
000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 UNI-X: MITIGATING MODALITY CONFLICT WITH A TWO-END-SEPARATED ARCHITECTURE FOR UNIFIED MULTIMODAL MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

Unified Multimodal Models (UMMs) built on shared autoregressive (AR) transformers are attractive for their architectural simplicity. However, we identify a critical limitation: when trained on multimodal inputs, modality-shared transformers suffer from severe gradient conflicts between vision and text, particularly in shallow and deep layers. We trace this issue to the fundamentally different low-level statistical properties of images and text, while noting that conflicts diminish in middle layers where representations become more abstract and semantically aligned. To overcome this challenge, we propose Uni-X, a two-end-separated, middle-shared architecture. Uni-X dedicates its initial and final layers to modality-specific processing, while maintaining shared parameters in the middle layers for high-level semantic fusion. This X-shaped design not only eliminates gradient conflicts at both ends but also further alleviates residual conflicts in the shared layers. Extensive experiments validate the effectiveness of Uni-X. Under identical training conditions, Uni-X achieves superior training efficiency compared to strong baselines. When scaled to 3B parameters with larger training data, Uni-X matches or surpasses 7B AR-based UMMs, achieving a GenEval score of 82 for image generation alongside strong performance in text and vision understanding tasks. These results establish Uni-X as a parameter-efficient and scalable foundation for future unified multimodal modeling. Our code is available at <https://anonymous.4open.science/r/Uni-X-Code-E5CD>.

1 INTRODUCTION

Vision-Language Models (VLMs) have demonstrated remarkable progress in multimodal understanding and reasoning, enabled by combining Large Language Models (LLMs) with powerful visual encoders (Liu et al., 2024c;b; Wang et al., 2024b; Team et al., 2024b). Motivated by this success, recent research has sought to extend VLMs with image generation capabilities, resulting in the development of **Unified Multimodal Models (UMMs)** (Team, 2025; Wang et al., 2024d; Wu et al., 2024b). However, many state-of-the-art UMMs rely on increasingly complex system designs to boost performance, including the addition of semantic image encoders (Wu et al., 2024a; Chen et al., 2025b; Deng et al., 2025; Wu et al., 2025a), the hybridization of autoregressive and diffusion paradigms (Wu et al., 2025a; Zhao et al., 2024; Ge et al., 2025; Deng et al., 2025; Xie et al., 2025; Zhou et al., 2024), or the introduction of task-specific branches and experts (Deng et al., 2025; Liao et al., 2025; Li et al., 2025c). While effective, this added complexity hinders scalability, limiting the degree of parameter sharing and reducing the potential for mutual benefits across tasks and modalities.

In contrast, **autoregressive (AR) UMMs** offer a simple yet powerful alternative. By treating visual inputs as a “foreign language” through vector quantization (VQ) (van den Oord et al., 2018; Esser et al., 2021b), they unify text and vision into a consistent token sequence, naturally extending the language-centric paradigm of LLMs (Wu et al., 2025b; Wang et al., 2024d). Despite this simplicity, our experiments reveal a fundamental challenge: **fully modality-shared transformers trained jointly on multimodal inputs exhibits severe gradient conflicts**. Originally studied in multi-task learning (Yu et al., 2020; Shi et al., 2023), we are the first to transfer this concept to UMMs, uncovering inter-modality conflicts that hinder convergence and performance.

054 As illustrated in Figure 1, these conflicts are most
 055 pronounced in the shallow (input) and deep (output)
 056 layers, where the model must reconcile the vastly
 057 different statistical properties of text and images. In
 058 contrast, the middle layers, where representations
 059 become increasingly abstract and semantic (Meng
 060 et al.; Geva et al., 2021; Sun et al., 2025), show re-
 061duced conflicts and stronger cross-modal alignment.
 062 This suggests that an effective UMM should **respect**
 063 **modality-specific differences** rather than enforcing
 064 uniform parameter sharing across all layers.

065 Guided by this observation, we introduce **Uni-X**, a
 066 *two-end-separated, middle-shared* architecture for
 067 unified multimodal modeling. In Uni-X, the shallow
 068 and deep layers are modality-specific, enabling spe-
 069 cialized processing of distinct low-level distributions
 070 in text and vision, while the middle layers are shared
 071 to capture high-level semantic abstractions common
 072 to both. This **X-shaped architecture** not only miti-
 073 gates the severe gradient conflicts at the two ends but
 074 also further alleviates residual conflicts in the shared
 075 middle layers by leveraging natural semantic alignment
 076 between modalities (Figure 1).

077 To demonstrate the effectiveness of Uni-X, we conduct extensive experiments under controlled
 078 training budgets and scaling regimes. Results show that Uni-X improves training efficiency and
 079 achieves stronger performance under identical conditions. Moreover, with larger data and model
 080 scales, our 3B-parameter Uni-X matches or surpasses the performance of existing 7B AR-based
 081 UMMs across both understanding and generation benchmarks, demonstrating its scalability and
 082 competitiveness. Our contributions are threefold:

- 083 • **Empirical Analysis:** We identify and quantify gradient conflicts between text and vision modal-
 084 ities in the shallow and deep layers of shared autoregressive transformers, attributing them to
 085 fundamental differences in their low-level statistical properties.
- 086 • **Model Design:** We propose Uni-X, a novel two-end-separated, middle-shared architecture that
 087 aligns model structure with modality characteristics by using modality-specific layers for low-level
 088 processing and a shared core for high-level semantic fusion.
- 089 • **Comprehensive Validation:** Extensive experiments demonstrate that Uni-X improves training
 090 efficiency and scales effectively, enabling a 3B model to achieve performance competitive with
 091 much larger 7B models across diverse multimodal benchmarks.

092 2 RELATED WORK

093 **Visual Language Models (VLMs).** The remarkable progress of LLMs (Touvron et al., 2023; Yang
 094 et al., 2024; Brown et al., 2020) has motivated researchers to extend them with visual cognition,
 095 giving rise to VLMs (Liu et al., 2024c; Achiam et al., 2023). Most VLMs leverage pre-trained
 096 visual encoders such as CLIP (Radford et al., 2021) or SigLIP2 (Tschannen et al., 2025) to extract
 097 semantic features from images, which are projected into the LLM’s semantic space via multimodal
 098 adapters (Liu et al., 2024c;b; Beyer et al., 2024; Team et al., 2024a; Li et al., 2025a). This design
 099 enables strong multimodal understanding and reasoning but remains **asymmetric**: VLMs treat images
 100 only as inputs and cannot generate them, limiting synergy between perception and synthesis.

101 **Unified Multimodal Models (UMMs).** To enable such synergy, recent efforts have shifted toward
 102 UMMs, which aim to support both understanding and generation within a single framework (Team,
 103 2025; Jin et al., 2024; Wu et al., 2024b). A natural extension is to adopt the autoregressive (AR)
 104 paradigm of LLMs by treating visual tokens as a “foreign language” via vector quantization (Wu
 105 et al., 2025b; Wang et al., 2024c). However, the distinct statistical properties of text and images often
 106 lead to **modality conflicts**, degrading performance in shared transformers (Team, 2025).

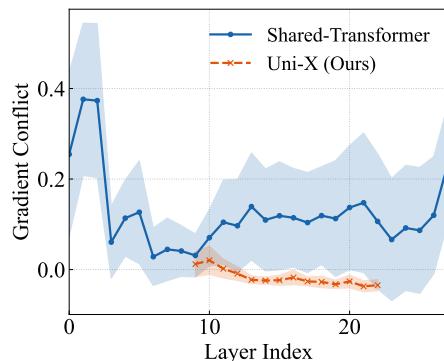


Figure 1: Gradient conflict analysis of down-projection weights in the FFN of a modality-shared transformer. The shared transformer exhibits severe conflicts in shallow and deep layers, with only partial mitigation in intermediate layers. In contrast, Uni-X avoids conflicts at both extremes and further alleviates them in the middle layers.

2

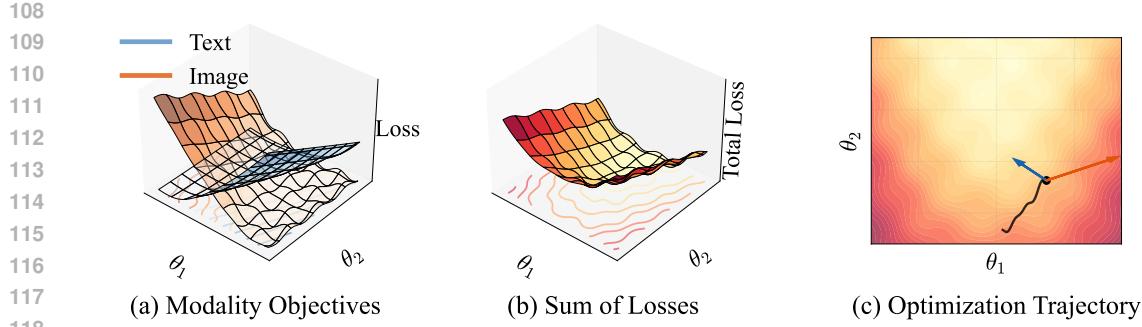


Figure 2: Illustration of gradient conflict. (a) The loss landscapes of different modalities exhibit distinct geometries, creating potential conflicts in optimization direction. (b) The optimum of the sum of losses is different from the optimum of any single modality’s loss. (c) In the presence of gradient conflict, the optimization trajectory becomes oscillating and suffers from slow convergence.

To mitigate this, several approaches increase architectural complexity: Mixture-of-Transformers (MoT) designs (Liao et al., 2025; Deng et al., 2025; Shi et al., 2025) separate understanding and generation with distinct branches; Hybrid AR–diffusion frameworks (Zhao et al., 2024; Wu et al., 2025a; Dong et al., 2023; Ge et al., 2025) combine next-token prediction with diffusion-based image synthesis; and branching strategies such as UniFork (Li et al., 2025c) add task-specific deep heads. While effective on benchmarks, these methods sacrifice parameter sharing, complicate training, and weaken cross-modal benefits—the very goals UMMs were meant to unify.

Comparison with Uni-X. Uni-X builds on these insights but takes a different path. Instead of adding modules, Uni-X retains the simplicity of pure AR UMMs while mitigating modality conflict through a **two-end-separated, middle-shared** architecture: shallow and deep layers use modality-specific parameters to process low-level statistical differences, while intermediate layers are shared to exploit high-level semantic alignment. This X-shaped design avoids the rigidity of MoT or UniFork and the complexity of AR-diffusion hybrids, offering a lightweight yet effective solution. Empirically, Uni-X achieves comparable or superior performance to larger 7B AR UMMs across text, vision understanding, and generation tasks, while maintaining parameter efficiency and training simplicity.

3 UNI-X

3.1 OBSERVATIONS

Before introducing the Uni-X architecture, we first analyze the gradient conflicts that arise when training modality-shared autoregressive transformers on multimodal data. We also provide an information-theoretic perspective to explain why such conflicts emerge.

