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ABSTRACT

In the presence of noisy labels, designing robust loss functions is critical for se-
curing the generalization performance of deep neural networks. Cross Entropy
(CE) loss has been shown to be not robust to noisy labels due to its unbounded-
ness. To alleviate this issue, existing works typically design specialized robust
losses with the symmetric condition, which usually lead to the underfitting issue.
In this paper, our key idea is to induce a loss bound at the logit level, thus univer-
sally enhancing the noise robustness of existing losses. Specifically, we propose
logit clipping (LogitClip), which clamps the norm of the logit vector to ensure
that it is upper bounded by a constant. In this manner, CE loss equipped with our
LogitClip method is effectively bounded, mitigating the overfitting to examples
with noisy labels. Moreover, we present theoretical analyses to certify the noise-
tolerant ability of LogitClip. Extensive experiments show that LogitClip not only
significantly improves the noise robustness of CE loss, but also broadly enhances
the generalization performance of popular robust losses.

1 INTRODUCTION

The success of supervised learning relies heavily on a massive amount of data, where each training
instance is labeled by a human annotator. However, labels solicited from humans can often be subject
to label noise. The issue of noisy labels has been commonly observed in many real-world scenarios,
such as crowdsourcing (Yan et al., 2014) and online queries (Blum et al., 2003). As a result, models
trained on such data containing noisy labels suffer from poor generalization performance (Arpit
et al., 2017; Zhang et al., 2016). This gives rise to the importance of noise-robust learning, where
the goal is to train a robust classifier in the presence of noisy and erroneous labels. The learning task
thus provides stronger flexibility and practicality than the standard supervised learning, where each
training example is provided with clean ground truth.

Despite the most popular loss in classification tasks, CE loss has shown to be non-robust in the pres-
ence of label noise (Ghosh et al., 2017; Zhang & Sabuncu, 2018), due to its unboundedness. Con-
cerningly, the loss could approach infinity when the observed noisy label mismatches the model’s
prediction. Consequently, the model would attempt to counteract the large loss by overfitting the
label noise, leading to poor generalization performance. To bound the loss value, previous meth-
ods typically design robust losses with principal constraint, e.g., symmetric condition (Ghosh et al.,
2017; Ma et al., 2020). Despite their theoretical robustness, these specialized losses can cause diffi-
culty in optimization, leading to underfitting issues on complex datasets (Zhang & Sabuncu, 2018;
Zhou et al., 2021). This motivates our method, which mitigates the undesirable influence of un-
bounded loss without modifying the loss function.

In this paper, our key idea is to induce the loss bound at the logit level, which universally enhances
the noise robustness of existing losses. Specifically, we propose logit clipping (LogitClip), which
clamps the norm of the logit vector to ensure that it is upper bounded by a constant. Our method
can be interpreted as a constrained optimization with an inequality constraint placed on the logit
vector. Theoretically, we show that CE loss equipped with our LogitClip method is always bounded.
Consequently, the difference between the risks caused by the derived hypotheses under noisy and
clean labels is always bounded. More importantly, the two bounds (Theorem 3.2 and Theorem 3.3)
depend on the logit norm threshold, where a smaller threshold induces tighter bounds. In this way,
our theoretical analyses demonstrate the noise-tolerant ability of LogitClip.
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To verify the effectiveness of our method, we conduct thorough empirical evaluations on both sim-
ulated and real-world noisy datasets, including CIFAR-10, CIFAR-100, and WebVision (Li et al.,
2017) datasets. The results demonstrate that logit clipping can significantly improve the noise-
robustness of CE loss, under symmetric, asymmetric, instance-dependent, and real-world label
noise. For example, on CIFAR-10 with instance-dependent label noise, LogitClip improves the
test accuracy of CE loss from 68.36% to 86.60% – a 18.24% of direct improvement. More impor-
tantly, we show that LogitClip can boost the performance of a wide range of popular robust loss
functions, including MAE (Ghosh et al., 2017), PHuber-CE (Menon et al., 2020), SCE (Wang et al.,
2019), GCE (Zhang & Sabuncu, 2018), Taylor-CE (Feng et al., 2020), NCE (Ma et al., 2020), AEL,
AUL (Zhou et al., 2021), Cores (Cheng et al., 2021), and Active Passive losses (Ma et al., 2020).

We summarize our contributions as follows:

1. We propose LogitClip – a simple and effective method to enhance the noise robustness of
existing losses. The key idea is to clamp the norm of the logit vector to bound the loss
value, as shown in Proposition 3.1 and Proposition 3.4.

2. We provide theoretical analyses in Theorem 3.2 and Theorem 3.3 to certify the noise-
tolerant ability of our LogitClip, where a smaller threshold induces tighter bounds.

3. We conduct extensive evaluations to show that LogitClip can improve the robustness of CE
and popular robust losses across various types of label noise. We empirically show that our
method is model-agnostic and also applicable in large-scale real-world scenarios.

