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ABSTRACT

Time series anomaly detection has received growing attention due to its impor-
tance in a wide range of real-world applications. However, two critical chal-
lenges remain underexplored. First, most existing methods train separate mod-
els for individual domains, which severely limits their generalization ability and
neglects the potential of cross-domain anomaly detection. Second, when extend-
ing to the cross-domain setting, the inconsistency of temporal granularity across
datasets makes it difficult to learn unified representations. To address these is-
sues, we propose UniAnomaly, a cross-domain anomaly detection framework
equipped with a multi-scale encoder that effectively captures temporal dependen-
cies at different granularity. Our approach enables robust and transferable repre-
sentation learning across heterogeneous datasets. Extensive experiments on mul-
tiple real-world benchmarks demonstrate that UniAnomaly consistently achieves
state-of-the-art performance, highlighting the effectiveness of cross-domain multi-
scale modeling for time series anomaly detection. Our code is available at
https://anonymous.4open.science/r/UniAnomaly-B923.

1 INTRODUCTION

Time series anomaly detection plays a crucial role in various applications, including industrial mon-
itoring, financial risk management, and healthcare. Anomaly detection models not only provide
early warnings but also support decision-making and risk mitigation. However, existing methods
often train separate models for each domain, focusing on domain-specific temporal features. While
such models may achieve strong performance within a single domain, this approach limits their gen-
eralization ability across domains and prevents the effective utilization of potential shared anomaly
patterns.

The first key challenge lies in the lack of unified temporal representations across domains. Most
existing approaches learn domain-specific features independently, without capturing cross-domain
commonalities[3]. As a result, models cannot leverage patterns shared across different application
scenarios. Inspired by transfer learning in vision and language processing, pretraining on a large
collection of diverse datasets can significantly improve the generalization and robustness of model
performance[14]. Such multi-dataset pretraining allows models to learn domain-agnostic temporal
features that transfer effectively to unseen domains, bridging the gap between heterogeneous data
sources.

When using datasets from different domains, inconsistent temporal granularity emerges as a sec-
ond key challenge. Time series from different domains vary substantially in sampling frequency
and temporal resolution. Short-term spikes or abrupt anomalies are often observable only at high-
frequency sampling, whereas long-term trends, seasonal effects, or periodic anomalies become more
apparent at lower-frequency scales. Single-scale models typically capture anomalies at a single tem-
poral resolution while neglecting signals at other scales, limiting their ability to detect multi-scale
anomalies, as shown in Figure 1. Recent work has introduced frameworks combining adaptive bot-
tlenecks with multi-scale structures, which effectively enhance the model’s ability to detect anoma-
lies across diverse domains[34]. However, they still do not adequately account for the varying
temporal granularity present across different domains.
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Figure 1: Challenges and Variations in Cross-Domain Anomaly Detection Methods

To address the aforementioned challenges, we propose UniAnomaly, a unified framework for cross-
domain and multi-scale time series anomaly detection. First, to learn cross-domain temporal rep-
resentations, UniAnomaly is pretrained on a large collection of datasets from diverse domains, en-
abling the model to capture shared anomaly patterns while retaining domain-specific information.
Second, to address inconsistent temporal granularity across domains, we introduce a multi-scale ar-
chitecture, where a patch embedding module encodes the input at multiple resolutions and a multi-
scale encoder captures the corresponding temporal dynamics. These outputs are integrated through
a scale-wise adaptive projection module, producing a unified cross-scale representation. Finally, a
decoder is applied to reconstruct the original input and generate anomaly scores, enabling the model
to detect anomalies across a wide range of temporal scales. Our contributions is as follows

1. To address cross-domain representation learning, we propose UniAnomaly, pretrained
on diverse datasets to capture shared anomaly patterns while preserving domain-specific
information.

2. To tackle inconsistent temporal granularity across domains, we design a multi-scale
architecture with patch embedding, a multi-scale encoder, and a scale-wise adaptive pro-
jection module that produces unified cross-scale representations.

3. By integrating these designs, UniAnomaly achieves robust anomaly detection across
domains and temporal scales, effectively handling heterogeneous datasets with varying
temporal patterns.

