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Abstract

Reconstructing high-quality point clouds from images remains challenging in com-
puter vision. Existing generative models, particularly diffusion models, based ap-
proaches that directly learn the posterior may suffer from inflexibility—they require
conditioning signals during training, support only a fixed number of input views,
and need complete retraining for different measurements. Recent diffusion-based
methods have attempted to address this by combining prior models with likelihood
updates, but they rely on heuristic fixed step sizes for the likelihood update that lead
to slow convergence and suboptimal reconstruction quality. We advance this line
of approach by integrating our novel Forward Curvature-Matching (FCM) update
method with diffusion sampling. Our method dynamically determines optimal step
sizes using only forward automatic differentiation and finite-difference curvature
estimates, enabling precise optimization of the likelihood update. This formulation
enables high-fidelity reconstruction from both single-view and multi-view inputs,
and supports various input modalities through simple operator substitution—all
without retraining. Experiments on ShapeNet and CO3D datasets demonstrate that
our method achieves superior reconstruction quality at matched or lower NFEs,
yielding higher F-score and lower CD and EMD, validating its efficiency and
adaptability for practical applications. Code is available at here.

1 Introduction

Three-dimensional reconstruction has become increasingly important across diverse applications
including robotics, autonomous driving, augmented reality, and virtual environments. Among various
3D representations, point clouds serve as a fundamental data structure for representing objects and
scenes due to their simplicity and flexibility. However, generating high-quality point clouds that
accurately capture intricate details remains challenging, particularly when working with limited input
information such as single-view images.

Recent advances in deep generative models, particularly diffusion models, have shown remarkable
success in generating high-fidelity images [11, 14] and 3D data. Diffusion models use an iterative
denoising process to progressively transform random noise into structured outputs, making them ef-
fective for capturing complex geometric patterns. In the domain of point cloud generation, researchers
have begun exploring diffusion-based approaches with promising results [19, 39, 38, 24, 20, 21, 34].

While diffusion models offer powerful generative capabilities, applying them to 3D reconstruction
presents unique challenges due to its nature as an inverse problem. In typical inverse problems (for-
mulated as y = Ax), iterative optimization methods solving least-squares objectives can determine
optimal step sizes analytically using gradients that incorporate A⊤ (the adjoint of A). However, 3D
object rendering represents a particularly challenging case where the rendering operator is complex
and non-linear, making the computation of the adjoint operation intractable. Since classical step-size
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Figure 1: Left: Visualization of our diffusion process from random noise (T = 256) to final recon-
structions (T = 0) for various object categories. Right: Comparison of point cloud reconstructions
between Ground Truth, previous methods (PC2 [20], BDM [34]), and our approach. Our method
achieves higher fidelity reconstructions with better F-scores (0.382) than existing approaches while
using fewer function evaluations, particularly excelling at preserving fine structural details.

formulas require an adjoint of the forward operator, the absence of a tractable renderer adjoint
complicates step-size selection. This fundamental challenge impacts how researchers approach
diffusion-based point cloud generation, especially when incorporating image-based guidance.

Current image-to-point-cloud methods predominantly learn the score of the posterior distribution
∇ log p(X|y) directly, where X represents the point cloud and y represents image measurements.
This direct approach incurs significant limitations: it necessitates including images as conditioning
signals during training [20], restricts models to a fixed number of input views without specialized
encoders [8], and requires computationally expensive retraining whenever measurement types change
(e.g., from RGB images to depth maps).

A promising alternative approach [22] decomposes the posterior p(X|y) into a trainable prior
p(X) and an updatable likelihood p(y|X), employing Diffusion Posterior Sampling (DPS) [6]
with gradient updates via ∇ log p(y|X) for Gaussian splatting-based 3D reconstruction. While this
decomposition is conceptually straightforward and modular, current implementations struggle with
a critical limitation: determining appropriate step sizes for the likelihood updates. The non-linear
nature of 3D rendering prevents analytical step size determination, leading existing methods to
rely on heuristic, fixed step sizes [22]. This results in slow convergence, suboptimal reconstruction
quality, and often necessitates additional 2D diffusion models for refinement, further complicating
the pipeline.

To address these limitations, we present a novel approach that combines a point cloud diffusion model
with Forward Curvature-Matching (FCM) optimization. Our approach, illustrated in Fig. 2, computes
an adaptive step size using a Barzilai–Borwein rule and refines it with an Armijo backtracking
condition, enabling more precise control. Our key insight is that by incorporating FCM’s principled,
curvature informed step size determination into the diffusion sampling process without any adjoint
operations, we can effectively navigate the complex optimization landscape of 3D reconstruction.

Unlike previous DPS-based methods that rely on heuristic step sizes for the likelihood update,
our approach employs FCM optimization to dynamically determine optimal step sizes. The key
innovation is our reliance solely on the differentiable forward pass for curvature-informed step-size
determination, obviating the adjoint. This enhancement enables significantly more efficient and
accurate optimization during the diffusion sampling process. The technical contributions of our work
include:
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• We integrate the FCM method with the reverse process of diffusion models, enabling
high-fidelity point cloud reconstruction that accurately matches input images.

• Our gradient-based updates are not constrained by the number of input images, allowing for
point cloud reconstruction from either single-view or multi-view images without modifying
the base model.

• Our method can be applied to various measurement modalities (such as RGB image to 3D
object or depth map to 3D object) by simply substituting the appropriate operator rather
than retraining the entire model, significantly enhancing flexibility and efficiency.

We demonstrate the effectiveness of our approach by reconstructing colored point clouds from both
synthetic and real-world datasets. Our method achieves more accurate reconstruction with fewer
neural function evaluations (NFEs) compared to existing techniques, validating the efficiency of
our FCM-based likelihood optimization. We further demonstrate the adaptability of our approach
by applying it to both multi-view reconstruction and depth map to point cloud generation without
retraining, highlighting its potential for diverse applications. The remainder of this paper is organized
as follows: Section 2 reviews related work, Section 3 presents the proposed method, Section 4 details
our experimental results, and Section 5 concludes with a discussion of future directions.

2 Related Work

3D Reconstruction from Images. As interest in 3D content creation continues to grow, research
on reconstructing 3D shapes from 2D observations has advanced significantly. This challenging task
requires inferring complete 3D structures, including both visible and occluded regions, from limited
viewpoints. The difficulty is compounded by the scarcity of large-scale 3D datasets.