4. We perform ablation studies that lead to improved understandings of our method. In par-
ticular, we contrast with alternative methods (e.g., RELU6 (Howard et al., 2017), Clipping-
by-value) and demonstrate the advantages of our method with Clipping-by-norm.

2 RELATED WORK

Robust loss functions. Designing loss functions that are robust to noisy labels has attracted a surge
of interest. Ghosh et al. first shows that, for multi-class classification, loss functions that satisfy
the symmetric condition,

∑k
i=1 L(f(x), i) = C,∀x ∈ X ,∀f , where C is a constant, can be robust

to label noise. One of the most classic symmetric loss functions is Mean Absolute Error (MAE):
LMAE (z, y) = ∥y − σ(z)∥1, where σ(z) denotes the softmax output. Besides, NCE (Ma et al.,
2020) makes any loss function to be symmetric by loss normalization. Despite its theoretical ro-
bustness, symmetric losses have been shown to exhibit extremely slow convergence on complicated
datasets, since the symmetric condition is too stringent to find a convex loss function (Zhang &
Sabuncu, 2018; Ma et al., 2020). To alleviate this issue, Generalized Cross Entropy (GCE) (Zhang
& Sabuncu, 2018) uses a hyperparameter q to balance between MAE and CE, adopting the negative
Box-Cox transformation strategy. Taylor Cross Entropy (Taylor-CE) (Feng et al., 2020) balances be-
tween MAE and CE by controlling the order of the Taylor Series. Partial Huberised Cross Entropy
(PHuber-CE) (Menon et al., 2020) enhances the noise robustness of CE with a loss variant of gradi-
ent clipping. Symmetric Cross Entropy (SCE) (Wang et al., 2019) boosts CE symmetrically with a
noise-robust counterpart, Reverse Cross Entropy (RCE). Recent work (Zhou et al., 2021) proposes
a new family of robust loss functions, termed asymmetric loss functions, which provides a global
clean weighted risk when minimizing the noisy risk for any hypothesis class. In this work, our focus
is complementary to existing robust loss functions — we propose a strategy that can universally
enhance the noise robustness of existing losses, across various types of label noise.

Other deep learning methods for noise-robustness. In addition to robust loss functions, some
other solutions are also applied to learn with noisy labels, including: 1) Some methods aim to
design sample weighting schemes that give higher weights on clean samples (Jiang et al., 2018; Liu
& Tao, 2015; Ren et al., 2018; Shu et al., 2019; Wei et al., 2020b). 2) Some methods propose to train
on selected samples, using small-loss selection (Han et al., 2018; Wei et al., 2020a; Yu et al., 2019;
Xia et al., 2022), GMM distribution (Arazo et al., 2019; Li et al., 2020) or (dis)agreement between
two models (Malach & Shalev-Shwartz, 2017; Wei et al., 2020a; Yu et al., 2019). 3) Loss correction
is also a popular direction based on an estimated noise transition matrix (Hendrycks et al., 2018;
Patrini et al., 2017), or the model’s predictions (Arazo et al., 2019; Chen et al., 2020; Reed et al.,
2014; Tanaka et al., 2018; Zheng et al., 2020). 4) Some methods apply regularization techniques
to improve generalization under the settings of label noise (Fatras et al., 2021; Hu et al., 2019; Xia
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et al., 2020a; Liu & Guo, 2020; Bai et al., 2021; Liu et al., 2020; Zhu et al., 2021; Liu et al., 2022),
such as label smoothing (Lukasik et al., 2020; Szegedy et al., 2016), temporal ensembling (Laine
& Aila, 2016), and virtual adversarial training (Miyato et al., 2018). 5) Some training strategies
for combating noisy labels are built based upon semi-supervised learning methods (Li et al., 2020;
Nguyen et al., 2020) or self-supervised learning (Li et al., 2022). Compared to the above deep
learning methods, designing robust loss function are generally a more straightforward and arguably
more generic solution with theoretical guarantees.

3 LOGIT CLIPPING FOR NOISE-ROBUST CLASSIFICATION

3.1 PRELIMINARIES: THE UNBOUNDEDNESS OF CE LOSS

In this work, we consider multi-class classification task with K different classes. Let X ⊂ Rd be the
input space and Y = {1, . . . ,K} be the label space, we consider a training dataset with N samples
{xi, yi}Ni=1, where xi ∈ X is the i-th instance sampled i.i.d. from an underlying data-generating
distribution P and yi ∈ Y is the observed (and potentially noisy) label. A classifier is a function that
maps from the input space to the label space f : X → RK with trainable parameter θ ∈ Rp.

Here, we consider composite losses, which are comprised of a base loss function ϕ and an invertible
link function σ : R → [0, 1]. For example, the most commonly used composite loss in multi-class
classification is Softmax Cross Entropy (CE) loss:

LCE (f(x;θ), y) = −
K∑
j=1

yj log(σ (zj)) = −
K∑
j=1

yj log

(
ezj∑K
k=1 e

zk

)
, (1)

where zj = fj (x;θ) corresponds to the j-th element of model output for the sample x, and yj is
the j-th element of one-hot encoded label vector y. Here σ denotes the softmax function, which
is also the invertible link function. As an unbounded loss function, CE is shown to be non-robust
in the presence of label noise (Ghosh et al., 2017; Zhang & Sabuncu, 2018), since the observed
labels might be incorrect. In the extreme case of σ(z) → 0, the corresponding loss would approach
infinity, leading to severe overfitting issues on noisy labels.

