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ABSTRACT

Unified Multimodal Models (UMMEs) built on shared autoregressive (AR) trans-
formers are attractive for their architectural simplicity. However, we identify a
critical limitation: when trained on multimodal inputs, modality-shared transform-
ers suffer from severe gradient conflicts between vision and text, particularly in
shallow and deep layers. We trace this issue to the fundamentally different low-
level statistical properties of images and text, while noting that conflicts diminish
in middle layers where representations become more abstract and semantically
aligned. To overcome this challenge, we propose Uni-X, a two-end-separated,
middle-shared architecture. Uni-X dedicates its initial and final layers to modality-
specific processing, while maintaining shared parameters in the middle layers
for high-level semantic fusion. This X-shaped design not only eliminates gra-
dient conflicts at both ends but also further alleviates residual conflicts in the
shared layers. Extensive experiments validate the effectiveness of Uni-X. Under
identical training conditions, Uni-X achieves superior training efficiency com-
pared to strong baselines. When scaled to 3B parameters with larger training
data, Uni-X matches or surpasses 7B AR-based UMMs, achieving a GenEval
score of 82 for image generation alongside strong performance in text and vision
understanding tasks. These results establish Uni-X as a parameter-efficient and
scalable foundation for future unified multimodal modeling. Our code is available
atthhttps://anonymous.4open.science/r/Uni—-X-Code—-E5CD.

1 INTRODUCTION

Vision-Language Models (VLMs) have demonstrated remarkable progress in multimodal understand-
ing and reasoning, enabled by combining Large Language Models (LLMs) with powerful visual
encoders (Liu et al., 2024cjb; [Wang et al., [2024b} [Team et al., |2024b). Motivated by this success,
recent research has sought to extend VLMs with image generation capabilities, resulting in the
development of Unified Multimodal Models (UMMSs) (Team), 2025; (Wang et al., [2024d; Wu et al.,
2024b). However, many state-of-the-art UMM s rely on increasingly complex system designs to boost
performance, including the addition of semantic image encoders (Wu et al.}|2024a}; (Chen et al., |2025b;
Deng et al., 2025} (Wu et al., 2025a)), the hybridization of autoregressive and diffusion paradigms (Wu
et al.} 2025aj [Zhao et al.}[2024;|Ge et al., |2025; Deng et al., 2025} |Xie et al., 2025; Zhou et al.| [2024)),
or the introduction of task-specific branches and experts (Deng et al., 2025} [Liao et al.; 2025} [Li et al.
2025c¢). While effective, this added complexity hinders scalability, limiting the degree of parameter
sharing and reducing the potential for mutual benefits across tasks and modalities.

In contrast, autoregressive (AR) UMM offer a simple yet powerful alternative. By treating visual
inputs as a “foreign language” through vector quantization (VQ) (van den Oord et al.,|2018;} [Esser
et al.,[2021b), they unify text and vision into a consistent token sequence, naturally extending the
language-centric paradigm of LLMs (Wu et al.,[2025bj; [Wang et al.| [2024d). Despite this simplicity,
our experiments reveal a fundamental challenge: fully modality-shared transformers trained
jointly on multimodal inputs exhibits severe gradient conflicts. Originally studied in multi-
task learning (Yu et al.l [2020; |Shi et al.| |2023)), we are the first to transfer this concept to UMM,
uncovering inter-modality conflicts that hinder convergence and performance.
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As illustrated in Figure [T} these conflicts are most
pronounced in the shallow (input) and deep (output)
layers, where the model must reconcile the vastly
different statistical properties of text and images. In
contrast, the middle layers, where representations
become increasingly abstract and semantic (Meng
et al.l |Geva et al.| [2021}; |Sun et al., 2025}, show re-
duced conflicts and stronger cross-modal alignment.
This suggests that an effective UMM should respect
modality-specific differences rather than enforcing
uniform parameter sharing across all layers.
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Guided by this observation, we introduce Uni-X, a Layer Index
two-end-separated, middle-shared architecture for Figure 1: Gradient conflict analysis of down-
unified multimodal rnodehpg. In Um-X, the §hallow projection weights in the FFN of a modality-
and deep layers are modality-specific, enabling spe-  hared transformer. The shared transformer
cialized processing of distinct low-level distributions  ayhibits severe conflicts in shallow and deep
in text and vision, while the middle layers are shared  14yers, with only partial mitigation in interme-
to capture high-level semantic abstractions common g4t layers. In contrast, Uni-X avoids con-
to both. This X-shaped architecture not only miti- - fjc(g at both extremes and further alleviates
gates the severe gradient conflicts at the two ends but  them in the middle layers.

also further alleviates residual conflicts in the shared

middle layers by leveraging natural semantic alignment between modalities (Figure T)).

To demonstrate the effectiveness of Uni-X, we conduct extensive experiments under controlled
training budgets and scaling regimes. Results show that Uni-X improves training efficiency and
achieves stronger performance under identical conditions. Moreover, with larger data and model
scales, our 3B-parameter Uni-X matches or surpasses the performance of existing 7B AR-based
UMMs across both understanding and generation benchmarks, demonstrating its scalability and
competitiveness. Our contributions are threefold:

* Empirical Analysis: We identify and quantify gradient conflicts between text and vision modal-
ities in the shallow and deep layers of shared autoregressive transformers, attributing them to
fundamental differences in their low-level statistical properties.

* Model Design: We propose Uni-X, a novel two-end-separated, middle-shared architecture that
aligns model structure with modality characteristics by using modality-specific layers for low-level
processing and a shared core for high-level semantic fusion.

* Comprehensive Validation: Extensive experiments demonstrate that Uni-X improves training
efficiency and scales effectively, enabling a 3B model to achieve performance competitive with
much larger 7B models across diverse multimodal benchmarks.