Various 3D representations have been explored for reconstruction, each with distinct advantages:
mesh-based methods [13, 32, 3] offer compact representation but struggle with topological complex-
ity; voxel-based approaches [15] provide a regular structure but face resolution limitations; point
cloud methods [20, 34, 16] offer flexibility with additional rendering requirements; implicit functions
[23, 10, 5, 12] enable high-quality rendering but are computationally intensive; and Gaussian splatting
techniques [31, 30, 22] balance quality and efficiency.

Point cloud generative models have evolved from early GAN-based [1, 9, 28] and VAE-based [36]
approaches to more recent diffusion-based methods. Diffusion models offer several advantages:
stable training dynamics, high-quality generation capabilities, flexibility in conditioning, and a strong
probabilistic foundation. The seminal work by Luo et al. [19] introduced diffusion models for point
cloud generation, with subsequent research extending these methods for various applications [38, 17].

Building on these advancements in 3D generative modeling, recent diffusion-based approaches
have significantly advanced image-to-point cloud reconstruction. PC2 [20] performs single-view
reconstruction by denoising a point cloud with projection conditioning, which ensures geometric
consistency between the reconstruction and input view. However, it directly learns the posterior
distribution, requiring images during training and limiting adaptability to varying input conditions.
Bayesian Diffusion Models (BDM) [34] offer a complementary perspective by factorizing the 3D
reconstruction task into a learned score of the prior ∇ log p(X) trained solely on 3D shapes and a
learned score of the posterior∇ log p(X|y) trained with paired image–shape data. During inference,
the prior and posterior models exchange intermediate outputs over multiple denoising steps. While
this "fusion-with-diffusion" paradigm is effective, BDM relies on a PC2-like trained posterior score
function that requires images during training, thus limiting its adaptability to varying input modalities.

Diffusion Posterior Sampling. Diffusion Posterior Sampling (DPS) [6] proposes a framework
for solving inverse problems using diffusion models without retraining for each new measurement
type. This approach decomposes the posterior p(X|y) into a pre-trained prior p(X) and an adaptable
likelihood term p(y|X). During sampling, the intermediate predictions are adjusted using gradient
updates from the likelihood term.

Recent works applying DPS to 3D reconstruction include GSD [22], which uses DPS with Gaussian
Splatting for view-guided 3D generation. However, these methods rely on heuristic, manually-tuned
step sizes for the likelihood update, which often requires careful calibration for each task and can
lead to suboptimal convergence or reconstruction quality.
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Figure 2: Overview of our FCM-guided point cloud diffusion framework. The sampling phase (left)
shows how the diffusion model progressively transforms random noise Xt into structured point
clouds through DDIM sampling. The FCM likelihood update (right) illustrates our key innovation—
dynamically determining optimal step sizes for the likelihood gradient ∇∥y − R(X̂0|t)∥2. This
principled optimization approach enables high-fidelity reconstruction that accurately matches input
images while requiring fewer function evaluations than existing methods.

Adaptive Step Size Methods in Optimization. Our FCM approach has roots in several founda-
tional optimization techniques while introducing novel algorithmic elements. In numerical optimiza-
tion, determining appropriate step sizes is a well-studied challenge with various classical solutions.
Quasi-Newton methods [25] approximate the Hessian using rank-one or rank-two updates (e.g.,
BFGS, L-BFGS [18]), but require matrix storage and operations. Barzilai-Borwein (BB) methods [4]
provide scalar approximations to the secant equation using the differences of consecutive iterates and
gradients. Line search techniques with Armijo [2] or Wolfe conditions [33] ensure sufficient descent
but typically involve multiple function evaluations.

Building on these foundations, FCM introduces several innovations specifically for diffusion-based 3D
reconstruction: (1) a scale-adaptive curvature probe (δk = δ0 · ∥xk∥

∥gk∥ ) that automatically calibrates to
the geometry of point clouds and gradient magnitudes, (2) a forward-difference directional curvature
estimate that requires no adjoint operations of the renderer—critical for complex neural renderers
where adjoint computation is intractable, (3) a robust BB-inspired step-size computation combined
with principled capping that offers theoretical guarantees, and (4) a "once-only" Armijo check.

3 Method

Our goal is to perform high-quality, flexible 3D reconstruction by decomposing the posterior distri-
bution p(X | y) into a learned prior pθ(X) and a likelihood update p(y | X) that does not require
separate training. We train only the score of the prior ∇ log pθ(X) on unlabeled 3D data. Then,
at inference, we incorporate the measurement information (e.g., single-view or multi-view images,
depth maps) through an adaptive Forward Curvature-Matching (FCM) update, which approximates
∇ log p(y | X).

Any forward operator R (e.g., a differentiable renderer for images or a map from 3D to depth
measurements) can be plugged in to guide the generation of point clouds via the same trained
diffusion prior. This design separates the learned model from the measurement modality, eliminating
the need for retraining whenever the measurement operator changes. In this section, we detail our
method in four parts. First, we describe how we train the diffusion model ∇ log pθ(X). Next, we
present our differentiable rendererR for the image-based scenario. We then introduce the FCM-based
likelihood update, highlighting why FCM is needed in non-linear settings and how step sizes are
optimally determined through a principled approach. Finally, we extend the method to the multi-view
setting.
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3.1 Diffusion Prior for Point Clouds

We begin by training a diffusion model pθ(X) on a large dataset of colored point clouds. Following
the standard DDPM [11] framework, we define a forward diffusion process that corrupts a clean point
cloud X0 into XT with Gaussian noise over T timesteps. The reverse process is modeled by a neural
network that estimates the noise at each timestep. Formally, in the forward process:

q(Xt | Xt−1) = N
(
Xt;

√
1− βt Xt−1, βt I

)
, (1)

where βt is a variance schedule. This process can be written in closed form from X0:
q(Xt | X0) = N

(
Xt;
√
ᾱt X0, (1− ᾱt) I

)
, (2)

with ᾱt =
∏t

s=1(1− βs). The reverse process approximates pθ(Xt−1 | Xt) via a learned Gaussian:

pθ(Xt−1 | Xt) = N
(
Xt−1; µθ(Xt, t), Σθ(Xt, t)

)
. (3)

During training, we minimize the simplified loss:

L = Et,X0,ϵ

[
∥ϵ− ϵθ(Xt, t)∥2

]
, (4)

where ϵ ∼ N (0, I).