3.2 OUR PROPOSED METHOD

In this paper, we propose a general strategy that can make the loss function noise-robust, avoiding
the inherent drawback of overfitting the label noise. Our key idea is to bound the logit value in the
link function. Our method is motivated by the following reformulation of the softmax CE loss:

LCE(z, y) = log(1 +
∑
j ̸=y

ezj−zy ) ≤ log(1 + (K − 1) · ezmax−zmin), (2)

where zmax and zmin denote the maximum and minimum value in the logit vector z = f(x;θ).
The above formulation suggests that, if zmax−zmin is upper bounded, LCE could not reach infinity,
thereby preventing the model from overfitting to examples with noisy labels.

To enforce the upper bound, we propose to bound the logit values by norm, which preserves the
direction of the original logit vector. The training objective can be formalized as a constrained
optimization with inequality constraint:

minimize E(x,y)∼P [LCE (f(x;θ), y)]

subject to ∥f(x;θ)∥p ≤ α,

where ∥·∥p denotes the p-norm (also called ℓp-norm, p ≥ 1) of the logit vector. However, performing
constrained optimization in the context of modern neural networks is non-trivial, as explicitly shown
in Appendix G.2. To circumvent the issue, we convert the objective into an alternative loss function
that can be end-to-end trainable, strictly enforcing an upper bound of vector norm.

Logit Clipping. We propose logit clipping (dubbed LogitClip), which clamps the norm of the logit
vector to ensure it is upper bounded by a constant. Formally, the new link function is defined as:

σ̄τ (z)
.
= σ(clipτ (z)) clipτ (z)

.
=

{
τ · z

∥z∥p
if ∥z∥p ≥ τ

z else
, (3)
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where τ is the upper bound of the norm. Our method ensures that: (1) the norm of the clamped logit
vector clipτ (z) is bounded by τ , and (2) the clamped logit vector preserves the same direction (and
prediction) as the original logit vector z.

Note that LogitClip can be compatible with various loss functions, as we will later demonstrate
in Section 4. In other words, we can employ LogitClip in the link function σ of the composite
losses, where the base loss function ϕ can be CE or other existing robust loss functions. Taking
cross-entropy loss as an example, the new training objective now becomes:

minimize E(x,y)∼P [LCE (clipτ (f(x;θ)), y)] .

In what follows, we provide a formal analysis on the bound of the new loss function. For conve-
nience, we denote CE loss with LogitClip as Lτ

CE. We start from the case of max norm (p = ∞), i.e.,
−τ ≤ clipτ (zj) ≤ τ . Then we can derive an upper bound and a lower bound of Lτ

CE in Equation 3.
Proposition 3.1 (Upper and Lower Bounds of CE with LogitClip). For any input x and any positive
number τ ∈ R+, CE loss with LogitClip defined in Eq. (3) has a lower bound and an upper bound:

log(1 + (K − 1) · e−2τ ) ≤ Lτ
CE (f(x;θ), y) ≤ log(1 + (K − 1) · e2τ ).
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Figure 1: The effect of τ and K on the
Loss bound. The dashed lines denote the
upper bounds and the solid lines show the
lower bounds. Four colors are used to
present bounds with various values of K.

The proof of Proposition 3.1 is provided in Appendix A.
Through Proposition 3.1, we show that cross-entropy
loss equipped with LogitClip is bounded. The conclu-
sion can be extended to other norms, since ∥z∥p ≤
∥z∥q ≤ ∥z∥∞ for p ≥ q. To provide a straightfor-
ward view, we show in Figure 1 how the hyperparam-
eter τ and the class num K affect the upper and lower
bounds of CE with LogitClip. When τ → ∞, we have
0 ≤ Lτ

CE ≤ ∞, which is equivalent to the original loss
LCE in Equation 1. On the other hand, if τ → 0, the
lower bound would be close to the upper bound, which
may result in difficulties for loss optimization. We will
analyze the effect of τ in detail in Section 4.

Based on proposition 3.1, we further analyze the noise
robustness of Lτ

CE with LogitClip. We denote the clean
ground-truth label of x as y⋆. Here, we follow the
most common setting where label noise is instance-
independent (Ghosh et al., 2017; Feng et al., 2020; Ma et al., 2020). Under this assumption,
label noise can be either symmetric (i.e., uniform) or asymmetric (i.e., class-conditional). Let
η ∈ [0, 1] be the overall noise rate and ηjk be the class-wise noise rate from ground-truth class
j to class k, where ηjk = p (y = k | y⋆ = j). For symmetric noise, ηjk = η

K−1 for j ̸= k
and ηjk = 1 − η for j = k. For asymmetric noise, ηjk is conditioned on both the true class j
and the mislabeled class k. Given any classifier f and loss function L, the risk of f under clean
labels is defined as: RL(f) = E(x,y⋆)∼Pclean [L(f(x), y⋆)] and the risk under label noise rate η

is: Rη
L(f) = E(x,y)∼Pη

noisy
[L(f(x), y)]. Let f̃ and f⋆ be the global minimizers of Rη

Lτ
CE

(f) and
RLτ

CE
(f), respectively.