2 RELATED WORK

Time Series Reconstruction Methods. Reconstruction-based approaches posit that models trained
only on normal patterns will poorly reconstruct anomalies. Early designs used recurrent and con-
volutional autoencoders ([28],[46]), and variational extensions such as OmniAnomaly ([38]) intro-
duced probabilistic reconstruction. More recent research has shifted toward masking- and diffusion-
based generative frameworks, which significantly improve robustness to noise, missing values, and
distribution shifts. For example, masked autoencoder variants for time series ([22],[8]) exploit tem-
poral–frequency masking to learn context-aware representations that are harder to overfit to anoma-
lies. Diffusion-based approaches ([43],[41]) leverage denoising and distribution augmentation to
generate sharper reconstructions and more discriminative residuals. Very recently, physics-informed
diffusion models ([37]) have been proposed to incorporate structural priors into reconstruction, en-
abling unsupervised anomaly detection in complex dynamical systems.

Time Series Anomaly Detection Methods. Time series anomaly detection (TSAD) has advanced
significantly in recent years, evolving beyond classical statistical models and shallow machine learn-
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ing methods toward deep representation learning. Transformer-based architectures have become a
dominant paradigm, leveraging self-attention to capture long-range temporal dependencies and en-
abling both anomaly detection and localization.[42],[39] Self-supervised and contrastive learning
approaches further address the scarcity of labeled anomalies by constructing proxy tasks or synthetic
perturbations to learn robust normality representations[5],[47]. In parallel, graph neural networks
and spatio-temporal modeling explicitly capture dependencies among multivariate signals, which is
especially critical in industrial and sensor data.[6], Generative models such as VAEs[19], GANs[10],
and more recently diffusion models[45] have also been employed to estimate data likelihoods or re-
construction errors, providing probabilistic criteria for anomaly scoring.

3 METHODOLOGY

Given a test time series Dtest = (x1,x2, · · · ,xT ) ∈ RT×C with T time steps and C variables,
the anomaly detection task aims to predict ŷtest = (y1, y2, · · · , yT ), where yt ∈ {0, 1} indicates
whether the observation xt ∈ RC is anomalous. We consider building a general model pre-trained
on M multi-domain datasets D = {D(i)}Mi=1, where each dataset D(i) = (x

(i)
1 ,x

(i)
2 , · · · ,x(i)

T (i)) ∈
RT (i)×C(i)

contains T (i) observations with C(i) variables. The goal is to detect anomalies on unseen
datasets Dtest /∈ D.

3.1 OVERALL ARCHITECTURE

Our framework is designed to extract cross-domain multi-scale representations for anomaly de-
tection, as shown in Figure2. To address the issue of varying temporal granularity, we design a
Multi-Scale Patch Embedding Module and a Multi-Scale Encoder to extract features at different
scales, which segments the input into patches of multiple lengths and maps them into a latent space,
enabling simultaneous modeling of short-term and long-range dependencies. To obtain a unified rep-
resentation that adapts across domains, we introduce the Scale-Wise Adaptive Projection Module,
which adaptively fuses multi-scale features by reweighting their contributions in a context-aware
manner. Finally, to effectively learn normal patterns, we employ a decoder module consisting of
a multi-layer perceptron (MLP), and use the variance of the reconstructed values as the anomaly
score.

3.2 MULTI-SCALE PATCH EMBEDDING

To capture temporal patterns at multiple granularity, we propose a Multi-Scale Patch Embedding
(MSPE) module, which extracts hierarchical features from input sequences through multi-scale
patching and embedding.

Multi-Scale Patch Generation. We first define a set of patch sizes L1, L2, . . . , LS corresponding
to different temporal resolutions. The input sequence x ∈ RT×D is then segmented into non-
overlapping patches for each scale, producing a collection of multi-scale patches:

ps = PatchLs
(x), s = 1, . . . , S, (1)

where ps contains patches of length Ls and captures patterns at the corresponding temporal scale.
This design allows the model to simultaneously represent both fine-grained fluctuations and long-
term dependencies in the sequence.

