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ABSTRACT

Molecular conformation generation, a critical aspect of computational chemistry,
involves producing the three-dimensional conformer geometry for a given molecule.
Generating molecular conformation via diffusion requires learning to reverse a
noising process. Diffusion on inter-atomic distances instead of conformation pre-
serves SE(3)-equivalence and shows superior performance compared to alternative
techniques, whereas related generative modelings are predominantly based upon
heuristical assumptions. In response to this, we propose a novel molecular confor-
mation generation approach driven by the observation that the disintegration of a
molecule can be viewed as casting increasing force fields to its composing atoms,
such that the distribution of the change of inter-atomic distance shifts from Gaus-
sian to Maxwell-Boltzmann distribution. The corresponding generative modeling
ensures a feasible inter-atomic distance geometry and exhibits time reversibility.
Experimental results on molecular datasets demonstrate the advantages of the
proposed shifting distribution compared to the state-of-the-art.

1 INTRODUCTION

The molecular conformation generation task constitutes a crucial and enabling aspect of numerous re-
search pursuits, particularly in the study of molecular structures and their potential energy landscapes
(Strodel, 2021). Traditional computational methods for this task rely on optimizing the free energy
grounded on Schrodinger equation or density functional theory or its approximations (Griffiths &
Schroeter, 2018; Tsujishita & Hirono, 1997; Labute, 2010), failing to find a good balance between
complexity and quality. Recently, machine learning has emerged as a powerful and efficient tool to
identify more stable and diverse conformations across an expanded chemical space (Xu et al., 2021b;
Ganea et al., 2021; Xu et al.; Jing et al.). However, such novel approaches give rise to some new
challenges.

One of the most significant challenges is incorporating the roto-translational equivariance (SE(3)-
equivariance) intrinsic to the generation process. Recent works employ SE(3)-equivariant molecular
properties as proxies to render the model invariance. For instance, some studies focus on predicting
torsional angles (Jing et al.; Ganea et al., 2021) or inter-atomic distances (Simm & Hernández-Lobato,
2020; Xu et al.; Ganea et al., 2021), with the final conformation assembled through post-processing.
Besides, Uni-Mol (Zhou et al., 2023a) predicts the delta coordinate positions based on atom pair
representation to update coordinates. Other works leverage inter-atomic distances to directly predict
coordinates using generative models (Xu et al.; Shi et al., 2021; Xu et al., 2021b; Zhu et al.). In
parallel with these efforts, researchers have developed SE(3)-equivariant graph neural networks
(GNNs) to better characterize the geometry and topology of geometric graphs (Schütt et al., 2017;
Satorras et al., 2021; Han et al., 2022). These GNNs serve as effective tools or backbones for
molecular conformation generation (Jing et al.; Ganea et al., 2021; Xu et al.; Shi et al., 2021; Xu
et al., 2021b; Hoogeboom et al., 2022).

Following the previous works (Xu et al.; Shi et al., 2021; Xu et al., 2021b), our approach also
seeks to encode SE(3)-equivariance from an inter-atomic distance perspective. To the best of our
knowledge, existing works do not yet provide a systemic analysis of distance, often relying on
common or heuristic Gaussian assumption on distance changes (Xu et al., 2021b). In this study,
we conduct a thorough analysis of inter-atomic distances, drawing inspiration from physical atom
motion phenomena. Specifically, we investigate the disintegration process of molecular structures
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Figure 1: Demostration of the diffusion process of SDDiff. As the Gaussian perturbation level
on atom coordinates increases, the distribution of inter-atomic distances shifts from Gaussian to
Maxwell-Boltzmann, which SDDiff learns to reverse.

and aim to learn how to reverse these processes for generating conformations. To this end, the
disintegration of molecules can be viewed as being caused by the introduction of gradually increasing
levels of perturbing force fields. We postulate that atoms within a molecule exhibit Brownian motion
(Gaussian) under relatively small perturbing forces. When the forces are considerably large, chemical
structures are disrupted, and the atoms are able to move without restrictions. In this stage, the atom
speeds follow a Maxwell-Boltzman distribution. Naturally, this can be connected to the distance
distribution, in accordance with the escalation of perturbation intensity. See Fig. 1 for an overview.

We thus put forth a precise estimation of the perturbed distance distribution through a closed-form
shifting score function. Further, we propose a novel diffusion-based model named SDDiff (shifting
distance diffusion) to reverse the force field to recover molecule conformations, leading to superior
performance.

Our main contributions are:

• Inspired by molecule thermodynamics, we show that under the Gaussian perturbation kernel
on molecular conformation, the distribution of relative speeds and the change of inter-atomic
distances shift from Gaussian to Maxwell-Boltzmann distribution.

• We propose a diffusion-based generative model, SDDiff, with a novel and closed-form shift-
ing score kernel, with the mathematical support and empirical verification of its correctness.

• Our method achieves state-of-the-art performance on two molecular conformation generation
benchmarks, GEOM-Drugs (Axelrod & Gómez-Bombarelli, 2022) and GEOM-QM9 (Ra-
makrishnan et al., 2014).