Theorem 3.2. Under symmetric label noise with η ≤ 1− 1
K ,

0 ≤ RLτ
CE

(f̃)−RLτ
CE

(f⋆) ≤ ηK

(1− η)K − 1
·AK

τ ,

where AK
τ = log

(
1+(K−1)e2τ

1+(K−1)e−2τ

)
is a constant that depends on τ and class number K.

Theorem 3.3. Under asymmetric label noise with ηij < 1 − ηi,∀j ̸= i,∀i, j ∈ [k], where ηij =
p(y = j | y⋆ = i),∀j ̸= i and (1− ηi) = p(y = i | y⋆ = i)), then

0 ≤ Rη
Lτ

CE
(f∗)−Rη

Lτ
CE

(f̃) ≤ BK
τ

where BK
τ = K log

(
1+(K−1)e2τ

1+(K−1)e−2τ

)
E(x,y⋆)∼Pclean (1− ηi) > 0.
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The proofs of the above two Theorems are provided in Appendix B and Appendix C, respectively.
Theorem 3.2 and Theorem 3.3 show that with LogitClip, the difference of the risks caused by the
derived hypotheses f̃ and f⋆ under noisy and clean labels is always bounded. More specifically, the
two bounds depend on the parameter τ . With a smaller τ , both the AK

τ in Theorem 3.2 and the BK
τ

in Theorem 3.3 become smaller, indicating tighter bounds. The above analysis provably demon-
strates the noise-tolerant ability of cross-entropy loss with LogitClip method. Besides, we extend
our analysis to an instance-dependent setting in Appendix E. We proceed by a general analysis of
composite losses with LogitClip.

Proposition 3.4. Given any base loss ϕ(x) that satisfies the Lipschitz condition with constant L on
the domain MK

τ ≤ x ≤ NK
τ , the resulting composite loss with σ̃τ defined in Equation 3 is bounded:∣∣Lτ
ϕ (f(x;θ), y)

∣∣ ≤ L
(
NK

τ −MK
τ

)
+
∣∣ϕ(MK

τ )
∣∣ ,

where MK
τ = 1

1+(K−1)·e2τ and NK
τ = 1

1+(K−1)·e−2τ .

The proofs of Proposition 3.4 are provided in Appendix D. From Proposition 3.4, we show that
composite losses equipped with LogitClip are bounded if their base losses are locally Lipschitz
continuous (Sohrab, 2003) on the domain, which depends on τ and class number K. If τ → ∞,
the domain turns to be 0 ≤ x ≤ 1. In this case, CE and Focal loss (Lin et al., 2017) do not
satisfy the Lipschitz condition and thus are unbounded. Otherwise, with a constant τ < ∞, CE
and Focal loss are locally Lipschitz continuous on the domain so that they can be bounded with our
LogitClip. Similarly, this conclusion is also applicable to existing robust losses, which generally
satisfy the Lipschitz condition. Based on the loss bound in Proposition 3.4, we can easily derive the
bounds of RLτ

ϕ
(f̃) −RLτ

ϕ
(f⋆) under symmetric and asymmetric label noise, following our proofs

for Theorem 3.2 and Theorem 3.3. Overall, the above analysis provably shows that LogitClip can
enable the resulting composite loss to be noise-tolerant, with the locally Lipschitz condition for the
base loss. We will further verify our analysis experimentally in Section 4.

4 EXPERIMENTS

In this section, we validate the effectiveness of our method on three benchmarks, including simulated
and real-world datasets under various types of label noise. We show that LogitClip not only signif-
icantly improves the robustness of CE loss, but also broadly enhances the performance of popular
robust losses. In addition, we perform a sensitivity analysis to validate the effect of τ .

4.1 SETUPS

Datasets. To verify the efficacy of LogitClip, we comprehensively consider four different types
of label noise, including (1) symmetric noise, (2) asymmetric noise (Zhang & Sabuncu, 2018),
(3) instance-dependent noise (Chen et al., 2020), and (4) real-world noise on CIFAR-10/100
(Krizhevsky et al., 2009) and WebVision (Li et al., 2017) datasets. For symmetric noise, each label
can be flipped to any other class with the same probability. In our experiments, we uniformly flip the
label to other classes with a probability of 20% and 50%, respectively. For asymmetric noise, the
labels might be only flipped to similar classes (Patrini et al., 2017; Zhang & Sabuncu, 2018). In our
CIFAR-10 experiments, we generate asymmetric noisy labels by mapping TRUCK → AUTOMOBILE,
BIRD → AIRPLANE, DEER → HORSE, and CAT ↔ DOG with probability 40%. For CIFAR-100, we
flip each class into the next circularly with a probability of 40%. For instance-dependent noise, we
assume the mislabeling probability of each instance is dependent on the corresponding input fea-
tures (Chen et al., 2020; Xia et al., 2020b). In the experiments, we use the instance-dependent noise
from PDN (Xia et al., 2020b) with a noisy rate of 40%, where the noise is synthesized based on the
DNN prediction error. For real-world noisy labels on the CIFAR datasets, we use the “Worst” label
set of CIFAR-10N and the “Fine” label set of CIFAR-100N (Wei et al., 2022b), respectively.

