogitsMargin 0.2051 ±0.0005 - - 0.2051 ±0.0005
NegativeEntropy 0.1971 ±0.0007 0.2055 ±0.0006 0.1841 ±0.0006 0.1841 ±0.0006
NegativeGini 0.1857 ±0.0007 0.1889 ±0.0005 0.1840 ±0.0006 0.1840 ±0.0006

Table 2: APG-NAURC (mean ±std) of post-hoc methods across 84 ImageNet classifiers

Logit Transformation

Conf. Estimator Raw TS-NLL TS-AURC pNorm

MSP 0.0 ± 0.0 0.03665 ±0.00034 0.05769 ±0.00038 0.06796 ±0.00051
SoftmaxMargin 0.01955 ±0.00008 0.04113 ±0.00022 0.05601 ±0.00041 0.06608 ±0.00052
MaxLogit 0.0 ± 0.0 - - 0.06863 ±0.00045
LogitsMargin 0.05531 ±0.00042 - - 0.06204 ±0.00046
NegativeEntropy 0.0 ± 0.0 0.01570 ±0.00085 0.05929 ±0.00032 0.06771 ±0.00052
NegativeGini 0.0 ± 0.0 0.03636 ±0.00042 0.05809 ±0.00037 0.06800 ±0.00054

hoc methods across all models considered, using the APG-
NAURC metric described in Section 4.2.2, where we as-
sume ϵ = 0.01. Figure 2 shows the gains for selected
methods for each model, ordered by MaxLogit-pNorm
gains. It can be seen that the highest gains are provided
by MaxLogit-pNorm, NegativeGini-pNorm, MSP-pNorm
and NegativeEntropy-pNorm, and their performance is es-
sentially indistinguishable whenever they provide a non-
negligible gain over the baseline. Moreover, the set of mod-
els for which significant gains can be obtained appears to
be consistent across all methods.

Although several post-hoc methods provide considerable
gains, they all share a practical limitation which is the re-
quirement of hold-out data for hyperparameter tuning. In
Appendix E, we study the data efficiency of some of the
best performing methods. MaxLogit-pNorm, having a single
hyperparameter, emerges as a clear winner, requiring fewer
than 500 samples to achieve near-optimal performance on
ImageNet (< 0.5 images per class on average) and fewer
than 100 samples on CIFAR-100 (< 1 image per class on
average). These requirements are clearly easily satisfied in
practice for typical validation set sizes.

Details on the optimization of T and p, additional results

showing AUROC values and RC curves, and results on the
insensitivity of our conclusions to the choice of ϵ are pro-
vided in Appendix C. In addition, the benefits of a tunable
versus fixed p and a comparison with other tunable meth-
ods that do not fit into the framework of Section 4.1 are
discussed, respectively, in Appendices F and H. Finally, an
investigation of the calibration performance of some meth-
ods can be found in Appendix I.

5.2 POST-HOC OPTIMIZATION FIXES BROKEN
CONFIDENCE ESTIMATORS

From Figure 2, we can distinguish two groups of models:
those for which the MSP baseline is already the best con-
fidence estimator and those for which post-hoc methods
provide considerable gains (particularly, MaxLogit-pNorm).
In fact, most models belong to the second group, comprising
58 of the 84 models considered.

Figure 3 illustrates two noteworthy phenomena. First, as
previously observed by Galil et al. [2023], certain models
exhibit superior accuracy than others but poorer uncertainty
estimation, leading to a trade-off when selecting a classifier
for selective classification. Second, post-hoc optimization
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Figure 2: NAURC gains for post-hoc methods across 84 Im-
ageNet classifiers. Lines indicate the average of 10 random
splits and the filled regions indicate ±1 standard deviation.
The black dashed line denotes ϵ = 0.01.

can fix any “broken” confidence estimators. This can be seen
in two ways: In Figure 3a, after optimization, all models
exhibit a much more similar level of confidence estimation
performance (as measured by NAURC), although a depen-
dency on accuracy is clearly seen (better predictive models
are better at predicting their own failures). In Figure 3b,
it is clear that, after optimization, the selective classifica-
tion performance of any classifier (measured by AURC)
becomes almost entirely determined by its corresponding
accuracy. Indeed, the Spearman correlation between AURC
and accuracy becomes extremely close to 1. The same con-
clusions hold for the SAC metric, as shown in Figure 3c.
This implies that any “broken” confidence estimators have
been fixed, and consequently, total accuracy becomes the
primary determinant of selective performance even at lower
coverage levels.

5.3 PERFORMANCE UNDER DISTRIBUTION
SHIFT

We now turn to the question of how post-hoc methods for
selective classification perform under distribution shift. Pre-
vious works have shown that calibration can be harmed
under distribution shift, especially when certain post-hoc
methods—such as TS—are applied [Ovadia et al., 2019].
To find out whether a similar issue occurs for selective
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Figure 3: NAURC, AURC and SAC of 84 ImageNet classi-
fiers with respect to their accuracy, before and after post-hoc
optimization. The baseline plots use MSP, while the opti-
mized plots use MaxLogit-pNorm. The legend shows the
optimal value of p for each model, where MSP indicates
MSP fallback (no significant positive gain). ρ is the Spear-
man correlation between a metric and the accuracy. In (c),
models that cannot achieve the desired selective accuracy
are shown with ≈ 0 coverage.

classification, we evaluate selected post-hoc methods on
ImageNet-C [Hendrycks and Dietterich, 2018], which con-
sists in 15 different corruptions of the ImageNet’s validation
set, and on ImageNetV2 [Recht et al., 2019], which is an
independent sampling of the ImageNet test set replicating
the original dataset creation process. We follow the stan-
dard approach for evaluating robustness with these datasets,
which is to use them only for inference; thus, the post-hoc
methods are optimized using only the 5000 hold-out images
from the uncorrupted ImageNet validation dataset. To avoid
data leakage, the same split is applied to the ImageNet-C
dataset, so that inference is performed only on the 45000
images originally selected as the test set.