2 RELATED WORK

Molecular conformation generation. Learning techniques are increasingly equipped for molecular
conformation generation. A shallow trial is GeoMol (Ganea et al., 2021), which predicts local 3D
configurations and assembles them with heuristic rules. Instead, conformations can be holistically
sampled via modelings of either inter-atomic distance (Shi et al., 2021; Simm & Hernández-Lobato,
2020) or atom coordinates (Xu et al.; Zhu et al.). Recently, a rising interest has been observed in
diffusion-based approaches (Shi et al., 2021; Xu et al., 2021b; Jing et al.), where the most related
works to ours are ConfGF (Shi et al., 2021) and GeoDiff (Xu et al., 2021b). ConfGF perturbs the
distance and estimates the corresponding score, which is subsequently converted to the coordinate
score via chain rule. However, such a process may result in infeasible 3D geometry. GeoDiff perturbs
coordinates instead and introduces an SE(3)-equivariant Markov kernel transiting the coordinate
diffusion process to the distance process. However, this model’s design is based on the assumption
that the perturbed distance follows a Gaussian distribution. This heuristic assumption can lead to
mismatches and inaccuracy.
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Diffusion-based generative models. Denosing diffusion probabilistic models (DDPM) (Ho et al.,
2020) delineates a Markov chain of diffusion steps to add random noise to data and subsequently
learns to invert the diffusion process for generating desired data samples. Analogous to DDPM, the
score matching with Langevin dynamics (SMLD) models (Song & Ermon, 2019; 2020) train noise
conditional score networks (NCSN) that approximate the score function of the dataset and apply the
stochastic gradient Langevin dynamics to approximate the data distribution. The above two models
can be unified under the context of stochastic differential equations (SDEs) (Song et al., 2020b).
The denoising diffusion implicit model (DDIM) (Song et al., 2020a) has a controllable sampling
stochasticity, allowing the generation of higher-quality samples with fewer steps. The latent diffusion
model (LDM) (Rombach et al., 2022) is another accelerated sampler by implementing the diffusion
process in the latent space.

SE(3) Neural Networks. The Euclidean group, denoted as SE(3) or E(3) when including reflections,
represents a group of symmetries in 3D translation and rotation. Due to the geometric symmetry
nature of molecules, incorporating this property in feature backbones is essential. One typical
line of research is related to GNNs. Schnet (Schütt et al., 2017) is an E(n)-invariant network for
modeling quantum interactions in molecules. E(n)- Equivariant Graph Neural Networks (EGNNs)
(Satorras et al., 2021) is an E(n)-equivariant GNN, which does not rely on computationally expensive
higher-order representations in intermediate layers. A hierarchy-based GNN named Equivariant
Hierarchy-based Graph Networks (EGHNs) (Han et al., 2022) can increase the expressivity of
message passing, which is also guaranteed to be E(3)-equivariant to meet the physical symmetry.
Another related line of research is not restricted to the message-passing paradigm (Gilmer et al.,
2017). Some existing works (Thomas et al., 2018; Fuchs et al., 2020) utilize the spherical harmonics
to compute a basis for the transformations, which preserve SE(3)-equivariance.

3 BACKGROUND

3.1 MOLECULAR CONFORMATION GENERATION

The generation of molecular conformation can be regarded as a generative problem conditioned on
a molecular graph. For a given molecular graph, it is required to draw independent and identically
distributed (i.i.d.) samples from the conditional probability distribution p(C|G), in which p adheres to
the underlying Boltzmann distribution (Noé et al., 2019), while C and G signify the conformation and
formula of the molecule, respectively. Formally, each molecule is depicted as an undirected graphG =
(V,E), with V representing the set of atoms within the molecule andE denoting the set of inter-atomic
chemical bonds, as well as the corresponding node features hv ∈ Rf ,∀v ∈ V and edge features
euv ∈ Rf ′

,∀(u, v) ∈ E representing atom types, formal charges, bond types, etc. To simplify the
notation, the set of atoms V in 3D Euclidean space is expressed as C = [c1, c2, · · · , cn] ∈ Rn×3,
and the 3D distance between nodes u and v is denoted as duv = ||cu − cv||. A generative model
pθ(C|G) is developed to approximate the Boltzmann distribution.

3.2 EQUIVARIANCE IN MOLECULAR CONFORMATION

Equivariance under translation and rotation (SE(3) groups) exhibits multidisciplinary relevance
in a variety of physical systems, hence plays a central role when modeling and analyzing 3D
geometry (Thomas et al., 2018; Weiler et al., 2018; Chmiela et al., 2019; Fuchs et al., 2020; Miller
et al., 2020; Simm et al., 2020; Batzner et al., 2022). Mathematically, a model sθ is said to be
equivariance with respect to SE(3) group if sθ(Tf (x)) = Tg(sθ(x)) for any transformation f, g ∈
SE(3). Utilizing conformational representations directly to achieve equivariance presents challenges
in accurately capturing the chemical interactions between atoms. Consequently, this approach may
result in the generation of molecular structures with inaccuracies and poor configurations. An
alternative approach is to use the inter-atomic distance that is naturally equivariant to SE(3) groups
(Shi et al., 2021; Xu et al., 2021b; Gasteiger et al., 2020), which will be further introduced in Sec.
4.2.
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3.3 LEARNING VIA SCORE MATCHING

Langevin dynamics. Given a fixed step size 0 < ϵ≪ 1, take x0 ∼ π(x) for some prior distribution
and use Euler–Maruyama method for simulating the Langevin dynamics

xt = xt−1 +
ϵ

2
∇x log p (xt−1) +

√
ϵzt, (1)

where zt ∼ N (0, I). As t → ∞, xt can be considered as a sample draw from p(x) under some
regularity conditions (Welling & Teh, 2011). This implies that if we know the score function
∇x log p (x), we can use Langevin dynamics to sample from p(x).