Definition of Gradient Conflict. As illustrated in Figure 2, gradient conflict occurs when different optimization objectives induce gradients pointing in divergent directions, making joint optimization unstable and inefficient. To quantify gradient conflict in multimodal training, we use an early checkpoint of a fully shared transformer. From this model checkpoint, we compute the *average gradients* for specific parameter groups (e.g., FFN down-projection weights) using over 60 mini-batches and totaling 2M tokens, to ensure obtaining stable gradients.

Specifically, we first compute the average text gradient, \mathbf{g}_{text} . This is obtained by exclusively performing forward and backward passes on D_{text} , a text-only subset filtered from the pre-training data. Next, we compute the average image-text gradient, \mathbf{g}_{img} , using an analogous subset D_{img} containing image-text pairs. The raw inter-modal similarity is then measured as the cosine similarity between these two average gradients:

$$S_{\text{inter}} = \cos(\mathbf{g}_{\text{text}}, \mathbf{g}_{\text{img}}). \quad (1)$$

However, since transformer layers have inherently different roles across depth (Sun et al., 2025; Geva et al., 2021), the resulting raw similarity S_{inter} is biased and cannot be directly compared. To correct for this, we estimate a baseline similarity S_{base} that reflects the model’s intrinsic gradient consistency

162 on a unified data distribution. We randomly shuffle the full multimodal dataset D_{all} and split it into
 163 two disjoint halves, D_{any}^1 and D_{any}^2 . Their respective average gradients, $\mathbf{g}_{\text{any}}^1$ and $\mathbf{g}_{\text{any}}^2$, yield:
 164

$$165 \quad S_{\text{base}} = \cos(\mathbf{g}_{\text{any}}^1, \mathbf{g}_{\text{any}}^2). \quad (2)$$

167 This value represents the expected gradient similarity when gradients originate from the same
 168 underlying distribution. Therefore, we define the **gradient conflict** c_g as the deviation from this
 169 baseline:
 170

$$171 \quad c_g = -(S_{\text{inter}} - S_{\text{base}}). \quad (3)$$

172 A high S_{base} indicates the model's gradients are stable, whereas a much lower S_{inter} suggests that
 173 the text-only and image-text data push the shared model parameters in conflicting directions, resulting
 174 in a large positive c_g . This provides a principled, layer-wise measure of inter-modal *disagreement*
 175 and reveals where and why conflicts are most severe.

176 **Empirical Findings.** Figure 1 shows gradient conflict profiles (c_g) across depth. In modality-shared
 177 transformers, conflicts are most pronounced in shallow layers (near input) and deep layers (near
 178 output), while intermediate layers exhibit weaker conflicts. Experiments further reveal that Uni-X
 179 avoids conflicts at both extremes and reduces residual conflicts in the middle, validating its structural
 180 design. Additional analyses of other modules and the relationship between gradient conflict and data,
 181 as well as its impact on model performance, are provided in Appendix A.4.

182 **Why Do Conflicts Arise? Vision as a “Foreign Language”** To explain these observations, we examine
 183 whether vision behaves like a “foreign language” when tokenized. Using the VQ tokenizer (Team,
 184 2025), images are represented as discrete token sequences, formally similar to text. Then, we define
 185 conditional entropy based on n -gram. When $n = 1$, the calculation reduces to ordinary information
 186 entropy. For $n > 1$, the conditional entropy is computed as follows:

$$187 \quad H_n = - \sum p(w_n | w_1, w_2, \dots, w_{n-1}) \log p(w_n | w_1, w_2, \dots, w_{n-1}). \quad (4)$$

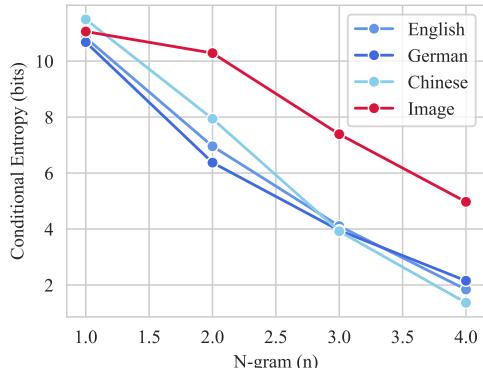
189 Results (Figure 3) show that image tokens exhibit far higher entropy than natural languages
 190 such as English, German, or Chinese. While
 191 languages differ in grammar and lexicon, their
 192 token statistics remain closer to each other than
 193 to images. This means visual sequences are
 194 inherently harder to predict, requiring modeling
 195 of long-range, spatially entangled dependencies.
 196

197 As information theory suggests, sequences
 198 with higher (conditional) entropy are inherently
 199 harder to predict, requiring models to learn
 200 longer-range dependencies and more complex
 201 patterns. Thus, when a shared transformer
 202 jointly processes low-entropy, grammatical text
 203 with high-entropy, spatially complex vision,
 204 shallow and deep layers are forced to reconcile
 205 conflicting low-level distributions, producing
 206 strong gradient conflicts. In contrast, inter-
 207 mediate layers, where representations become more abstract and semantic, naturally align across
 208 modalities, explaining the reduced conflicts observed in practice.

209 3.2 MODEL ARCHITECTURE

211 Motivated by these findings, we propose **Uni-X**, an architecture designed to explicitly align model
 212 structure with modality characteristics.
 213

214 **Core Principle.** As illustrated in Figure 4, Uni-X follows a two-end-separated, middle-shared
 215 design. The shallow and deep layers are duplicated into parallel modality-specific branches, ensuring
 216 independent handling of text and vision during early feature extraction and final token projection.



217 Figure 3: Conditional entropy of images and natural languages. Image token sequences encoded
 218 by the VQ tokenizer exhibit substantially higher entropy, indicating greater difficulty in prediction.
 219

217 Figure 3: Conditional entropy of images and natural languages. Image token sequences encoded
 218 by the VQ tokenizer exhibit substantially higher entropy, indicating greater difficulty in prediction.
 219

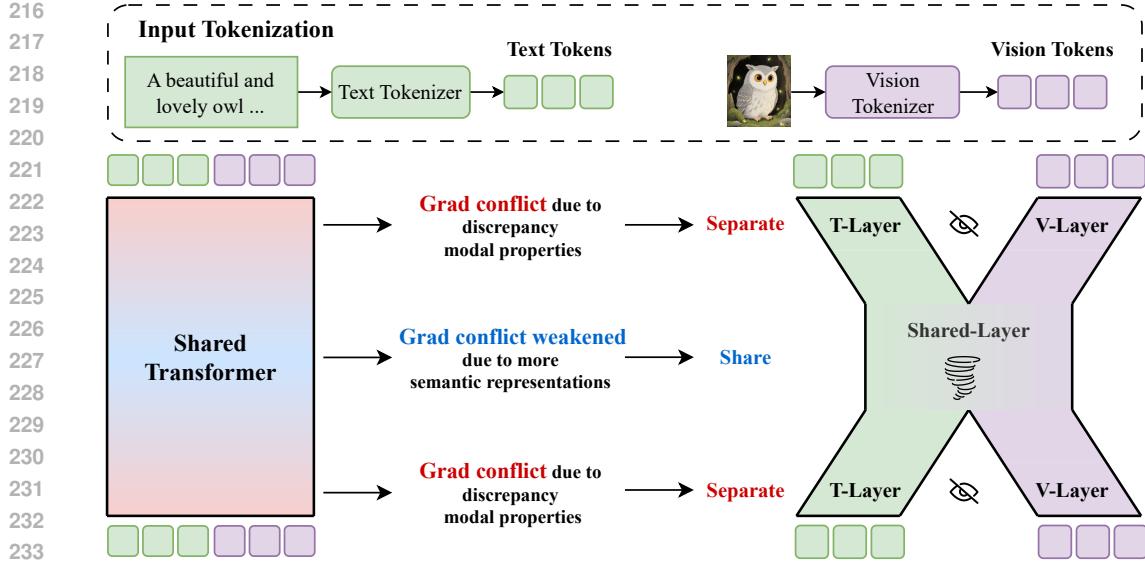


Figure 4: Illustration of the proposed **Uni-X** architecture compared with a standard modality-shared transformer. The baseline shared transformer (**left**) encounters gradient conflicts in shallow and deep layers due to the mismatched statistical properties of vision and text tokens. In contrast, **Uni-X** (**right**) adopts a two-end-separated, middle-shared design: modality-specific layers at both ends handle low-level feature processing, while a shared central block performs high-level semantic fusion. This structure aligns the architecture with the inherent characteristics of each modality and effectively mitigates gradient conflicts.

The intermediate layers remain shared, enabling high-level semantic fusion across modalities. This X-shaped separation-and-sharing balances modality specialization with semantic alignment.

Input Tokenization. For visual inputs, we employ the VQGAN tokenizer (Esser et al., 2021a) from Chameleon (Team, 2025) to encode 512×512 images into a 32×32 grid of visual tokens from an 8,192-entry codebook. To accommodate these new tokens, we expand the vocabulary and corresponding embedding matrix of the base LLM. Textual inputs are processed via the standard BPE tokenizer. The final token sequence is structured as $\langle \text{BOI} \rangle [\text{Image}] \langle \text{EOI} \rangle [\text{Text}] \langle \text{BOS} \rangle$ for image understanding tasks and $[\text{Text}] \langle \text{BOI} \rangle [\text{Image}] \langle \text{EOI} \rangle \langle \text{BOS} \rangle$ for image generation tasks. This unified tokenization enables AR training across modalities. While Uni-X can handle interleaved multimodal sequences, this study focuses on non-interleaved inputs.

Forward Propagation. Given a pre-trained LLM with L layers, denoted as $\{\text{Layer}_t^i\}_{i=0}^{L-1}$, we partition them into three sections: The initial N layers and the final M layers constitute the “separated layers,” while the intermediate layers form the “shared layers.” Within the separated blocks, we introduce a new set of vision-specific layers, $\{\text{Layer}_v^i\}$, which operate in parallel with the original text layers, $\{\text{Layer}_t^i\}$.

To manage the data flow, we introduce a binary mask $M_v \in \{0, 1\}^n$ to identify the positions of visual tokens. At any given layer l , the complete hidden states \mathbf{H}^l can be partitioned into text-specific states $\mathbf{H}_t^l = \mathbf{H}^l[\sim M_v]$ and vision-specific states $\mathbf{H}_v^l = \mathbf{H}^l[M_v]$.

The forward propagation in Uni-X is defined as follows:

$$\mathbf{H}_x^{l+1} = \begin{cases} \text{Layer}_x^l(\mathbf{H}_x^l) & \text{if } l < N \text{ or } l \geq L - M, \\ [\text{Layer}_t^l(\mathbf{H}^l)]_x & \text{otherwise,} \end{cases} \quad (5)$$

where $x \in \{t, v\}$ denotes the modality (text or vision). In the “otherwise” case, $[\cdot]_x$ indicates selecting the subset of the output hidden states corresponding to modality x .

Importantly, unlike other architectures (Li et al., 2025c; Deng et al., 2025; Shi et al., 2025), the vision and text modalities remain strictly isolated within the separated blocks, with no cross-modal interaction. This forces the model to learn robust unimodal representations before they are fused in the shared block and after they are separated for modality-specific output generation.