Multi-Scale Patch Embedding. Each patch at scale Ls is first projected into a latent embedding
space through a linear transformation, after which a random masking operation is applied to partially
drop patch tokens. This masking strategy encourages the model to learn more robust temporal
representations by preventing over-reliance on specific patches and enhancing generalization across
different scales.

hs = Linear(ps), s = 1, . . . , S. (2)
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Figure 2: Model Architecture. UniAnomaly comprises four main modules: the Multi-Scale Patch
Embedding Module(MSPE) and the Multi-Scale Encoder Module(MSEM) are employed to cap-
ture features at different scales. The Scale-Wise Adaptive Projection Module(SAPM) is designed to
integrates these multi-scale features to obtain a generalized representation. Finally, the Reconstruc-
tion Decoder is used to reconstruct the input sequences and compute anomaly scores. The final time
series anomaly detection results are obtained by integrating the outputs with Spot algorithm.

The resulting hs forms a multi-scale representation of the input sequence, where each scale en-
codes distinct hierarchical features of the temporal structure. By incorporating information from
these diverse scales, the model effectively leverages complementary cues across multiple temporal
resolutions.

3.3 MULTI-SCALE ENCODER

To achieve comprehensive characterization of features at multiple scales and enable effective cross-
dataset temporal modeling, we designed a Multi-Scale Encoder module. This module processes the
multi-scale embeddings to extract hierarchical multi-scale representations.

To effectively capture temporal patterns across different resolutions, the multi-scale embeddings
hs generated by MSPE are independently processed by scale-specific encoders. Each encoder is
instantiated as a dilated convolutional network with residual connections, a design that facilitates
modeling both short-term dynamics and long-range dependencies while maintaining computational
efficiency. Concretely, the encoder comprises L layers of dilated convolutions interleaved with
GELU activations and layer normalization, formally defined for layer l = 1, . . . , L:

h(l)
s = LayerNorm

(
h(l−1)
s + GELU

(
Conv(h(l−1)

s )
))

, (3)

where h(0)
s is the input embedding at scale s, and h

(l)
s ∈ RP×R is the hidden representation after the

l-th convolutional layer, with R being the hidden dimension of the encoder. Here, Conv(·) denotes
a dilated convolution, GELU(·) is the Gaussian Error Linear Unit activation function introducing
nonlinearity, and LayerNorm(·) normalizes the features along the channel dimension to stabilize
training. After L layers, the encoder produces the final output h(L)

s ∈ RP×R, which serves as the
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scale-specific hierarchical feature. This representation preserves the multi-resolution structure of
the input sequence while effectively capturing temporal patterns unique to scale s, thereby enabling
the encoder to model both fine-grained fluctuations and long-range dependencies.

3.4 SCALE-WISE ADAPTIVE PROJECTION

The multi-scale features produced by the MSEM capture temporal dynamics at different resolutions,
but their information content and relevance vary across scales, making naive aggregation suboptimal.
To address this, we introduce a Scale-Wise Adaptive Projection Module (SAPM), which consists of
two components: (i) an Adaptive Projection Pool that refines each scale-specific feature into a more
comparable representation space, and (ii) an Adaptive Gating Mechanism that dynamically assigns
weights to different scales for fusion. By aggregating the scales in this adaptive manner, the module
produces multi-scale features with improved generalization, emphasizing informative scales while
suppressing redundant ones.

Adaptive Projection Pool. To handle variations across temporal scales and enable robust cross-
domain generalization, we introduce a Scale-Wise Adaptive Projection Pool (APP). Different tem-
poral scales often vary in both information content and noise characteristics: some scales carry
essential patterns, while others may introduce redundant or noisy signals. Simply aggregating all
scales without adaptation risks overfitting to irrelevant details or suppressing critical cues.

Denote the output of the Multi-Scale Encoder as {hs}s∈S , where hs ∈ RPs×R represents the hier-
archical features at scale s, with Ps patches and feature dimension R. The collection of multi-scale
features can thus be written as H = {hs}Ss=1. Each scale-specific projection pool is defined as:

APPs(hs) = hs + MLP(N)
s (hs), (4)

where MLP(N)
s denotes a residual multilayer perceptron with N layers, each consisting of linear

transformations, GELU activations, and dropout. By adapting the latent representation individually
for each scale, the module effectively retains salient temporal patterns while suppressing irrelevant
noise.