First, we evaluate the performance of MaxLogit-pNorm on
ImageNet and ImageNetV2 for all classifiers considered.
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Figure 4: (a) NAURC gains (over MSP) on ImageNetV2 versus NAURC gains on the ImageNet test set. (b) NAURC on
ImageNetV2 versus NAURC on the ImageNet test set. (c) NAURC versus accuracy for ImageNetV2, ImageNet-C and the
IID dataset. All models are optimized using MaxLogit-pNorm (with MSP fallback).

Table 3: Selective classification performance (achievable coverage for some target selective accuracy; mean ±std) for a
ResNet-50 on ImageNet under distribution shift. For ImageNet-C, each entry is the average across all corruption types for a
given level of corruption. The target accuracy is the one achieved for corruption level 0.

Corruption level

Method 0 1 2 3 4 5 V2

Accuracy[%] - 80.84 67.81 ±0.05 58.90 ±0.04 49.77 ±0.04 37.92 ±0.03 26.51 ±0.03 69.77 ±0.10

Coverage
(SAC) [%]

MSP 100 72.14 ±0.11 52.31 ±0.13 37.44 ±0.11 19.27 ±0.07 8.53 ±0.12 76.24 ±0.22

MSP-TS-AURC 100 72.98 ±0.23 55.87 ±0.27 40.89 ±0.21 24.65 ±0.19 12.52 ±0.05 76.22 ±0.41

MaxLogit-pNorm 100 75.24 ±0.15 58.58 ±0.27 43.67 ±0.37 27.03 ±0.36 14.51 ±0.26 78.66 ±0.38

Figure 4a shows that the NAURC gains (over the MSP base-
line) obtained for ImageNet translate to similar gains for
ImageNetV2, showing that this post-hoc method is quite ro-
bust to distribution shift. Then, considering all models after
post-hoc optimization with MaxLogit-pNorm, we investi-
gate whether selective classification performance itself (as
measured by NAURC) is robust to distribution shift. As can
be seen in Figure 4b, the results are consistent, following an
affine function (with Pearson’s correlation equal to 0.983);
however, a significant degradation in NAURC can be ob-
served for all models under distribution shift. While at first
sight this would suggest a lack of robustness, a closer look
reveals that it can actually be explained by the natural accu-
racy drop of the underlying classifier under distribution shift.
Indeed, we have already noticed in Figure 3a a negative cor-
relation between the NAURC and the accuracy; in Figure 4c
these results are expanded by including the evaluation on Im-
ageNetV2 and also (for selected models AlexNet, ResNet50,
WideResNet50-2, VGG11, EfficientNet-B3 and ConvNext-
Large, sorted by accuracy) on ImageNet-C, where we can
see that the strong correlation between NAURC and accu-
racy continues to hold.

Finally, to give a more tangible illustration of the impact of
selective classification, Table 3 shows the SAC metric for a
ResNet50 under distribution shift, with the target accuracy
as the original accuracy obtained with the in-distribution test
data. As can be seen, the original accuracy can be restored

at the expense of coverage; meanwhile, MaxLogit-pNorm
achieves higher coverages for all distribution shifts con-
sidered, significantly improving coverage over the MSP
baseline.

6 DISCUSSION

Our work has identified two broad classes of trained models
(which comprise 31% and 69% of our sample, respectively):
models for which the MSP is apparently an already optimal
confidence estimator, in the sense that is not improvable by
any of the post-hoc methods we evaluated; and models for
which the MSP is suboptimal, in which case all of the best
methods evaluated produce highly correlated gains. As a
consequence, a few questions naturally arise.

Why is the MSP such a strong baseline in many cases
but easily improvable in many others? As mentioned in
Section 3.2, the MSP is the optimal confidence estimator
if the softmax output provides the exact class-posterior dis-
tribution. While this is obviously not the case in general, if
the model is designed and trained to estimate this posterior,
e.g., by minimizing the NLL, then it is unlikely that a bet-
ter estimate can be found by simple post-hoc optimization.
For instance, the optimal temperature parameter could be
easily learned during training and, more generally, any ben-
eficial logit transformation would already be made part of



the model architecture to maximize performance. However,
modern deep learning classifiers are often trained and tuned
with the goal of maximizing validation accuracy rather than
validation NLL, resulting in overfitting of the latter. Indeed,
this was the explanation offered in Guo et al. [2017] for
the emergence of overconfidence which motivated their pro-
posal of TS. Similarly, Wei et al. [2022] identified a specific
mechanism that could cause this overconfidence, namely,
an increasing magnitude of logits during training, which
motivated their proposal of logit normalization (see Ap-
pendix B for more details). Thus, overconfidence could be
the main cause of poor selective classification performance
and simple post-hoc tuning could be able to easily improve
it. While our results clearly prove this second hypothesis,
they actually disprove the first, as shown below.

What is the cause of poor selective classification per-
formance? According to our experiments in Appendix I,
models that produce highly confident MSPs tend to have
better confidence estimators (in terms of NAURC), while
models whose MSP distribution is more balanced tend to
be easily improvable by post-hoc optimization—which, in
turn, makes the resulting confidence estimator concentrated
on highly confident values. In other words, overconfidence
is not necessarily a problem for selective classification, but
underconfidence may be. While the root causes of this un-
derconfidence are currently under investigation, some nat-
ural suspects are techniques that create soft labels, such
as label smoothing [Szegedy et al., 2016] and mixup aug-
mentation [Zhang et al., 2017], which are present in mod-
ern training recipes and have already been shown in [Zhu
et al., 2022] to be harmful for misclassification detection. In
any case, our results reinforce the observations in previous
works [Zhu et al., 2022, Galil et al., 2023] that—except in
the special case where an ideal probabilistic model can be
found—calibration and selective classification are distinct
problems and optimizing one may harm the other. In particu-
lar, the method with best calibration performance (TS-NLL)
achieves only small gains in NAURC, while the method
with highest NAURC gains that still deliver probabilities
(MSP-pNorm) does not significantly improve calibration
and sometimes harms it.