270 **Training Objective.** Following the standard paradigm for AR models, Uni-X is trained to predict the
271 next token in a sequence containing both text and visual tokens. The training objective is to minimize
272 the cross-entropy loss over the vocabulary for each token. The loss function \mathcal{L} for a given sequence
273 $\mathcal{S} = (s_1, s_2, \dots, s_T)$ is defined as:

274
$$\mathcal{L} = - \sum_{i=1}^T \log P(s_i | s_{<i}). \quad (6)$$

275 This simple yet effective objective enables the model to learn both understanding and generation
276 capabilities across modalities within a single, unified framework.

277 **Design Rationale.** Unlike prior architectures that rely on auxiliary semantic encoders (Wu et al.,
278 2024a; Chen et al., 2025b), hybrid AR–diffusion pipelines (Wu et al., 2025a; Zhao et al., 2024), or
279 task-specific branching structures such as MoT (Liao et al., 2025) and UniFork (Li et al., 2025c),
280 Uni-X maintains the simplicity of a pure autoregressive framework. Its two-end-separated, middle-
281 shared structure is motivated directly by empirical evidence of gradient conflicts, aligning the model
282 design with the statistical characteristics of each modality. By isolating low-level modality-specific
283 processing while preserving a shared semantic core, Uni-X avoids the complexity and overhead
284 of multi-expert or dual-paradigm systems, yet achieves competitive or superior performance. This
285 balance of architectural simplicity, empirical grounding, and scalability makes Uni-X a practical
286 foundation for unified multimodal modeling.

287 4 EXPERIMENTS

288 We evaluate Uni-X from two complementary perspectives: (1) **Efficiency under identical training**
289 **conditions**, where Uni-X and baseline architectures are trained on the same data and resources,
290 enabling fair comparisons of efficiency and performance. (2) **Scaling within resource constraints**,
291 where we maximize dataset size and training duration to examine Uni-X’s scalability and competi-
292 tiveness against larger state-of-the-art models.

293 4.1 EXPERIMENTAL SETUP

294 **Pre-training Datasets.** Our pre-training stage was designed to build a strong foundation in both
295 language and vision. To preserve general text generation capabilities, we utilized a diverse set
296 of text corpora: the high-quality Chinese dataset CCI3-H (Wang et al., 2024a), English datasets
297 DCLM (Li et al., 2025b) and Fineweb-Edu (Penedo et al., 2024), and the StarcoderData (Li et al.,
298 2023b) corpus, as integrating code is known to boost general model performance (MA et al., 2024).
299 For multimodal pre-training, we used public benchmarks like ImageNet (Russakovsky et al., 2015)
300 and JourneyDB (Pan et al., 2023), complemented by a substantial internally collected dataset of
301 40 million images, which were captioned using the powerful Intern-VL model Chen et al. (2024).
302 Following the methodology of Liquid (Wu et al., 2025b), we diversified our training data by randomly
303 reversing 20% of the text-to-image pairs to serve as image-captioning tasks. The final pre-training
304 data consists of 72B text tokens and 65B vision tokens.

305 **Supervised Fine-Tuning (SFT).** We further refined the model with 3B SFT tokens. For vision
306 understanding, we employed MiniGemini (Li et al., 2024) and FineVision (HuggingFaceM4, 2025).
307 To improve text understanding and general instruction-following, we utilized OpenOrca (Mukherjee
308 et al., 2023). Additionally, to refine the quality of image generation, we leveraged Blip3o-60k (Chen
309 et al., 2025a) and ShareGPT4o (Chen et al., 2023).

310 **Benchmarks.** Evaluation covered text-only, image generation, and multimodal understanding tasks.
311 For text-only tasks, we employed ARC-Easy/Challenge (**ARC-E/ARC-C**) (Clark et al., 2018), Wino-
312 Grande (**WinoG**) (Sakaguchi et al., 2020), **BoolQ** (Clark et al., 2019), and **MMLU** (Hendrycks et al.,
313 2021). For image generation, we used **GenEval** (Ghosh et al., 2023) and DPG-Bench (**DPG**) (Hu
314 et al., 2024). For the GenEval benchmark, we followed Bagel (Deng et al., 2025) and employed an
315 LLM to rewrite shorter prompts into more detailed ones to better assess instruction following. For
316 multimodal understanding, we used SEEDBench (**SEED**) (Li et al., 2023a), **MME** (Fu et al., 2024),
317 **POPE** (Li et al., 2023c), and MMBench (**MMB**) (Liu et al., 2024d).

318 **Implementation Details.** We conducted ablation studies on Qwen2.5-1.5B (Yang et al., 2024) and
319 scaled to Qwen2.5-3B. We used the VQGAN tokenizer (Esser et al., 2021a) from Chameleon (Team,
320

324
325

Table 1: The text performance of Uni-X compared to other models.

326

327

Model	# Params.	ARC-E	ARC-C	WinoG	BoolQ	MMLU	Avg. ↑
Janus-Pro (Chen et al., 2025b)	7B	70.4	40.9	66.1	80.2	49.3	61.4
VILA-U (Wu et al., 2024b)	7B	51.6	34.0	57.3	70.6	25.5	47.8
Chameleon (Team, 2025)	7B	76.1	46.5	70.4	81.4	52.1	65.3
Liquid (Wu et al., 2025b)	7B	75.6	49.0	72.7	81.0	56.0	66.9
Uni-X	3B / 4.5B	79.0	47.9	68.9	82.2	57.6	67.1

332

333

334

335 Table 2: The image generation and multimodal understanding performance of Uni-X compared to
336 other models. In the **# Params** column x/y , x and y represent the number of active parameters and
337 the total parameters, respectively. † represents the model variant that performs semantic alignment. ‡
338 represents the rewriting of the prompt during evaluation. \heartsuit indicates that it has been trained on more
339 image-text data.

340

341

Model	# Tokens	# Params.	GenEval	DPG	MME	POPE	MMB	SEED
<i>Autoregressive meets Diffusion</i>								
Bagel (Deng et al., 2025)	5.1T	7B / 14B	88 ‡	85.0	-	-	85.0	-
Bilp3o (Chen et al., 2025a)	-	4B / 9B	81	79.3	1,527.7	-	78.6	73.8
X-Omni (Geng et al., 2025)	~1T	10B / 20B	83 ‡	87.6	-	89.3	74.8	74.1
Show-o (Xie et al., 2024)	~500B	1.3B	68	-	1,097.2	80.0	-	-
Show-o† (Xie et al., 2024)	~500B	1.3B	69	-	1,232.9	84.5	-	-
<i>Autoregressive w/ Semantic Encoder</i>								
NextStep1 (Team et al., 2025)	~1T	14B	73 ‡	85.2	-	-	-	-
Janus-Pro (Chen et al., 2025b)	~300B	7B	80	84.1	-	87.4	79.2	72.1
VILA-U (Wu et al., 2024b)	-	7B	-	-	1,336.2	83.9	-	56.3
Liquid† (Wu et al., 2025b)	-	8B	-	-	1,448.0	83.2	-	-
<i>Autoregressive w/o Semantic Encoder</i>								
Chameleon (Team, 2025)	9.2T	34B	39	-	604.5	-	32.7	-
LWM (Liu et al., 2024a)	~500B	7B	47	-	-	75.2	-	-
EMU3 (Wang et al., 2024d)	-	8B	66 ‡	80.6	1,243.8	85.2	58.5	68.2
Liquid (Wu et al., 2025b)	~90B	7B	68 ‡	79.8	1,107.2	81.1	-	-
Uni-X	140B	3B / 4.5B	82 ‡	79.8	1,158.3	83.6	59.3	60.2
Uni-X$^\heartsuit$	240B	3B / 4.5B	83 ‡	80.3	1,228.2	84.6	62.7	59.8

360

361

362 2025) to encode 512×512 images into 32×32 discrete tokens. Our codebase is built upon the
363 Liquid (Wu et al., 2025b) and HuggingFace Transformers (Wolf et al., 2019) libraries. Training was
364 accelerated using Flash Attention 2 (Dao et al., 2022) and DeepSpeed ZeRO2 (Aminabadi et al.,
365 2022). When generating images, we uniformly set the classifier-free guidance (CFG) to 4.0.

366

367

4.2 RESULTS AND ANALYSIS

368

369 **Scaling Experiment.** In this experiment, we aim to demonstrate that Uni-X can scale effectively
370 and is not limited to small-scale training data. We expand the dataset size to 140B total tokens for
371 Uni-X, using Qwen2.5-3B as the base model, and extend the training duration to achieve improved
372 performance. The evaluation is conducted against SOTA models, some of which have been trained on
373 trillions of tokens. As presented in Table 1, Uni-X robustly maintains the strong language capabilities
374 of its base model. With an average score of 67.1 across five text benchmarks, our 3B Uni-X model
375 outperforms several larger 7B models. This demonstrates that our design successfully mitigates
376 modality conflict without sacrificing performance on fundamental language understanding tasks.

377

For image generation, as detailed in Table 2, Uni-X achieves a strong score of 82 on GenEval,
a result that surpasses many models with more parameters and underscores the effectiveness of

378
379
380Table 3: Image edit results on ImgEdit-Bench. \heartsuit indicates that it has been trained on more image-text data.

Model	# Params.	Add	Adjust	Extract	Replace	Remove	Background	Style	Hybrid	Action	Overall↑
GPT-4o	-	4.61	4.33	2.90	4.35	3.66	4.57	4.93	3.96	4.89	4.20
ICEEdit	12B	3.58	3.39	1.73	3.15	2.93	3.08	3.84	2.04	3.68	3.05
AnyEdit	4B	3.18	2.95	1.88	2.47	2.23	2.24	2.85	1.56	2.65	2.45
UltraEdit	4B	3.44	2.81	2.13	2.96	1.45	2.83	3.76	1.91	2.98	2.70
Step1X-Edit	12B	3.88	3.14	1.76	3.40	2.41	3.16	4.63	2.64	2.52	3.06
Bagel	7B / 14B	3.56	3.31	1.70	3.30	2.62	3.24	4.49	2.38	4.17	3.20
Uni-X\heartsuit	3B / 4.5B	3.57	3.18	2.06	3.94	3.82	3.38	4.21	3.16	3.63	3.44

387
388

389

Table 4: Performance and training efficiency comparison of different model architectures under identical training conditions. Training efficiency is measured by the number of tokens processed per second per GPU. \spadesuit indicates that the baseline has been adapted for our experimental setting (see Appendix A.2 for specific details); \diamond represents calculating the loss on the instruction part during the training of image-text data.