Adaptive Gating Mechanism. Building on the outputs of the APP, we further introduce a learn-
able gating mechanism to adaptively weight the contribution of each temporal scale. Even after
scale-specific adaptation, the relative importance of different scales may vary depending on the in-
put sequence, making it crucial to emphasize informative scales while down-weighting less relevant
ones.

For each scale s, the gating network computes a relevance score:

gs = Gate(APPs(hs)) ∈ RPs×1, (5)

where Gate(·) is a compact MLP mapping the feature dimension R of hs to a scalar score for each
patch. The scores from all scales are concatenated and normalized via softmax, and the final fused
representation is obtained as:

W = softmax(cat({gs}s∈S)) ∈ RPmax×S , (6)

hfused =
∑
s∈S

W:,s ⊙ APPs(hs), (7)

where S is the number of scales, Pmax is the maximum number of patches across scales, and ⊙ de-
notes element-wise multiplication with broadcasting. Here, cat(·) concatenates the relevance scores
from all scales along the scale dimension, and softmax normalizes them.

Finally, the fused multi-scale representation hfused is fed into a reconstruction module, which is im-
plemented as an N -layer MLP, to reconstruct the input sequence. The reconstruction error, measured
as the variance between the reconstructed and original sequences, serves as the anomaly score for
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Dataset SMD MSL SMAP SWaT PSM
Metric P R F1 P R F1 P R F1 P R F1 P R F1
OCSVM 66.98 82.03 73.75 50.26 99.86 66.87 41.05 69.37 51.58 56.80 98.72 72.11 57.51 58.11 57.81
PCA 64.92 86.06 74.01 52.69 98.33 68.61 50.62 98.48 66.87 62.32 82.96 71.18 77.44 63.68 69.89
HBOS 60.34 64.11 62.17 59.25 83.32 69.25 41.54 66.17 51.04 54.49 91.35 68.26 78.45 29.82 43.21
LOF 57.69 99.10 72.92 49.89 72.18 59.00 47.92 82.86 60.72 53.20 96.73 68.65 53.90 99.91 70.02
IForest 71.94 94.27 81.61 53.87 94.58 68.65 41.12 68.91 51.51 53.03 99.95 69.30 69.66 88.79 78.07
LODA 66.09 84.37 74.12 57.79 95.65 72.05 51.51 100.00 68.00 56.30 70.34 62.54 62.22 87.38 72.69
AE 69.22 98.48 81.30 55.75 96.66 70.72 39.42 70.31 50.52 54.92 98.20 70.45 60.67 98.24 75.01
DAGMM 63.57 70.83 67.00 54.07 92.11 68.14 50.75 96.38 66.49 59.42 92.36 72.32 68.22 70.50 69.34
LSTM 60.12 84.77 70.35 58.82 14.68 23.49 55.25 27.70 36.90 49.99 82.11 62.15 57.06 95.92 71.55
BeatGAN 74.11 81.64 77.69 55.74 98.94 71.30 54.04 98.30 69.71 61.89 83.46 71.08 58.81 99.08 73.81
Omni 79.09 75.77 77.40 51.23 99.40 67.61 52.74 98.51 68.70 62.76 82.82 71.41 69.20 80.79 74.55
CAE-Ensemble 73.05 83.61 77.97 54.99 93.93 69.37 62.32 64.72 63.50 62.10 82.90 71.01 73.17 73.66 73.42
MEMTO 49.69 98.05 65.96 52.73 97.34 68.40 50.12 99.10 66.57 56.47 98.02 71.66 52.69 83.94 64.74
A.T. 54.08 97.07 69.46 51.04 95.36 66.49 56.91 96.69 71.65 53.63 98.27 69.39 54.26 82.18 65.37
DCdetector 50.93 95.57 66.45 55.94 95.53 70.56 53.12 98.37 68.99 53.25 98.12 69.03 54.72 86.36 66.99
SensitiveHUE 60.34 90.13 72.29 55.92 98.95 71.46 53.63 98.37 69.42 58.91 91.71 71.74 56.15 98.75 71.59
D3R 64.87 97.93 78.04 66.85 90.83 77.02 61.76 92.55 74.09 60.14 97.57 74.41 73.32 88.71 80.29
ModernTCN 74.07 94.79 83.16 65.94 93.00 77.17 69.50 65.45 67.41 59.14 89.22 71.13 73.47 86.83 79.59
GPT4TS 73.33 95.97 83.14 64.86 95.43 77.23 63.52 90.56 74.67 56.84 91.46 70.11 73.61 91.13 81.44
DADA(zero shot) 76.50 94.54 84.57 68.70 91.51 78.48 65.85 88.25 75.42 61.59 94.59 74.60 74.31 92.11 82.26
UniAnomaly(zero shot) 75.21 97.38 84.87 69.50 92.85 79.50 65.28 89.70 75.56 63.95 91.80 75.38 77.34 93.63 84.68