Why are the gains of all methods highly correlated? Why
does post-hoc logit normalization improve performance
at all? One particular case of underconfidence is when the
model incorrectly attributes too much posterior probability
mass to the least probable classes (e.g., when all classes
except the predicted one have the same probability). In this
case, LogitsMargin, which effectively disregards all logits
except the highest two, may be a better confidence estimator.
However, as shown in Appendix B, MSP-TS with small T
approximates LogitsMargin, while MaxLogit-pNorm with
p = 1/T is closely related to the MSP-TS. Thus, all meth-
ods combat underconfidence in a similar way by focus on
the largest logits and therefore give highly correlated gains.

Moreover, this explains why using a sufficiently large p is es-
sential in post-hoc p-norm logit normalization. On the other
hand, as also shown in Appendix B, due to its unique char-
acteristics, MaxLogit-pNorm is even more effective than
MSP-TS in combatting this particular form of undercon-
fidence, since it can effectively discard the smallest, least
reliable logits without penalizing largest ones.

7 CONCLUSION

In this paper, we addressed the problem of selective multi-
class classification for deep neural networks with softmax
outputs. Specifically, we considered the design of post-hoc
confidence estimators that can be computed directly from
the unnormalized logits. We performed an extensive bench-
mark of more than 20 tunable post-hoc methods across 84
ImageNet classifiers, establishing strong baselines for fu-
ture research. To allow for a fair comparison, we proposed
a normalized version of the AURC metric that is insensitive
to the classifier accuracy.

Our main conclusions are the following: (1) For 58 (69%)
of the models considered, considerable NAURC gains over
the MSP can be obtained, in one case achieving a reduc-
tion of 0.27 points or about 62%. (2) Our proposed method
MaxLogit-pNorm (which does not use a softmax function)
emerges as a clear winner, providing the highest gains with
exceptional data efficiency, requiring on average less than
1 sample per class of hold-out data for tuning its single hy-
perparameter. These observations are also confirmed under
additional datasets and the gains preserved even under distri-
bution shift. (3) After post-hoc optimization, all models with
a similar accuracy achieve a similar level of confidence esti-
mation performance, even models that have been previously
shown to be very poor at this task. In particular, the selec-
tive classification performance of any classifier becomes
almost entirely determined by its corresponding accuracy,
eliminating the seemingly existing tradeoff between these
two goals reported in previous work. (4) Selective classifica-
tion performance itself appears to be robust to distribution
shift, in the sense that, although it naturally degrades, this
degradation is not larger than what would be expected by
the corresponding accuracy drop.

We have also investigated what makes a classifier easily
improvable by post-hoc methods and found that the issue is
related to underconfidence. The root causes of this under-
confidence are currently under investigation and will be the
subject of our future work.
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A ON THE DOCTOR METHOD

The paper by [Granese et al., 2021] introduces a selection mechanism named DOCTOR, which actually refers to two
distinct methods, Dα and Dβ , in two possible scenarios, Total Black Box and Partial Black Box. Only the former scenario
corresponds to post-hoc estimators and, in this case, the two methods are equivalent to NegativeGini and MSP, respectively.

To see this, first consider the definition of Dα: a sample x is rejected if 1− ĝ(x) > γĝ(x), where

1− ĝ(x) =
∑
k∈Y

(σ(z))k(1− (σ(z))k) = 1−
∑
k∈Y

(σ(z))2k = 1− ∥σ(z)∥22

is exactly the Gini index of diversity applied to the softmax outputs. Thus, a sample x is accepted if 1− ĝ(x) ≤ γĝ(x) ⇐⇒
(1 + γ)ĝ(x) ≥ 1 ⇐⇒ ĝ(x) ≥ 1/(1 + γ) ⇐⇒ ĝ(x) − 1 ≥ 1/(1 + γ) − 1. Therefore, the method is equivalent to the
confidence estimator g(x) = ĝ(x)− 1 = ∥σ(z)∥2 − 1, with t = 1/(1 + γ)− 1 as the selection threshold.

Now, consider the definition of Dβ : a sample x is rejected if P̂e(x) > γ(1 − P̂e(x)), where P̂e(x) = 1 − (σ(z))ŷ and
ŷ = argmaxk∈Y(σ(z))k, i.e., P̂e(x) = 1 − MSP(z). Thus, a sample x is accepted if P̂e(x) ≤ γ(1 − P̂e(x)) ⇐⇒
(1 + γ)P̂e(x) ≤ γ ⇐⇒ P̂e(x) ≤ γ/(1 + γ) ⇐⇒ MSP(z) ≥ 1 − γ/(1 + γ) = 1/(1 + γ). Therefore, the method is
equivalent to the confidence estimator g(x) = MSP(z), with t = 1/(1 + γ) as the selection threshold.

Given the above results, one may wonder why the results in [Granese et al., 2021] show different performance values for Dβ

and MSP (softmax response), as shown, for instance, in Table 1 in Granese et al. [2021]. We suspect this discrepancy is
due to numerical imprecision in the computation of the ROC curve for a limited number of threshold values, as the authors
themselves point out on their Appendix C.3, combined with the fact that Dβ and MSP in [Granese et al., 2021] use different
parametrizations for the threshold values. In contrast, we use the implementation from the scikit-learn library (adapting it as
necessary for the RC curve), which considers every possible threshold for the confidence values given and so is immune to
this kind of imprecision.

B ON LOGIT NORMALIZATION

Logit normalization during training. Wei et al. [2022] argued that, as training progresses, a model may tend to become
overconfident on correctly classified training samples by increasing ∥z∥2. This is due to the fact that the predicted class
depends only on z̃ = z/∥z∥2, but the training loss on correctly classified training samples can still be decreased by increasing
∥z∥2 while keeping z̃ fixed. Thus, the model would become overconfident on those samples, since increasing ∥z∥2 also
increases the confidence (as measured by MSP) of the predicted class. This overconfidence phenomenon was confirmed
experimentally in [Wei et al., 2022] by observing that the average magnitude of logits (and therefore also their average
2-norm) tends to increase during training. For this reason, Wei et al. [2022] proposed logit 2-norm normalization during
training, as a way to mitigate overconfidence. However, during inference, they still used the raw MSP as confidence estimator,
without any normalization.