Once trained, we use the DDIM sampler [29] for inference, generating point clouds from noise in
fewer steps. Let ϵ(t)θ (Xt) be the noise estimate at step t. Then the DDIM update from Xt to Xt−1 is:

Xt−1 =
√
ᾱt−1 X̂0|t +

√
1− ᾱt−1 − σt(η)2 ϵ

(t)
θ (Xt) + σt(η) ϵt, (5)

where

X̂0|t =
Xt −

√
1− ᾱt ϵ

(t)
θ (Xt)√

ᾱt

and
σt(η) = η

√
(1−ᾱt−1)
(1−ᾱt)

√
1− ᾱt

ᾱt−1
,

is a variance term controlling the sampling stochasticity. This DDIM sampler, combined with our
trained model, provides a 3D prior that can generate plausible point clouds.

3.2 Differentiable Renderer as the Measurement Operator

Our method only requires thatR be differentiable, so bothR(X) and its gradient∇X∥y −R(X)∥2
can be computed. In this section we introduce a forward operator R that projects a point cloud X
into 2D measurements.

A point cloud X comprises points {(xi, yi, zi, fi)}, where (xi, yi, zi) are 3D coordinates and fi
includes attributes such as color. Each point is projected onto the 2D image plane using known
camera parameters. At each pixel (u, v),R collects the K points with the smallest depth values zi
(i.e., the nearest points along the viewing direction) and blends their colors via alpha compositing:

Rcolor(X)[u, v] =

K∑
i=1

(
αi

i−1∏
j=1

(1− αj)
)
fi. (6)

Here, the opacity αi is computed from the image space footprint as

αi = 1− ρ2i
r2

, (7)

where r is the radius of the rasterizer and ρi is the Euclidean distance between the center of the pixel
and the projected position of the point in the image space. The product term

∏i−1
j=1(1− αj) ensures

that closer points dominate the final color, while partially occluded points contribute less. Repeating
this calculation for each pixel (u, v) yields a 2D image matching the resolution of y.

In addition to color-based rendering,R can produce a depth map by applying inverse-square weighting
to each point’s distance. At each pixel (u, v), the depth is computed from the same set of K nearest
points:

Rdepth(X)[u, v] =

∑K
i=1

1
di∑K

i=1
1
d2
i

, (8)

5



Reference
Image

BDMPC² Ours
Ground
Truth

Ground
Truth

(Novel View)

PC²
(Novel View)

BDM
(Novel View)

Ours
(Novel View)

Figure 3: Qualitative comparison of single-view 3D reconstructions on the ShapeNet dataset. The
figure displays point cloud reconstructions from our method, PC2, and BDM for various object
categories, highlighting the superior detail and accuracy of our approach.

Category EMD(×10) CD(×10) F-score
PC2 [20] BDM [34] Ours PC2 [20] BDM [34] Ours PC2 [20] BDM [34] Ours

airplane 0.587 0.577 0.476 0.399 0.417 0.378 0.498 0.543 0.543
car 0.565 0.723 0.517 0.558 0.664 0.460 0.262 0.289 0.386

chair 0.701 0.643 0.662 0.636 0.613 0.679 0.241 0.271 0.282
table 0.735 0.647 0.691 0.703 0.656 0.727 0.240 0.268 0.319

Average 0.647 0.648 0.587 0.574 0.588 0.561 0.310 0.343 0.382

Table 1: Quantitative evaluation of single-view 3D reconstruction on the ShapeNet dataset. NFEs
were matched equally across our method, PC2, and reconstruction model of BDM (T = 256). For
BDM, additional NFEs were incurred due to the prior model (T = 20).

so that points closer to the camera have a larger influence on the final depth. Repeating this process
for each pixel yields a 2D depth map matching the resolution of y.

Because we do not learn a dedicated score function for ∇ log p(y | X), different operatorsR can be
swapped in with minimal effort. If y is a single-view image, thenR = Rcolor with a single camera.
For multi-view input, each view is rendered separately and their pixel or feature errors are averaged,
as described in Section 3.4. If y is a depth map, thenR = Rdepth from Eq. (8).

3.3 Likelihood Update via Forward Curvature-Matching

In standard diffusion posterior sampling (DPS) [6], one iteratively updates the current sample
Xt with a term proportional to the gradient ∇X log p(y |X). However, for complex, non-linear
forward operators R, determining an appropriate step size is non-trivial. Previous approaches
resort to heuristics [6] or empirically tuned factors [22] to balance the data fidelity term with the
learned diffusion prior. While this can be effective, it may hamper convergence speed or degrade
reconstruction quality if not carefully tuned.

To address these limitations, we propose Forward Curvature-Matching (FCM), a novel algorithm
designed specifically for diffusion-based 3D reconstruction. The development of FCM was guided by
key requirements: working without adjoint operations (intractable for neural renderers), maintaining
predictable computational cost, and using universal parameters across different reconstruction tasks.

Our approach relies on a key insight: we can estimate curvature information through a scaled
directional probe without requiring full Hessian approximations [25]. For the measurement loss
L(x) = ∥y −R(x)∥2, given the current estimate xk and gradient gk = ∇L(xk), we compute:

δk = δ0 ·
∥xk∥
∥gk∥

, x′
k = xk − δk · gk, (9)

g′
k = ∇L(x′

k), hk =
gk − g′

k

δk
(10)
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Figure 4: Comparison of rendered images from reconstructed point clouds on the CO3D dataset.
The figure shows renderings from our method and PC2, illustrating the higher fidelity and better
preservation of details in our reconstructions.

This hk approximates ∇2L(xk) · gk along the gradient direction. The scale-adaptive probe (δk)
automatically calibrates to the geometry of the point cloud, a crucial advantage over traditional
finite-difference approaches [7].