Model	#Params.	MMLU	GenEval	MMB	Avg.↑	Efficiency↑
Shared Transformer	1.5B	50.0	33.6	30.3	38.0	16,380
MoT\spadesuit Deng et al. (2025)	1.5B / 3B	48.0	26.0	30.0	34.6	12,658
HardMoE	1.5B / 2.3B	50.3	42.8	30.7	41.3	14,657
UniFork\spadesuit (Li et al., 2025c)	1.5B / 2.3B	50.1	12.4	25.9	29.5	15,481
Uni-X (9:5)\diamond	1.5B / 2.3B	48.5	34.8	29.8	37.7	15,642
Uni-X (9:5)	1.5B / 2.3B	50.1	43.3	31.5	41.6	15,595

404

our architecture in producing high-quality images. We also tested T2I-CompBench (Huang et al., 2025) and MSCOCO (Lin et al., 2015), as shown in Appendix A.3. Uni-X similarly exhibited strong performance with fewer parameters. Regarding vision understanding (Table 2), while Uni-X’s scores are slightly lower than some state-of-the-art models, we observe a clear trend: models that incorporate an additional semantic image encoder, such as Janus-Pro (Chen et al., 2025b) and the semantically aligned variants of Liquid (Wu et al., 2025b) and Show-o (Xie et al., 2024), tend to achieve substantially higher performance on understanding benchmarks like MMBench and SEED.

In contrast, among models that do not rely on a separate semantic encoder, Uni-X’s performance is commendable and holds its ground against strong competitors like EMU3 (Wang et al., 2024d). This suggests that our architecture effectively harnesses the inherent capabilities of the autoregressive framework for vision understanding. We speculate that the relatively weaker understanding performance might be partially caused by the insufficient utilization of the VQ tokenizer’s codebook. We analyzed the token sequences encoded from 1 million images and found that, although there are 8,192 tokens available in the tokenizer, only \approx 3,127 are being utilized. Meanwhile, EMU3 uses 4096 tokens to represent a 512×512 image, which provides more fine-grained information. However, this $4 \times$ token count severely impacts its image generation speed, as shown in Appendix A.5.

For image editing, we conducted tests on ImgEdit (Ye et al., 2025) as shown in Table 3. Uni-X achieved better results than Bagel, even with less training data and fewer parameters than Bagel. This demonstrates that the high-level semantic unification of Uni-X enhances its image editing capabilities.

Identical Training Conditions. To validate the effectiveness of Uni-X, we conducted ablation experiments on a smaller dataset and a slightly reduced base model Qwen2.5-1.5B, due to resource constraints. To ensure consistency in performance comparisons, we limited the dataset to 28B tokens, of which 13.7B are vision tokens. The experiments were conducted using learning rate (LR) 5×10^{-5} , warmup ratio 0.03, and constant LR scheduler, with batch size 17,560 tokens per GPU.

The selected baselines include: (1) **Shared Transformer**, which continues multimodal pre-training based on Qwen2.5-1.5B; (2) **Mixture-of-Transformers (MoT)** (Deng et al., 2025), where prior work replicates an additional transformer to handle image generation tasks, while the original LLM backbone focuses on text-only and image understanding tasks. Under our experimental setup,

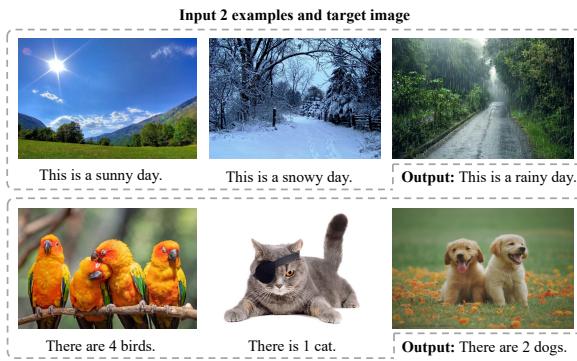
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446 Figure 5: Qualitative examples of Uni-X image generation. The results highlight its ability to produce
447 diverse, high-quality visuals that follow prompts with both creativity and fine-grained detail.

448 vision tokens are allocated to the duplicated transformer; (3) **Hard-Route MoE (HardMoE)**, which
449 introduces a vision expert specifically for the vision modality, assigning vision tokens to this expert
450 for computation guided by the vision mask; and (4) **UniFork** (Li et al., 2025c), which creates a
451 task-specific deep branch for image generation. For all the baselines, we ignored the instruction
452 during training to enhance cross-modal performance and ensure a fair comparison.

453 Results (Table 4) show that Uni-X achieves the best overall performance under consistent training
454 conditions. Specifically, our Uni-X (9:5) configuration attains an average score of 41.6, significantly
455 outperforming the standard baselines. While HardMoE is competitive, achieving a score of 41.3,
456 Uni-X still holds a slight advantage. Moreover, HardMoE and UniFork are orthogonal and can be
457 combined. In terms of training efficiency, although the baseline shared transformer is the fastest
458 due to having the fewest parameters, Uni-X achieves a high throughput, which is considerably more
459 efficient than the less performant MoT architecture. These findings confirm that Uni-X’s design offers
460 a more effective trade-off between performance and computational efficiency.

461 It is worth noting that the architectures of MoT and UniFork have been adapted to fit our VQ+AR
462 setup to avoid discrepancies in efficiency between paradigms such as diffusion and AR+diffusion.
463 Specific details can be found in Appendix A.2. A comparison of training efficiency across paradigms
464 lies beyond the scope of this work and will be considered in future research.

465 **Case Study.** In Figure 5, we present a
466 curated selection of images generated by
467 Uni-X to qualitatively assess its capabilities.
468 Despite the relatively limited number
469 of tokens used during training, the model
470 demonstrates a strong ability to produce
471 clear, aesthetically pleasing images that
472 exhibit robust instruction-following capabilities.
473 The examples showcase Uni-X’s
474 versatility in handling a wide range of creative
475 and complex prompts. For instance,
476 the model can generate imaginative fantasy
477 scenes, such as a gigantic library floating
478 above the clouds, and surreal compositions,
479 like a realistic elephant walking on the
480 ocean floor. Furthermore, Uni-X suc-
481 cessfully adheres to specific artistic style
482 requests, as seen in the detailed anime-style
483 portrait, and renders fine details with high
484 fidelity, exemplified by the intricate feather
485 patterns of the owl. These case studies collectively verify
that Uni-X can effectively translate complex textual descriptions into high-quality visual outputs. The
specific prompts used for these generations are provided in Appendix A.1.



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
100100
100101
100102
100103
100104
100105
100106
100107
100108
100109
100110
100111
100112
100113
100114
100115
100116
100117
100118
100119
100120
100121
100122
100123
100124
100125
100126
100127
100128
100129
100130
100131
100132
100133
100134
100135
100136
100137
100138
100139
100140
100141
100142
100143
100144
100145
100146
100147
100148
100149
100150
100151
100152
100153
100154
100155
100156
100157
100158
100159
100160
100161
100162
100163
100164
100165
100166
100167
100168
100169
100170
100171
100172
100173
100174
100175
100176
100177
100178
100179
100180
100181
100182
100183
100184
100185
100186
100187
100188
100189
100190
100191
100192
100193
100194
100195
100196
100197
100198
100199
100200
100201
100202
100203
100204
100205
100206
100207
100208
100209
100210
100211
100212
100213
100214
100215
100216
100217
100218
100219
100220
100221
100222
100223
100224
100225
100226
100227
100228
100229
100230
100231
100232
100233
100234
100235
100236
100237
100238
100239
100240
100241
100242
100243
100244
100245
100246
100247
100248
100249
100250
100251
100252
100253
100254
100255
100256
100257
100258
100259
100260
100261
100262
100263
100264
100265
100266
100267
100268
100269
100270
100271
100272
100273
100274
100275
100276
100277
100278
100279
100280
100281
100282
100283
100284
100285
100286
100287
100288
100289
100290
100291
100292
100293
100294
100295
100296
100297
100298
100299
100300
100301
100302
100303
100304
100305
100306
100307
100308
100309
100310
100311
100312
100313
100314
100315
100316
100317
100318
100319
100320
100321
100322
100323
100324
100325
100326
100327
100328
100329
100330
100331
100332
100333
100334
100335
100336
100337
100338
100339
100340
100341
100342
100343
100344
100345
100346
100347
100348
100349
100350
100351
100352
100353
100354
100355
100356
100357
100358
100359
100360
100361
100362
100363
100364
100365
100366
100367
100368
100369
100370
100371
100372
100373
100374
100375
100376
100377
100378
100379
100380
100381
100382
100383
100384
100385
100386
100387
100388
100389
100390
100391
100392
100393
100394
100395
100396
100397
100398
100399
100400
100401
100402
100403
100404
100405
100406
100407
100408
100409
100410
100411
100412
100413
100414
100415
100416
100417
100418
100419
100420
100421
100422
100423
100424
100425
100426
100427
100428
100429
100430
100431
100432
100433
100434
100435
100436
100437
100438
100439
100440
100441
100442
100443
100444
100445
100446
100447
100448
100449
100450
100451
100452
100453
100454
100455
100456
100457
100458
100459
100460
100461
100462
100463
100464
100465
100466
100467
100468
100469
100470
100471
100472
100473
100474
100475
100476
100477
100478
100479
100480
100481
100482
100483
100484
100485
100486
100487
100488
100489
100490
100491
100492
100493
100494
100495
100496
100497
100498
100499
100500
100501
100502
100503
100504
100505
100506
100507
100508
100509
100510
100511
100512
100513
100514
100515
100516
100517
100518
100519
100520
100521
100522
100523
100524
100525
100526
100527
100528
100529
100530
100531
100532
100533
100534
100535
100536
100537
100538
100539
100540
100541
100542
100543
100544
100545
100546
100547
100548
100549
100550
100551
100552
100553
100554
100555
100556
100557
100558
100559
100560
100561
100562
100563
100564
100565
100566
100567
100568
100569
100570
100571
100572
100573
100574
100575
100576
100577
100578
100579
100580
100581
100582
100583
100584
100585
100586
100587
100588
100589
100590
100591
100592
100593
100594
100595
100596
100597
100598
100599
100600
100601
100602
100603
100604
100605
100606
100607
100608
100609
100610
100611
100612
100613
100614
100615
100616
100617
100618
100619
100620
100621
100622
100623
100624
100625
100626
100627
100628
100629
100630
100631
100632
100633
100634
100635
100636
100637
100638
100639
100640
100641
100642
100643
100644
100645
100646
100647
100648
100649
100650
100651
100652
100653
100654
100655
100656
100657
100658
100659
100660
100661
100662
100663
100664
100665
100666
100667
100668
100669
100670
100671
100672
100673
100674
100675
100676
100677
100678
100679
100680
100681
100682
100683
100684
100685
100686
100687
100688
100689
100690
100691
100692
100693
100694
100695
100696
100697
100698
100699
100700
100701
100702
100703
100704
100705
100706
100707
100708
100709
100710
100711
100712
100713
100714
100715
100716
100717
100718
100719
100720
100721
100722
100723
100724
100725
100726
100727
100728
100729
100730
100731
100732
100733
100734
100735
100736
100737
100738
100739
100740
100741
100742
100743
100744
100745
100746
100747
100748
100749
100750
100751
100752
100753
100754
100755
100756
100757
100758
100759
100760
100761
100762
100763
100764
100765
100766
100767
100768
100769
100770
100771
100772
100773
100774
100775
100776
100777
100778
100779
100780
100781
100782
100783
100784
100785
100786
100787
100788
100789
100790
100791
100792
100793
100794
100795
100796
100797
100798
100799
100800
100801
100802
100803
100804
100805
100806
100807
100808
100809
100810
100811
100812
100813
100814
100815
100816
100817
100818
100819
100820
100821
100822
100823
100824
100825
100826
100827
100828
100829
100830
100831
100832
100833
100834
100835
100836
100837
100838
100839
100840
100841
100842
100843
100844
100845
100846
100847
100848
100849
100850
100851
100852
100853
100854
100855
100856
100857
100858
100859
100860
100861
100862
100863
100864
100865
100866
100867
100868
100869
100870
100871
100872
100873
100874
100875
100876
100877
100878
100879
100880
100881
100882
100883
100884
100885
100886
100887
100888
100889
100890
100891
100892
100893
100894
100895
100896
100897
100898
100899
100900
100901
100902
100903
100904
100905
100906
100907
100908
100909
100910
100911
100912
100913
100914
100915
100916
100917
100918
100919
100920
100921
100922
100923
100924
100925
100926
100927
100928
100929
100930
100931
100932
100933
100934
100935
100936
100937
100938
100939
100940
100941
100942
100943
100944
100945
100946
100947
100948
100