Table 1: Results for five real-world datasets.

each time point. To detect anomalies, we follow the SPOT method (?) to compute a threshold δ, and
a time point is flagged as anomalous if its anomaly score exceeds δ. This procedure effectively lever-
ages the multi-scale, generalized features learned by the encoder and adaptive projection modules,
highlighting temporal regions that deviate from normal patterns.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets. In the pre-training stage, we use a cross-domain corpus for time series reconstruction
by combining widely used time series datasets, including ASD[20] , Exathlon[16], ECG[27] and
MITDB[27], OPP[31], SVDB[12], GAIA[26], IOPS[30], MGAB[23], NYC[4], SKAB[17], YA-
HOO[13], together with diverse time series from the Monash Prediction Library[11]. To demon-
strate the effectiveness of our method, we evaluate widely used benchmark datasets including
SMD[38], MSL[15], SMAP[15], SWaT[25] and PSM[1].

Baselines. We compare our model with 20 baselines for comprehensive evaluations, including the
linear transformation-based models: OCSVM[33], PCA[35], the density estimation-based methods:
HBOS[7], LOF[2], the outlier-based methods: IForest[21], LODA[29]; the neu- ´ ral network-based
models: AutoEncoder[32], DAGMM[50], LSTM[15], CAE-Ensemble[32], BeatGAN[48], Omni-
Anomaly (Omni)[38], Anomaly Transformer (A.T.)[42], MEMTO[36], DCdetector[44], D3R[40],
GPT4TS[49], ModernTCN[24], SensitiveHUE[9], DADA[34].

Metrics. Following recent studies[34], We adopt Precision (P), Recall (R), F1-score (F1), and
AUC-ROC (AUC) as evaluation metrics for time series anomaly detection. For the F1-score, we
use the affiliation-based variant rather than the commonly applied Point Adjustment, since the latter
tends to overestimate performance by labeling an entire anomaly segment as detected when only a
single point is correctly identified.

4.2 MAIN RESULTS

Zero-Shot Results. We evaluate UniAnomaly against a variety of baselines across multiple
anomaly detection datasets, as summarized in Table 4.2. Different from many non-cross-domain
approaches that rely on dataset-specific training and often fail to generalize beyond their source
domain, UniAnomaly follows a cross-domain pretraining protocol and directly transfers to diverse
downstream datasets, demonstrating robust generalization without sacrificing performance. Across
all benchmarks, UniAnomaly consistently achieves the best F1 scores, surpassing methods that train
separately on each dataset. This highlights its ability to learn domain-invariant temporal representa-
tions that remain effective even in unseen settings. Moreover, a key advantage of UniAnomaly lies
in its multi-scale feature extraction: while single-scale models struggle to capture both short-term
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Dataset Method F1 AUC-ROC
SMD A.T 66.42 50.02

D3R 78.02 53.34
GPT4TS 83.13 71.15
ModernTCN 83.16 70.21
UniAnomaly(finetune) 85.01 72.11

MSL A.T 66.49 34.05
D3R 77.02 45.77
GPT4TS 77.23 72.63
ModernTCN 77.17 74.96
UniAnomaly(finetune) 79.82 76.33

PSM A.T 65.37 50.11
D3R 80.29 50.22
GPT4TS 81.44 58.94
ModernTCN 79.59 58.46
UniAnomaly(finetune) 85.61 63.90

Table 2: Comparison of different methods on three benchmark datasets. The best results are high-
lighted in bold.