Post-training logit normalization. Here, we propose to use logit p-norm normalization as a post-hoc method and we
intuitively expected it to have a similar effect in combating overconfidence. (Note that the argument in [Wei et al., 2022]
holds unchanged for any p, as nothing in their analysis requires p = 2.) Our initial hypothesis was the following: if the model
has become too overconfident (through high logit norm) on certain input regions, then—since overconfidence is a form of
(loss) overfitting—there would be an increased chance that the model will produce incorrect predictions on the test set along
these input regions. Thus, high logit norm on the test set would indicate regions of higher inaccuracy, so that, by applying
logit normalization, we would be penalizing likely inaccurate predictions, improving selective classification performance.
However, this hypothesis was disproved by the experimental results in Appendix E, which show that overconfidence is not
necessarily a problem for selective classification, but underconfidence may be.

Nevertheless, it should be clear that, despite their similarities, logit L2 normalization during training and post-hoc logit
p-norm normalization are different techniques applied to different problems and with different behavior. Moreover, even
if logit normalization during training turns out to be beneficial to selective classification (an evaluation that is, however,
outside the scope of this work), it should be emphasized that post-hoc optimization can be easily applied on top of any
trained model without requiring modifications to its training regime.

Combating underconfidence with temperature scaling. If a model is underconfident on a set of samples, with low logit
norm and an MSP value smaller than its expected accuracy on these samples, then the MSP may not provide a good estimate
of confidence. One particular case of underconfidence is when the model incorrectly attributes too much posterior probability
mass to the least probable classes (e.g., when all classes except the predicted one have the same probability). In this case,
LogitsMargin (the margin between the highest and the second highest logit), which effectively disregards all logits except
the highest two, may be a better confidence estimator. Alternatively, one may use MSP-TS with a low temperature, which
approximates LogitsMargin, as can be easily seen below. Let z = (z1, . . . , zC), with z1 > . . . > zC . Then

MSP(z/T ) =
ez1/T∑
j e

zj/T
=

1

1 + e(z2−z1)/T +
∑

j>2 e
(zj−z1)/T

(12)

=
1

1 + e−(z1−z2)/T
(
1 +

∑
j>2 e

−(z2−zj)/T
) ≈ 1

1 + e−(z1−z2)/T
(13)

for small T > 0. Note that a strictly increasing transformation does not change the ordering of confidence values and thus
maintains selective classification performance. This helps explain why TS (with T < 1) can improve selective classification
performance, as already observed in [Galil et al., 2023].

Logit p-norm normalization as temperature scaling. To shed light on why post-hoc logit p-norm normalization (with a
general p) may be helpful, we can show that it is closely related to MSP-TS. Let gp(z) = z1/∥z∥p denote MaxLogit-pNorm
without centralization, which we denote here as MaxLogit-pNorm-NC. Then

MSP(z/T ) =

 ez1(∑
j e

zj/T
)T


1/T

=

(
ez1

∥ez∥1/T

)1/T

=
(
g1/T (e

z)
)1/T

. (14)

Thus, MSP-TS is equivalent to MaxLogit-pNorm-NC with p = 1/T applied to the transformed logit vector exp(z). This
helps explain why a general p-norm normalization is useful, as it is closely related to TS, emphasizing the largest components
of the logit vector. This also implies that any benefits of MaxLogit-pNorm-NC over MSP-TS stem from not applying the
exponential transformation of logits.

Logit p-norm normalization goes beyond temperature scaling in combatting underconfidence. To understand why not
applying this exponential transformation is beneficial, we first express MaxLogit-pNorm-NC as

MaxLogit-pNorm-NC(z) =
z1(∑C

j=1 |zj |p
)1/p

=
1(∑C

j=1

∣∣∣ zjz1 ∣∣∣p)1/p
=

 1

1 +
∣∣∣ z2z1 ∣∣∣p +∑C

j=3

∣∣∣ zjz1 ∣∣∣p
1/p

(15)

where we assume z1 > 0. Now, suppose that the logits already happen to be centralized (which also ensures z1 > 0). It
follows that most of the logits zj for j ≫ 1 are close to zero (except possibly the very last ones). Thus, under the summation
in (15), these logits effectively disappear, which is particularly useful in the case of underconfidence discussed above.
However, this would not happen if an exponential transformation were applied to the logits as in (12), unless the T is very



small. On the other hand, making T too small can lead to ignoring not only the smallest logits but also some of the larger
ones as well, i.e., it may be too drastic a measure. These effects are illustrated in Fig. 5.

This analysis also helps explain why centralization is useful. As shown in Appendix G, for most models, the logits are
already centralized, so MaxLogit-pNorm-NC already provides the highest gains. A few models, however, have logits with
means significantly different from zero and precisely these models achieve significant gains when centralization is applied,
which enables the above analysis to hold.

In summary, underconfidence can be mitigated by prioritizing the largest logits. This is done MaxLogit-pNorm by increasing
p (which is akin to lowering the temperature), by making most of the smallest logits close to zero via centralization (if
needed), and by not using an exponential transformation, which allows these near-zero logits to be effectively discarded
without penalizing largest logits.
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Figure 5: The ratio Aj/A2, where Aj = exp(zj/T ) for MSP-TS and Aj = |zj − µ(z)|p for MaxLogit-pNorm, hence
reflecting the influence of intermediate logits on Equations 12 and 15. The classifier is EfficientNet-B3 evaluated on
ImageNet. The sum

∑
j≥100 Aj/A2 is equal to 2.020 for the MSP, 0.005 for the MSP-TS and 0.024 for the MaxLogit-

pNorm, showing the effectiveness of the latter two methods in discarding the smallest logits.

C MORE DETAILS AND RESULTS ON THE EXPERIMENTS ON IMAGENET

C.1 HYPERPARAMETER OPTIMIZATION OF POST-HOC METHODS

Because it is not differentiable, the NAURC metric demands a zero-order optimization. For this work, the optimizations of p
and T were conducted via grid-search. Note that, as p approaches infinity, ||z||p → max(|z|). Indeed, it tends to converge
reasonable quickly. Thus, the grid search on p can be made only for small p. In our experiments, we noticed that it suffices
to evaluate a few values of p, such as the integers between 0 and 10, where the 0-norm is taken here to mean the sum of all
nonzero values of the vector. The temperature values were taken from the range between 0.01 and 3, with a step size of 0.01,
as this showed to be sufficient for achieving the optimal temperature for selective classification (in general between 0 and 1).