Training details. We perform training with WRN-40-2 (Zagoruyko & Komodakis, 2016) on
CIFAR-10 and CIFAR-100. In particular, we train the network for 200 epochs using SGD with
a momentum of 0.9, a weight decay of 0.0005, and a batch size of 128. We set the initial learning
rate as 0.1, and reduce it by a factor of 10 after 80 and 140 epochs. For our LogitClip in all experi-
ments, we use Euclidean norm, i.e., p = 2. We use 5k noisy samples as the validation dataset to tune
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Table 1: Average test accuracy (%) with standard deviation on CIFAR-10 under various types of
noisy labels (over 5 runs). The bold indicates the improved results by integrating LogitClip (LC).

Method Sym-20% Sym-50% Asymmetric Dependent Real
CE 86.73±0.72 70.88±0.46 78.34±0.54 68.26±0.21 72.85±0.32

+ LC (Ours) 91.62±0.16 84.37±0.34 86.91±0.68 86.74±0.55 82.06±0.70
Focal 87.17±0.68 70.61±0.59 79.61±0.40 69.40±0.55 72.29±0.41

+ LC (Ours) 91.91±0.46 84.65±0.74 85.42±0.80 87.02±0.22 81.78±0.37
MAE 88.92±0.36 75.73±1.15 56.74±0.71 53.92±1.07 53.26±0.67

+ LC (Ours) 90.84±0.20 86.06±0.52 83.74±0.46 87.76±0.79 82.83±0.38
PHuber-CE 90.92±0.93 74.07±0.41 81.26±0.65 75.07±0.26 76.61±0.58

+ LC (Ours) 91.90±0.65 84.64±0.19 85.54±0.38 86.96±0.72 82.41±0.82
SCE 91.48±0.78 85.38±0.47 78.65±0.60 87.05±0.58 81.65±0.35

+ LC (Ours) 91.56±0.14 86.18±0.35 84.47±1.04 87.61±0.19 82.43±0.37
GCE 90.58±0.66 85.51±0.45 79.35±0.58 87.64±0.62 81.38±0.70

+ LC (Ours) 91.21±0.52 85.90±0.15 84.24±0.84 87.69±0.21 82.44±0.11
Taylor-CE 90.44±0.40 85.71±0.26 80.92±1.37 87.20±0.98 82.32±1.12

+ LC (Ours) 91.37±0.30 86.31±0.18 84.57±0.45 88.05±0.72 82.86±0.55
NCE 90.87±0.94 68.45±0.43 83.68±0.85 73.53±0.93 79.96±0.25

+ LC (Ours) 91.70±0.27 85.88±0.89 88.44±0.53 87.59±1.21 82.11±0.64
AEL 88.59±1.03 77.48±0.88 60.90±1.27 84.55±0.71 69.40±0.38

+ LC (Ours) 90.58±0.36 86.07±0.43 82.12±0.89 87.77±0.48 82.17±0.71
AUL 76.73±0.33 75.27±0.93 59.80±0.75 73.66±0.45 63.96±1.15

+ LC (Ours) 91.31±0.85 85.98±0.74 84.38±0.53 87.93±0.86 82.46±0.66
Cores 91.56±0.23 85.32±0.36 85.30±0.63 86.65±0.83 82.28±0.28

+ LC (Ours) 91.72±0.15 86.06±0.28 86.36±0.33 87.75±0.09 82.83±0.40

the hyperparameter 1/τ in {0.1, 0.5, 1, 1.5, . . . , 4.5, 5}, then train the model on the full training set
and report the average test accuracy in the last 10 epochs. We repeat all experiments 5 times with
different random seeds. More training details are described in Appendix F.

4.2 CIFAR-10 AND CIFAR-100

On CIFAR-10 and CIFAR-100, we validate that LogitClip can enhance the noise robustness of ex-
isting loss functions. In particular, we consider the following loss functions: (1) Cross-Entropy
(CE), which is the most commonly used classification loss. (2) Focal loss, which is originally pro-
posed for dense object detection and also an unbounded classification loss function, LFocal (p, y) =

−
∑K

j=1 yj(1− pj)
γ log(pj). We set γ = 0.5 in our experiments. (3) Mean absolute error (MAE)