We then compute a Barzilai–Borwein-inspired [4] step size, modified for robustness:

αraw
k =

∥gk∥2

⟨gk,hk⟩+ ε
, αk = min{αraw

k , 1/L} (11)

where ε = 10−12 and L is the Lipschitz constant of∇L. The capping mechanism ensures stability
while maintaining theoretical guarantees. Unlike classical line searches that require multiple function
evaluations [25], we incorporate a single Armijo check [2]: if L(xk − αkgk) > L(xk)− ηFCM · αk ·
∥gk∥2, we halve αk once and accept.

This design yields a fixed computational cost of exactly two backward and three forward passes per
step—significantly more efficient than traditional optimization methods like L-BFGS [18] or Wolfe
line searches [33] with unpredictable evaluation counts.

3.3.1 Theoretical Guarantees

Our approach is built on the following assumptions, which are typically satisfied in the context of 3D
reconstruction:
Assumption 3.1 (Smoothness). L is L-smooth: ∥∇L(u)−∇L(v)∥ ≤ L · ∥u− v∥.
Assumption 3.2 (Lower bound). Linf := infx L(x) > −∞.

Assumption 3.3 (Local convexity). L is convex on the set of iterates (which is typically small or
"benign" in practice).

This approach provides theoretical guarantees on convergence and optimality, as captured in the
following theorem:
Theorem 3.4 (Guaranteed Loss Decrease). Let c = min{ηFCM

2L , 1
8L}. Our FCM algorithm ensures:

L(xk+1) ≤ L(xk)− c · ∥∇L(xk)∥2 (12)

When integrated into the DDIM sampling process, FCM preserves the contraction properties of
diffusion models:
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Figure 6: Qualitative results of multi-view re-
construction. The figure displays point cloud
reconstructions using varying numbers of input
views, demonstrating the enhancement in recon-
struction quality as more views are incorporated.

Proposition 3.5 (Contraction Preservation). Under Assumptions 3.1–3.3 and αk ≤ 1/L, the com-
bined DDIM+FCM operator remains a contraction in expectation, thus preserving the diffusion
contraction property.

Our FCM method uses fixed constant ηFCM = 10−4 for all tasks, this principled approach leads to
faster convergence and higher-quality reconstructions compared to methods that rely on heuristic step
sizes. Detailed proofs and additional theoretical analysis are provided in the Appendix.

3.4 Multi-View Reconstruction

The same FCM-based likelihood update extends naturally to multi-view reconstruction. Suppose we
have N images {yi}Ni=1 with known camera parameters. We define

LMV(X) =
1

N

N∑
i=1

∥∥∥yi −Ri(X)
∥∥∥
2
, (13)

whereRi is the differentiable renderer for the i-th viewpoint. The gradient ∇XLMV(X) can be used
in Algorithm 1 (replacing the single-view line ∥y − R(·)∥ with the multi-view average). As the
number of views grows, reconstruction quality improves, yet the diffusion prior remains the same,
illustrating the modality-agnostic nature of our approach.

By training only the diffusion prior on unlabeled 3D shapes and introducing an FCM-based likelihood
update with an arbitrary forward operator R, we achieve a flexible, adaptive 3D reconstruction
pipeline. The FCM approach ensures stable and fast convergence even with non-linear rendering
operators, outperforming fixed-step DPS approaches.

4 Experiments

We evaluate the reconstructed point clouds using three different metrics: Earth Mover’s Distance
(EMD), L-1 Chamfer Distance (CD), and F-score at a threshold of 0.01. Details of the implementation
are provided in the appendix.

ShapeNet. In our method, colors are essential during the rendering process. However, sampling
colored point clouds from mesh-based objects is a challenging task. To address this, we train our
model using the dataset provided by KeypointNet [37]. The color information in the KeypointNet
point cloud does not correspond to the actual mesh color in ShapeNet. Instead, the model assigns
colors according to object parts.

We perform our evaluation using the categories {airplane, car, chair, table} from the ShapeNet
rendered image dataset [35].
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Figure 7: Convergence analysis during sampling.
γ is step size of DPS-update. The plot shows
the L2 norm difference between the reference
image and the rendered image (∥y−R(X̂0|t)∥2)
over diffusion timesteps for our method and other
sampling approaches, illustrating more stable
convergence of our FCM-based method.

Views EMD(×10) CD(×10) F-score

1 0.587 0.561 0.382
3 0.436 0.386 0.512
5 0.425 0.361 0.548

Table 2: Impact of the number of input views on
reconstruction performance. The table presents
scores for reconstructions using 1, 3, and 5 views,
showing improved quality with additional views.

Method EMD(×10) CD(×10) F-score

DDPM + DPS 0.674 0.688 0.337
DDIM + DPS 0.716 0.728 0.312

Ours 0.587 0.561 0.382

Table 3: Comparison with DPS-based methods.
The table presents reconstruction metrics for our
method versus DDPM+DPS and DDIM+DPS,
demonstrating our approach’s superior perfor-
mance with fewer NFEs.

CO3D. The CO3D dataset is a large-scale collection of real-world multi-view images from common
object categories. It provides a colored point cloud obtained using COLMAP from multi-view images,
which is then used for model training and evaluation. We perform our evaluation using the categories
hydrant and teddybear from the CO3D dataset.

4.1 Quantitative Results

We evaluate the performance of reconstruction in the ShapeNet dataset. In Tab. 1, our method is
compared with PC2 [20] and BDM [34]. In the original paper, BDM is evaluated using 4,096 points,
whereas PC2 is evaluated using 8,192 points. In this work, we adopt the evaluation approach of
PC2 for quantitative experiments. For BDM, we adopted the blending method that achieved the best
results in their study and used PC2 as the reconstruction model. Our method achieves the best results
in all metrics. In this experiment, we ensured that the NFEs for all other models were set similarly for
a fair comparison. Detailed comparisons with the settings proposed by their studies and quantitative
results on CO3D are provided in the appendix.

4.2 Qualitative Results

In Fig. 3 we show the reconstructed point clouds of different models using the ShapeNet dataset. In
Fig. 4 we present a comparison of the rendered results of reconstructed colored point clouds using
the CO3D dataset. Other models fail to accurately follow the given image in their rendering results
for the reference view, instead focusing on generating a plausible object within the learned category.
However, our method achieves the highest level of detail for the reference image.

