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ABSTRACT

We consider the task of training a neural network to antici-
pate human actions in video. This task is challenging given
the complexity of video data, the stochastic nature of the fu-
ture, and the limited amount of annotated training data. In
this paper, we propose a novel knowledge distillation frame-
work that uses an action recognition network to supervise the
training of an action anticipation network, guiding the latter to
attend to the relevant information needed for correctly antic-
ipating the future actions. This framework is possible thanks
to a novel loss function to account for positional shifts of se-
mantic concepts in a dynamic video. The knowledge distil-
lation framework is a form of self-supervised learning, and it
takes advantage of unlabeled data. Experimental results on
JHMDB and EPIC-KITCHENS dataset show the effective-
ness of our approach.

1. INTRODUCTION

Human action anticipation is notoriously difficult due to the
stochastic nature of the future. Given what is occurring or
what can be observed in a video at the current moment, there
are multiple possibilities that can happen. Thus, there is a fun-
damental limit to what we can anticipate, even when we have
an infinite amount of training data. In practice, the amount of
annotated training data is limited, so anticipation is a much
harder problem.

One common approach to address anticipation is to use
supervised learning (e.g. [-5]), but learning a direct mapping
between distant time steps can be challenging due to the weak
correlation between the time steps. Suppose we are interested
in anticipation with the lead time 7, we can used supervised
learning and train a neural network to map from the video ob-
servation up until time ¢ (denoted x;) to the human action la-
bel y;, at time £+ 7. That is to use a set of annotated training
data pairs {x¢, Y4+~ to train a network A : x; — y¢1r. To
some extent, the training of the anticipation network .4 can be
done similarly to the training of a recognition network R that
maps from x4 to y;4,, with the only difference being that
the input to A is x; while the input to R is x;4.. In general,
the correlation between x; and ;. is weaker than the corre-
lation between x; - and y; -, so the asymptotic performance
of A is expected to be lower than the asymptotic performance
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Fig. 1: Knowledge Distillation for Action Anticipation. We
propose to first learn an action recognition model R : x4, —

Yt+r, then use R to supervise the training of A through a
novel knowledge distillation framework.

of R. Furthermore, A will converge to its asymptotic perfor-
mance slower than R. This is due to the complexity of video
data, and it will take much training data to separate the rele-
vant features from the irrelevant ones. This separation task is
harder for training the anticipation network than for training
the recognition network due to the higher ratio of irrelevant
features. In general, it will require more training data to get
the anticipation network 4 to “attend” to the relevant features.

We propose a framework to train the anticipation network
to attend to the same type of information that is being at-
tended by the recognition network when making classifica-
tion decisions. Our framework leverages the abundance of
(unlabeled) data, improving the generalization ability of an
anticipation network without requiring additional human an-
notation. However, due to dynamic environment in a video,
we cannot use L loss to force the one-to-one mapping [2] be-
tween elements of two activated feature maps at ¢ and ¢ + 7.
Inspired by [0, 7], we propose a novel attention mechanism
that does not require pixel-to-pixel correspondence between
two input videos or between two feature maps.

Experiments on three datasets show that the proposed
knowledge distillation framework improves the performance
of the anticipation network. The level of improvement is
consistent with the level of improvement obtained as if the
annotated training data is doubled.
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Fig. 2: Knowledge distillation for weakly aligned feature
maps. To perform knowledge distillation for weakly aligned
feature maps, we propose an attentional pooling operator ¢ to
compute the amount of r; within R and A respectively, then

minimize ), |¢(r;, R) — ¢(r;, A)II§

2. FUTURE KNOWLEDGE DISTILLATION

In this section, we describe a knowledge distillation frame-
work that uses a recognition network to guide the training of
an anticipation network, leveraging the abundance of unla-
beled data.