(Ghosh et al., 2017), a symmetric loss function LMAE (p, y) = ∥yj − pj∥1 that has been demon-
strated to be robust to label noise. (4) PHuber-CE (Menon et al., 2020), a loss variant of gradient
clipping for learning with noisy labels. (5) SCE (Wang et al., 2019), which boosts CE symmetrically
with a noise-robust counterpart Reverse Cross Entropy (RCE). (6) GCE (Zhang & Sabuncu, 2018), a
bounded loss function that uses a hyperparameter q to balance between MAE and CE. Following the
recommended setting in the corresponding paper, we set the hyperparameter q as 0.7. (7) Taylor-CE
(Feng et al., 2020), which controls the order of the Taylor Series to balance between MAE and CE.
(8) NCE (Ma et al., 2020), which employs loss normalization to boost the robustness of CE loss. (9)
AEL, AUL, and AGCE (Zhou et al., 2021), which are asymmetric loss functions. (10) Cores (Cheng
et al., 2021), a robust loss that is guaranteed to be robust to instance-dependent label noise. We also
consider the Active Passive Loss (Ma et al., 2020) by including NCE+MAE and NCE+AGCE.

Can LogitClip improve the noise-robustness of existing loss functions? Table 1 and Table 2
present the average test accuracy of models trained with different noise-robust loss functions on
CIFAR-10 and CIFAR-100, under various types of noisy labels. A salient observation is that our
method drastically improves the noise-robustness performance of CE by employing LogitClip. For
example, on the CIFAR-10 with instance dependent label noise, our approach improves the test
accuracy of CE loss from 68.36% to 86.60% – a 18.24% of direct improvement. On CIFAR-100,
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Table 2: Average test accuracy (%) with standard deviation on CIFAR-100 under various types of
noisy labels (over 5 runs). The bold indicates the improved results by integrating our method.

Method Sym-20% Sym-50% Asymmetric Dependent Real
CE 64.81±1.10 47.07±1.07 47.68±0.93 52.49±0.79 55.68±0.81

+ LC (Ours) 71.59±0.76 63.16±0.74 59.04±0.18 66.24±0.71 58.61±0.35
Focal 64.76±0.14 47.06±0.56 48.59±0.73 52.87±0.57 55.01±0.65

+ LC (Ours) 71.39±0.79 62.91±0.25 59.53±0.76 66.38±0.30 58.76±0.23
PHuber-CE 71.47±0.29 60.52±0.67 47.26±0.44 64.33±0.41 56.18±0.59

+ LC (Ours) 71.89±0.31 61.46±0.75 53.95±0.38 65.08±0.17 58.64±0.49
SCE 70.11±0.31 58.56±0.78 44.91±0.62 62.86±0.74 58.27±0.88

+ LC (Ours) 71.19±0.23 60.11±0.15 58.67±0.84 64.76±0.28 59.23±0.69
GCE 63.30±0.48 9.10±0.72 40.40±0.45 27.45±0.50 49.54±0.58

+ LC (Ours) 70.22±0.52 62.14±1.20 54.41±0.64 66.25±0.85 58.77±0.76
Cores 69.97±0.56 55.37±0.84 50.24±0.38 59.85±0.61 56.49±0.53

+ LC (Ours) 71.67±0.26 62.67±0.33 63.32±0.70 66.31±0.25 59.23±0.34
NCE+MAE 70.55±0.83 61.01±0.94 53.68±0.18 65.02±0.42 59.27±0.12

+ LC (Ours) 71.59±0.65 62.85±0.52 54.51±0.73 66.58±0.18 60.08±0.34
NCE+AGCE 69.69±0.30 58.13±0.43 58.17±0.25 64.35±0.39 58.64±0.65
+ LC (Ours) 71.30±0.48 63.55±0.45 59.27±0.32 65.51±0.47 59.57±0.55
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Figure 2: The Effect of τ in LogitClip with CIFAR-10 and CIFAR-100 across various noise types.

our method also improves performance by a significant margin. More importantly, we show that
the LogitClip can boost performance for a wide range of loss functions, including non-robust and
robust losses. For example, we observe that, on the CIFAR-10 with asymmetric label noise, the test
accuracy of the NCE loss is improved to 88.44% when employing LogitClip, establishing strong
robustness against all types of label noise. In addition to loss functions, we show our method can
also enhance other deep learning methods by improving DivideMix in Appendix G.1.

How does the logit norm threshold τ affect the noise-robustness of LogitClip? In Figure 2a
and Figure 2b, we ablate how the parameter τ in our method (cf. Eq. 3) affects the noise robustness
performance. The analysis is based on CIFAR-10 and CIFAR-100 with four types of noisy labels,
including symmetric-50%, asymmetric, dependent, and real-world noisy labels. Our results echo
the analysis in Proposition 3.1 and Theorem 3.2, where a smaller τ would lead to a tighter bound on
the difference of the risks between using noisy and clean labels. On the other hand, too small of τ
causes a large lower bound on the loss, which is less desirable from the optimization perspective. In
Appendix G.3, We clearly validate the underfitting issue caused by a small τ with experiments on a
clean dataset.