4.3 Adaptivity Analysis

Our method has the advantage of performing various tasks without requiring retraining of the model.
In this section, we demonstrate this capability through multi-view reconstruction and depth map
reconstruction. The models used in this section are the same as those used in the previous section
for the ShapeNet dataset. Fig. 6 and Tab. 2 illustrate the effectiveness of our method in multi-view
reconstruction. As the number of views increases, the generated point cloud becomes more refined,
demonstrating the improved quality of reconstruction. Fig. 5 presents the results of applying our
method to depth maps rendered using Eq. 8. The results show high fidelity to the reference depth
map and the ability to generate natural-looking objects.

4.4 Ablation Study

To show the effectiveness of our method, we compare with other DPS-based methods. Fig. 7 and
Tab. 3 compare our method with DPS-based approaches. Fig. 7 presents the plot of the difference
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in L2 norm between the reference image and the rendered image during the sampling process
over timesteps. We observed that both DDPM+DPS and DDIM+DPS methods achieve their best
performance at the step size of 0.05. The reason DPS-based methods struggle to follow the reference
image is that they update with a fixed step size, leading to suboptimal convergence. It demonstrates
that our method converges more optimally compared to other approaches. As shown in Tab. 3, our
method achieves the best point cloud reconstruction performance. Since the DDPM sampling process
does not approximate X̂0, and the iterative FCM updates from noisy Xt using measurement y are
not ideal, we exclude the DDPM+FCM scheme from our comparison. Qualitative comparisons with
DPS-based methods are provided in the appendix.

5 Conclusion

In this paper, we proposed the novel point cloud diffusion sampling approach for adaptive 3D
reconstruction. Our method reconstructs the colored point cloud by updating it using likelihood
∇ log p(y | X) with given images through FCM during the reverse process of the point cloud
diffusion model. In our experiments, we qualitatively demonstrate high-fidelity reconstruction of
reference images with color, generating high-quality point cloud structures compared to prior works.
Moreover, we quantitatively surpass previous works in point cloud reconstruction performance. Our
method is applicable to various tasks, demonstrating its versatility. Additionally, it can be extended
to different domains (e.g., Gaussian Splatting, meshes, etc.), highlighting its adaptability. As future
work, we are interested in exploring larger datasets across diverse domains.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the claims regarding the novel
approach to 3D reconstruction using diffusion priors and FCM-based likelihood updates,
which are validated by the experimental results.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Section A.5 discusses limitations including sensitivity to thin structures and
lack of colored point clouds in ShapeNet, as well as trade-offs between CD and shape-
preserving metrics like F-score.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Appendix A.3 states all assumptions (e.g., L-smoothness, local convexity/-
monotone gradient map, and step-size bounds tied to BB+Armijo) and provides complete,
self-contained proofs (lemmas→ main theorem) establishing descent/contraction of the
FCM update.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper specifies the datasets used (ShapeNet and CO3D), the evalua-
tion metrics (EMD, CD, and F-score), and the implementation details. It also provides
information on how the baseline models were evaluated for a fair comparison.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The abstract provides a GitHub link for the code:
https://github.com/Seunghyeok0715/FCM.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Training and test details are provided in Section A.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: The paper presents quantitative results in tables, but it does not include error
bars or statistical significance tests. The paper provides quantitative results using EMD, CD,
and F-score, but does not include error bars or statistical significance tests.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The paper reports inference time per sample (Table. 6), and Section A.2
specifies the use of NVIDIA RTX 6000 Ada Generation GPU and batch size. Although
memory is not explicitly reported, the provided information is sufficient for reproduction.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The paper does not describe any deviations from the NeurIPS Code of Ethics.
The research appears to be aligned with ethical guidelines.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [No]
Justification: The paper does not explicitly discuss the broader societal impacts of the work.
The paper focuses on the technical aspects of the method and its performance.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not discuss the release of data or models that would require
specific safeguards. The paper introduces a novel method for 3D reconstruction, but does
not discuss releasing models or datasets that would require safeguards.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The paper cites the original papers for the datasets and models used, and it
appears to properly credit the original owners of the assets.
Guidelines:
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not introduce new datasets or models. The paper focuses on a
novel method for 3D reconstruction.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
The research is focused on 3D reconstruction using existing datasets.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification: The paper does not involve research with human subjects, so IRB approval is
not applicable. The research is focused on 3D reconstruction using existing datasets.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The paper does not utilize LLMs as a core component of its methodology. The
paper focuses on a novel method for 3D reconstruction.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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A.1 Algorithm

Algorithm 1 DDIM Sampling with FCM Likelihood Update

Require: Trained noise predictor ϵθ⋆ , Measurement y, Total diffusion steps T , DDIM cumulative
schedule {ᾱt}Tt=1, Stochasticity coefficient η, Differentiable rendererR, FCM hyper-parameters
δ0, ηFCM, Lipschitz bound L, Numerical stabilizer ε

1: XT ∼ N (0, I) ▷ initialize with noise
2: for t = T downto 1 do

(a) DDIM prior prediction
3: ϵ̂t ← ϵθ⋆(Xt, t)

4: X̂0|t ←
(
Xt −

√
1− ᾱt ϵ̂t

)
/
√
ᾱt

(b) FCM likelihood refinement
5: x0 ← X̂0|t
6: for k = 0 to K − 1 do ▷ K=4 outer refinements
7: gk ← ∇xk

∥∥y −R(xk)
∥∥
2

8: δk ← δ0 ∥xk∥/∥gk∥
9: x′

k ← xk − δk gk

10: g′
k ← ∇x′

k

∥∥y −R(x′
k)
∥∥
2

11: hk ← (gk − g′
k)/δk

12: αraw
k ← ∥gk∥2

/(
⟨gk,hk⟩+ ε

)
13: αk ← min{αraw

k , 1/L}
14: x̃k ← xk − αk gk

15: if
∥∥y −R(x̃k)

∥∥
2
>

∥∥y −R(xk)
∥∥
2
− ηFCM αk ∥gk∥2 then

16: αk ← αk/2 ▷ single Armijo back–off
17: x̃k ← xk − αk gk

18: end if
19: xk+1 ← x̃k ▷ update iterate
20: end for
21: X̃0|t ← xK

(c) DDIM update
22: σt ← η

√
1−ᾱt−1

1−ᾱt

√
1− ᾱt

ᾱt−1

23: ϵ ∼ N (0, I)