Denosing score matching. The process of denoising score matching (Vincent, 2011) involves the
perturbation of data x in accordance with a predetermined perturbing kernel, denoted by qσ(x̃|x).
The objective sθ that minimize the following:

1

2
Eqσ(x̃|x)pdata(x)

[
∥sθ(x̃)−∇x̃ log qσ(x̃ | x)∥22

]
(2)

satisfies sθ∗(x) = ∇x log qσ(x) almost surely (Vincent, 2011). This implies that to train a denoising
model sθ, we can set the loss functions to be

L
(
sθ; {σi}Li=1

)
≜

1

L

L∑
i=1

λ (σi) ℓ (sθ;σi) (3)

ℓ(sθ;σ) ≜
1

2
Epdata(x)Ex̃∼qσ(x̃|x) ∥sθ(x̃, σ)−∇x̃ log qσ (x̃|x)∥22 . (4)

where λ(σ) ∝ 1/E
[
∥∇x̃ log pσ(x̃ | x)∥22

]
is a reweighting coefficient so that the magnitude order

of the loss function does not depend on σ (Song et al., 2020b). After obtaining a model sθ∗(x) ≈
∇x log qσ(x), following the (annealed) Langevin dynamics (Song & Ermon, 2019), one can draw
sample from pdata(x) by recursive computing x̃t = x̃t−1 +

αi

2 sθ (x̃t−1, σi) +
√
αizt, where αi =

ϵ · σ2
i /σ

2
L.

Maxwell-Boltzmann distribution. In the domain of statistical mechanics, the Maxwell-Boltzmann
(MB) distribution serves as a model for delineating the velocities of particles within idealized
gaseous systems. These systems are characterized by freely moving particles within a stationary
enclosure, where interactions among the entities are negligible apart from momentary collisions.
From a mathematical perspective, the MB distribution is the χ-distribution with three degrees of
freedom (Young et al., 2008). The probability density function of MB(σ) is given by fσ(x) =√

2
π

x2e
−x2/(2σ2)

σ3 with support R++.

4 METHODOLOGY

4.1 MODELING THE DISTRIBUTION OF INTER-ATOMIC DISTANCES

In the present investigation, molecular disintegration is facilitated by the application of progressively
intensified perturbation force fields. Upon perturbing a single atom, adjacent atoms experience a
consequent force, arising from the chemical bonds interconnecting them with the perturbed atom. In
case when a relatively minor perturbative force field is employed, chemical bonds remain unbroken,
thereby restricting atomic motions. This observation leads us to hypothesize that individual atoms
exhibit Brownian motions under such conditions. Contrarily, when a sufficiently potent force field is
imposed, chemical bonds are destroyed, permitting atoms to undergo virtually uninhibited motion
with the bare occurrence of collisions. We further hypothesize that the relative speed between any two
atoms adheres to the Maxwell-Boltzmann (MB) distribution. Focusing on the inter-atomic distances
d within a molecule, we establish that the marginal distribution of perturbed inter-atomic distances d̃,
given d, is equivalent to the distribution of relative velocities among the atoms.

Specifically, let σt measure the perturbing force fields at time t and {σt}Tt=0 is an increasing non-
negative sequence. Then,

pσ0(d̃|d) = pσ0(v) = N (d̃|d, 2σ2
0I), pσT

(d̃|d) = pσT
(v) = MB(

√
2σT ). (5)
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Figure 2: In the investigation of perturbed distance distributions resulting from the introduction of
Gaussian noise to molecular conformation, a transition from Gaussian to MB is observed as the noise
level escalates. The perturbation’s intensity is denoted by σ. Within the graphical representation, the
orange curve delineates the pdf of N (0, 2σ2), the green curve corresponds to the pdf of MB(

√
2σ),

and the blue dotted curve represents the pdf of p(d̃|d).

For intermediate perturbing forces, we set pσt
(d̃|d) ∝ d̃2fσ(d̃,d)e−

(d̃−d)2

4σ2
t , where several constrains

are on fσ. For a smoothly shifting perturbing force field, we require fσ(d̃, d) to be smooth with
respect to σ, d̃ and d. To make the limiting perturbing force field be Gaussian and MB, we require
limσ→0 fσ = 0 and limσ→∞ fσ = 1. Thus, we have (note that when σT is sufficiently large,
d̃− d ≈ d̃)

pσ0
(d̃|d) ∝ e−

(d̃−d)2

4σ2
0 ∝ N (d̃|d, 2σ2

0I) (6a)

pσT
(d̃|d) ∝ d̃2e−

(d̃−d)2

4σ2
T ∝ MB(

√
2σT ) (6b)

If we take fσ(d̃, d) = 1− e−σ/d,

∇d̃ log qσ(d̃ | d) =
(
1− e−σ/d

) 2

d̃
− d̃− d

2σ2
(7)

We can simply use a Gaussian kernel as an approximation of perturbing force fields acting on the
molecule conformation, i.e., pσ(C̃|C) = N (C̃|C, σ2I), for C ∈ Rn×3, so that the limiting distributions
of atoms’ speed and conditional perturbed inter-atomic distance are Gaussian and MB distributions.
This is because

C̃u = Cu + zu C̃v = Cv + zv where zu, zv ∼ N (0, σ2I)

d̃uv = ∥z+ Cu − Cv∥ (z = zu − zv ∼ N (0, 2σ2I))

= ∥Cu − Cv∥+ ∥z+ Cu − Cv∥ − ∥Cu − Cv∥

= duv +
2z⊤(Cu − Cv) + ∥z∥2

∥z+ Cu − Cv∥+ ∥Cu − Cv∥

When σ is sufficiently small, d̃uv ≈ duv + 2z⊤(Cu−Cv)
2∥Cu−Cv∥ = duv + ẑ, where ẑ ∼ N (0, 2σ2).