Is LogitClip effective with different architectures? To show our proposed method is model-
agnostic, we conduct experiments on a diverse collection of model architectures and present the
results in Table 3. From the results, we observe that LogitClip consistently improves the test per-
formance on CIFAR-10 when using SqueezeNet (Iandola et al., 2016), ResNet (He et al., 2016),
DenseNet (Huang et al., 2017) architectures. For instance, with DenseNet, using LogitClip boosts
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Table 3: Average test performance comparison on noisy CIFAR-10 with different network architec-
tures: SqueezeNet (Iandola et al., 2016), ResNet (He et al., 2016), DenseNet (Huang et al., 2017).
All values are percentages. The results are shown as CE / +LC (ours).

Architecture Sym-20% Sym-50% Asymmetric Dependent Real

SqueezeNet 80.77 / 81.05 54.73 / 71.64 75.67 / 78.98 75.43 / 76.74 61.28 / 75.38
ResNet-34 74.16 / 84.88 54.48 / 74.81 73.94 / 79.69 58.03 / 76.51 63.24 / 75.25
DenseNet 80.40 / 90.85 59.34 / 81.29 76.35 / 84.35 62.27 / 84.20 63.13 / 78.93

Table 4: Top-1 validation accuracy (%) on the clean ILSVRC12 validation set of ResNet-18 models
trained on WebVision using different loss functions, under the Mini setting Jiang et al. (2018). The
bold indicates the best results. Here, “Ours” denotes CE equipped with LogitClip and “Ours+”
denotes NCE+AGCE (latest state-of-the-art (Zhou et al., 2021)) equipped with LogitClip.

Method CE PHuber-CE GCE SCE NCE+MAE NCE+AGCE Ours Ours+

best 62.6 61.6 57.32 59.52 64.08 63.80 65.12 64.92

last 60.84 59.76 53.26 58.47 62.85 62.46 63.75 64.50

the test accuracy of CE from 59.34% to 81.29%, a 21.99% of direct improvement on CIFAR-10
with Symmetric-50% noisy labels.

4.3 WEBVISION

Going beyond CIFAR benchmarks, we verify the effectiveness of LogitClip on a large-scale real-
world noisy dataset – WebVision (Li et al., 2017). In the WebVision dataset, there are 2.4 million
images with real-world noisy labels, crawled from the web (e.g., Flickr and Google) based upon the
1,000 classes of ImageNet ILSVRC12 (Deng et al., 2009). Following the “Mini” setting used in
previous works (Jiang et al., 2018; Ma et al., 2020; Zhou et al., 2021), we take the first 50 classes
of the Google resized image subset. For evaluation, we test the trained networks on the same 50
classes of the ILSVRC12 validation set, which can be seen as a clean validation. For each loss, we
train a ResNet-18 network using SGD for 120 epochs with an initial learning rate of 0.1, Nesterov
momentum 0.9, weight decay 5 × 10−4, and batch size 128. The learning rate is reduced by a
factor of 10 after 40 and 80 epochs. We resize the images to 224× 224 and apply the standard data
augmentations, including random cropping and random horizontal flip. As shown in Table 4, best
denotes the score of the epoch where the validation accuracy is optimal, and last denotes the scores
at the average accuracy in the last 10 epochs. As shown in the table, LogitClip not only outperforms
but also enhances existing loss functions by a meaningful margin. The results verify that our method
is effective for improving noise-robustness in large-scale real-world scenarios.

5 DISCUSSION

Relations to existing clipping methods. In the literature, clipping-based methods have been stud-
ied in the context of deep learning (Bengio et al., 1994; Zhang et al., 2020; Abadi et al., 2016;
Howard et al., 2017; Sun et al., 2021). One of the most classic clipping-based methods is gradient
clipping, a widely used technique in recurrent neural networks (Bengio et al., 1994), optimization
(Hazan et al., 2015; Levy, 2016; Zhang et al., 2020), and privacy (Abadi et al., 2016; Pichapati et al.,
2019). In the simplest form, gradient clipping is designed to constrain the global parameter gradient
norm at a specified threshold. With a loss function ℓθ, the clipped gradient with a user-specified
threshold τ > 0 can be computed as:

ḡτ (θ)
.
= clipτ (g(θ)) clipτ (w)

.
=

{
τ · w

∥w∥2
if ∥w∥2 ≥ τ

w else
,

where g(θ) denotes the gradient for a mini-batch: g(θ)
.
= 1

b

∑b
n=1 ∇ℓθ (xn, yn). Different from

gradient clipping which limits the norm of the parameter gradient, our LogitClip method places the
constraint directly on the model output, i.e., the logit vector. Our method is thus designed to have
a direct and explicit effect in bounding the loss (cf. Theorem 3.2 and Theorem 3.3) and preventing
overfitting to examples with noisy labels.
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Indeed, recent work (Menon et al., 2020) has shown that gradient clipping alone does not endow
label noise robustness to neural networks. They instead proposed a noise-robust variant, composite
loss-based gradient clipping and the resulting partially Huberised loss (PHuber-CE). The results in
Section 4 have shown that LogitClip not only outperforms but also enhances the performance of
PHuber-CE loss. Our results overall demonstrate the superiority and complementarity of LogitClip
to gradient clipping on noise robustness.
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Figure 3: Performance comparison
among ReLU6, LC-V, and our method
(LC-N) on noisy CIFAR-10.