24: Xt−1 ←
√
ᾱt−1 X̃0|t +

√
1− ᾱt−1 − σ2

t ϵ̂t + σt ϵ
25: end for
26: X0 ←

(
X1 −

√
1− ᾱ1 ϵθ∗(X1)

)
/
√
ᾱ1

27: return X0

A.2 Implementation Details

To model the reverse process pθ, we employed a Diffusion Transformer, originally introduced in
Point-E’s unconditional model [24], as the neural network parameterized by θ, which predicts both
µθ and Σθ. All images were set to a resolution of 224×224. For the ShapeNet dataset, 2,048 points
were sampled and then upsampled to 8,192 points for comparison [27]. In the case of CO3D, 8,192
points were directly sampled. To sufficiently refine the point cloud, we perform four FCM updates
per DDIM sampling step. We set the hyperparameters as follows: ηFCM = 10−4, L = 2/3. For
ShapeNet, we set T = 256 and δ0 = 2× 10−2. For CO3D, we set T = 512 and δ0 = 6× 10−3. We
use point cloud rendering processes provided by PyTorch3D [26]. For ShapeNet, we set the radius
of the point cloud rasterizer to 0.018 for airplane category and 0.027 for the other categories. For
CO3D, we set the radius to 0.013. All experiments were performed using an NVIDIA RTX 6000
Ada Generation with a batch size of 16.
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A.3 Theoretical Analysis of FCM

In this appendix, we provide detailed proofs for the theoretical guarantees of our Forward Curvature-
Matching (FCM) method. We begin by formally establishing the properties of FCM step sizes,
followed by proofs of loss decrease and convergence guarantees. Finally, we analyze how FCM
integrates with DDIM sampling while preserving its contraction properties.

A.3.1 Bounds on FCM Step Sizes

We first establish that the FCM step size is guaranteed to lie within a well-behaved range, ensuring
stable iterations. Our FCM approach relies on a directional curvature estimate:

δk = δ0 ·
∥xk∥
∥gk∥

, (14)

x′
k = xk − δk · gk, (15)

g′
k = ∇L(x′

k), (16)

hk =
gk − g′

k

δk
(17)

This hk approximates the directional curvature along the gradient direction. Specifically, hk is an
approximation of the Hessian-vector product ∇2L(xk)gk.
Lemma A.3.1 (Step Size Bounds). Assume ε ≤ L∥gk∥2 in the calculation of αraw

k . Then the FCM
step size αk (prior to any Armijo halving) satisfies:

1

2L
≤ αk ≤

1

L
(18)

Proof. From the finite difference approximation with hk = (gk − g′
k)/δk, we analyze ⟨gk,hk⟩:

⟨gk,hk⟩ =
〈
gk,

gk − g′
k

δk

〉
(19)

=
1

δk
(∥gk∥2 − ⟨gk,g

′
k⟩) (20)

Under Assumption 3.1 (L-smoothness), we can establish that:
⟨gk,g

′
k⟩ ≥ ∥gk∥2 − Lδk∥gk∥2 (21)

This implies:

⟨gk,hk⟩ ≤
1

δk
(∥gk∥2 − (∥gk∥2 − Lδk∥gk∥2)) (22)

= L∥gk∥2 (23)

Therefore:
⟨gk,hk⟩+ ε ≤ L∥gk∥2 + ε (24)

≤ 2L∥gk∥2 (25)

where the last inequality holds given our assumption that ε ≤ L∥gk∥2. This implies:

αraw
k =

∥gk∥2

⟨gk,hk⟩+ ε
≥ 1

2L
(26)

Since we cap αk = min{αraw
k , 1/L}, we ensure αk ≤ 1/L while maintaining the lower bound

αk ≥ 1/(2L).

Remark A.3.2. If ∥gk∥ ≈ 0, the raw step size αraw
k could become very large. However, in such cases,

the Armijo condition will catch insufficient decrease and halve the step size once, still ensuring stable
updates.
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A.3.2 Firm Non-Expansiveness of the Gradient Step

Next, we establish that a gradient step with the FCM step size is firmly non-expansive, which is
crucial for integrating with the diffusion process.

Lemma A.3.3 (Firmly Non-Expansive Gradient Step). Let Tk(u) = u− αk∇L(u) be the gradient
step operator with fixed αk > 0. Under Assumptions 3.1–3.3, if 0 < αk < 2/L, then Tk is firmly
non-expansive:

∥Tk(u)− Tk(v)∥2 ≤ ∥u− v∥2 − αk

(
2

L
− αk

)
∥∇L(u)−∇L(v)∥2 (27)

Hence, Tk is in particular non-expansive: ∥Tk(u)− Tk(v)∥ ≤ ∥u− v∥.

Proof. Let ∆ = u− v and ∆g = ∇L(u)−∇L(v). Then:

∥Tk(u)− Tk(v)∥2 = ∥∆− αk∆g∥2 (28)

= ∥∆∥2 − 2αk⟨∆,∆g⟩+ α2
k∥∆g∥2 (29)

By the Baillon–Haddad theorem (which applies when L is convex and L-smooth), ∇L is 1/L-
cocoercive, meaning:

⟨∆,∆g⟩ ≥
1

L
∥∆g∥2 (30)

Substituting this into our expression:

∥Tk(u)− Tk(v)∥2 ≤ ∥∆∥2 −
2αk

L
∥∆g∥2 + α2

k∥∆g∥2 (31)

= ∥∆∥2 − αk

(
2

L
− αk

)
∥∆g∥2 (32)

Since 0 < αk ≤ 1/L in our FCM algorithm (as established in Lemma A.3.1), the factor 2
L − αk > 0.

Thus, Tk is firmly non-expansive, and consequently, ∥Tk(u)− Tk(v)∥ ≤ ∥u− v∥.

A.3.3 Guaranteed Loss Decrease

We now prove Theorem 3.4 from the main paper, which guarantees that FCM decreases the measure-
ment loss at each iteration.

Theorem A.3.4 (Guaranteed Loss Decrease). Let c = min{ηFCM
2L , 1

8L}. The FCM algorithm ensures:

L(xk+1) ≤ L(xk)− c∥∇L(xk)∥2 (33)

Proof. We consider two cases:

Case 1 (Armijo condition satisfied): When the initial step satisfies the Armijo condition, we have:

L(xk+1) ≤ L(xk)− ηFCMαk∥gk∥2 (34)

≤ L(xk)−
ηFCM

2L
∥gk∥2 (35)

where we used the lower bound αk ≥ 1
2L from Lemma A.3.1.