2 RELATED WORK

Visual Language Models (VLMs). The remarkable progress of LLMs (Touvron et al.| [2023; Yang
et al., 2024} Brown et al.l [2020) has motivated researchers to extend them with visual cognition,
giving rise to VLMs (Liu et al., [2024c; |Achiam et al., |2023). Most VLMs leverage pre-trained
visual encoders such as CLIP (Radford et al.,[2021)) or SigLIP2 (Tschannen et al.| 2025)) to extract
semantic features from images, which are projected into the LLM’s semantic space via multimodal
adapters (Liu et al., 2024cib; Beyer et al., 2024; Team et al.| 20244} |Li et al., [2025a). This design
enables strong multimodal understanding and reasoning but remains asymmetric: VLMs treat images
only as inputs and cannot generate them, limiting synergy between perception and synthesis.

Unified Multimodal Models (UMMs). To enable such synergy, recent efforts have shifted toward
UMM, which aim to support both understanding and generation within a single framework (Team,
2025 Jin et al., 2024} Wu et al., 2024b)). A natural extension is to adopt the autoregressive (AR)
paradigm of LLMs by treating visual tokens as a “foreign language” via vector quantization (Wu
et al.,|2025b; [Wang et al.l 2024c)). However, the distinct statistical properties of text and images often
lead to modality conflicts, degrading performance in shared transformers (Team) [2025)).
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Figure 2: Illustration of gradient conflict. (a) The loss landscapes of different modalities exhibit
distinct geometries, creating potential conflicts in optimization direction. (b) The optimum of the sum
of losses is different from the optimum of any single modality’s loss. (c) In the presence of gradient
conflict, the optimization trajectory becomes oscillating and suffers from slow convergence.

To mitigate this, several approaches increase architectural complexity: Mixture-of-Transformers
(MoT) designs (Liao et al., 2025}, [Deng et al., 2025}, [Shi et all, 2023) separate understanding and
generation with distinct branches; Hybrid AR—diffusion frameworks (Zhao et al. [2024; [Wu et al ]
[20254; [Dong et al.} 2023} |Ge et al, 2025) combine next-token prediction with diffusion-based image
synthesis; and branching strategies such as UniFork add task-specific deep heads.
While effective on benchmarks, these methods sacrifice parameter sharing, complicate training, and
weaken cross-modal benefits—the very goals UMMs were meant to unify.

Comparison with Uni-X. Uni-X builds on these insights but takes a different path. Instead of adding
modules, Uni-X retains the simplicity of pure AR UMMs while mitigating modality conflict through
a two-end-separated, middle-shared architecture: shallow and deep layers use modality-specific
parameters to process low-level statistical differences, while intermediate layers are shared to exploit
high-level semantic alignment. This X-shaped design avoids the rigidity of MoT or UniFork and
the complexity of AR-diffusion hybrids, offering a lightweight yet effective solution. Empirically,
Uni-X achieves comparable or superior performance to larger 7B AR UMMSs across text, vision
understanding, and generation tasks, while maintaining parameter efficiency and training simplicity.

3 UNI-X

3.1 OBSERVATIONS

Before introducing the Uni-X architecture, we first analyze the gradient conflicts that arise when
training modality-shared autoregressive transformers on multimodal data. We also provide an
information-theoretic perspective to explain why such conflicts emerge.

Definition of Gradient Conflict. As illustrated in Figure[2] gradient conflict occurs when different
optimization objectives induce gradients pointing in divergent directions, making joint optimization
unstable and inefficient. To quantify gradient conflict in multimodal training, we use an early
checkpoint of a fully shared transformer. From this model checkpoint, we compute the average
gradients for specific parameter groups (e.g., FFN down-projection weights) using over 60 mini-
batches and totaling 2M tokens, to ensure obtaining stable gradients.

Specifically, we first compute the average text gradient, g..,.. This is obtained by exclusively
performing forward and backward passes on D. .., a text-only subset filtered from the pre-training
data. Next, we compute the average image-text gradient, g:nq, using an analogous subset D
containing image-text pairs. The raw inter-modal similarity is then measured as the cosine similarity
between these two average gradients:

Sinter = Cos(gtextagimq)- (1)

However, since transformer layers have inherently different roles across depth (Sun et al.| 2025} [Geva
2021]), the resulting raw similarity S; .. is biased and cannot be directly compared. To correct
for this, we estimate a baseline similarity Sy .. that reflects the model’s intrinsic gradient consistency




on a unified data distribution. We randomly shuffle the full multimodal dataset D,;; and split it into
two disjoint halves, D! and D2 . Their respective average gradients, g, and g2, , yield:

Sbase = COS(g;nyhggny)’ @)

This value represents the expected gradient similarity when gradients originate from the same
underlying distribution. Therefore, we define the gradient conflict c, as the deviation from this
baseline:

Cqg = _(Sinter - Sbase)- (3)

A high S}, <. indicates the model’s gradients are stable, whereas a much lower S+, suggests that
the text-only and image-text data push the shared model parameters in conflicting directions, resulting
in a large positive c,. This provides a principled, layer-wise measure of inter-modal disagreement
and reveals where and why conflicts are most severe.

Empirical Findings. Figure |I| shows gradient conflict profiles (cy) across depth. In modality-shared
transformers, conflicts are most pronounced in shallow layers (near input) and deep layers (near
output), while intermediate layers exhibit weaker conflicts. Experiments further reveal that Uni-X
avoids conflicts at both extremes and reduces residual conflicts in the middle, validating its structural
design. Additional analyses of other modules and the relationship between gradient conflict and data,
as well as its impact on model performance, are provided in Appendix [A.4]

Why Do Conflicts Arise? Vision as a “Foreign Language’ To explain these observations, we exam-
ine whether vision behaves like a "foreign language" when tokenized. Using the VQ tokenizer (Team),
2025)), images are represented as discrete token sequences, formally similar to text. Then, we define
conditional entropy based on n-gram. When n = 1, the calculation reduces to ordinary information
entropy. For n > 1, the conditional entropy is computed as follows:

Hn - 7Zp(wn | W1, W2, -+ 7wn—1)10gp(wn | W1, W2, ;wn—1)~ (4)

Results (Figure [3)) show that image tokens ex-
hibit far higher entropy than natural languages e
such as English, German, or Chinese. While
languages differ in grammar and lexicon, their
token statistics remain closer to each other than
to images. This means visual sequences are in-
herently harder to predict, requiring modeling
of long-range, spatially entangled dependencies.
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As information theory suggests, sequences \
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with higher (conditional) entropy are inherently 2
harder to predict, requiring models to learn
longer-range dependencies and more complex Lo 15 20 25 30 35 40
patterns. Thus, when a shared transformer N-gram (n)

jointly processes low-entropy, grammatical text Figure 3: Conditional entropy of images and nat-
with high-entropy, spatially complex vision, ural languages. Image token sequences encoded
shallow and deep layers are forced to recon- by the VQ tokenizer exhibit substantially higher
cile conflicting low-level distributions, produc- entropy, indicating greater difficulty in prediction.
ing strong gradient conflicts. In contrast, inter-

mediate layers, where representations become more abstract and semantic, naturally align across
modalities, explaining the reduced conflicts observed in practice.
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3.2 MODEL ARCHITECTURE

Motivated by these findings, we propose Uni-X, an architecture designed to explicitly align model
structure with modality characteristics.

Core Principle. As illustrated in Figure @] Uni-X follows a two-end-separated, middle-shared
design. The shallow and deep layers are duplicated into parallel modality-specific branches, ensuring
independent handling of text and vision during early feature extraction and final token projection.
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Figure 4: Illustration of the proposed Uni-X architecture compared with a standard modality-shared
transformer. The baseline shared transformer (left) encounters gradient conflicts in shallow and deep
layers due to the mismatched statistical properties of vision and text tokens. In contrast, Uni-X (right)
adopts a two-end-separated, middle-shared design: modality-specific layers at both ends handle
low-level feature processing, while a shared central block performs high-level semantic fusion. This
structure aligns the architecture with the inherent characteristics of each modality and effectively
mitigates gradient conflicts.

The intermediate layers remain shared, enabling high-level semantic fusion across modalities. This
X-shaped separation-and-sharing balances modality specialization with semantic alignment.

Input Tokenization. For visual inputs, we employ the VQGAN tokenizer (Esser et al. 2021a)
from Chameleon (Team) [2025)) to encode 512 x 512 images into a 32 x 32 grid of visual tokens
from an 8,192-entry codebook. To accommodate these new tokens, we expand the vocabulary and
corresponding embedding matrix of the base LLM. Textual inputs are processed via the standard BPE
tokenizer. The final token sequence is structured as <BOI>[Image] <EOI>[Text]<BOS> for
image understanding tasks and [Text]<BOI>[Image]<EOI><BOS> for image generation tasks.
This unified tokenization enables AR training across modalities. While Uni-X can handle interleaved
multimodal sequences, this study focuses on non-interleaved inputs.

Forward Propagation. Given a pre-trained LLM with L layers, denoted as {Layer! }f;ol, we
partition them into three sections: The initial /V layers and the final M layers constitute the “separated
layers,” while the intermediate layers form the “shared layers.” Within the separated blocks, we
introduce a new set of vision-specific layers, {Layer’}, which operate in parallel with the original
text layers, {Layer!}.

To manage the data flow, we introduce a binary mask M, € {0, 1}™ to identify the positions of visual
tokens. At any given layer [, the complete hidden states H' can be partitioned into text-specific states
H! = H'[~ M, and vision-specific states H, = H'[M,].

The forward propagation in Uni-X is defined as follows:

HHl{Layeré(Hé) ifl<Norl>L—- M,
L

[Layerlt(Hl)]w otherwise, ®)

where € {t, v} denotes the modality (text or vision). In the “otherwise” case, [-], indicates
selecting the subset of the output hidden states corresponding to modality x.

Importantly, unlike other architectures (Li et al., [2025c; |Deng et al.l 20255 |[Shi et al.| [2025), the
vision and text modalities remain strictly isolated within the separated blocks, with no cross-modal
interaction. This forces the model to learn robust unimodal representations before they are fused in
the shared block and after they are separated for modality-specific output generation.



Training Objective. Following the standard paradigm for AR models, Uni-X is trained to predict the
next token in a sequence containing both text and visual tokens. The training objective is to minimize
the cross-entropy loss over the vocabulary for each token. The loss function £ for a given sequence
S = (51,82, -, S7) is defined as:

T
L=-) logP(s; | s<i). (6)
i=1

This simple yet effective objective enables the model to learn both understanding and generation
capabilities across modalities within a single, unified framework.

Design Rationale. Unlike prior architectures that rely on auxiliary semantic encoders (Wu et al.,
2024a;|Chen et al., |2025b), hybrid AR—diffusion pipelines (Wu et al.l [2025a;Zhao et al., [2024)), or
task-specific branching structures such as MoT (Liao et al., [2025) and UniFork (L1 et al., [2025c),
Uni-X maintains the simplicity of a pure autoregressive framework. Its two-end-separated, middle-
shared structure is motivated directly by empirical evidence of gradient conflicts, aligning the model
design with the statistical characteristics of each modality. By isolating low-level modality-specific
processing while preserving a shared semantic core, Uni-X avoids the complexity and overhead
of multi-expert or dual-paradigm systems, yet achieves competitive or superior performance. This
balance of architectural simplicity, empirical grounding, and scalability makes Uni-X a practical
foundation for unified multimodal modeling.

4 EXPERIMENTS

We evaluate Uni-X from two complementary perspectives: (1) Efficiency under identical training
conditions, where Uni-X and baseline architectures are trained on the same data and resources,
enabling fair comparisons of efficiency and performance. (2) Scaling within resource constraints,
where we maximize dataset size and training duration to examine Uni-X’s scalability and competi-
tiveness against larger state-of-the-art models.