When σ is sufficiently large, d̃uv ≈ duv + ∥z∥2

∥z+Cu−Cv∥ ≈ ∥z∥, where ∥z∥ ∼ MB(
√
2σ). For

a comprehensive elucidation of intermediary mathematical procedures, we direct the readers to
Appendix A. We conduct experiments to verify the above mathematical derivation. In the conducted
experiments, Gaussian perturbations with varying levels of variation are introduced to molecular
conformations, i.e., p(C̃|C) = N (0, σ2I), for C ∈ Rn×3, and the marginal distributions of the
difference in inter-atomic distances before and after perturbation are examined. The resultant
observations can be seen in Fig. 2 and 3.

4.2 MODELING CONFORMATIONS

We model the inter-atom distances instead of the conformation for equivariance as discussed in
Sec. 3.2. Consider molecules formed by n atoms, where n ≥ 5. Given any C ∈ Rn×3/ SE(3), let
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Figure 3: Distribution approximation. The actual pdf pσ(d̃− d|d = const) is illustrated by the orange
curve, whereas the blue dotted curve signifies the proposed approximated pdf.

d(·) : Rn×3/ SE(3)→ D be the mapping from conformations to all inter-atomic distances, where
D := image(d). Hence, Rn×3/ SE(3) and D are isomorphisms since to ascertain the relative position
of a particular point, it is merely necessary to determine its distances from 4 other non-coplanar
distinct points. We use dij to denote the entry (i, j) of the adjacent matrix and we have, by slight
abuse of notations

∇C̃ log qσ(C̃|C) =
∂

∂C̃
log qσ(C̃, d(C̃)|C, d(C)) (8a)

=
∑
i,j

∂dij(C̃)
∂C̃

∂

∂dij(C̃)
log qσ(d(C̃)|d(C)) (almost surely) (8b)

=
∑
i,j

∂d̃ij

∂C̃
∇d̃ij

log qσ(d̃|d) (8c)

The above property also holds for d̂(·) that maps the conformation to a partial distance vector where
each atom is associated with at least 4 distances. A previous work (Shi et al., 2021) showed that
for any sθ(d̃) ≈ ∇d̃ log qσ(d̃|d) as a function of the perturbed inter-atomic distance d̃, the scoring
network sθ is equivariant w.r.t. SE(3).

By Eq. 3, 4, 8c and 7, the denoising score matching objective for conformations is

L
(
θ; {σi}Li=1

)
≜

1

L

L∑
i=1

λ (σi) ℓ (θ;σi) (9a)

ℓ(θ;σ) =
1

2
Epdata(d)Epσ(d̃|d)

∥∥∥∥∥sθ(d̃, σ)− ∂d̃

∂C̃

[(
1− e−σ/d

) 2

d̃
− d̃− d

2σ2

]∥∥∥∥∥
2

2

(9b)

Note that ∇C̃ log qσ(C̃ | C) ̸= − C̃−C
σ2 since C̃, C ∈ Rn×3/ SE(3) and the probability density function

is different from that in Rn×3. Take λ (σi) = σ2
i , λ (σi) ℓ (θ;σi) ∝ 1 for any σi. Thus, the loss

magnitude order of the loss function does not depend on the specific selection of σi.

4.3 NETWORK FOR MODELING CONFORMATION SCORE

The network employed for the purpose of modeling sθ must adhere to two specific criteria which are
delineated in Sec. 4.2. For simplification, we omit the model’s parameter of molecular graph G.

SE(3) equivariance. It is imperative that the network abstains from utilizing molecular conformation
directly as input; rather, it should incorporate inter-atomic distance to achieve SE(3) equivariance.
The employment of perturbed distance as a means to directly forecast the conformation score
necessitates a domain transition, thereby augmenting the complexity of the learning process. Thus,
following the parametrization of the conformation score as discussed in Sec. 4.2, a generative model
for estimating the score of distances is formulated, followed by the application of the chain rule to
facilitate the conversion of distance scores into their corresponding values for conformation scores.

Isomorphisms. Each individual atom must be associated with a minimum of four distances, in order
to establish isomorphisms between C ∈ Rn×3/ SE(3) (representing conformation space) and D
(signifying feasible inter-atomic distance space). On the other hand, correlating an atom with an
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excessive number of distances exacerbates the challenge for the model to generate a feasible d. The
underlying reason for this complication is the disparity in cardinal numbers of Rn×3/ SE(3) and
D. D is a subset of Rm

++, where m =
(
n
2

)
is the number of edges in complete graph induced by the

molecule. For a more detailed illustration, we refer readers to Appendix B. As a result, we connect
the three-hop neighborhood in each chemical molecule so that almost every atom in a molecule is
connected with at least four other atoms.