Case 2 (Armijo halving required): If the initial step fails the Armijo condition and we halve αk,
then αk ≥ 1

4L remains. By the descent lemma for L-smooth functions:

L(xk+1) ≤ L(xk)− αk∥gk∥2 +
L

2
α2
k∥gk∥2 (36)

= L(xk)− αk

(
1− Lαk

2

)
∥gk∥2 (37)

3



Since αk ≤ 1
2L after halving, we have 1− Lαk

2 ≥ 1
2 . Combined with αk ≥ 1

4L , this gives:

L(xk+1) ≤ L(xk)−
αk

2
∥gk∥2 (38)

≤ L(xk)−
1

8L
∥gk∥2 (39)

Taking the minimum of the guaranteed decrease in both cases, we get:

L(xk+1) ≤ L(xk)−min

{
ηFCM

2L
,
1

8L

}
∥gk∥2 (40)

Corollary A.3.5 (Gradient Norm Convergence). Under FCM iterations, ∥∇L(xk)∥ → 0 as k →∞,
and every cluster point is stationary.

Proof. By Theorem A.3.4 and Assumption 3.2 (lower bound on L), we have:
∞∑
k=0

c∥∇L(xk)∥2 ≤ L(x0)− Linf <∞ (41)

Since c > 0, we must have
∑∞

k=0 ∥∇L(xk)∥2 < ∞, which implies ∥∇L(xk)∥ → 0 as k → ∞.
This means that every cluster point of the sequence {xk} is a stationary point of L.

A.3.4 FCM Integration with DDIM

Finally, we analyze how FCM integrates with the DDIM sampling process and prove Proposition 3.5
from the main paper.
Proposition A.3.6 (Contraction Preservation). Let Φt be a DDIM step that is ρ-contractive (with
ρ < 1) in mean-square sense:

E[∥Φt(u)− Φt(v)∥2] ≤ ρ∥u− v∥2 (42)

Define Ψt(u) = Tk(Φt(u)), where Tk(u) = u − αk∇L(u). Under Assumptions 3.1–3.3 and
αk ≤ 1/L, Ψt is also ρ-contractive in expectation, thus preserving the diffusion contraction property.

Proof. From Lemma A.3.3, we know that Tk is non-expansive: ∥Tk(a) − Tk(b)∥2 ≤ ∥a − b∥2.
Therefore, for any u, v:

E[∥Ψt(u)−Ψt(v)∥2] = E[∥Tk(Φt(u))− Tk(Φt(v))∥2] (43)

≤ E[∥Φt(u)− Φt(v)∥2] (44)

≤ ρ∥u− v∥2 (45)

Thus, Ψt remains a ρ-contraction in mean-square sense.

A.3.5 Robustness to Non-Convexity

While Assumption 3.3 (local convexity) is used in our theoretical analysis, FCM shows empirical
robustness even when this assumption is violated.
Remark A.3.7 (Behavior Under Non-Convexity). If local convexity fails, the firm non-expansiveness
of Tk may break. However, Theorem A.3.4 and Corollary A.3.5 remain valid, guaranteeing that the
FCM step decreases L and drives ∥∇L(xk)∥ → 0. This makes FCM robust in practice even for
non-convex L.

A.3.6 Practical Parameter Settings

Over-estimating L in the algorithm only tightens the cap αk ≤ 1/L and preserves all theoretical
guarantees. Under-estimating L triggers the single Armijo halving, which prevents divergence while
maintaining efficiency.

This combination of theoretical guarantees and practical robustness makes FCM an ideal choice for
likelihood updates in diffusion-based 3D reconstruction, enabling high-quality results.
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Figure 8: Qualitative results of multi view reconstruction on CO3D dataset.

Category EMD(×10) CD(×10) F-score
PC2 [20] BDM [34] Ours PC2 [20] BDM [34] Ours PC2† [20] PC2 [20] BDM [34] Ours

airplane 0.551 0.552 0.476 0.434 0.409 0.378 0.473 0.457 0.524 0.543
car 0.524 0.535 0.517 0.487 0.507 0.460 0.359 0.331 0.330 0.386

chair 0.651 0.656 0.662 0.579 0.616 0.679 0.290 0.280 0.274 0.281
table 0.662 0.635 0.691 0.649 0.644 0.727 0.270 0.260 0.284 0.319

Average 0.597 0.594 0.587 0.542 0.544 0.561 0.348 0.332 0.353 0.382

Table 4: Extended comparison of single-view 3D reconstruction on ShapeNet. The table includes
results from the original studies with about 1000 NFEs. Scores marked with † are reported from
the original paper. Our method, however, achieves competitive performance with fewer function
evaluations.

A.4 Additional Experiments

Comparison with other methods proposed in their original papers. Tab. 4 shows a comparison
of different models evaluated on the ShapeNet dataset, where each model is applied according to
the method originally proposed in its respective study. PC2 uses an NFEs of 1000, while BDM uses
a total of 1080 NFEs—1000 for its reconstruction model and an additional 80 for its prior model.

L EMD(×10) CD(×10) F-score ηFCM EMD(×10) CD(×10) F-score δ0 EMD(×10) CD(×10) F-score

100 0.731 0.770 0.307 10−6 0.585 0.563 0.373 5× 10−2 0.644 0.615 0.343
10 0.585 0.563 0.373 10−5 0.579 0.566 0.377 2× 10−2 0.587 0.561 0.382
1 0.588 0.564 0.376 10−4 0.587 0.561 0.382 10−2 0.594 0.574 0.369
2/3 0.587 0.561 0.382 10−3 0.586 0.565 0.370 10−3 0.665 0.660 0.330

Table 7: Hyperparameter study for FCM-guided sampling. Varying Lipschitz constant L, Armijo
factor ηFCM and the initial discrepancy radius δ0 for the scaled curvature probe.
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Average EMD(×10) CD(×10) F-score

PC2[20] 2.662 3.893 0.244
Ours 1.206 1.527 0.281

Ours(3-view) 1.001 1.131 0.388
Ours(5-view) 0.941 1.020 0.423

Table 5: Quantitative results of CO3D
dataset. The results represent the aver-
age values for two categories used in
the experiments, with ground truth reg-
ularized to the range [-0.5, 0.5]. The
F-score threshold is set to 0.2, and the
CD corresponds to the results for the L1
metric.