4.1 EXPERIMENTAL SETUP

Pre-training Datasets. Our pre-training stage was designed to build a strong foundation in both
language and vision. To preserve general text generation capabilities, we utilized a diverse set
of text corpora: the high-quality Chinese dataset CCI3-H (Wang et al.| [2024a)), English datasets
DCLM (Li et al., 2025b)) and Fineweb-Edu (Penedo et al.| [2024), and the StarcoderData (L1 et al.|
2023b)) corpus, as integrating code is known to boost general model performance (MA et al., [2024).
For multimodal pre-training, we used public benchmarks like ImageNet (Russakovsky et al., 2015)
and JourneyDB (Pan et al.l [2023)), complemented by a substantial internally collected dataset of
40 million images, which were captioned using the powerful Intern-VL model |Chen et al.| (2024)).
Following the methodology of Liquid (Wu et al., 2025b), we diversified our training data by randomly
reversing 20% of the text-to-image pairs to serve as image-captioning tasks. The final pre-training
data consists of 72B text tokens and 65B vision tokens.

Supervised Fine-Tuning (SFT). We further refined the model with 3B SFT tokens. For vision
understanding, we employed MiniGemini (Li et al.|[2024) and FineVision (HuggingFaceM4, 2025).
To improve text understanding and general instruction-following, we utilized OpenOrca (Mukherjee
et al.| [2023). Additionally, to refine the quality of image generation, we leveraged Blip30-60k (Chen
et al.,[2025a) and ShareGPT4o (Chen et al., [2023)).

Benchmarks. Evaluation covered text-only, image generation, and multimodal understanding tasks.
For text-only tasks, we employed ARC-Easy/Challenge (ARC-E/ARC-C) (Clark et al.| 2018)), Wino-
Grande (WinoG) (Sakaguchi et al.,|2020), BoolQ (Clark et al.} 2019), and MMLU (Hendrycks et al.|
2021). For image generation, we used GenEval (Ghosh et al.,[2023) and DPG-Bench (DPG) (Hu
et al.| 2024). For the GenEval benchmark, we followed Bagel (Deng et al.,|2025) and employed an
LLM to rewrite shorter prompts into more detailed ones to better assess instruction following. For
multimodal understanding, we used SEEDBench (SEED) (Li et al.,[2023a), MME (Fu et al., 2024),
POPE (Li et al.,|2023c)), and MMBench (MMB) (Liu et al.}[2024d).

Implementation Details. We conducted ablation studies on Qwen2.5-1.5B (Yang et al., 2024) and
scaled to Qwen2.5-3B. We used the VQGAN tokenizer (Esser et al.,|2021a)) from Chameleon (Team,



Table 1: The text performance of Uni-X compared to other models.

Model # Params. ‘ ARC-E ARC-C WinoG BoolQ MMLU Avg. 1
Janus-Pro (Chen et al.}|2025b) 7B 70.4 40.9 66.1 80.2 49.3 61.4
VILA-U (Wu et al.||2024b) 7B 51.6 34.0 57.3 70.6 25.5 47.8
Chameleon (Team/[2025) 7B 76.1 46.5 70.4 81.4 52.1 65.3
Liquid (Wu et al.|[2025b) 7B 75.6 49.0 72.7 81.0 56.0 66.9
Uni-X 3B /4.5B ‘ 79.0 479 68.9 82.2 57.6 67.1

Table 2: The image generation and multimodal understanding performance of Uni-X compared to
other models. In the # Params column z/y, x and y represent the number of active parameters and
the total parameters, respectively. T represents the model variant that performs semantic alignment. ¥
represents the rewriting of the prompt during evaluation. ¢ indicates that it has been trained on more
image-text data.

Model # Tokens # Params. ‘ GenEval DPG ‘ MME POPE MMB SEED
Autoregressive meets Diffusion

Bagel (Deng et al.|2025) 5.1T 7B/ 14B 88t 85.0 - - 85.0 -
Bilp3o (Chen et al.}[2025a) - 4B /9B 81 793 | 1,527.7 - 78.6 73.8
X-Omni (Geng et al.;|[2025) ~IT 10B/20B | 83% 87.6 - 89.3 74.8 74.1
Show-o (Xie et al.||2024) ~500B 1.3B 68 - | 1,097.2 80.0 - -
Show-o' (Xie et al.|[2024) ~500B 1.3B 69 - | 12329 84.5 - -
Autoregressive w/ Semantic Encoder

NextStepl (Team et al.|[2025)  ~IT 14B 73* 85.2 - - - -
Janus-Pro (Chen et al.}2025b)  ~300B 7B 80 84.1 - 87.4 79.2 72.1
VILA-U (Wu et al.|[2024b) - 7B - - | 1,336.2 83.9 - 56.3
Liquid't (Wu et al.{[2025b) - 8B - - | 1,448.0 83.2 - -

Autoregressive w/o Semantic Encoder

Chameleon (Team|[2025) 9.2T 34B 39 - 604.5 - 32.7 -
LWM (Liu et al.|[2024a) ~500B 7B 47 - - 75.2 - -
EMU3 (Wang et al.|[2024d) - 8B 66+ 80.6 | 1,243.8 85.2 58.5 68.2
Liquid (Wu et al.|[2025b) ~90B 7B 68* 79.8 | 1,107.2 81.1 - -
Uni-X 140B 3B /4.5B 82+ 79.8 | 1,158.3 83.6 59.3 60.2
Uni-X" 240B 3B /4.5B 83+ 80.3 | 1,228.2 84.6 62.7 59.8

2025) to encode 512 x 512 images into 32 x 32 discrete tokens. Our codebase is built upon the
Liquid (Wu et al.,|2025b) and HuggingFace Transformers (Wolf et al.,|2019) libraries. Training was
accelerated using Flash Attention 2 (Dao et al., [2022)) and DeepSpeed ZeRO2 (Aminabadi et al.
2022). When generating images, we uniformly set the classifier-free guidance (CFG) to 4.0.