Following GeoDiff (Xu et al., 2021b), we adapt a similar network for modeling sθ. Given an input
graph G, the Message Passing Neural Networks (MPNN) (Gilmer et al., 2017) is adopted as sθ,
which computes node embeddings h(t)

v ∈ Rf ,∀v ∈ V with T layers of iterative message passing:

h(t+1)
u = ψ

(
h(t)
u ,

∑
v∈Nu

h(t)
v · ϕ(euv, duv)

)
(10)

for each t ∈ [0, T − 1], where Nu = {v ∈ V |(u, v) ∈ E}, while ψ and ϕ are neural networks, e.g.
implemented using multilayer perceptrons (MLPs). Note that the node features, distances and edge
features are input into sθ as initial embeddings when t = 0, but we only keep the distance d in the
above sections as the input of sθ for notation simplification. Besides, as no coordinates information
is explicitly engaged in this network, this kind of modeling can preserve the above two properties.
For more details about this part, refer to Appendix B.

4.4 SAMPLING BY LANGEVIN DYNAMICS

Algorithm 1 Sampling via annealed Langevin dynamics
Input: molecular graph G, network sθ, scheduler {σi}Ti=1.
Output: conformation C.

1: Sample C ∼ N (0, σ2
T I).

2: for i = T, T − 1, · · · , 1 do
3: αi ← ϵ · σ2

i /σ
2
T {αi is the step size.}

4: Sample zi ∼ N (0, I)
5: Ci−1 ← Ci + αisθ(d(Ci), σi) +

√
2αizi {Langevin dynamics.}

6: end for
7: return C0

The learned score matching
network sθ that minimizes
Eq. 9a can approximate the
score of molecular confor-
mation and following the
annealed Langevin dynam-
ics, we provide the pseudo-
code of the sampling pro-
cess in Alg. 1 from which
we can draw conformations
given molecule.

4.5 ANALYSIS

Marginal v.s. joint distributions. From existing literature, the diffusion models are built on adding
isotropic Gaussian noise N (0, σ2I) to the modeled objects such as pixel values in image generations.
In SDDiff, we add isotropic Gaussian noise to molecule conformation (coordinate), and noise is
mapped to inter-atomic distances. Thus, entries of noise on distance are not independent, whereas the
marginal distribution of distances can be applied for score matching, this is because

∇d̃i
log pσ(d̃ | d) = ∇d̃i

log pσ(d̃i|d1,2,··· ,m) · pσ(d̃1,2,··· ,i−1,i+1,··· ,m | d1,2,··· ,m, d̃i, di)
= ∇d̃i

log pσ(d̃i|di) +∇d̃i
log pσ(d̃N(i) | dN(i), d̃i, di) ≈ ∇d̃i

log pσ(d̃i|di)

where N(i) is the set of edge indices whose edges are incident with edge i. The second equality holds
because d̃i gives no information on the distribution of other perturbed edges that are not incident with
edge i. Also, dj gives no information on the distribution of d̃i where i ̸= j. We hypothesize that
disregarding the term ∇d̃i

log pσ(d̃N(i) | dN(i), d̃i, di) introduces no bias. This supposition stems
from the observation that possessing knowledge of both d̃i and di, we remain uninformed about the
increase or decrease in the value of d̃N(i) − dN(i).

Approximation by optimal transportation (OT). Given the knowledge of the distributions at
end time points pt=0(x) and pt=T (x), the problem of obtaining the distributions in between can
be formulated as a Shrodinger Bridge problem whose solution is also the solution of entropic OT.
We compute the regularized Wasserstein Barycenter of pt=0(d̃|d) and pt=T (d̃|d) by employing the
approach presented in a previous work (Benamou et al., 2015). However, the regularization term
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Table 1: Results of molecular conformation generation.

GEOM-QM9 GEOM-Drugs

Methods COV(%) ↑ MAT(Å) ↓ COV(%) ↑ MAT(Å) ↓
Mean Median Mean Median Mean Median Mean Median

CGCF 78.05 82.48 0.4219 0.3900 53.96 57.06 1.2487 1.2247
ConfVAE 77.84 88.20 0.4154 0.3739 55.20 59.43 1.2380 1.1417
GeoMol 71.26 72.00 0.3731 0.3731 67.16 71.71 1.0875 1.0586
ConfGF 88.49 94.31 0.2673 0.2685 62.15 70.93 1.1629 1.1596
GeoDiff 90.54 94.61 0.2090 0.1988 89.13 97.88 0.8629 0.8529

SDDiff (ours) 91.07 94.69 0.2048 0.1941 90.68 98.48 0.8564 0.8503

impacts the limiting weighted Barycenter, leading to divergences from pt=0(d̃|d) to pt=T (d̃|d). As a
result, the regularized Wasserstein Barycenter approach is unsuitable for intermediate distribution
approximation. See Appendix C for a more detailed analysis.

5 EXPERIMENT

5.1 EXPERIMENT SETTINGS

Datasets. We use two widely used datasets, GEOM-QM9 (Ramakrishnan et al., 2014) and GEOM-
Drugs (Axelrod & Gómez-Bombarelli, 2022) for evaluating molecular conformation generation. The
GEOM-QM9 dataset comprises molecules with an average of 11 atoms, while the GEOM-Drugs
dataset consists of larger molecules with an average of 44 atoms. For a fair comparison, we adopted
the same dataset split as GeoDiff (Xu et al., 2021b). For both datasets, the training set contains 40k
molecules, the validation set contains 5k molecules and the test set contains 200 molecules. Please
refer to GeoDiff (Xu et al., 2021b) for more details regarding the dataset.