486 **In-Context Learning.** Although Uni-X was not explicitly trained on interleaved multimodal data, we
487 conducted an evaluation to assess its emergent in-context learning (ICL) capabilities. As illustrated
488 in Figure 6, the model was presented with few-shot examples, where several image-text pairs were
489 provided as context before a final query image was presented without its corresponding description.
490

491 The results demonstrate that Uni-X can successfully interpret the contextual examples and apply the
492 learned pattern to the target image. For instance, in the top row of Figure 6, the model correctly
493 identifies the weather in the target image as a “rainy day,” adhering to the simple descriptive format
494 (“This is a... day.”) established by the preceding examples. Also, Uni-X exhibits the ability to perform
495 more reasoning tasks such as object counting. This suggests that the model is not merely mimicking
496 sentence structure but is performing cross-modal reasoning at a semantic level.
497

498 **Ignore Instruction in Training.** Ignoring the loss of the instruction part during training is a common
499 technique in supervised fine-tuning. However, its role in pretraining is rarely emphasized. Following
500 Liquid (Wu et al., 2025b), we applied the same “ignore instruction” strategy during pretraining.
501

502 Specifically, no loss mask was applied for pure text data. For text-image pairs, in text-to-image tasks,
503 the loss calculation excluded the text instruction tokens. Similarly, for image captioning tasks, the
504 loss corresponding to the image tokens was masked. As demonstrated in our experimental results
505 Table 4, this approach significantly enhanced the model’s capability to generate images.
506

507 We believe there might be several reasons for this: 1) This mask forces the model to learn the
508 relationship between the two modalities rather than relying on the prior distribution of images,
509 thereby enhancing its instruction-following capability. 2) It serves as a form of loss regularization.
510 For text-image pair data, the number of image tokens is fixed at 1024, while the average number of
511 text tokens is around 120. By masking, we ensure that the gradient magnitude generated by the loss
512 is only dependent on the reverse ratio we set.
513

514 **Number of Separated Layers.** We
515 investigate how the number and distribution
516 of separated layers affect performance
517 (Table 5). Varying the total
518 number of separated layers pro-
519 duces an n -shaped trend: more separa-
520 tion improves modality-specific low-
521 level processing, but too many reduce
522 shared middle layers, weakening se-
523 mantic fusion and cross-modal rea-
524 soning. The best overall performance is
525 achieved with 14 separated layers. We
526 then examine shallow-deep ratios un-
527 der this setting. A 9:5 split (slightly
528 more shallow than deep layers) per-
529 forms best, indicating that early pro-
530 cessing of low-level features, where text and vision differ most, benefits more from modality-specific
531 capacity than the final generation stage. These results provide strong empirical support for the Uni-X
532 design. [We also explored text layers and vision layers with different numbers of separate layers, and](#)
533 [the results are shown in Appendix A.6.](#)
534

535 **Table 5: Performance comparison of different Uni-X config-
536 urations.** Here, $x : y$ denotes the number of shallow separated
537 layers x and deep separated layers y , respectively. The total
538 number of layers is $n = 28$. The split points are x and $n - y$,
539 respectively.

Configuration	MMLU	GenEval	MMB	Avg. \uparrow
Uni-X (3:3)	48.7	37.3	30.7	38.9
Uni-X (7:7)	49.6	41.3	29.4	40.1
Uni-X (11:11)	49.7	37.5	32.1	39.8
Uni-X (3:11)	50.0	32.9	31.0	38.0
Uni-X (5:9)	50.1	39.2	28.0	39.1
Uni-X (9:5)	50.1	43.3	31.5	41.6
Uni-X (11:3)	49.8	25.1	31.9	35.6

5 CONCLUSIONS

531 In this work, we identified gradient conflicts as a fundamental limitation of shared AR UMMs,
532 particularly in the shallow and deep layers where vision and text exhibit highly divergent low-
533 level statistics. To address this challenge, we proposed Uni-X, a two-end-separated, middle-shared
534 architecture that explicitly aligns model structure with modality characteristics. By isolating low-level
535 processing into modality-specific branches while maintaining a shared semantic core for high-level
536 fusion, Uni-X effectively mitigates inter-modal conflicts without adding architectural complexity.
537 Extensive experiments show that this X-shaped design allows a 3B-parameter Uni-X model to deliver
538 performance competitive with much larger 7B UMMs across diverse multimodal benchmarks. These
539 findings establish Uni-X as both a scalable and parameter-efficient foundation, paving the way for
future research in unified multimodal modeling.

540 **ETHICS STATEMENT**
541

542 This research aims to advance the field of artificial intelligence, particularly in the area of Unified
543 Multimodal Models. We recognize that, like other powerful generative models, the technologies
544 proposed in this study also carry potential risks of misuse, such as the creation of misinformation,
545 biased, or harmful content. Our primary objective is to explore architectural efficiency to build more
546 powerful and scalable models, and we believe this will make a valuable contribution to science.

547 The datasets used to train and fine-tune our models are primarily publicly available and widely used
548 benchmark datasets in the academic community. For any internally collected data, we have ensured
549 that its acquisition and processing adhere to principles of responsibility. We have not specifically
550 filtered web-based datasets for bias, and therefore, the model may reflect social biases present in the
551 data. We encourage responsible downstream use and further research into mitigating the potential
552 negative impacts of generative models. Our work is intended solely for research purposes and is
553 shared with the community to foster innovation and deepen understanding.

554
555 **REPRODUCIBILITY STATEMENT**
556

557 We are committed to ensuring the reproducibility of our research. To this end, we provide comprehensive
558 details throughout the paper and in the appendix.

559
560 **Code.** The source code for our Uni-X model architecture, training, and evaluation is made available
561 at the following anonymous repository: <https://anonymous.4open.science/r/Uni-X-Code-E5CD>.

562
563 **Architecture and Implementation.** The detailed architecture of Uni-X is described in Section
564 3.2. Implementation details, including the base models used (Qwen2.5-1.5B and Qwen2.5-3B), the
565 VQGAN tokenizer, and software dependencies are provided in Section 4.1. Details on our baseline
566 implementations are available in Appendix A.2.

567
568 **Datasets and Evaluation.** All datasets used for pre-training and supervised fine-tuning are listed in
569 Section 4.1. The evaluation benchmarks for understanding and generation tasks are also detailed in
570 the same section.

571
572 **Hyperparameters.** Key hyperparameters for our main ablation study, including learning rate, batch
573 size, and scheduler details, are specified in Section 4.3 to ensure a fair comparison.

574
575 We believe that the combination of our provided code, detailed architectural descriptions, dataset lists,
576 and specific hyperparameters will enable the community to replicate our findings and build upon our
577 work.

578 **REFERENCES**
579

580 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
581 Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 Technical
582 Report. *arXiv preprint arXiv:2303.08774*, 2023.

583 Reza Yazdani Aminabadi, Samyam Rajbhandari, Ammar Ahmad Awan, Cheng Li, Du Li, Elton
584 Zheng, Olatunji Ruwase, Shaden Smith, Minjia Zhang, Jeff Rasley, et al. DeepSpeed-inference:
585 enabling efficient inference of transformer models at unprecedented scale. In *Proceedings of the
586 International Conference on High Performance Computing, Networking, Storage and Analysis
(SC'22)*, pp. 1–15, 2022.

587 Lucas Beyer, Andreas Steiner, André Susano Pinto, Alexander Kolesnikov, Xiao Wang, Daniel Salz,
588 Maxim Neumann, Ibrahim Alabdulmohsin, Michael Tschannen, Emanuele Bugliarello, Thomas
589 Unterthiner, Daniel Keysers, Skanda Koppula, Fangyu Liu, Adam Grycner, Alexey Gritsenko,
590 Neil Houlsby, Manoj Kumar, Keran Rong, Julian Eisenschlos, Rishabh Kabra, Matthias Bauer,
591 Matko Bošnjak, Xi Chen, Matthias Minderer, Paul Voigtlaender, Ioana Bica, Ivana Balazevic, Joan
592 Puigcerver, Pinelopi Papalampidi, Olivier Henaff, Xi Xiong, Radu Soricut, Jeremiah Harmsen, and
593 Xiaohua Zhai. Paligemma: A versatile 3b vlm for transfer, 2024. URL <https://arxiv.org/abs/2407.07726>.

594 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
595 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
596 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.
597

598 Juhai Chen, Zhiyang Xu, Xichen Pan, Yushi Hu, Can Qin, Tom Goldstein, Lifu Huang, Tianyi
599 Zhou, Saining Xie, Silvio Savarese, Le Xue, Caiming Xiong, and Ran Xu. BLIP3-o: A Family of
600 Fully Open Unified Multimodal Models-Architecture, Training and Dataset, May 2025a. URL
601 <http://arxiv.org/abs/2505.09568>. arXiv:2505.09568 [cs].

602 Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Conghui He, Jiaqi Wang, Feng Zhao, and Dahua
603 Lin. Sharegpt4v: Improving large multi-modal models with better captions. *arXiv preprint*
604 *arXiv:2311.12793*, 2023.

605 Xiaokang Chen, Zhiyu Wu, Xingchao Liu, Zizheng Pan, Wen Liu, Zhenda Xie, Xingkai Yu, and
606 Chong Ruan. Janus-Pro: Unified Multimodal Understanding and Generation with Data and Model
607 Scaling, January 2025b. URL <http://arxiv.org/abs/2501.17811>. arXiv:2501.17811
608 [cs].

609

610 Zhe Chen, Weiyun Wang, Hao Tian, Shenglong Ye, Zhangwei Gao, Erfei Cui, Wenwen Tong, Kongzhi
611 Hu, Jiapeng Luo, Zheng Ma, et al. How far are we to gpt-4v? closing the gap to commercial
612 multimodal models with open-source suites. *arXiv preprint arXiv:2404.16821*, 2024.