C.2 AUROC RESULTS

Table 4 shows the AUROC results for all methods for an EfficientNetV2-XL and a VGG-16 on ImageNet, and Figure 6
shows the correlation between the AUROC and the accuracy. As it can be seen, the results are consistent with the ones for
NAURC presented in Section 5.

C.3 RC CURVES

In Figure 7 the RC curves of selected post-hoc methods applied to a few representative models are shown.



Table 4: AUROC (mean ±std) for post-hoc methods applied to ImageNet classifiers

Logit Transformation

Classifier Conf. Estimator Raw TS-NLL TS-AURC pNorm

EfficientNet-V2-XL

MSP 0.7732 ±0.0014 0.8107 ±0.0016 0.8606 ±0.0011 0.8712 ±0.0012
SoftmaxMargin 0.7990 ±0.0013 0.8245 ±0.0014 0.8603 ±0.0012 0.8712 ±0.0011
MaxLogit 0.6346 ±0.0014 - - 0.8740 ±0.0010
LogitsMargin 0.8604 ±0.0011 - - 0.8702 ±0.0010
NegativeEntropy 0.6890 ±0.0014 0.7704 ±0.0026 0.6829 ±0.0891 0.8719 ±0.0016
NegativeGini 0.7668 ±0.0014 0.8099 ±0.0017 0.8606 ±0.0011 0.8714 ±0.0012

VGG16

MSP 0.8660 ±0.0004 0.8652 ±0.0003 0.8661 ±0.0004 0.8661 ±0.0004
SoftmaxMargin 0.8602 ±0.0003 0.8609 ±0.0004 0.8616 ±0.0003 0.8616 ±0.0003
MaxLogit 0.7883 ±0.0004 - - 0.8552 ±0.0007
LogitsMargin 0.8476 ±0.0003 - - 0.8476 ±0.0003
NegativeEntropy 0.8555 ±0.0004 0.8493 ±0.0004 0.8657 ±0.0004 0.8657 ±0.0004
NegativeGini 0.8645 ±0.0004 0.8620 ±0.0003 0.8659 ±0.0003 0.8659 ±0.0003

C.4 EFFECT OF ϵ

Figure 8 shows the results (in APG metric) for all methods when p is optimized. As can be seen, MaxLogit-pNorm is
dominant for all ϵ > 0, indicating that, provided the MSP fallback described in Section 4.2.2 is enabled, it outperforms the
other methods.

D EXPERIMENTS ON ADDITIONAL DATASETS

D.1 EXPERIMENTS ON OXFORD-IIIT PET

The hold-out set for Oxford-IIIT Pet, consisting of 500 samples, was taken from the training set before training. The model
used was an EfficientNet-V2-XL pretrained on ImageNet from Wightman [2019]. It was fine-tuned on Oxford-IIIT Pet
[Parkhi et al., 2012]. The training was conducted for 100 epochs with Cross Entropy Loss, using a SGD optimizer with
initial learning rate of 0.1 and a Cosine Annealing learning rate schedule with period 100. Moreover, a weight decay of
0.0005 and a Nesterov’s momentum of 0.9 were used. Data transformations were applied, specifically standardization,
random crop (for size 224x224) and random horizontal flip.

Figure 9 shows the RC curves for some selected methods for the EfficientNet-V2-XL. As can be seen, considerable gains
are obtained with the optimization of p, especially in the low-risk region.

D.2 EXPERIMENTS ON CIFAR-100

The hold-out set for CIFAR-100, consisting of 5000 samples, was taken from the training set before training. The model
used was forked from github.com/kuangliu/pytorch-cifar, and adapted for CIFAR-100 [Krizhevsky, 2009].
It was trained for 200 epochs with Cross Entropy Loss, using a SGD optimizer with initial learning rate of 0.1 and a Cosine
Annealing learning rate schedule with period 200. Moreover, a weight decay of 0.0005 and a Nesterov’s momentum of 0.9
were used. Data transformations were applied, specifically standardization, random crop (for size 32x32 with padding 4)
and random horizontal flip.

Figure 10 shows the RC curves for some selected methods for a VGG19. As it can be seen, the results follow the same
pattern of the ones observed for ImageNet, with MaxLogit-pNorm achieving the best results.

github.com/kuangliu/pytorch-cifar
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baseline plots use MSP, while the optimized plots use MaxLogit-pNorm. The legend shows the optimal value of p for each
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E DATA EFFICIENCY

In this section, we empirically investigate the data efficiency [Zhang et al., 2020] of tunable post-hoc methods, which refers
to their ability to learn and generalize from limited data. As is well-known from machine learning theory and practice, the
more we evaluate the empirical risk to tune a parameter, the more we are prone to overfitting, which is aggravated as the
size of the dataset used for tuning decreases. Thus, a method that require less hyperparameter tuning tends to be more
data efficient, i.e., to achieve its optimal performance with less tuning data. We intuitively expect this to be the case for
MaxLogit-pNorm, which only requires evaluating a few values of p, compared to any method based on the softmax function,
which requires tuning a temperature parameter.

As mentioned in Section 5, the experiments conducted in ImageNet used a test set of 45000 images randomly sampled
from the available ImageNet validation dataset, resulting in 5000 images for the tuning set. To evaluate data efficiency, the
post-hoc optimization process was executed multiple times, using different fractions of the tuning set while keeping the test
set fixed. This whole process was repeated 50 times for different random samplings of the test set (always fixed at 45000
images).

Figure 11a displays the outcomes of these studies for a ResNet50 trained on ImageNet. As observed, MaxLogit-pNorm
exhibits outstanding data efficiency, while methods that require temperature optimization achieve lower efficiency.

Furthermore, this experiment was conducted on the VGG19 model for CIFAR-100, as shown in figure 11a. Indeed, the same
conclusions hold for the high efficiency of MaxLogit-pNorm.