Evaluation metrics. We use the metrics of COV (coverage) and MAT (matching) (Xu et al.) to
measure both diversity and accuracy. Specifically, we align ground truth and generated molecules
by the Kabsch algorithm (Kabsch, 1976), and then calculate their difference with root-mean-square-
deviation (RMSD). Then the COV and the MAT are defined as follows:

COV =
1

|Sr|
{C ∈ Sr|RMSD(C, C′) < δ, ∃C′ ∈ Sg}, MAT =

1

|Sr|
∑

C′∈Sg

RMSD(C, C′)

where Sg and Sr denote generated and ground truth conformations, respectively. Following some
baselines (Xu et al., 2021b; Ganea et al., 2021), we set the threshold of COV δ = 0.5Å for GEOM-
QM9 and δ = 1.25Å for GEOM-Drugs, and generate twice the number of ground truth conformation
for evaluation.

Baselines. We choose 5 state-of-the-art models for comparison: GeoMol (Ganea et al., 2021) is
not a generative model that generates conformation by hand with predicted molecular information.
CGCF (Shi et al., 2021) is a two-step method, and ConfVAE (Xu et al., 2021a) is a VAE-based
model. ConfGF (Shi et al., 2021) and GeoDiff (Xu et al., 2021b) are two similar works that are also
diffusion-based.

Other implementation details are provided in Appendix D

5.2 RESULTS AND ANALYSIS

The results of molecular conformation generation are shown in Table 1. The baseline results are
obtained from GeoDiff (Xu et al., 2021b). In order to mitigate the impact of the model’s backbone and
primarily evaluate the efficacy of distance distribution modeling, we have opted to utilize a backbone
that closely resembles that of GeoDiff. This will enable us to more accurately assess the performance
of the distance distribution modeling technique while minimizing the potential confounding effects
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Figure 4: The ground truth depicted in blue is the distribution of σ∇d̃ log p(d̃|d), whereas the
distribution of the model’s outputs is represented by a dashed orange line. It can be observed that as
the value of σ increases, σ∇d̃ log p(d̃|d) tends to exhibit the characteristics of a long-tailed Gaussian
distribution. For a detailed introduction to the figure, we refer readers to Appendix E.

of the model’s underlying architecture. The Visualization of selected generated conformation can be
found in Appendix G.

Score distribution. In the existing literature, the ground truth score function follows a normal distri-
bution. Specifically, the ground truth of score matching objects is set to σ∇x̃ log p(x̃|x) ∼ N (0, I).
The proposed distance distribution diverges from the Gaussian distribution when the perturbation
level is significantly large and requires the model to parametrize a non-Gaussian distribution. In
order to investigate the efficacy of existing backbones in approximating such distribution, we visually
depict the distribution of score functions (not inter-atomic distance), along with our backbone’s output
under varying levels of perturbation. The ensuing results have been found in Fig. 4. It is evident that
our proposed distribution closely resembles the Gaussian distribution when σ is reasonably small.
Conversely, when σ is substantially large, the proposed score function transforms into a long-tailed
Gaussian distribution. Despite this alteration, the model’s output distribution still approximates
the proposed score function effectively. This substantiates that the proposed distribution can be
effortlessly approximated, and thus can be incorporated into a wide array of models.

Ground-truth Generated

Figure 5: Atoms in a benzene ring should be copla-
nar as ground truth structure, while the generative
structure may conflict with such property.

Planar structure generation As mentioned in
Eq. 8b, the score function of distance can be
transformed into the score function of conforma-
tion almost surely, provided that the conforma-
tion is non-planar. Nonetheless, certain molec-
ular structures like benzene rings, exhibit a pla-
nar conformation within local regions, which
may render this transformation inapplicable (see
Fig. 5). A viable solution to optimize these local
planar structures further involves utilizing post-
processing with variants of rule-based methods
(e.g., force field) which encode the unvarying
property of certain local structures like benzene
rings being planar.

6 CONCLUSION

In this study, we present a novel molecular conformation generation approach - SDDiff - by in-
corporating the shifting score function inspired by molecule thermodynamics. Our main findings
include that the distribution of the change of inter-atomic distances shifts from Gaussian to Maxwell-
Boltzmann distribution under the Gaussian perturbation kernel on molecular conformation, which can
be accurately approximated by our approach. By proposing a diffusion-based generative model with a
shifting score kernel, we have provided both the mathematical derivation and experimental validation
of its correctness. The effectiveness of our approach has been demonstrated through achieving new
state-of-the-art results on two widely used molecular conformation generation benchmarks, namely
GEOM-Drugs, and GEOM-QM9. Our method effectively captures the essential aspects of molecular
dynamics and inter-atomic interactions, leading to improved performance in generating accurate and
feasible molecular conformations.