Method PSM SMAP SWAT
F1 AUC F1 AUC F1 AUC

UniAnomaly (Routing) 84.02 63.21 70.78 50.86 75.31 81.79
UniAnomaly (Gating) 84.67 63.43 71.77 51.42 75.29 81.49

Table 3: Comparison performance of MoE and Gate based UniAnomaly on three benchmark
datasets.

fluctuations and long-term dependencies, our design explicitly models multiple temporal resolu-
tions. Even when pretraining data overlap with that of strong baselines such as DADA, UniAnomaly
achieves an additional 1–2% improvement in F1, showing that multi-scale modeling is indispens-
able for robust anomaly detection. Together, these results demonstrate that UniAnomaly not only
generalizes effectively across domains but also benefits from a principled multi-scale design that
yields state-of-the-art performance across diverse anomaly detection scenarios.

Finetune Results. We further evaluate the capability of UniAnomaly after finetuning, with results
reported on the SMD, MSL, and PSM benchmarks in Table 4.2. UniAnomaly achieves the best per-
formance across all three datasets, underscoring its strong ability to generalize when adapted to spe-
cific domains. Beyond absolute score improvements, the finetuned model consistently outperforms
prior approaches in both F1 and AUC-ROC, demonstrating that the cross-domain representations
learned during pretraining can be effectively specialized without overfitting. These improvements
can be attributed to the proposed multi-scale representation and adaptive fusion, which together
allow the model to disentangle informative temporal patterns from noise.

4.3 MODEL ANALYSIS

In this section, we systematically evaluate the effectiveness of UniAnomaly’s multi-scale design,
including the Multi-scale Patch Embedding and Multi-scale Encoder modules, as well as the gating
mechanisms within Adaptive Projection module. We also conduct ablation studies to examine the
impact of key hyperparameters such as input sequence length (window size), unified representation
feature dimension, and the number of temporal scales on anomaly detection performance, providing
a comprehensive understanding of how each component contributes to the model’s effectiveness and
robustness.

Analysis on gating mechanism. In UniAnomaly, we incorporate a Gating Mechanism within the
Adaptive Projection module to enhance feature selection. To assess its effectiveness, we compare it
with the Routing Mechanism employed in MoE[18].

7
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Figure 3: Model performance across datasets with different window sizes.

Figure 4: Model performance across datasets with different representation dims.

As shown in Table 4.3,the gating-based UniAnomaly yields consistent improvements over the
routing-based variant on PSM and SMAP, with F1 improvements of 0.65% (84.02% → 84.67%)
and 0.99% (70.78% → 71.77%) and corresponding AUC gains of 0.22% (63.21% → 63.43%) and
0.56% (50.86% → 51.42%), respectively. This demonstrates that the gating mechanism is more ef-
fective at aggregating multi-scale features for anomaly detection on these datasets. On SWAT, both
modules exhibit similar performance, indicating that the benefits of gating are less pronounced on
datasets with simpler temporal patterns. Overall, these results underscore the contribution of gating-
based feature fusion in enhancing UniAnomaly’s generalization across diverse anomaly detection
domains.

Analysis on window size. We further investigate the impact of input sequence length (window
size) on model performance across three benchmark datasets, as shown in Figure 3. Although Uni-
Anomaly adopts a multi-scale architectural design, datasets from different domains exhibit varying
sensitivities to the choice of window size. Specifically, on the PSM dataset, both F1 and AUC reach
their peaks at a relatively short window size of 50, suggesting that PSM benefits more from lo-
cal temporal representations, where short-term dependencies are sufficient to capture most anomaly
patterns. In contrast, for SMAP and SWAT, the optimal F1 scores are achieved at window sizes of
75 and 100, respectively, while AUC continues to increase and reaches its maximum at 150. This
divergence indicates that longer windows tend to provide more stable global representations, which
are favored by AUC since it evaluates ranking consistency across thresholds, whereas F1 is more
sensitive to precise decision boundaries and thus degrades with excessively long windows. Over-
all, these results highlight the domain-dependent inconsistency of temporal granularity and further
demonstrate the advantage of the gating mechanism in adaptively selecting features across different
scales.

Analysis on representation dim. We examine the effect of representation dimension on model
performance, as shown in Figure 4. On PSM, both F1 and AUC remain relatively stable across dif-
ferent dimensions, with the best F1 achieved at 128. In contrast, SMAP exhibits little improvement
as the dimension grows, and its performance even slightly degrades, suggesting that this dataset is
less sensitive to representation dimensionality. For SWAT, increasing the dimension leads to a clear
gain in F1, with the peak observed at 128, but further enlargement to 512 results in a drop in AUC,
indicating that overly large dimensions may introduce redundant features and hurt generalization.