To ensure our finding generalize across models, we repeat this process for all the 84 ImageNet classifiers considered, for a
specific tuning set size. This time only 10 realizations of the test set were performed, similarly to the results of Section 5.1.
Table 5 is the equivalent of Table 2 for a tuning set of 1000 samples, while Table 6 corresponds to a tuning set of 500 samples.
As can be seen, the results obtained are consistent with those observed previously. In particular, MaxLogit-pNorm provides
a statistically significant improvement over all other methods when the tuning set is reduced. Moreover, MaxLogit-pNorm is
one of the most stable among the tunable methods in terms of variance of gains.

F ABLATION STUDY ON THE CHOICE OF p

A natural question regarding p-norm normalization (with a general p) is whether it can provide any benefits beyond the
default p = 2 used by Wei et al. [2022]. Table 7 shows the APG-NAURC results for the 84 ImageNet classifiers when
different values of p are kept fixed and when p is optimized for each model (tunable).
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Figure 7: RC curves for selected post-hoc methods applied to ImageNet classifiers.
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Figure 9: RC curves for a EfficientNet-V2-XL for Oxford-IIIT Pet

As can be seen, there is a significant benefit of using a larger p (especially a tunable one) compared to simply using
p = 2, especially for MaxLogit-pNorm. Note that, differently from MaxLogit-pNorm, MSP-pNorm requires temperature
optimization. This additional tuning is detrimental to data efficiency, which is evidenced by the loss in performance of
MSP-pNorm using a tuning set of 1000 samples, as shown in Table 8.

G LOGITS TRANSLATION

In Section 4.1 we proposed p-normalization applied together with the centralization of the logits. In this section, we aim to
provide an ablation of this centralization procedure and the effects of the translation of logits.

First of all, it is worth noting that the softmax function is translation invariant, i.e.,

σ(z) = σ(z+ γ) ∀γ ∈ R. (16)

As the general loss (i.e. the cross-entropy loss) takes as input only the softmax outputs, the logits after convergence might
have arbitrarily mean/offsets. Moreover, the following properties become relevant when dealing with selective classification:

• All methods in which the p-normalization is applied on the logits are sensitive to any constant summed up to the them;
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Figure 10: RC curves for a VGG19 for CIFAR-100

Table 5: APG-NAURC (mean ±std) of post-hoc methods across 84 ImageNet classifiers, for a tuning set of 1000 samples

Logit Transformation

Conf. Estimator Raw TS-NLL TS-AURC pNorm

MSP 0.00000 ±0.00000 0.03657 ±0.00084 0.05571 ±0.00164 0.06436 ±0.00413
SoftmaxMargin 0.01951 ±0.00010 0.04102 ±0.00052 0.05420 ±0.00134 0.06238 ±0.00416
MaxLogit 0.00000 ±0.00000 - - 0.06795 ±0.00077
LogitsMargin 0.05510 ±0.00059 - - 0.06110 ±0.00084
NegativeEntropy 0.00000 ±0.00000 0.01566 ±0.00182 0.05851 ±0.00055 0.06485 ±0.00176
NegativeGini 0.00000 ±0.00000 0.03627 ±0.00095 0.05617 ±0.00162 0.06424 ±0.00390

• The sum of the same constant for all samples does not change the ranking between them when the MaxLogit is used as
the confidence estimator. However, when a constant different for each sample (such as the centralization) is considered,
the ranking might be affected;

• The LogitsMargin is totally insensitive to the translation of the logits;

• All methods using softmax without p-normalization are insensitive to the translation of the logits.

In order to study the impact of the translation of logits on the MaxLogit-pNorm method, we will start by proposing an
alternative post-hoc method:

MaxLogit-pNorm-shift(z,Γ, γ) ≜ MaxLogit
(

z− Γ(z) + γ

||z− Γ(z) + γ||p

)
, (17)

where Γ: RC → R is a function of the logits (such as the mean function) and γ ∈ R is a constant to be optimized together
with p. The optimization of γ is performed with a grid search in the range of [-3,3].

Table 9 shows the APG-NAURC for all 84 models considered in this work on ImageNet when using different possibilites of
Γ and γ. Specifically, we considered the cases where γ is 0 and when it is optimized in a hold-out set; for Γ, we considered
Γ(z) = 0, Γ(z) = µ(z) (for centralization) and Γ(z) = minj zj (to align the minimum value of all samples to 0, making
all logits positive). As can be seen, optimizing γ does not provide significant gains and can lead to overfitting in a low
data regime; thus, in the main method we discarded this constant. For γ = 0, choosing Γ(z) = µ(z) provides the highest
gains, which, although relatively small compared to Γ(z) = 0, certainly do not harm performance. Since this operation is
computationally cheap, does not require optimization, and allows the use of softmax probabilities directly (as mentioned in
Section 4.1), we decided to adopt it in the main method.

Figure 12 shows the difference in NAURC when Γ(z) = µ(z) and when Γ(z) = 0 (for γ = 0), as well as the average across
all test samples of the mean of the logits for all methods in which the MaxLogit-pNorm wields gains (i.e., the MSP fallback
is not applied). It can be observed that most models already output their logits with almost zero mean, making centralization
unnecessary. However, a few models with nonzero logits means present considerable gains in centralization.
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Figure 11: Mean NAURC as a function of the number of samples used for tuning the confidence estimator. Filled regions for
each curve correspond to ±1 standard deviation (across 50 realizations). Dashed lines represent the mean of the NAURC
achieved when the optimization is made directly on the test set (giving a lower bound on the optimal value), while dotted
lines correspond respectively to ±1 standard deviation. (a) ResNet50 on ImageNet. For comparison, the MSP achieves a
mean NAURC of 0.3209 (not shown in the figure). (b) VGG19 on CIFAR-100.