613 Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
614 Toutanova. BoolQ: Exploring the surprising difficulty of natural yes/no questions. In *Proceedings*
615 *of the 2019 Conference of the North American Chapter of the Association for Computational*
616 *Linguistics: Human Language Technologies (NAACL-HLT)*, pp. 2924–2936, 2019.

617

618 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
619 Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge,
620 2018. URL <https://arxiv.org/abs/1803.05457>.

621 Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
622 efficient exact attention with io-awareness. In *Proceedings of the 36th International Conference on*
623 *Neural Information Processing Systems (NeurIPS)*, pp. 16344–16359, 2022.

624

625 Chaorui Deng, Deyao Zhu, Kunchang Li, Chenhui Gou, Feng Li, Zeyu Wang, Shu Zhong, Weihao Yu,
626 Xiaonan Nie, Ziang Song, Guang Shi, and Haoqi Fan. Emerging Properties in Unified Multimodal
627 Pretraining, 2025. URL <https://arxiv.org/abs/2505.14683>. Version Number: 2.

628

629 Runpei Dong, Chunrui Han, Yuang Peng, Zekun Qi, Zheng Ge, Jinrong Yang, Liang Zhao, Jianjian
630 Sun, Hongyu Zhou, Haoran Wei, et al. Dreamllm: Synergistic multimodal comprehension and
631 creation. *arXiv preprint arXiv:2309.11499*, 2023.

632

633 Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
634 synthesis. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
635 pp. 12873–12883, 2021a.

636

637 Patrick Esser, Robin Rombach, and Björn Ommer. Taming transformers for high-resolution image
638 synthesis, 2021b. URL <https://arxiv.org/abs/2012.09841>.

639

640 Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Mengdan Zhang, Xu Lin, Jinrui Yang, Xiawu
641 Zheng, Ke Li, Xing Sun, Yunsheng Wu, and Rongrong Ji. Mme: A comprehensive evaluation
642 benchmark for multimodal large language models, 2024.

643

644 Yuying Ge, Sijie Zhao, Jinguo Zhu, Yixiao Ge, Kun Yi, Lin Song, Chen Li, Xiaohan Ding, and Ying
645 Shan. Seed-x: Multimodal models with unified multi-granularity comprehension and generation,
646 2025. URL <https://arxiv.org/abs/2404.14396>.

647

648 Zigang Geng, Yibing Wang, Yeyao Ma, Chen Li, Yongming Rao, Shuyang Gu, Zhao Zhong,
649 Qinglin Lu, Han Hu, Xiaosong Zhang, Linus, Di Wang, and Jie Jiang. X-Omni: Reinforcement
650 Learning Makes Discrete Autoregressive Image Generative Models Great Again, July 2025. URL
651 <http://arxiv.org/abs/2507.22058>. arXiv:2507.22058 [cs].

648 Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer Feed-Forward Layers
649 Are Key-Value Memories, September 2021. URL <http://arxiv.org/abs/2012.14913>.
650 arXiv:2012.14913 [cs].
651

652 Dhruba Ghosh, Hanna Hajishirzi, and Ludwig Schmidt. Geneval: An object-focused framework for
653 evaluating text-to-image alignment, 2023. URL <https://arxiv.org/abs/2310.11513>.
654

655 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
656 Steinhardt. Measuring massive multitask language understanding, 2021. URL <https://arxiv.org/abs/2009.03300>.
657

658 Xwei Hu, Rui Wang, Yixiao Fang, Bin Fu, Pei Cheng, and Gang Yu. Ella: Equip diffusion models
659 with ILM for enhanced semantic alignment, 2024. URL <https://arxiv.org/abs/2403.05135>.
660

661 Kaiyi Huang, Chengqi Duan, Kaiyue Sun, Enze Xie, Zhenguo Li, and Xihui Liu. T2i-compbench++:
662 An enhanced and comprehensive benchmark for compositional text-to-image generation, 2025.
663 URL <https://arxiv.org/abs/2307.06350>.
664

665 HuggingFaceM4. Finevision dataset. <https://huggingface.co/datasets/HuggingFaceM4/FineVision>, 2025. <https://huggingface.co/datasets/HuggingFaceM4/FineVision>.
666

667

668 Yang Jiao, Haibo Qiu, Zequn Jie, Shaoxiang Chen, Jingjing Chen, Lin Ma, and Yu-Gang Jiang.
669 Unitoken: Harmonizing multimodal understanding and generation through unified visual encoding,
670 2025. URL <https://arxiv.org/abs/2504.04423>.
671

672 Yang Jin, Kun Xu, Kun Xu, Liwei Chen, Chao Liao, Jianchao Tan, Quzhe Huang, Bin Chen, Chenyi
673 Lei, An Liu, Chengru Song, Xiaoqiang Lei, Di Zhang, Wenwu Ou, Kun Gai, and Yadong Mu.
674 Unified Language-Vision Pretraining in LLM with Dynamic Discrete Visual Tokenization, March
675 2024. URL <https://arxiv.org/abs/2309.04669>. arXiv:2309.04669 [cs].
676

677 Bohao Li, Rui Wang, Guangzhi Wang, Yuying Ge, Yixiao Ge, and Ying Shan. Seed-bench: Bench-
678 marking multimodal LLMs with generative comprehension. *arXiv preprint arXiv:2307.16125*,
679 2023a.

680 Dongxu Li, Yudong Liu, Haoning Wu, Yue Wang, Zhiqi Shen, Bowen Qu, Xinyao Niu, Fan Zhou,
681 Chengen Huang, Yanpeng Li, Chongyan Zhu, Xiaoyi Ren, Chao Li, Yifan Ye, Peng Liu, Lihuan
682 Zhang, Hanshu Yan, Guoyin Wang, Bei Chen, and Junnan Li. Aria: An open multimodal native
683 mixture-of-experts model, 2025a. URL <https://arxiv.org/abs/2410.05993>.
684

685 Jeffrey Li, Alex Fang, Georgios Smyrnis, Maor Ivgi, Matt Jordan, Samir Gadre, Hritik Bansal, Etash
686 Guha, Sedrick Keh, Kushal Arora, Saurabh Garg, Rui Xin, Niklas Muennighoff, Reinhard Heckel,
687 Jean Mercat, Mayee Chen, Suchin Gururangan, Mitchell Wortsman, Alon Albalak, Yonatan Bitton,
688 Marianna Nezhurina, Amro Abbas, Cheng-Yu Hsieh, Dhruba Ghosh, Josh Gardner, Maciej Kilian,
689 Hanlin Zhang, Rulin Shao, Sarah Pratt, Sunny Sanyal, Gabriel Ilharco, Giannis Daras, Kalyani
690 Marathe, Aaron Gokaslan, Jieyu Zhang, Khyathi Chandu, Thao Nguyen, Igor Vasiljevic, Sham
691 Kakade, Shuran Song, Sujay Sanghavi, Fartash Faghri, Sewoong Oh, Luke Zettlemoyer, Kyle Lo,
692 Alaaeldin El-Nouby, Hadi Pouransari, Alexander Toshev, Stephanie Wang, Dirk Groeneveld, Luca
693 Soldaini, Pang Wei Koh, Jenia Jitsev, Thomas Kollar, Alexandros G. Dimakis, Yair Carmon, Achal
694 Dave, Ludwig Schmidt, and Vaishaal Shankar. Datacomp-lm: In search of the next generation of
695 training sets for language models, 2025b. URL <https://arxiv.org/abs/2406.11794>.
696

697 Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou,
698 Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, Qian Liu, Evgenii Zheltonozhskii, Terry Yue
699 Zhuo, Thomas Wang, Olivier Dehaene, Mishig Davaadorj, Joel Lamy-Poirier, João Monteiro,
700 Oleh Shliazhko, Nicolas Gontier, Nicholas Meade, Armel Zebaze, Ming-Ho Yee, Logesh Kumar
701 Umapathi, Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo Wang, Rudra Murthy, Jason
702 Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey, Zhihan Zhang,
703 Nour Fahmy, Urvashi Bhattacharyya, Wenhao Yu, Swayam Singh, Sasha Luccioni, Paulo Villegas,
704 Maxim Kunakov, Fedor Zhdanov, Manuel Romero, Tony Lee, Nadav Timor, Jennifer Ding, Claire
705 Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra, Alex Gu, Jennifer Robinson,
706

702 Carolyn Jane Anderson, Brendan Dolan-Gavitt, Danish Contractor, Siva Reddy, Daniel Fried,
703 Dzmitry Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis, Sean Hughes, Thomas Wolf, Arjun
704 Guha, Leandro von Werra, and Harm de Vries. Starcoder: may the source be with you!, 2023b.
705 URL <https://arxiv.org/abs/2305.06161>.

706 Teng Li, Quanfeng Lu, Lirui Zhao, Hao Li, Xizhou Zhu, Yu Qiao, Jun Zhang, and Wenqi Shao.
707 UniFork: Exploring Modality Alignment for Unified Multimodal Understanding and Generation,
708 June 2025c. URL <https://arxiv.org/abs/2506.17202>. arXiv:2506.17202 [cs].

709

710 Yanwei Li, Yuechen Zhang, Chengyao Wang, Zhisheng Zhong, Yixin Chen, Ruihang Chu, Shaoteng
711 Liu, and Jiaya Jia. Mini-Gemini: Mining the Potential of Multi-modality Vision Language Models,
712 March 2024. URL <https://arxiv.org/abs/2403.18814>. arXiv:2403.18814 [cs].

713

714 Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating object
715 hallucination in large vision-language models. *arXiv preprint arXiv:2305.10355*, 2023c.

716

717 Chao Liao, Liyang Liu, Xun Wang, Zhengxiong Luo, Xinyu Zhang, Wenliang Zhao, Jie Wu, Liang
718 Li, Zhi Tian, and Weilin Huang. Mogao: An Omni Foundation Model for Interleaved Multi-Modal
719 Generation, May 2025. URL <https://arxiv.org/abs/2505.05472>. arXiv:2505.05472
[cs].

720

721 Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays, Pietro
722 Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Microsoft coco: Common objects
723 in context, 2015. URL <https://arxiv.org/abs/1405.0312>.

724

725 Hao Liu, Wilson Yan, Matei Zaharia, and Pieter Abbeel. World model on million-length video and
726 language with ringattention. *arXiv preprint arXiv:2402.08268*, 2024a.

727

728 Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
729 Llava-next: Improved reasoning, ocr, and world knowledge, January 2024b. URL <https://llava-vl.github.io/blog/2024-01-30-llava-next/>.

730

731 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances in
732 neural information processing systems*, 36, 2024c.

733

734 Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan, Jiaqi
735 Wang, Conghui He, Ziwei Liu, Kai Chen, and Duhua Lin. Mmbench: Is your multi-modal model
736 an all-around player?, 2024d. URL <https://arxiv.org/abs/2307.06281>.