8
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Figure 5: Model performance across datasets with different scales.

Overall, these results highlight that the optimal representation dimension is dataset-dependent: PSM
and SWAT benefit from moderate dimensions, while SMAP remains relatively robust. This suggests
that careful selection of representation dimensionality is crucial for achieving the best trade-off be-
tween expressive capacity and generalization.

We examine the effect of representation dimensionality on model performance, as shown in Fig-
ure 4. For PSM and SMAP, changes in dimension have only minor effects, with F1 and AUC
varying within 1–3%. On PSM, the best F1 is observed at 128, while on SMAP the highest F1
occurs at 64, and further increases in dimension do not lead to consistent improvements. In con-
trast, SWAT is more sensitive, with performance differences reaching 3–5%, and both F1 and AUC
peaking at 128. Notably, when the dimension is enlarged to 512, AUC drops substantially, sug-
gesting that overly large representations may introduce redundancy and hurt generalization. This
trend aligns with Figure 3, where the best F1 on SWAT appears at a window size of 100 rather than
150, indicating that excessive representational capacity does not necessarily translate into better de-
tection performance. Overall, these results indicate that the optimal dimensionality varies across
datasets. PSM and SMAP are relatively robust to changes in dimension, whereas SWAT shows clear
improvements with moderate dimensions such as 128. Moreover, the differing sensitivities reflect
domain-specific variations in information density and temporal granularity, which underscores the
complexity of cross-domain anomaly detection. These observations provide further motivation for
adopting a unified multi-scale modeling strategy.

Analysis on scales. We also investigate the impact of scales, which control the granularity of
time-series patches used for representation (see Appendix for a detailed description). As shown in
Figure 5, the overall AUC remains relatively stable across scales, whereas F1 is more sensitive and
reaches its best at scale 4. Importantly, performance does not always improve monotonically with
richer scales. For PSM, both F1 and AUC are stable with only minor variations (about 1–2%), while
SMAP and SWAT exhibit larger fluctuations of up to 3–5%, indicating stronger scale effects and
higher sensitivity in these domains. In particular, SMAP shows a drop in F1 when moving from scale
2 to 3, and SWAT decreases from scale 1 to 2, suggesting that smaller scales may capture only locally
optimal patterns for a given dataset. Nevertheless, as the scale further increases, F1 improves again,
with the best results obtained at scale 4. These findings demonstrate that multi-scale representations
are essential for cross-domain anomaly detection, since different domains favor different temporal
granularity.

5 CONCLUSION

This paper presents UniAnomaly, a unified framework for time series anomaly detection that di-
rectly addresses two long-standing challenges in the field: limited cross-domain generalization and
inconsistent temporal granularity. To this end, we design a multi-scale encoder that captures tem-
poral dependencies at different levels of granularity, enabling robust and transferable representa-
tion learning across heterogeneous datasets. Extensive experiments on multiple real-world bench-
marks demonstrate that UniAnomaly consistently achieves state-of-the-art performance, highlight-
ing cross-domain multi-scale modeling as an effective solution for advancing time series anomaly
detection.
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A APPENDIX

A.1 EXPERIMENT SETTING DETAILS

A.1.1 DATASET DESCRIPTIONS

In this work, we utilize both pre-training datasets and validation datasets. The pre-training datasets
are employed to provide diverse temporal and domain knowledge, while the validation datasets are
used to assess the generalization capability and robustness of our proposed method. A summary of
the datasets is presented in Tables 5 and 4, respectively.

Dataset Domain Dimension (C) Anomaly Ratio (AR)
SMD Server Machine 38 4.2%
MSL Spacecraft 1 10.5%
SMAP Spacecraft 1 12.8%
SWaT Water treatment 31 12.1%
PSM Server Machine 25 27.8%

Table 4: Summary of evaluation datasets with their domains, dimensions, and anomaly ratios (AR).