2.1. Framework overview

Suppose the desired anticipation lead time is 7, our goal is to
train an anticipation network A4 to map from the input video
segment at time ¢ — 7 (denoted x;_.) to the human action
label y; at time ¢. That is to train A so that A(x;—,) = y;.
We assume there is a recognition network R to recognize the
action class of an observed video clip, predicting y; from x;.

Let A(x) denote the feature vector/map at a particular
layer of the anticipation network for the input video x. Sim-
ilarly, let R(x) be the feature vector/map of the recognition
network for the input video x. Let S be the set of time indexes
where the frames are annotated with human action labels; ¢ is
in § if y, is available. One approach for training the anticipa-
tion network is to minimize the following classification loss
defined on annotated training dataas ) . ¢ Lc(A(x¢—+), Ye)-
Here, L. is a loss function that penalizes the difference be-
tween the prediction output A(x;_,) and the actual class la-
bel y, e.g., using the negative log likelihood loss.

Let U be the set of time indexes t’s where y, is not avail-
able (i.e., unlabeled data). Our knowledge distillation frame-
work optimizes the below loss function:
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The above objective function trains the anticipation network
A to output the same output as the recognition network on
the unlabeled data /. Furthermore, £ is a loss function that
measures the discrepancy between two feature maps A(x;_,)

and R(x;). This loss trains the anticipation network to pro-
duce the same feature map as the feature map of the recog-
nition network. This formulation uses unlabeled data and the
distilled knowledge from the recognition network to guide the
anticipation network to attend to the relevant information that
is useful for categorizing the future action.

2.2. Distillation loss

We now describe the loss function £, for measuring the dif-
ferences between two activation feature maps. At first glance,
a reasonable option for this loss function is to use the sum of
squared differences between the elements of the two feature
maps. However, this loss assumes perfect correspondence be-
tween the elements of the feature maps. This is too restrictive,
as will be explained below.

We use convolutional architectures for the anticipation
and recognition networks, and the feature maps A(x) and
R(x) are typically 4D tensors: A(x), R(x) € Rixhxwxd,
Usually, I, h, and w can be obtained by dividing the length,
the height, and the width of the video x by their effective con-
volutional strides respectively. d is the number of channels of
the feature map.

Consider a particular video segment x;, the feature map
R(x;) encodes the activated features important for recogniz-
ing the human action. For example, in order for the recogni-
tion network to recognize a “wash a dish” action, some part
of the feature map might indicate the presence of the dish in
the video. Arguably, for the anticipation network to success-
fully anticipate the “wash a dish” action, there must be some
activated “dish” features in its feature map. The knowledge
distillation framework encourages that by training the antici-
pation network to output the ‘same’ feature map as the recog-
nition network. However, it would be unreasonable to assume
the “dish” feature to stay at the same spatiotemporal location
of the feature map. More generally, video is a dynamic envi-
ronment, where important objects and other semantic entities
might not remain at the same locations, as illustrated in Fig. 1.
Thus, it is unreasonable to use the sum of squared differences
to measure the discrepancy between two feature maps of two
different time steps.

For brevity, let us reshape the 4D tensors A(x;_,) and
R(x¢) to 2D matrices A and R, A = [ay,...,a;,] €
R R = [ry,...,The] € R One naive ap-
proach is to directly minimize Lgirect(A,R) = ||A — RH; .
However, it would be unreasonable because the features in
A and R might be at different spatiotemporal locations af-
ter 7 seconds. Instead, for each vector a;, we measure the
similarity between a; with all vectors in R and we com-
pute a vector quantity to represent the amount of a; in R:
o(a;,R) = ngl Wiy, With wy, = % exp(ary} a;), where
Z is the normalizing constant so that the sum of wy’s is
1. Here, « is the hyper-parameter that controls the pooling
weights. The default value of « is set to ﬁ, where d is the



number of channels of the feature maps. If the value of « is
small, the weights associated to each vector are almost equal,
and ¢(a;, R) is the average pooling of vectors in R. On the
other hand, this operator is similar to max pooling if we use a
large value for «, and ¢(a;, R) is the vector in R that is most
similar to a;. Equivalently, ¢(a;, R) and ¢(a;, A) can be
expressed in the form: ¢(a;, R) = R softmax(aR7Ta;), and
#(a;, A) = Asoftmax(aATa;). We define the loss for the
differences between two feature maps A and R as follows:

La(AR) = Li(A,R) + L4(R, A), 3)
lhw

where L£4(A,R) =) |l¢(ai,R) — ¢(a;, A)[3, (4
=1

lhw

LoR,A) = [lo(r;, A) — ¢(r;, R)[3.  (5)
=1

3. EXPERIMENTS

3.1. Datasets

We conducted the main experiments on two challenging
datasets: JHMDB [&] and EPIC-KITCHENS [9]. We also
performed some controlled experiments on the THUMOS
dataset [10] to understand the expected benefits of having
extra supervision.

3.2. Experiments on the JHMDB dataset

We performed several experiments on the JHMDB dataset.
We used the I3D network as the backbone for this task. We
followed the standard protocol [11] for evaluation on this
dataset, i.e., using only the first 20% of the frames to predict
action class labels. During training, we combined both the
classification loss £, (using the class labels or the predicted
class probability) and the attention loss £, (using feature
maps). We used KL divergence for the classification loss. For
the attention loss, we used Huber loss (with 6 = 1). Both
RGB frames and optical flow maps were used to train an
anticipation network.

We report the action recognition and anticipation perfor-
mance of different methods in Tab. 1. First, we trained the ac-
tion recognition network using all the available frames in the
training set. Directly applying the recognition network on the
first 20% frames of the test videos (i.e., using the recognition
network for the anticipation task), the accuracy dropped dras-
tically to 74.9%. Second, we applied the direct loss (denoted
as Lgirect as in Tab. 1) between two feature maps produced
by anticipation network and recognition network. With this
additional loss, the accuracy was increased to 75.5%. This
was possibly thanks to the small displacement between two
feature maps since the dataset contains only action and the
15 frames anticipation is short. Hence, the Ly, cc+ loss also
helped improving the recognition performance on this dataset.

Method RGB Flow Both
Recognition Network
13D 753 778 839
Anticipation Network
13D 69.0 644 749
13D + Lairect 69.5 67.1 755
13D + £~d(R, A) 70.0 674 750
3D+ L4(A,R) 69.5 675 758
I3D + L4(A,R) 70.2  67.7 76.6

Table 1: Action anticipation results on the JHMDB
dataset. The recognition network uses the entire video for

classification while the anticipation network only observes the
first 20% of the video.

Method Acc(%)
Where/What [12] 10.0
Context-fusion [13] 28.0
Within-class Loss [14] 33.0
ELSTM [15] 55.0
FDI [16] 61.0
FM-RNN [11] 73.4

13D + Knowledge Distillation (Ours) 76.6

Table 2: Comparison of action anticipation methods on
the JHMDB dataset. All methods use the first 20% of the
video for prediction.

Replacing the direct loss function with our distillation loss,
the performance increased to 75.8%. Finally, we achieved the
best performance of 76.6% when using the symmetric bidi-
rectional attention loss £4(A, R). As shown in Tab. 2, we
obtained the new state of the art result on the JHMDB dataset.

3.3. Experiments on the Epic-Kitchens dataset

We used the I3D network architecture for the experiments de-
scribed in this subsection, as in the previous subsection. Since
Epic-Kitchen is a large dataset, we used the feature maps ex-
tracted from the MaxPool3d_4a_3x3 layer as the input to
the network instead of training directly from video frames.