737

738 Yingwei Ma, Yue Liu, Yue Yu, Yuanliang Zhang, Yu Jiang, Changjian Wang, and Shanshan Li. At
739 which training stage does code data help llms reasoning?, 2023. URL <https://arxiv.org/abs/2309.16298>.

740

741 YINGWEI MA, Yue Liu, Yue Yu, Yuanliang Zhang, Yu Jiang, Changjian Wang, and Shanshan
742 Li. At which training stage does code data help LLMs reasoning? In *The Twelfth International
743 Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=KIPJKST4gw>.

744

745 Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and Editing Factual
746 Associations in GPT.

747

748 Subhabrata Mukherjee, Arindam Mitra, Ganesh Jawahar, Sahaj Agarwal, Hamid Palangi, and Ahmed
749 Awadallah. Orca: Progressive learning from complex explanation traces of gpt-4, 2023. URL
750 <https://arxiv.org/abs/2306.02707>.

751

752 Junting Pan, Keqiang Sun, Yuying Ge, Hao Li, Haodong Duan, Xiaoshi Wu, Renrui Zhang, Aojun
753 Zhou, Zipeng Qin, Yi Wang, Jifeng Dai, Yu Qiao, and Hongsheng Li. Journeydb: A benchmark
754 for generative image understanding, 2023.

755

756 Guilherme Penedo, Hynek Kydlíček, Anton Lozhkov, Margaret Mitchell, Colin A Raffel, Leandro
757 Von Werra, Thomas Wolf, et al. The FineWeb datasets: Decanting the web for the finest text data
758 at scale. In *Proceedings of the 38th International Conference on Neural Information Processing
759 Systems (NeurIPS)*, pp. 30811–30849, 2024.

756 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
757 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
758 models from natural language supervision. In *International conference on machine learning*, pp.
759 8748–8763. PMLR, 2021.

760

761 Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
762 Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
763 Imagenet large scale visual recognition challenge, 2015. URL <https://arxiv.org/abs/1409.0575>.

764

765 Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. WinoGrande: An
766 adversarial winograd schema challenge at scale. In *Proceedings of the AAAI Conference on*
767 *Artificial Intelligence (AAAI)*, pp. 8732–8740, 2020.

768

769 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
770 Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of
771 mathematical reasoning in open language models, 2024. URL <https://arxiv.org/abs/2402.03300>.

772

773 Guangyuan Shi, Qimai Li, Wenlong Zhang, Jiaxin Chen, and Xiao-Ming Wu. Recon: Reducing
774 conflicting gradients from the root for multi-task learning, 2023. URL <https://arxiv.org/abs/2302.11289>.

775

776 Weijia Shi, Xiaochuang Han, Chunting Zhou, Weixin Liang, Xi Victoria Lin, Luke Zettlemoyer, and
777 Lili Yu. LMFusion: Adapting Pretrained Language Models for Multimodal Generation, February
778 2025. URL <http://arxiv.org/abs/2412.15188>. arXiv:2412.15188 [cs].

779

780 Qi Sun, Marc Pickett, Aakash Kumar Nain, and Llion Jones. Transformer layers as painters, 2025.
781 URL <https://arxiv.org/abs/2407.09298>.

782

783 Chameleon Team. Chameleon: Mixed-Modal Early-Fusion Foundation Models, March 2025. URL
784 <http://arxiv.org/abs/2405.09818>. arXiv:2405.09818 [cs].

785

786 Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
787 Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open models
788 based on gemini research and technology. *arXiv preprint arXiv:2403.08295*, 2024a.

789

790 Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya
791 Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al.
792 Gemma 2: Improving open language models at a practical size. *arXiv preprint arXiv:2408.00118*,
793 2024b.

794

795 NextStep Team, Chunrui Han, Guopeng Li, Jingwei Wu, Quan Sun, Yan Cai, Yuang Peng, Zheng
796 Ge, Deyu Zhou, Haomiao Tang, Hongyu Zhou, Kenkun Liu, Ailin Huang, Bin Wang, Changxin
797 Miao, Deshan Sun, En Yu, Fukun Yin, Gang Yu, Hao Nie, Haoran Lv, Hanpeng Hu, Jia Wang,
798 Jian Zhou, Jianjian Sun, Kaijun Tan, Kang An, Kangheng Lin, Liang Zhao, Mei Chen, Peng Xing,
799 Rui Wang, Shiyu Liu, Shutao Xia, Tianhao You, Wei Ji, Xianfang Zeng, Xin Han, Xuelin Zhang,
800 Yana Wei, Yanming Xu, Yimin Jiang, Yingming Wang, Yu Zhou, Yucheng Han, Ziyang Meng,
801 Binxing Jiao, Dixin Jiang, Xiangyu Zhang, and Yibo Zhu. NextStep-1: Toward Autoregressive
802 Image Generation with Continuous Tokens at Scale, August 2025. URL <http://arxiv.org/abs/2508.10711>. arXiv:2508.10711 [cs].

803

804 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
805 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
806 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.

807

808 Michael Tschannen, Alexey Gritsenko, Xiao Wang, Muhammad Ferjad Naeem, Ibrahim Alabdul-
809 mohsin, Nikhil Parthasarathy, Talfan Evans, Lucas Beyer, Ye Xia, Basil Mustafa, Olivier Hénaff,
810 Jeremiah Harmsen, Andreas Steiner, and Xiaohua Zhai. Siglip 2: Multilingual vision-language
811 encoders with improved semantic understanding, localization, and dense features, 2025. URL
812 <https://arxiv.org/abs/2502.14786>.

810 Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation learning,
811 2018. URL <https://arxiv.org/abs/1711.00937>.

812 Liangdong Wang, Bo-Wen Zhang, Chengwei Wu, Hanyu Zhao, Xiaofeng Shi, Shuhao Gu, Jijie Li,
813 Quanyue Ma, TengFei Pan, and Guang Liu. Cci3.0-hq: a large-scale chinese dataset of high quality
814 designed for pre-training large language models, 2024a. URL <https://arxiv.org/abs/2410.18505>.

815 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
816 Jialin Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei Du, Xuancheng Ren, Rui Men, Dayiheng
817 Liu, Chang Zhou, Jingren Zhou, and Junyang Lin. Qwen2-vl: Enhancing vision-language model's
818 perception of the world at any resolution, 2024b. URL <https://arxiv.org/abs/2409.12191>.

819 Xinlong Wang, Xiaosong Zhang, Zhengxiong Luo, Quan Sun, Yufeng Cui, Jinsheng Wang, Fan
820 Zhang, Yueze Wang, Zhen Li, Qiyi Yu, Yingli Zhao, Yulong Ao, Xuebin Min, Tao Li, Boya
821 Wu, Bo Zhao, Bowen Zhang, Liangdong Wang, Guang Liu, Zheqi He, Xi Yang, Jingjing Liu,
822 Yonghua Lin, Tiejun Huang, and Zhongyuan Wang. Emu3: Next-Token Prediction is All You
823 Need, September 2024c. URL <http://arxiv.org/abs/2409.18869>. arXiv:2409.18869
824 [cs].

825 Xinlong Wang, Xiaosong Zhang, Zhengxiong Luo, Quan Sun, Yufeng Cui, Jinsheng Wang, Fan
826 Zhang, Yueze Wang, Zhen Li, Qiyi Yu, et al. Emu3: Next-token prediction is all you need.
827 *arXiv preprint arXiv:2409.18869*, 2024d.

828 Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
829 Pierrick Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von
830 Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama
831 Drame, Quentin Lhoest, and Alexander M. Rush. Huggingface's transformers: State-of-the-art
832 natural language processing. *arXiv preprint arXiv:1910.03771*, 2019.

833 Chengyue Wu, Xiaokang Chen, Zhiyu Wu, Yiyang Ma, Xingchao Liu, Zizheng Pan, Wen Liu, Zhenda
834 Xie, Xingkai Yu, Chong Ruan, and Ping Luo. Janus: Decoupling Visual Encoding for Unified
835 Multimodal Understanding and Generation, October 2024a. URL <http://arxiv.org/abs/2410.13848>. arXiv:2410.13848 [cs].

836 Chenyuan Wu, Pengfei Zheng, Ruiran Yan, Shitao Xiao, Xin Luo, Yueze Wang, Wanli Li, Xiyan
837 Jiang, Yexin Liu, Junjie Zhou, Ze Liu, Ziyi Xia, Chaofan Li, Haoge Deng, Jiahao Wang, Kun Luo,
838 Bo Zhang, Defu Lian, Xinlong Wang, Zhongyuan Wang, Tiejun Huang, and Zheng Liu. OmniGen2:
839 Exploration to Advanced Multimodal Generation, June 2025a. URL <http://arxiv.org/abs/2506.18871>. arXiv:2506.18871 [cs].

840 Junfeng Wu, Yi Jiang, Chuofan Ma, Yuliang Liu, Hengshuang Zhao, Zehuan Yuan, Song Bai, and
841 Xiang Bai. Liquid: Language Models are Scalable and Unified Multi-modal Generators, April
842 2025b. URL <http://arxiv.org/abs/2412.04332>. arXiv:2412.04332 [cs].

843 Yecheng Wu, Zhuoyang Zhang, Junyu Chen, Haotian Tang, Dacheng Li, Yunhao Fang, Ligeng
844 Zhu, Enze Xie, Hongxu Yin, Li Yi, et al. Vila-u: a unified foundation model integrating visual
845 understanding and generation. *arXiv preprint arXiv:2409.04429*, 2024b.

846 Jinheng Xie, Weijia Mao, Zechen Bai, David Junhao Zhang, Weihao Wang, Kevin Qinghong Lin,
847 Yuchao Gu, Zhijie Chen, Zhenheng Yang, and Mike Zheng Shou. Show-o: One single transformer
848 to unify multimodal understanding and generation. *arXiv preprint arXiv:2408.12528*, 2024.

849 Jinheng Xie, Zhenheng Yang, and Mike Zheng Shou. Show-o2: Improved Native Unified Multimodal
850 Models, June 2025. URL <http://arxiv.org/abs/2506.15564>. arXiv:2506.15564 [cs].

851 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
852 Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2.5 Technical Report. *arXiv preprint
853 arXiv:2412.15115*, 2024.

854 Yang Ye, Xianyi He, Zongjian Li, Bin Lin, Shenghai Yuan, Zhiyuan Yan, Bohan Hou, and Li Yuan.
855 Imgedit: A unified image editing dataset and benchmark, 2025. URL <https://arxiv.org/abs/2505.20275>.