9
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A INTERMEDIARY PROCEDURES FOR THE LIMITTING DISTRIBUTION OF p(d̃|d)

Given the forward diffusion process of the conformation C̃ = C + z ∈ Rn×3, where z ∼ N (0, σ2I),
we have, by slightly abuse of notations

C̃u = Cu + zu C̃v = Cv + zv

d̃uv = ∥C̃u − C̃v∥
= ∥C̃u − Cu + Cu − Cv + Cv − C̃v∥
= ∥zu + zv + Cu − Cn∥
= ∥z+ Cu − Cv∥ (z ∼ N (0, 2σ2I))

= ∥Cu − Cv∥+ ∥z+ Cu − Cv∥ − ∥Cu − Cv∥

= ∥Cu − Cv∥+ (∥z+ Cu − Cv∥ − ∥Cu − Cv∥)
∥z+ Cu − Cn∥+ ∥Cu − Cv∥
∥z+ Cu − Cv∥+ ∥Cu − Cv∥

= ∥Cu − Cv∥+
∥Cu − Cv∥2 + 2z⊤(Cu − Cv) + ∥z∥2 − ∥Cu − Cv∥2

∥z+ Cu − Cv∥+ ∥Cu − Cv∥

= ∥Cu − Cv∥+
2z⊤(Cu − Cv) + ∥z∥2

∥z+ Cu − Cv∥+ ∥Cu − Cn∥

= duv +
2z⊤(Cu − Cv) + ∥z∥2

∥z+ Cu − Cv∥+ ∥Cu − Cv∥

Take σ → 0,

d̃uv = duv +
2z⊤(Cu − Cv) + ∥z∥2

∥z+ Cu − Cv∥+ ∥Cu − Cv∥

≈ duv +
2z⊤(Cu − Cv)
2∥Cu − Cv∥

≈ duv + z⊤
(Cu − Cv)
∥Cu − Cv∥

= duv + [1, 0, 0]⊤z (z and
Cu − Cv
∥Cu − Cv∥

are independent)

= duv + z1

d̃uv ∼ N (duv, 2σ
2) when σ is small enough

Take σ →∞,

d̃uv = duv +
2( z

∥z∥ )
⊤ (Cu − Cv) + ∥z∥

∥z+Cu−Cu∥
∥z∥ + ∥Cu−Cv∥

∥z∥

≈ duv +
∥z∥
1 + 0

≈ ∥z∥
d̃uv ∼ MB(

√
2σ) when σ is large enough

B NETWORK FOR MODELING sθ

In this section, we introduce the details of the network for modeling sθ. In practice, two typical GNNs
are adopted to parameterize sθ, namely the SchNet (Schütt et al., 2017) and GIN (Xu et al., 2018).
SchNet is a deep learning architecture for modeling the quantum interactions in molecules, which is
widely used in molecular-related tasks. We adopt SchNet as a global model to generate informative
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molecular representations, thus promoting the conditional generation process. Specifically, the
SchNet can be formulated as follows:

h(t+1)
u =

∑
v∈Nu

h(t)
v ⊙ ϕ(exp(−γ(euv − µ))) (11)

where ϕ denotes an MLP, µ and γ are two hyperparameters representing the number of Gaussians
and the reference of single-atom properties, respectively.

Moreover, as molecules naturally have graph structures, we additionally adopt GIN as a local model,
which captures the local structural features. Specifically, the GIN can be formulated as follows:

h(t+1)
u = ϕ

(
(1 + ϵ) · h(t)

u +
∑
v∈Nu

ReLU(h(t)
v + euv)

)
(12)

where ϵ is a trainable parameter and ϕ denotes an MLP.

Isomorphisms. Each individual atom must be associated with a minimum of four distances, in order
to establish isomorphisms between C ∈ Rn×3/ SE(3) (representing conformation space) and D
(signifying feasible inter-atomic distance space). On the other hand, correlating an atom with an
excessive number of distances exacerbates the challenge for the model to generate a feasible d. The
underlying reason for this complication is the disparity in cardinal numbers of Rn×3/ SE(3) and
D. D is a subset of Rm

++, where m =
(
n
2

)
is the number of edges in complete graph induced by the

molecule. When n = 5,Rn×3/ SE(3) ∼= D ∼= Rm
++, since for each d ∈ Rm

++, it corresponds to a
conformation C ∈ Rn×3/SE(3) and vise versa. When n > 5, there exists some infeasible d ∈ Rm

++
such that it corresponds to no conformation in 3D. This is because the inter-atomic distance between
a specific atom and its fifth neighbors is uniquely determined by inter-atomic distances between itself
and its first four neighbors. As the number of correlated distances of an atom increases, the cardinal
number gap between Rn×3/ SE(3) and D increases. Consequently, the absence of a constraint to
maintain the model’s output within the feasible distance score set (i.e., ensuring that the predicted
distances remain feasible upon adding the forecasted distance score to the perturbed score) may result
in a violation of the feasibility of the estimated distance. This issue is further exacerbated by the
expansion of the number of distances associated with an atom. Identifying a constraint on the model’s
output that is both differentiable and incurs minimal computational cost can be challenging. As such,
an alternative approach is adopted whereby each atom is associated with the least possible number of
distances while maintaining a minimum threshold of no fewer than four associated distances. Hence,
we connect the three-hop neighborhood of each node.

C APPROXIMATING INTERMEDIATE DISTRIBUTIONS VIA ENTROPIC OPTIMAL
TRANSPORT

We compute the barycenters of pσ=0.1(d̃−d) and pσ=1(d̃−d), while in SDDiff, σ varies in the range
of 1e-7 to 12, which results in a more dramatic distribution shift. Following (Benamou et al., 2015),
we discretize the empirical distribution of d̃−d into 800 bins and apply the Sinkhorn algorithm to find
barycenters. When the regularization coefficient is set to values less than 5e-4, the Sinkhorn algorithm
returns infeasible solutions, i.e., nans. We set the regularization coefficient to 1e-3, 8e-4, and 6e-4.
We visualize barycenters computed by the algorithm. The results can be seen in Fig. 6. In the figure,
α denotes the weight of two distributions. We see that the approximation accuracy increases as the
regularization coefficient λ decreases. But with a smaller regularization coefficient, the algorithm
collapses. This implies that using the Sinkhorn algorithm to approximate the inter-media distance
distribution is unsuitable.
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Figure 6: A figure showing the Barycenters under different weights computed by the Sinkhorn
algorithm.