Collecting unlabeled training data. We collected video
clips from unlabeled segments as follows. First, we randomly
took two video segments of 32 frames with the anticipa-
tion time 7=1s from unlabeled video segments. Second,
we used the pre-trained I3D to extract feature maps at the
MaxPool3d_-4a_3x3 layer for the two video segments.
Third, we fed the feature map of the latter segment to the
recognition network and computed its visual representation
(i.e., both class probabilities and feature maps). Finally, the
feature map of the first segment and the visual representation
of the second segment formed a data-pair sample for training
the anticipation network. We collected a total of 26, 391 un-



Method Acc.(%)
R(2+1)D + Vis. Attr. [17] 28.4
TSN-RGB [18] 28.5
TSM-RGB [19] 30.3
13D [20] 30.1
13D + Data augmentation 29.8
13D + Additional data only (Ours) 31.4
13D + Knowledge Distillation (Ours) 31.8

Table 3: Accuracy of anticipation methods on the EPIC-
KITCHENS dataset (for anticipating the verb actions). All
methods reported here are implemented by us, trained with
the same amount of labeled data.
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Fig. 3: Expected performance gain when doubling the
amount of training data.

labeled training samples. Together with the 23,191 labeled
examples, we had a total of 49, 582 training samples. This is
roughly double the amount of the original training data.

Experimental Results. We report all performance values
in Tab. 3. When we trained a I3D network using the an-
notated training data, we achieved an accuracy of 30.1%.
This was better than the performance of the TSN-RGB [18],
which achieved 28.5% accuracy on the same dataset. We also
trained another 13D network with augmented training data,
where we used both the video segments prior to the actions
and the video segments right at the time of the actions to train
the network. However, this approach slightly decreased the
performance of the anticipation network. This was perhaps
due to the use of ‘noisy data’, since the video segments at the
time of the actions were meant for the recognition network
not the anticipation network. Using additional unlabeled data
with pseudo label, we improved the accuracy to 31.4. Using
knowledge distillation and additional unlabeled data, the ob-
tained anticipation network obtained 1.7% improvement in
accuracy (30.1 — 31.8). This was also better than the recent
video network TSM-RGB [19] method (30.3%).

3.4. Experiments on THUMOS14 dataset

We performed controlled experiments to rectify the expected
level of improvement of distills knowledge from a recogni-

tion network. We used videos from the THUMOS14 action
detection challenge [10] to create a dataset for action antici-
pation. We first identified the temporal location of an action
segment. Interested in the anticipation lead time of one sec-
ond, we moved back one second and extracted a 1s clip ending
at that location and used as the input to the anticipation net-
work. Using this strategy, we can compile a training dataset of
multiple 1s clips. We then trained two anticipation networks,
one using the full training set and the other using the smaller
training set with 50% of the data. We experimented with both
2D and 3D ConvNet architectures to see how the size of the
training set affects the anticipation performance.

The anticipation performance of these networks is plotted
in Fig. 3. As can be seen, more data improved the perfor-
mance of an anticipation network. When doubling the amount
of annotated training data, the gain in accuracy of the two
networks (for two types of features) were 1.4% and 2.8%.
This experiment showed that doubling the amount of anno-
tated training data would only yield moderate improvement
in anticipation accuracy, perhaps somewhere from 1% to 3%.

Other important factors are the accuracy of the recogni-
tion network and also the quality of the unlabeled data. Fig. 3
shows the performance of the anticipation networks trained
with knowledge distillation. In this experiment, we only used
half of the labeled training data, and the other half as unla-
beled data for knowledge distillation. As can be seen, the
level of improvement was not as good as having actual ground
truth annotations, and this can probably be attributed to the
imperfection of the recognition network.

4. SUMMARY

We have presented a framework for knowledge distillation.
This framework uses the action recognition network to super-
vise the training of an action anticipation network. With a
novel knowledge distillation technique to account for the po-
sitional drift of semantic concepts in video, the action recog-
nition network acts as a teacher guiding the anticipation net-
work to attend to the relevant information needed for predict-
ing the future action. Using this framework, we are able to
leverage unlabeled data to train the anticipation network in a
self-supervised manner. The experimental results on the JH-
MDB and EPIC-KITCHENS datasets show the benefits of our
proposed method.
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