Method EMD(×10) CD(×10) F-score time(s/sample)

PC2 [20] 0.597 0.542 0.332 8.88
BDM [34] 0.594 0.544 0.353 10.56

Ours 0.587 0.561 0.382 6.03

Table 6: Time efficiency analysis of different methods.
We report average scores of ShapeNet dataset and total
sampling time (seconds per sample). The highest scores
are marked in bold, and the second-highest scores are
underlined. Our method achieves higher reconstruction
accuracy with respect to F-score and EMD than prior ap-
proaches while maintaining comparable inference speed.

Component Ours PC2 BDM
FCM update(1 iteration) 5.339 ms – –
Local Conditioning – 3.486 ms (same as PC2)
NFEs 256 1000 1080

single Armijo check strong Wolfe line search
0.889 ms 6.589 ms

Table 8: Runtime breakdown. Left: component costs and NFE counts for each method (ours: 256
NFEs; PC2: 1000; BDM: 1080=1000+80). Right: cost of a single Armijo check (ours) versus a
strong Wolfe line search. Our once-only Armijo strategy is substantially cheaper while preserving
reliable descent, contributing to the overall speedup.

Despite using fewer NFEs, our method still achieves the highest scores in terms of both EMD and
F-score.

More experiments on CO3D dataset. Tab. 5 presents a comparison with PC2 on the CO3D dataset
and additionally provides scores for the multi-view setting. These results demonstrate the improved
performance of our method over existing approaches. Furthermore, Fig. 8 illustrates the qualitative
results of multi-view reconstruction on CO3D. To demonstrate broader applicability, Fig. 10 presents
qualitative comparisons on two additional CO3D categories—remote and vase—against PC2.

Hyperparameter Experiments. As shown in Tab. 7, the sampler behaves robustly once each knob
is kept within a reasonable range. In particular, as discussed in A.3.6, an overly conservative choice
of 1/L (i.e., taking L too large) activates the clamping in Eq. 11, so the effective update becomes
overly damped and Armijo progress can stall, leading to slow or failed convergence. Nevertheless,
the table shows substantial tolerance: the sampler remains reliable for L ∈ [2/3, 10].

Time analysis. As shown in Tab. 6, our method achieves the best performance in both F-score
and EMD score, highlighting its effectiveness even with a 32.1% reduction in runtime. As shown in
Tab. 8, our once-only Armijo check is dramatically cheaper than a conventional strong Wolfe line
search. While a single step in PC2 or BDM can be faster than our FCM step, our sampler deliberately
opts for far fewer steps: 256 NFEs versus 1000 (PC2) and 1080 (BDM). This NFE gap dominates
the end-to-end runtime—reducing the number of denoiser/forward evaluations—and leads to overall
faster and more efficient reconstructions, without sacrificing accuracy.

Qualitative comparison with DPS-based methods. Fig. 9 shows a comparison between our
method and different methods. Here, the step size for the DPS-based method is set to the optimal
value of γ = 0.05 as identified in Fig. 7. While the DPS-based method captures the overall shape
reasonably well, it fails to recover accurate color information. This limitation is attributed to the use
of a fixed step size, which leads to suboptimal updates. In contrast, our method produces results that
are more optimal with respect to the given measurements.

More examples and failure cases. Additional qualitative results are shown in Figs. 11- 18, and
failure cases of our method are presented in Figs. 19- 21. Most failure cases occur when the object
has a complex structure, which can be attributed to the diffusion prior being misled by unfamiliar or
uncommon data distributions.
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Figure 9: Qualitative comparison of reconstructions for different methods of sampling. Both of DPS
based methods capture the overall shape but fail to preserve the correct colors due to the suboptimality.

A.5 Limitations

• While the rendered image may resemble the reference image, the structure of the point
cloud appears slightly thinner than the ground truth point cloud due to the radius of the
rasterizer. This effect is particularly noticeable in thin structures, such as the legs of a chair.
Additionally, due to the unavailability of a colored point cloud dataset for ShapeNet, we
used a dataset generated by KeypointNet. However, since KeypointNet does not assign the
actual mesh colors, this may lead to a degradation in the quality of the reconstruction.

• Direct control of point cloud positions for likelihood updates might limit CD metric per-
formance compared to reconstructions using only the learned prior(or posterior). However,
considering the objective of our task “image(s) to 3D reconstruction", metrics such as
F-score and EMD, which measure the shape similarity, are more aligned with the task’s
purpose than measuring the distance between individual points.
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Figure 10: Qualitative comparison for single-view reconstruction on additional CO3D categories
(remote, vase), against PC2.
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Figure 11: Generation trajectory and final reconstruction. Top: starting from pure noise at T = 256,
the sampler progressively denoises toward a coherent airplane; we display every 8th diffusion level
(∆T = 8) down to T = 0. Bottom: the resulting T = 0 sample rendered from multiple viewpoints.
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Figure 12: Generation trajectory and final reconstruction. Top: starting from pure noise at T = 256,
the sampler progressively denoises toward a coherent chair; we display every 8th diffusion level
(∆T = 8) down to T = 0. Bottom: the resulting T = 0 sample rendered from multiple viewpoints.
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Figure 13: Additional qualitative results for single-view reconstruction on ShapeNet: Airplane
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Figure 14: Additional qualitative results for single-view reconstruction on ShapeNet.: Car
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Figure 15: Additional qualitative results for single-view reconstruction on ShapeNet.: Chair
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Figure 16: Additional qualitative results for single-view reconstruction on ShapeNet.: Table
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Figure 17: Additional qualitative results for single-view reconstruction on CO3D.: Hydrant
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Figure 18: Additional qualitative results for single-view reconstruction on CO3D.: Teddybear
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Figure 19: Analysis of failure cases in single-view reconstruction on ShapeNet.: Airplane&Car
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Figure 20: Analysis of failure cases in single-view reconstruction on ShapeNet.: Chair&Table
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Figure 21: Analysis of failure cases in single-view reconstruction on CO3D.
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