D IMPLEMENTATION DETAILS

Regarding the implementation details of our experiment, we trained the model on a single Tesla
A100 GPU and Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz CPU. The training process lasted
for approximately 1-2 days, while the sampling took around 8 hours for GEOM-Drugs and 4 hours
for GEOM-QM9, respectively. The learning rate was set to 0.001, and we employed the plateau
scheduler, which reduced the learning rate to 0.6 every 500 iterations. The optimizer used was Adam,
and the batch size was set to 32 for GEOM-Drugs and 64 for GEOM-QM9. We trained the model
until convergence, with a maximum of 3 million iterations.

Regarding the diffusion setting, we set the number of steps to 5000 and define βt using a sigmoid
schedule ranging from 1e-7 to 2e-3. Then we define ᾱt =

∏t
i(1− βi), and σt =

√
ᾱt

1−ᾱt
. The range

of σt was approximately 0 to 12.

E DETAILS OF FIGURE 4

In previous literature, the Gaussian perturbation kernel is employed. Specifically, x̃ = x+ σz, where
z ∼ N (0, I), thus ∇x̃ log p(x̃|x) = x̃−x

σ2 = z
σ . This implies that σ∇x̃ log p(x̃|x) ∼ N (0, I). The

score-matching object is to approximate σ∇x̃ log p(x̃|x) and hence model’s outputs follow a normal
distribution, which exhibits a stable numerical magnitude property. On the contrary, our proposed
distribution has that

σ∇d̃ij
log p(d̃ij |dij) = (1− e−σ/dij )

2σ

d̃ij
− d̃ij − dij

2σ

We visualize the distribution of the above and it has been observed that it follows a long-tailed
Gaussian distribution. While the majority of the data points exhibit a Gaussian-like behavior, there
exists a low probability of occurrence of samples with significantly large values of d̃ij − dij . In the
event that such cases arise, our backbone architecture is capable of effectively approximating the
score function.
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F COMPARATIVE ANALYSIS OF SDDIFF AND TORSIONAL DIFFUSION

In Sec. 5.2, we have excluded the consideration of Torsional Diffusion (TD) due to significant
differences in the modeling paradigms between TD and our proposed SDDiff methodology. In
this section, we undertake a comparative discussion of TD and SDDiff to elucidate the distinct
characteristics of these approaches.

Firstly, it is important to acknowledge that TD and SDDiff operate within distinct modeling manifolds.
SDDiff primarily aims to investigate and address issues existing in models based on inter-atomic
distances. The distance-based models need to predict conformers in a manifold of on average 130
dimensions. Differently, TD is based on the torsional angles, significantly reducing the prediction
manifold dimension. Statistical analyses of TD (Jing et al.) reveal that it only needs to predict
rotatable bonds in a manifold ranging from 3 to 7 dimensions when applied on the Drugs dataset.
Thus, TD offers a more manageable learning task, which can lead to improved performance outcomes.

Second, it is worth noting that SDDiff can be purely data-driven, leveraging solely the inherent
information present within the molecular dataset. Conversely, TD can process in torsion space
to circumvent the challenge of SE(3) invariance relying on ready-made local structures. Before
applying diffusion on torsion angles, TD utilizes the RDkit tool to generate stable local structures,
which introduces a substantial degree of prior knowledge. RDKit, being a robust chemical toolkit,
encodes valuable chemical insights, such as the fixed structure of the benzene ring and hybrid orbital
characteristics, which can contribute to the enhancement of prediction quality. The existing work
(Zhou et al., 2023b) also proved that combining RDKit and naive clustering techniques could achieve
commendable performance for molecular conformation generation. For SDDiff, introducing RDkit
before the diffusion process would cast instability to bond lengths while RDKit is necessary to
TD. For reference, we adopt a similar strategy to GeoDiff (Xu et al., 2021b) and use Force Field
(FF) optimization as post-processing to introduce chemical priors. Table 2 shows the performance
improvements achieved through barely FF optimization for both SDDiff and GeoDiff. Also, there
still exists room for innovation in enhancing the injection of priors into distance-based models.

Table 2: The results of GEOM-Drugs with FF optimization

Methods COV(%) ↑ MAT(Å) ↓
Mean Median Mean Median

SDDiff 90.68 98.48 0.8564 0.8503
SDDiff+FF 93.07 98.18 0.7465 0.7312

GeoDiff 89.13 97.88 0.8629 0.8529
GeoDiff+FF 92.27 100.00 0.7618 0.7340

In summary, SDDiff and TD exhibit distinct design philosophies and motivations, rendering a direct
comparison between these two models less pertinent. Moreover, the incorporation of chemical priors
further underscores the dissimilarities between them. The experimental results in 1 have proven
the effectiveness of our proposed distance modeling, and this modeling can serve as a foundational
element for the development of models that apply a diffusion process on distances.

G GENERATED MOLECULAR CONFORMATION VISUALIZATOIN
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GEOM-Drugs

GEOM-QM9

Figure 7: Selected samples generated with our proposed SDDiff.
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