864 Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
865 Gradient surgery for multi-task learning, 2020. URL <https://arxiv.org/abs/2001.06782>.
866

867 Chuyang Zhao, Yuxing Song, Wenhao Wang, Haocheng Feng, Errui Ding, Yifan Sun, Xinyan Xiao,
868 and Jingdong Wang. Monoformer: One transformer for both diffusion and autoregression. *arXiv*
869 *preprint arXiv:2409.16280*, 2024.
870

871 Chunting Zhou, Lili Yu, Arun Babu, Kushal Tirumala, Michihiro Yasunaga, Leonid Shamis, Jacob
872 Kahn, Xuezhe Ma, Luke Zettlemoyer, and Omer Levy. Transfusion: Predict the next token and
873 diffuse images with one multi-modal model. *arXiv preprint arXiv:2408.11039*, 2024.
874

875 A APPENDIX 876

877 A.1 PROMPTS OF IMAGE GENERATION 878

879 Table 6 lists the prompts corresponding to the generated images shown in Figure 5. The prompts are
880 presented in the same order as the images: left to right, top to bottom. These examples highlight the
881 diversity of tasks, ranging from descriptive captions to creative scene generation.
882

883 Table 6: Prompts used for the image generation examples shown in Figure 5.
884

885 No.	886 Prompt
887 1	A gigantic library floats above the clouds, its appearance resembling a suspended castle. 888 Every book emits a faint glow and drifts through the air with the gentle breeze.
889 2	A highly realistic close-up photo featuring a beautiful 35-year-old red-haired woman, 890 writing in her diary on her balcony. She is dressed in warm yet stylish clothing.
891 3	A happy snowman.
892 4	A woman and her little lion taking a selfie on the grassland.
893 5	A beautiful owl with sleek feathers and lively eyes, its round head adorned with two furry 894 ears. The elegant pattern is formed by the interweaving of snow-white down and deep 895 brown flight feathers, making it appear both stunning and endearing.
896 6	A clearing in a deep, mysterious forest, with a mirror-like pond at its center, the water 897 reflecting a night sky filled with the Milky Way.
898 7	A handsome 24-year-old boy stands in the center, with a sky-colored background. He is 899 wearing glasses, and the art style is very detailed, in anime style.
900 8	A realistic photo of an elephant walking on the ocean floor.
901 9	An elegant and charming lady whose hair is entirely made up of blooming flowers, resem- 902 bling a masterpiece of nature. The flowers are of various types, possibly including delicate 903 roses, fresh daisies, vibrant sunflowers, or other colorful blossoms.
904 10	A magnificent landscape photo depicting the northern lights dancing above the snow-capped 905 mountain ranges in Iceland.

906 A.2 BASELINE IMPLEMENTATION DETAILS 907

908 To ensure fair comparisons, we adapt baseline methods to the VQ+AR setting used in our study.
909 For Mixture-of-Transformers (MoT) (Deng et al., 2025; Shi et al., 2025; Liao et al., 2025), the
910 duplicated transformer is originally designed for image generation through diffusion. To remove the
911 influence of diffusion and isolate architectural effects, we reconfigure the duplicated transformer to
912 operate directly on image tokens. In this setup, the qkv sequences from the two transformers are
913 concatenated within the attention module, allowing the model to incorporate visual information for
914 both understanding and generation tasks. As a result, the MoT results reported in this paper reflect its
915 effectiveness strictly within the VQ+AR paradigm, eliminating confounding factors introduced by
916 diffusion-based processes.
917

918
919 Table 7: The T2I-CompBench and MSCOCO performance of Uni-X. \heartsuit indicates that it has been
920 trained on more image-text data.

Model	# Params.	T2I-Color	T2I-Shape	T2I-Texture	T2I-Avg. \uparrow	MSCOCO CLIP-T
SDXL	3.5B	63.7	54.1	56.4	58.1	-
Janus	1.3B	75.5	47.7	62.1	61.8	-
Liquid	7B	71.5	52.3	65.1	63.0	30.7
EMU3	8B	61.1	47.3	61.9	56.8	31.3
UniToken	7B	71.2	51.8	66.7	63.2	-
Uni-X\heartsuit	3B / 4.5B	76.5	56.3	67.1	66.6	31.8

921
922
923
924
925
926
927
928 Table 8: Average gradient conflict between different domain data. Higher values indicate a higher
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
9999

Model	Code vs. Math	Code vs. Wiki	Math vs. Wiki
Qwen2.5-1.5B	0.158	0.330	0.262
Qwen2.5-3B	0.130	0.382	0.294
Qwen2.5-Coder-3B	0.182	0.317	0.275
Qwen2.5-7B	0.153	0.263	0.240
Llama3.2-3B	0.297	0.351	0.360

A.3 MORE EVALUATION RESULTS ON IMAGE GENERATION BENCHMARK

We conducted tests on the T2I-CompBench (Huang et al., 2025) and MSCOCO (Lin et al., 2015). Part of the results were excerpted from UniToken (Jiao et al., 2025). As shown in Table 7, Uni-X surpassed the recent strong autoregressive models EMU3 and Liquid in the newly added image generation benchmark. Uni-X also achieved better results than UniToken, which includes semantic information.

A.4 GRADIENT CONFLICT ANALYSIS

Analysis on Mainstream Models. We further demonstrate the effectiveness of the current gradient conflict metric through experiments. We conduct a quantitative analysis on mainstream models such as Qwen and Llama, as shown in Table 8. For each dataset, we utilized a total of 2M tokens (accumulated over 60 batches) to compute gradients, to ensure minimal gradient noise.

All models in Table 8 exhibit a consistent pattern: the gradient conflict between Code vs. Math is strictly lower than for both Code vs. Wiki and Math vs. Wiki. It is well-established in LLM pre-training that Code and Math tasks often mutually enhance each other (Shao et al., 2024; Ma et al., 2023). This phenomenon is precisely reflected in our gradient conflict analysis.

The relatively high gradient similarity (low conflict) between these two tasks implies that improvements in Code performance can drive improvements in Math performance. We further verified this in Table 9. Qwen2.5-Coder-3B, which was fine-tuned from Qwen2.5-3B to specifically enhance coding capabilities, simultaneously achieved a substantial improvement in Math performance. This validates our hypothesis that lower gradient conflict correlates with positive transfer between modalities/domains.

Analysis on Other Modules. In Section 3.1 of the main text, we analyzed gradient conflicts in the down-projection weights of the Feed-Forward Network (FFN). To develop a more complete picture and confirm that this issue is not confined to a single component, we extend our analysis to additional modules of the transformer. In particular, we examine gradient conflicts in the output projection weights (O_{PROJ}) and value projection weights (V_{PROJ}) of the self-attention mechanism, both of which play critical roles in multimodal representation learning.

Using the same methodology for conflict measurement, Figures 7 and 8 reveal a consistent trend with that observed in the FFN layers. The modality-shared transformer exhibits severe gradient conflicts

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Table 9: Domain performance of Qwen2.5-3B and Qwen2.5-Coder-3B under zero-shot settings.

Model	HumanEval (Code)	GSM8K (Math)	MMLU (Wiki)
Qwen2.5-3B		39.0	6.0
Qwen2.5-Coder-3B		45.7	26.1

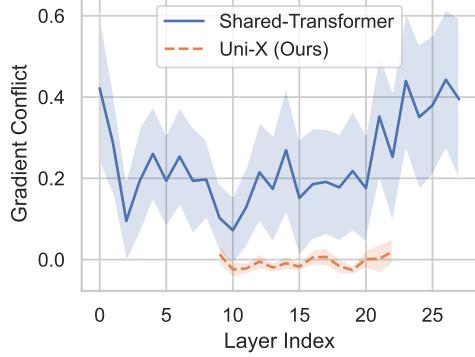


Figure 7: An analysis of gradient conflict in attention of out projection weights.

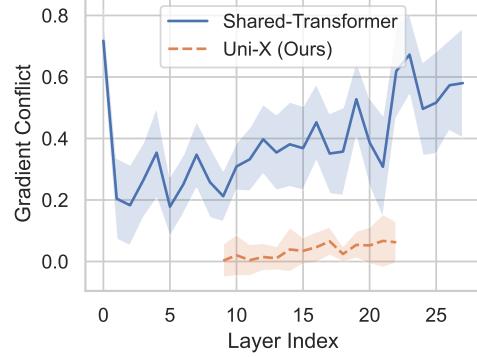


Figure 8: An analysis of gradient conflict in attention of value projection weights.

in the shallow and deep layers of both the attention output and value projection weights, with only partial alleviation in the middle layers. In contrast, Uni-X effectively addresses these issues: (i) modality-specific layers at both ends prevent conflicts in low-level processing and output stages, and (ii) the shared middle block further reduces residual conflicts by leveraging semantic alignment.

These results strengthen our hypothesis that gradient conflict stems from the intrinsic statistical mismatch between vision and text, and they demonstrate that Uni-X’s two-end-separated, middle-shared design offers a robust and generalizable solution across multiple transformer components.

A.5 INFERENCE EFFICIENCY

We have conducted a comprehensive evaluation of inference efficiency on an H800 PCIe (350W) GPU. As shown in Table 10, Uni-X demonstrates superior throughput compared to standard autoregressive baselines.

Uni-X achieves high throughput (910.2 tokens/s) even compared to the original Qwen2.5-3B (975.2 tokens/s), despite the architectural changes and a higher number of parameters (4.5B vs 3B). This efficiency gain stems from the computational complexity of the attention mechanism in the separated layers.

Theoretically, the computational cost of the Uni-X architecture is lower, and the current inference speed still has a slight gap because the current code has not been fully optimized. In the separated layers, a sequence of length n is effectively partitioned into vision tokens of length a and text tokens of length b (where $a + b = n$). Since the self-attention complexity is $O(n^2)$, and the separated layers enforce strict modality isolation, the complexity reduces to proportional to $a^2 + b^2$. Since $a^2 + b^2 < (a + b)^2 = n^2$, the computational cost for attention in these specific layers is strictly lower than in a fully shared transformer, leading to the observed speedup.

A.6 ABLATION STUDY ON RATIO BETWEEN TEXT AND VISION.

We conducted experiments maintaining the same hyperparameters and training volume as in Table 5, and the results are shown in Table 11. We continued to use Qwen2.5-1.5B with a total of 28 layers as the base model. The number of vision layers directly affects the performance related to image understanding and generation. Surprisingly, reducing the number of vision layers also decreases pure text performance. This may be because the shared layers in the middle have to process more

1026
1027
1028

Table 10: Inference throughput comparison. Settings: batch size 48, input length \approx 1,200 tokens, outputting one image.

Model	# Params.	Throughput \uparrow	
		Tokens/s	Images/min
Shared Transformer (Qwen2.5-3B)	3B	975.2	-
Liquid	7B	182.0	10.6
EMU3	8B	199.0	2.9
Uni-X	3B / 4.5B	910.2	53.3

1029
1030
1031

Table 11: Ratio between t-layers and v-layers within the separated layers.

Configuration	MMLU	GenEval	MMB	Avg. \uparrow
14:8	48.2	37.8	26.1	37.4
14:14	49.6	41.3	29.4	40.1
14:20	50.1	42.6	31.0	41.2

1032
1033
1034

low-level vision information, thereby leading to a decline in pure text capability. This experimental result also proves the effectiveness of our proposed architecture from another perspective.

1035
1036
1037

A.7 USE OF LARGE LANGUAGE MODELS

1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Large Language Models (LLMs) were used solely as writing aids during manuscript preparation. Their role was limited to language polishing, improving grammar, clarity, and readability, without influencing the conceptual design, experimental methodology, or analytical findings. All research ideas, model designs, and experimental results are the original contributions of the authors.