4.2 RESULTS AND ANALYSIS

Scaling Experiment. In this experiment, we aim to demonstrate that Uni-X can scale effectively
and is not limited to small-scale training data. We expand the dataset size to 140B total tokens for
Uni-X, using Qwen2.5-3B as the base model, and extend the training duration to achieve improved
performance. The evaluation is conducted against SOTA models, some of which have been trained on
trillions of tokens. As presented in Table [T} Uni-X robustly maintains the strong language capabilities
of its base model. With an average score of 67.1 across five text benchmarks, our 3B Uni-X model
outperforms several larger 7B models. This demonstrates that our design successfully mitigates
modality conflict without sacrificing performance on fundamental language understanding tasks.

For image generation, as detailed in Table 2] Uni-X achieves a strong score of 82 on GenEval,
a result that surpasses many models with more parameters and underscores the effectiveness of



Table 3: Image edit results on ImgEdit-Bench. © indicates that it has been trained on more image-text
data.

Model #Params. Add Adjust Extract Replace Remove Background Style Hybrid Action Overall?
GPT-40 - 4.61 4.33 2.90 4.35 3.66 457 493 3.96 4.89 4.20
ICEdit 12B 3.58 3.39 1.73 3.15 293 3.08 3.84 2.04 3.68 3.05
AnyEdit 4B 3.18 2.95 1.88 2.47 2.23 224 285 1.56 2.65 245
UltraEdit 4B 3.44 2.81 2.13 2.96 1.45 2.83  3.76 1.91 2.98 2.70
Step1X-Edit 12B 3.88 3.14 1.76 3.40 2.41 3.16  4.63 2.64 2.52 3.06
Bagel 7B/ 14B 3.56 3.31 1.70 3.30 2.62 324 449 2.38 4.17 3.20
Uni-X" 3B/45B  3.57 3.18 2.06 3.94 3.82 338 421 3.16 3.63 3.44

Table 4: Performance and training efficiency comparison of different model architectures under
identical training conditions. Training efficiency is measured by the number of tokens processed per
second per GPU. * indicates that the baseline has been adapted for our experimental setting (see
Appendix for specific details); ¢ represents calculating the loss on the instruction part during the
training of image-text data.

Model #Params. ‘ MMLU GenEval MMB Avg. 1 Efficiency 1
Shared Transformer 1.5B 50.0 33.6 30.3 38.0 16,380
MoT* |Deng et al | (2025) 1.5B/3B 48.0 26.0 30.0 34.6 12,658
HardMoE 1.5B/2.3B 50.3 42.8 30.7 41.3 14,657
UniFork® (Lietal|[2025¢) 1.5B/2.3B 50.1 12.4 25.9 29.5 15,481
Uni-X (9:5)° 1.5B/2.3B 48.5 34.8 29.8 37.7 15,642
Uni-X (9:5) 1.5B/2.3B 50.1 433 31.5 41.6 15,595

our architecture in producing high-quality images. We also tested T2I-CompBench (Huang et al.|
2025) and MSCOCO (Lin et al.| 2015), as shown in Appendix [A.3] Uni-X similarly exhibited
strong performance with fewer parameters. Regarding vision understanding (Table [2), while Uni-X’s
scores are slightly lower than some state-of-the-art models, we observe a clear trend: models that
incorporate an additional semantic image encoder, such as Janus-Pro (Chen et al., [2025b) and the
semantically aligned variants of Liquid (Wu et al., 2025b) and Show-o (Xie et al., [2024), tend to
achieve substantially higher performance on understanding benchmarks like MMBench and SEED.

In contrast, among models that do not rely on a separate semantic encoder, Uni-X’s performance
is commendable and holds its ground against strong competitors like EMU3 (Wang et al., [2024d).
This suggests that our architecture effectively harnesses the inherent capabilities of the autoregressive
framework for vision understanding. We speculate that the relatively weaker understanding perfor-
mance might be partially caused by the insufficient utilization of the VQ tokenizer’s codebook. We
analyzed the token sequences encoded from 1 million images and found that, although there are
8,192 tokens available in the tokenizer, only ~3,127 are being utilized. Meanwhile, EMU3 uses 4096
tokens to represent a 512 x 512 image, which provides more fine-grained information. However, this
4x token count severely impacts its image generation speed, as shown in Appendix [A.5]

For image editing, we conducted tests on ImgEdit (Ye et al., [2025) as shown in Table E} Uni-X
achieved better results than Bagel, even with less training data and fewer parameters than Bagel. This
demonstrates that the high-level semantic unification of Uni-X enhances its image editing capabilities.

Identical Training Conditions. To validate the effectiveness of Uni-X, we conducted ablation
experiments on a smaller dataset and a slightly reduced base model Qwen2.5-1.5B, due to resource
constraints. To ensure consistency in performance comparisons, we limited the dataset to 28B tokens,
of which 13.7B are vision tokens. The experiments were conducted using learning rate (LR) 5 x 1075,
warmup ratio 0.03, and constant LR scheduler, with batch size 17,560 tokens per GPU.

The selected baselines include: (1) Shared Transformer, which continues multimodal pre-training
based on Qwen2.5-1.5B; (2) Mixture-of-Transformers (MoT) (Deng et al., [2025), where prior
work replicates an additional transformer to handle image generation tasks, while the original LLM
backbone focuses on text-only and image understanding tasks. Under our experimental setup,



Figure 5: Qualitative examples of Uni-X image generation. The results highlight its ability to produce
diverse, high-quality visuals that follow prompts with both creativity and fine-grained detail.

vision tokens are allocated to the duplicated transformer; (3) Hard-Route MoE (HardMoE), which
introduces a vision expert specifically for the vision modality, assigning vision tokens to this expert
for computation guided by the vision mask; and (4) UniFork 2025¢), which creates a
task-specific deep branch for image generation. For all the baselines, we ignored the instruction
during training to enhance cross-modal performance and ensure a fair comparison.