A.1.2 EVALUATION METRICS

We report four widely used metrics for time series anomaly detection: Precision (P), Recall (R),
F1-score (F1), and AUC-ROC (AUC). Given true positives (TP), false positives (FP), and false
negatives (FN), the metrics are defined as:

P =
TP

TP + FP
, R =

TP

TP + FN
, F1 =

2× P ×R

P +R
. (8)
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Dataset Domain Dimension (C) AR (%)
ASD Application Server 19 1.55
Exathlon Application Server multi 8.71
ECG Health 1 4.70
MITDB Health 1 3.44
OPP Health 1 4.11
SVDB Health 1 4.68
GAIA AIOps 1 1.21
IOPS Web 1 2.15
MGAB Mackey-Glass 1 0.20
NYC Transport 3 0.57
SKAB Machinery 8 3.65
YAHOO Multiple 1 0.62
Monash Multiple 1 -

Table 5: Summary of pretraining datasets with their domains, dimensions, and anomaly ratios (AR).

The F1-score is computed using the affiliation-based variant rather than the commonly adopted
Point Adjustment. While Point Adjustment counts an entire anomaly segment as correctly detected if
only a single point is captured, the affiliation-based approach evaluates anomaly segments based on
their actual overlap with predictions, providing a stricter and more faithful assessment of detection
quality.

For AUC-ROC, we compute the area under the Receiver Operating Characteristic curve, which plots
the True Positive Rate (TPR) against the False Positive Rate (FPR):

TPR =
TP

TP + FN
, FPR =

FP

FP + TN
. (9)

A.2 IMPLEMENTATION DETAILS

Model details. The input sequence length is fixed to a window size of 100. For the multi-
scale patch embedding, we use patch lengths {2, 4, 8, 16}, and the hidden dimensions are set to
{64, 96, 128, 256}, with the unified representation dimension fixed at 128. Besides, the correspon-
dence between scales and dimensions is summarized in Table 6. The Adaptive Projection Pool di-
mensions are chosen from {16, 32, 64, 128, 192, 256}, and the encoder depth is 5 layers. We adopt
a random masking strategy to enhance robustness.

Scales Patch length Hidden dim
1 [16] [256]
2 [8, 16] [128, 256]
3 [4, 8, 16] [96, 128, 256]
4 [2, 4, 8, 16] [64, 96, 128, 256]

Table 6: Correspondence between the number of scales, patch lengths, and hidden dimensions.

Training details. We summarize all hyper-parameters as follows. We pretrain the model for 10
epochs with a batch size of 4096, using a 9:1 split between training and validation. The AdamW
optimizer is adopted with a linearly decaying learning rate schedule, starting from 1 × 10−3 and
gradually decreasing to 4 × 10−4, with a warm-up period of 200 iterations. We apply a sliding
window of size 100 and conduct anomaly detection using non-overlapping windows, consistent
with prior works. All experiments are conducted using PyTorch on a single NVIDIA A100-80GB
GPU.

Comparisons between UniAnomaly and existing methods. As shown in Table 7, existing
anomaly detection methods exhibit different limitations. Common AD methods support multi-scale
modeling but fail to generalize in zero-shot scenarios or across domains. DADA achieves zero-shot
and cross-domain capabilities but does not handle multi-scale temporal variations. In contrast, Uni-
Anomaly unifies all three aspects, enabling zero-shot application, effective cross-domain transfer,
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and multi-scale feature modeling. This combination highlights UniAnomaly’s superior versatility
and practical applicability across diverse time series datasets.

Method Zero-shot Cross-domain Multi-scale
Common AD Methods × × ✓
DADA ✓ ✓ ×
UniAnomaly ✓ ✓ ✓

Table 7: Comparison of UniAnomaly and existing anomaly detection methods.

A.3 LARGE LANGUAGE MODEL (LLM) USAGE STATEMENT

In preparing this paper, we utilized large language models (LLMs) to assist with aspects of
manuscript writing, including language refinement, grammar corrections, and partial code imple-
mentation. The LLMs provided support in drafting and polishing text and code snippets; however,
all scientific ideas, experimental design, results, and conclusions reported in this paper are solely the
responsibility of the authors. We have ensured that all contributions from LLMs are acknowledged,
and the final content, accuracy, and integrity of the paper remain fully under the authors’ control.
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