Table 6: APG-NAURC (mean ±std) of post-hoc methods across 84 ImageNet classifiers, for a tuning set of 500 samples

Logit Transformation

Conf. Estimator Raw TS-NLL TS-AURC pNorm

MSP 0.0 ± 0.0 0.03614 ±0.00152 0.05198 ±0.00381 0.05835 ±0.00677
SoftmaxMargin 0.01955 ±0.00008 0.04083 ±0.00094 0.05048 ±0.00381 0.05601 ±0.00683
MaxLogit 0.0 ± 0.0 - - 0.06719 ±0.00141
LogitsMargin 0.05531 ±0.00042 - - 0.06064 ±0.00081
NegativeEntropy 0.0 ± 0.0 0.01487 ±0.00266 0.05808 ±0.00066 0.06270 ±0.00223
NegativeGini 0.0 ± 0.0 0.03578 ±0.00174 0.05250 ±0.00368 0.05832 ±0.00656

Table 7: APG-NAURC (mean ±std) across 84 ImageNet classifiers, for different values of p

Confidence Estimator

p MaxLogit-pNorm MSP-pNorm

0 0.00000 ±0.00000 0.05769 ±0.00038
1 0.00199 ±0.00007 0.05990 ±0.00062
2 0.01519 ±0.00050 0.06486 ±0.00054
3 0.05058 ±0.00049 0.06748 ±0.00048
4 0.06443 ±0.00051 0.06823 ±0.00047
5 0.06805 ±0.00048 0.06809 ±0.00048
6 0.06814 ±0.00048 0.06763 ±0.00049
7 0.06692 ±0.00053 0.06727 ±0.00048
8 0.06544 ±0.00048 0.06703 ±0.00048
9 0.06410 ±0.00048 0.06690 ±0.00048
Tunable 0.06863 ±0.00045 0.06796 ±0.00051
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H COMPARISON WITH OTHER TUNABLE METHODS

In Section 5.1 we compared several logit-based confidence estimators obtained by combining a parameterless confidence
estimator with a tunable logit transformation, specifically, TS and p-norm normalization. In this section, we consider other



Table 8: APG-NAURC (mean ±std) across 84 ImageNet classifiers, for different values of p for a tuning set of 1000 samples

Confidence Estimator

p MaxLogit-pNorm MSP-pNorm

0 0.00000 ±0.00000 0.05571 ±0.00164
1 0.00199 ±0.00007 0.05699 ±0.00365
2 0.01519 ±0.00050 0.06234 ±0.00329
3 0.05058 ±0.00049 0.06527 ±0.00340
4 0.06443 ±0.00051 0.06621 ±0.00375
5 0.06805 ±0.00048 0.06625 ±0.00338
6 0.06814 ±0.00048 0.06589 ±0.00332
7 0.06692 ±0.00053 0.06551 ±0.00318
8 0.06544 ±0.00048 0.06512 ±0.00345
9 0.06410 ±0.00048 0.06491 ±0.00329
Tunable 0.06795 ±0.00077 0.06436 ±0.00413

Table 9: APG-NAURC (mean ±std) of MaxLogit-pNorm-shift for different selections of Γ and γ. γ∗ represents the value
that optimizes the AURC in the hold-out dataset.

5000 hold-out samples 1000 hold-out samples

Γ(z) γ = 0 γ = γ∗ γ = 0 γ = γ∗

0 0.06833 ±0.00044 0.06866 ±0.00044 0.06760 ±0.00077 0.06738 ±0.00091
µ(z) 0.06863 ±0.00045 0.06867 ±0.00045 0.06795 ±0.00077 0.06742 ±0.00093
minj zj 0.06668 ±0.00049 0.06658 ±0.00056 0.06626 ±0.00073 0.06523 ±0.00151

previously proposed tunable confidence estimators that do not fit into this framework.

Note that some of these methods were originally proposed seeking calibration, and hence its hyperparameters were tuned to
optimize the NLL loss (which is usually suboptimal for selective classification). Instead, to make a fair comparison, we
optimized all of their parameters using the AURC metric as the objective metric.

Zhang et al. [2020] proposed ensemble temperature scaling (ETS):

ETS(z) ≜ w1MSP
( z

T

)
+ w2MSP(z) + w3

1

C
(18)

where w1, w2, w3 ∈ R+ are tunable parameters and T is the temperature previously obtained through the temperature
scaling method. The grid for both w1 and w2 was [0, 1] as suggested by the authors, with a step size of 0.01, while the
parameter w3 was not considered since the sum of a constant to the confidence estimator cannot change the ranking between
samples and consequently cannot change the value of selective classification metrics.

Boursinos and Koutsoukos [2022] proposed the following confidence estimator, referred to here as Boursinos-Koutsoukos
(BK):

BK(z) ≜ aMSP(z) + b(1− max
k∈Y:k ̸=ŷ

σk(z)) (19)

where a, b ∈ R are tunable parameters. The grid for both a and b was [−1, 1] as suggested by the authors, with a step size of
0.01, although we note that the optimization never found a < 0 (probably due to the high value of the MSP as a confidence
estimator).

Finally, Balanya et al. [2023] proposed entropy-based temperature scaling (HTS):

HTS(z) ≜ MSP
(

z

TH(z)

)
(20)

where TH(z) = log
(
1 + exp(b+ w log H̄(z))

)
, H̄(z) = −(1/C)

∑
k∈Y σk(z) log σk(z), and b, w ∈ R are tunable

parameters. The grids for b and w were, respectively, [−3, 1] and [−1, 1], with a step size of 0.01, and we note that the
optimal parameters were always strictly inside the grid.



The results for these post-hoc methods are shown in Table 10 and Table 11. Interestingly, BK, which can be seen as a tunable
linear combination of MSP and SoftmaxMargin, is able to outperform both of them, although it still underperforms MSP-TS.
On the other hand, ETS, which is a tunable linear combination of MSP and MSP-TS, attains exactly the same performance
as MSP-TS. Finally, HTS, which is a generalization of MSP-TS, is able to outperform it, although it still underperforms
most methods that use p-norm tuning (see Table 2). In particular, MaxLogit-pNorm shows superior performance to all of
these methods, while requiring much less hyperparameter tuning.