Results (Table @) show that Uni-X achieves the best overall performance under consistent training
conditions. Specifically, our Uni-X (9:5) configuration attains an average score of 41.6, significantly
outperforming the standard baselines. While HardMoE is competitive, achieving a score of 41.3,
Uni-X still holds a slight advantage. Moreover, HardMoE and UniFork are orthogonal and can be
combined. In terms of training efficiency, although the baseline shared transformer is the fastest
due to having the fewest parameters, Uni-X achieves a high throughput, which is considerably more
efficient than the less performant MoT architecture. These findings confirm that Uni-X’s design offers
a more effective trade-off between performance and computational efficiency.

It is worth noting that the architectures of MoT and UniFork have been adapted to fit our VQ+AR
setup to avoid discrepancies in efficiency between paradigms such as diffusion and AR+diffusion.
Specific details can be found in Appendix[A.2] A comparison of training efficiency across paradigms
lies beyond the scope of this work and will be considered in future research.

Case Study. In Figure [3] we present a

curated selection of images generated by Input 2 examples and target image
Uni-X to qualitatively assess its capabili- A7
ties. Despite the relatively limited number
of tokens used during training, the model
demonstrates a strong ability to produce
clear, aesthetically pleasing images that
exhibit robust instruction-following capa-
bilities. The examples showcase Uni-X’s
versatility in handling a wide range of cre-
ative and complex prompts. For instance,
the model can generate imaginative fan-
tasy scenes, such as a gigantic library float- There are 4 birds.
ing above the clouds, and surreal composi-

tions, like a realistic elephant walking on  Figure 6: Demonstration of Uni-X’s in-context learning.
the ocean floor. Furthermore, Uni-X suc- The model follows few-shot examples to perform tasks
cessfully adheres to specific artistic style such as image description (1st line) and object counting
requests, as seen in the detailed anime-style (2nd line).

portrait, and renders fine details with high

fidelity, exemplified by the intricate feather patterns of the owl. These case studies collectively verify
that Uni-X can effectively translate complex textual descriptions into high-quality visual outputs. The
specific prompts used for these generations are provided in Appendix [A.T]

This is a sunny day. This is a snowy day. Output: This is a rainy day.

There is 1 cat. Output: There are 2 dogs.



In-Context Learning. Although Uni-X was not explicitly trained on interleaved multimodal data, we
conducted an evaluation to assess its emergent in-context learning (ICL) capabilities. As illustrated
in Figure[6] the model was presented with few-shot examples, where several image-text pairs were
provided as context before a final query image was presented without its corresponding description.

The results demonstrate that Uni-X can successfully interpret the contextual examples and apply the
learned pattern to the target image. For instance, in the top row of Figure[6] the model correctly
identifies the weather in the target image as a “rainy day,” adhering to the simple descriptive format
(“This is a... day.”) established by the preceding examples. Also, Uni-X exhibits the ability to perform
more reasoning tasks such as object counting. This suggests that the model is not merely mimicking
sentence structure but is performing cross-modal reasoning at a semantic level.

Ignore Instruction in Training. Ignoring the loss of the instruction part during training is a common
technique in supervised fine-tuning. However, its role in pretraining is rarely emphasized. Following
Liquid (Wu et al.,[2025b), we applied the same “ignore instruction” strategy during pretraining.

Specifically, no loss mask was applied for pure text data. For text-image pairs, in text-to-image tasks,
the loss calculation excluded the text instruction tokens. Similarly, for image captioning tasks, the
loss corresponding to the image tokens was masked. As demonstrated in our experimental results
Table [ this approach significantly enhanced the model’s capability to generate images.

We believe there might be several reasons for this: 1) This mask forces the model to learn the
relationship between the two modalities rather than relying on the prior distribution of images,
thereby enhancing its instruction-following capability. 2) It serves as a form of loss regularization.
For text-image pair data, the number of image tokens is fixed at 1024, while the average number of
text tokens is around 120. By masking, we ensure that the gradient magnitude generated by the loss
is only dependent on the reverse ratio we set.

Number of Separated Layers. We Table 5: Performance comparison of different Uni-X configu-
investigate how the number and distri- rations. Here, « : y denotes the number of shallow separated
bution of separated layers affect per- Jayers z and deep separated layers v, respectively. The total

formance (Table [5). Varying the to- pumber of layers is n = 28. The split points are 2 and n — y,
tal number of separated layers pro- regpectively.

duces an n-shaped trend: more separa-
tion improves modality-specific low- Configuration MMLU GenEval MMB Avg.

level processing, but too many reduce Uni-X (3:3) 48.7 373 30.7 38.9
shared middle layers, weakening se- Uni-X (7:7) 49.6 413 29.4 40.1
mantic fusion and cross-modal reason- Uni-X (11:11) 497 37.5 32.1 39.8

ing. The best overall performance is

achieved with 14 separated layers. We 82:3(( g é)l ) 28? ggg 3%8 ;g?
then examine shallow-deep ratios un- 7 . « (9j 5) 50.1 433 315 41.6
der this setting. A 9:5 split (slightly Uni-X (1'1:3) 498 251 31.9 356

more shallow than deep layers) per-
forms best, indicating that early pro-
cessing of low-level features, where text and vision differ most, benefits more from modality-specific
capacity than the final generation stage. These results provide strong empirical support for the Uni-X
design. We also explored text layers and vision layers with different numbers of separate layers, and
the results are shown in Appendix

5 CONCLUSIONS

In this work, we identified gradient conflicts as a fundamental limitation of shared AR UMMs,
particularly in the shallow and deep layers where vision and text exhibit highly divergent low-
level statistics. To address this challenge, we proposed Uni-X, a two-end-separated, middle-shared
architecture that explicitly aligns model structure with modality characteristics. By isolating low-level
processing into modality-specific branches while maintaining a shared semantic core for high-level
fusion, Uni-X effectively mitigates inter-modal conflicts without adding architectural complexity.
Extensive experiments show that this X-shaped design allows a 3B-parameter Uni-X model to deliver
performance competitive with much larger 7B UMM s across diverse multimodal benchmarks. These
findings establish Uni-X as both a scalable and parameter-efficient foundation, paving the way for
future research in unified multimodal modeling.
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ETHICS STATEMENT

This research aims to advance the field of artificial intelligence, particularly in the area of Unified
Multimodal Models. We recognize that, like other powerful generative models, the technologies
proposed in this study also carry potential risks of misuse, such as the creation of misinformation,
biased, or harmful content. Our primary objective is to explore architectural efficiency to build more
powerful and scalable models, and we believe this will make a valuable contribution to science.

The datasets used to train and fine-tune our models are primarily publicly available and widely used
benchmark datasets in the academic community. For any internally collected data, we have ensured
that its acquisition and processing adhere to principles of responsibility. We have not specifically
filtered web-based datasets for bias, and therefore, the model may reflect social biases present in the
data. We encourage responsible downstream use and further research into mitigating the potential
negative impacts of generative models. Our work is intended solely for research purposes and is
shared with the community to foster innovation and deepen understanding.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our research. To this end, we provide compre-
hensive details throughout the paper and in the appendix.

Code. The source code for our Uni-X model architecture, training, and evaluation is made avail-
able at the following anonymous repository: https://anonymous.4open.science/r/
Uni—-X-Code—E5CD.

Architecture and Implementation. The detailed architecture of Uni-X is described in Section
3.2. Implementation details, including the base models used (Qwen2.5-1.5B and Qwen2.5-3B), the
VQGAN tokenizer, and software dependencies are provided in Section 4.1. Details on our baseline
implementations are available in Appendix A.2.

Datasets and Evaluation. All datasets used for pre-training and supervised fine-tuning are listed in
Section 4.1. The evaluation benchmarks for understanding and generation tasks are also detailed in
the same section.

Hyperparameters. Key hyperparameters for our main ablation study, including learning rate, batch
size, and scheduler details, are specified in Section 4.3 to ensure a fair comparison.

We believe that the combination of our provided code, detailed architectural descriptions, dataset lists,
and specific hyperparameters will enable the community to replicate our findings and build upon our
work.
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A APPENDIX

A.1 PROMPTS OF IMAGE GENERATION
Table[6]lists the prompts corresponding to the generated images shown in Figure[5] The prompts are

presented in the same order as the images: left to right, top to bottom. These examples highlight the
diversity of tasks, ranging from descriptive captions to creative scene generation.

Table 6: Prompts used for the image generation examples shown in Figure 3}

No. Prompt

1 A gigantic library floats above the clouds, its appearance resembling a suspended castle.
Every book emits a faint glow and drifts through the air with the gentle breeze.

2 A highly realistic close-up photo featuring a beautiful 35-year-old red-haired woman,
writing in her diary on her balcony. She is dressed in warm yet stylish clothing.

3 A happy snowman.
4 A woman and her little lion taking a selfie on the grassland.

5 A beautiful owl with sleek feathers and lively eyes, its round head adorned with two furry
ears. The elegant pattern is formed by the interweaving of snow-white down and deep
brown flight feathers, making it appear both stunning and endearing.

6 A clearing in a deep, mysterious forest, with a mirror-like pond at its center, the water
reflecting a night sky filled with the Milky Way.

7 A handsome 24-year-old boy stands in the center, with a sky-colored background. He is
wearing glasses, and the art style is very detailed, in anime style.

8 A realistic photo of an elephant walking on the ocean floor.

9 An elegant and charming lady whose hair is entirely made up of blooming flowers, resem-

bling a masterpiece of nature. The flowers are of various types, possibly including delicate
roses, fresh daisies, vibrant sunflowers, or other colorful blossoms.

10 A magnificent landscape photo depicting the northern lights dancing above the snow-capped
mountain ranges in Iceland.

A.2 BASELINE IMPLEMENTATION DETAILS

To ensure fair comparisons, we adapt baseline methods to the VQ+AR setting used in our study.
For Mixture-of-Transformers (MoT) (Deng et al., 2025 [Shi et al., 2025} [Liao et al.| 2025), the
duplicated transformer is originally designed for image generation through diffusion. To remove the
influence of diffusion and isolate architectural effects, we reconfigure the duplicated transformer to
operate directly on image tokens. In this setup, the gkv sequences from the two transformers are
concatenated within the attention module, allowing the model to incorporate visual information for
both understanding and generation tasks. As a result, the MoT results reported in this paper reflect its
effectiveness strictly within the VQ+AR paradigm, eliminating confounding factors introduced by
diffusion-based processes.
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Table 7: The T2I-CompBench and MSCOCO performance of Uni-X. © indicates that it has been
trained on more image-text data.

Model # Params. ‘ T2I-Color T2I-Shape T2I-Texture T2I-Avg.t MSCOCO CLIP-T

SDXL 3.5B 63.7 54.1 56.4 58.1 -
Janus 1.3B 75.5 4717 62.1 61.8 -
Liquid 7B 715 523 65.1 63.0 30.7
EMU3 8B 61.1 473 61.9 56.8 31.3
UniToken 7B 71.2 51.8 66.7 63.2 -
Uni-X¥  3B/4.5B | 76.5 56.3 67.1 66.6 31.8

Table 8: Average gradient conflict between different domain data. Higher values indicate a higher
degree of conflict.

Model \ Code vs. Math  Code vs. Wiki Math vs. Wiki
Qwen2.5-1.5B 0.158 0.330 0.262
Qwen2.5-3B 0.130 0.382 0.294
Qwen2.5-Coder-3B 0.182 0.317 0.275
Qwen2.5-7B 0.153 0.263 0.240
Llama3.2-3B 0.297 0.351 0.360

A.3 MORE EVALUATION RESULTS ON IMAGE GENERATION BENCHMARK

We conducted tests on the T2I-CompBench (Huang et al.,|2025) and MSCOCO (Lin et al., [2015)).
Part of the results were excerpted from UniToken (Jiao et al.| 2025)). As shown in Table |Z], Uni-X
surpassed the recent strong autoregressive models EMU3 and Liquid in the newly added image
generation benchmark. Uni-X also achieved better results than UniToken, which includes semantic
information.