Table 10: APG-NAURC of additional tunable post-hoc methods across 84 ImageNet classifiers

Method APG-NAURC

BK 0.03932 ±0.00031
ETS 0.05768 ±0.00037
HTS 0.06309 ±0.00034

MaxLogit-pNorm 0.06863 ±0.00045

Table 11: APG-NAURC of additional tunable post-hoc methods across 84 ImageNet classifiers for a tuning set with 1000
samples

Method APG-NAURC

BK 0.03795 ±0.00067
ETS 0.05569 ±0.00165
HTS 0.05927 ±0.00280

MaxLogit-pNorm 0.06795 ±0.00077

Methods with a larger number of tunable parameters, such as PTS [Tomani et al., 2022] and HnLTS [Balanya et al., 2023],
are only viable with a differentiable loss. As these methods are proposed for calibration, the NLL loss is used; however,
as previous works have shown that this does not always improve and sometimes even harm selective classification [Zhu
et al., 2022, Galil et al., 2023], these methods were not considered in our work. The investigation of alternative methods for
optimizing selective classification (such as proposing differentiable losses or more efficient zero-order methods) is left as a
suggestion for future work. In any case, note that using a large number of hyperparameters is likely to harm data efficiency.

We also evaluated additional parameterless confidence estimators proposed for selective classification [Hasan et al., 2023],
such as LDAM [He et al., 2011] and the method in [Leon-Malpartida et al., 2018], both in their raw form and with TS/pNorm
optimization, but none of these methods showed any gain over the MSP. Note that the Gini index, sometimes proposed as a
post-hoc method [Hasan et al., 2023] (and also known as DOCTOR’s Dα method [Granese et al., 2021]) has already been
covered in Section 3.2.

I CALIBRATION RESULTS

If the confidence estimation g(x) of a model can be treated as a probability, as is the case with the MSP, it is natural to desire
that it truly reflects the probability of a prediction to be correct. A model is said to be perfectly calibrated if:

P[ŷ = y|g(x) = p] = p,∀p ∈ [0, 1] (21)

One popular framework to measure calibration in a finite dataset is to use binning. If we group predictions into M interval
bins with same size, and if Bm is a set of indices of samples whose prediction confidence belongs to the interval

(
m−1
M , m

M

]
,

we calculate the accuracy of bin Bm as:

acc(Bm) =
1

|Bm|
∑
i∈Bm

1[ŷi = yi] (22)

where ŷi and yi are the predicted and the true classes of sample i and |Bm| is the number of samples in the bin. The average
confidence of the same bin is calculated as:



conf(Bm) =
1

|Bm|
∑
i∈Bm

gi(x) (23)

From these definitions, the most popular metric for measuring the calibration is the Expected Calibration Error [Naeini et al.,
2015], defined as:

ECE(g) ≜
M∑

m=1

|Bm|
n

|acc(Bm)− conf(Bm)| (24)

It is important to re-emphasize that calibration and metrics such as ECE are defined in a context where g(x) can be treated
as a probability. Hence, we only present the results for uncertainty quantifiers that have this property/intention. The ECE
values for all considered methods (optimized for the AURC) for which g(x) can be considered as a probability are presented
in Table 12. Additionally, Figure 13 shows the reliability diagrams [Guo et al., 2017] of different classifiers of ImageNet.
For comparison, since MaxLogit-pNorm can only return values between 0 and 1, we also present its reliability curve in
Figure 13, even though its values should not be interpreted as a probability. As can be seen, the models (EfficientNetV2-XL
and WideResNet50-2) with “broken” selective mechanism tend to have the MSP under-confident, and, while the TS-NLL
can minimize the ECE, the MSP variation which optimizes selective classification (MSP-pNorm) can achieve bad calibration
results, with overconfident predictions.

Table 12: ECE (mean ±std) for post-hoc methods applied to ImageNet classifiers

Method ECE

MSP 0.13060 ±0.00014
MSP-TS-NLL 0.02990 ±0.00109
MSP-TS-AURC 0.10395 ±0.00341
MSP-pNorm 0.10786 ±0.04860

These results goes against the natural hypothesis that overconfidence is a huge problem in uncertainty estimation of neural
networks. Thus, we present further investigations regarding the relation between the selective classification anomaly and
the over/underconfidence phenomenon. Figure 14 shows histograms of confidence values for two representative examples
of non-improvable and improvable models, with the latter one shown before and after post-hoc optimization. Figure 15
shows the NAURC gain over MSP versus the proportion of samples with high MSP for each classifier. As can be seen,
highly confident models tend to have a good MSP confidence estimator, while less confident models tend to have a poor
confidence estimator that is easily improvable by post-hoc methods—after which the resulting confidence estimator becomes
concentrated on high values.

J FULL RESULTS ON IMAGENET

Table 13 presents all the NAURC results for the most relevant methods for all the models evaluated on ImageNet, while
Table 14 shows the corresponding AURC results and Table 15 the corresponding AUROC results. p∗ denotes the optimal
value of p obtained for the corresponding method, while p∗ = F denotes MSP fallback.



0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

MSP (ECE = 0.0261) 
MSP-TS-NLL (ECE = 0.0191) 
MSP-TS-AURC (ECE = 0.0380) 
MSP-pNorm (ECE = 0.0380) 
MaxLogit-pNorm

(a) VGG16

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

MSP (ECE = 0.3785) 
MSP-TS-NLL (ECE = 0.0325) 
MSP-TS-AURC (ECE = 0.1355) 
MSP-pNorm (ECE = 0.0348) 
MaxLogit-pNorm

(b) WideResNet50-2

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

MSP (ECE = 0.1034) 
MSP-TS-NLL (ECE = 0.0379) 
MSP-TS-AURC (ECE = 0.1305) 
MSP-pNorm (ECE = 0.1245) 
MaxLogit-pNorm

(c) EfficientNetV2-XL

Figure 13: Reliability diagrams of different methods applied on VGG16, WideResNet50-2 and EfficientNetV2-XL on
ImageNet. Dashed black line indicates perfect calibration. For MaxLogit-pNorm, we do not present the ECE metric since
this method is not treated as a probability.
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Figure 14: Histograms of confidence values for VGG16 and WideResNet50-2 before and after post-hoc optimization on
ImageNet.
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