A.4 GRADIENT CONFLICT ANALYSIS

Analysis on Mainstream Models. We further demonstrate the effectiveness of the current gradient
conflict metric through experiments. We conduct a quantitative analysis on mainstream models
such as Qwen and Llama, as shown in Table@ For each dataset, we utilized a total of 2M tokens
(accumulated over 60 batches) to compute gradients, to ensure minimal gradient noise.

All models in Table [§] exhibit a consistent pattern: the gradient conflict between Code vs. Math
is strictly lower than for both Code vs. Wiki and Math vs. Wiki. It is well-established in LLM
pre-training that Code and Math tasks often mutually enhance each other (Shao et al., [2024; |Ma et al.|
2023)). This phenomenon is precisely reflected in our gradient conflict analysis.

The relatively high gradient similarity (low conflict) between these two tasks implies that improve-
ments in Code performance can drive improvements in Math performance. We further verified
this in Table 0] Qwen2.5-Coder-3B, which was fine-tuned from Qwen2.5-3B to specifically en-
hance coding capabilities, simultaneously achieved a substantial improvement in Math performance.
This validates our hypothesis that lower gradient conflict correlates with positive transfer between
modalities/domains.

Analysis on Other Modules. In Section|3.1|of the main text, we analyzed gradient conflicts in the
down-projection weights of the Feed-Forward Network (FFN). To develop a more complete picture
and confirm that this issue is not confined to a single component, we extend our analysis to additional
modules of the transformer. In particular, we examine gradient conflicts in the output projection
weights (O_PROJ) and value projection weights (V_PROJ) of the self-attention mechanism, both of
which play critical roles in multimodal representation learning.

Using the same methodology for conflict measurement, Figures[7]and [8]reveal a consistent trend with
that observed in the FFN layers. The modality-shared transformer exhibits severe gradient conflicts
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Table 9: Domain performance of Qwen2.5-3B and Qwen2.5-Coder-3B under zero-shot settings.

Model \ HumanEval (Code) GSMSK (Math) MMLU (Wiki)
Qwen2.5-3B 39.0 6.0 65.0
Qwen2.5-Coder-3B 45.7 26.1 60.8
0.6 —— Shared-Transformer 0.8 —— Shared-Transformer
Uni-X (Ours) Uni-X (Ours)
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Figure 7: An analysis of gradient conflict in Figure 8: An analysis of gradient conflict in
attention of out projection weights. attention of value projection weights.

in the shallow and deep layers of both the attention output and value projection weights, with only
partial alleviation in the middle layers. In contrast, Uni-X effectively addresses these issues: (i)
modality-specific layers at both ends prevent conflicts in low-level processing and output stages, and
(ii) the shared middle block further reduces residual conflicts by leveraging semantic alignment.

These results strengthen our hypothesis that gradient conflict stems from the intrinsic statistical
mismatch between vision and text, and they demonstrate that Uni-X’s two-end-separated, middle-
shared design offers a robust and generalizable solution across multiple transformer components.

A.5 INFERENCE EFFICIENCY

We have conducted a comprehensive evaluation of inference efficiency on an H800 PCle (350W) GPU.
As shown in Table[I0} Uni-X demonstrates superior throughput compared to standard autoregressive
baselines.

Uni-X achieves high throughput (910.2 tokens/s) even compared to the original Qwen2.5-3B (975.2
tokens/s), despite the architectural changes and a higher number of parameters (4.5B vs 3B). This
efficiency gain stems from the computational complexity of the attention mechanism in the separated
layers.

Theoretically, the computational cost of the Uni-X architecture is lower, and the current inference
speed still has a slight gap because the current code has not been fully optimized. In the separated
layers, a sequence of length n is effectively partitioned into vision tokens of length a and text tokens
of length b (where a + b = n). Since the self-attention complexity is O(n?), and the separated
layers enforce strict modality isolation, the complexity reduces to proportional to a? + b2. Since
a?+b? < (a+b)? = n?, the computational cost for attention in these specific layers is strictly lower
than in a fully shared transformer, leading to the observed speedup.

A.6 ABLATION STUDY ON RATIO BETWEEN TEXT AND VISION.

We conducted experiments maintaining the same hyperparameters and training volume as in Table 5]
and the results are shown in Table[TT} We continued to use Qwen2.5-1.5B with a total of 28 layers
as the base model. The number of vision layers directly affects the performance related to image
understanding and generation. Surprisingly, reducing the number of vision layers also decreases
pure text performance. This may be because the shared layers in the middle have to process more
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Table 10: Inference throughput comparison. Settings: batch size 48, input length ~1,200 tokens,
outputting one image.

Throughput 1
Model # Params.
Tokens/s Images/min
Shared Transformer (Qwen2.5-3B) 3B 975.2 -
Liquid 7B 182.0 10.6
EMU3 8B 199.0 2.9
Uni-X 3B/4.5B 910.2 53.3

Table 11: Ratio between t-layers and v-layers within the separated layers.

Configuration ‘ MMLU GenEval MMB Avg. 1

14:8 48.2 37.8 26.1 374
14:14 49.6 413 294 40.1
14:20 50.1 42.6 31.0 412

low-level vision information, thereby leading to a decline in pure text capability. This experimental
result also proves the effectiveness of our proposed architecture from another perspective.

A.7 USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) were used solely as writing aids during manuscript preparation.
Their role was limited to language polishing, improving grammar, clarity, and readability, without
influencing the conceptual design, experimental methodology, or analytical findings. All research
ideas, model designs, and experimental results are the original contributions of the authors.
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