ReLU6 (Howard et al., 2017) is a modification of the
rectified linear unit (ReLU) to facilitate the learning of
sparse features. In particular, ReLU6 clamps the activa-
tion of the intermediate layers to a maximum value of
6, ReLU6(x) = min(max(0,x), 6). Although ReLU6
provides a constraint on the outputs of the intermediate
layers, the resulting loss is unbounded yet since the fi-
nal output can be multiplied through the last linear layer.
The empirical results in Figure 3 show that ReLU6 can-
not enhance the robustness to noisy labels while our
method (LC-N) achieves a significant improvement. In
Appendix H, we discuss the difference between LogitClip
and LogitNorm (Wei et al., 2022a), a very recent method
developed for OOD detection.

Clipping-by-value vs. Clipping-by-norm. While our logit clipping has demonstrated strong
promise in the manner of Clipping-by-norm, one may also ask: can a similar effect be achieved
by clipping the logit vector by value? In this ablation, we show that directly constraining the max-
imum and minimum values of the logit vector does not work well as our method. In particular, we
consider the link function as softmax with Clipping-by-value:

σ̄′
λ(z)

.
= σ(clip′λ(z)) clip′λ(zj)

.
=


λ if zj ≥ λ

−λ if zj ≤ −λ

zj else
,

where λ denotes the constant threshold. For convenience, we set the maximum and minimum values
as λ and −λ, respectively. We search the best λ in {0.1, 0.5, 1, 1.5, . . . , 4.5, 5}.

Figure 3 presents the performance comparison between our method and the variant of Clipping-
by-value, denoted as LC-N and LC-V, respectively. While both the two logit clipping methods
improve the robustness of CE against noisy labels, LC-V obtains inferior performance compared to
our proposed method, and the gaps become remarkably significant under complex noise settings,
e.g., instance-dependent and real-world label noise. From a theoretical perspective, CE with LC-V
also satisfies the bound in Proposition 3.1 and is hence applicable for the two bounds in Theorem 3.2
and Theorem 3.3, which indicates the noise-robustness of this method. Nevertheless, LC-V is sub-
optimal as the clipping operation may diminish the gradients on the clipped components of the logit
vector. Besides, LC-V would also modify the direction of the input vector and even change the final
prediction. Overall, we demonstrate that our method is superior to the variant of clipping-by-value.

6 CONCLUSION

In this paper, we propose Logit Clipping (LogitClip), a general strategy that can universally enhance
the noise robustness of existing losses, across various types of label noise. Specifically, we propose
to clamp the norm of the logit vector to ensure that it is upper bounded by a constant. In this
manner, CE loss equipped with our LogitClip method is effectively bounded, alleviating overfitting
to examples with noisy labels. As a result, our method could mitigate the undesirable influence of
unbounded loss without modifying the loss function. Moreover, we present theoretical analyses to
certify the noise-tolerant ability of this method. Extensive experiments show that LogitClip not only
significantly improves the noise robustness of CE loss, but also broadly enhances the generalization
performance of popular robust losses. This method is straightforward to implement with existing
losses and can be easily adopted in various practical settings. We hope that our method inspires
future theoretical research to explore robust loss from the logit perspective.
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A PROOF OF PROPOSITION 3.1

Proof. Give a logit vector z = f(x;θ), for any class pair j and k, we have:

zmin − zmax ≤ zj − zk ≤ zmax − zmin

Recall that −τ ≤ clipτ (zj) ≤ τ , then:

−2τ ≤ zj − zk ≤ 2τ

Based on Equation (2), we have:

log(1 + (K − 1) · e−2τ ) ≤ Lτ
CE (f(x;θ), y) ≤ log(1 + (K − 1) · e2τ ).

Thus Proposition 3.1 is proved.

13



Under review as a conference paper at ICLR 2023

B PROOF OF THEOREM 3.2

Proof. Recall that for symmetric label noise with noise rate η, we have: ηjk = 1− η for j = k, and
ηjk = η

K−1 . Then, for any model output f(x),

Rη
Lτ

CE
(f) =E(x,y)∼Pη

noisy
[Lτ

CE(f(x), y)]

=EPxEPy⋆|xEPy|y⋆ [Lτ
CE(f(x), y)]

=E(x,y⋆)∼Pclean

(1− η)Lτ
CE(f(x), y

⋆) +
η

K − 1

∑
j ̸=y⋆

Lτ
CE(f(x), j)


=(1− η)RLτ

CE
(f) +

η

K − 1

 K∑
j=1

Lτ
CE(f(x), j)−RLτ

CE
(f)


=

(
1− ηK

K − 1

)
RLτ

CE
(f) +

η

K − 1

K∑
j=1

Lτ
CE(f(x), j).

From proposition 3.1, we have:

K log(1 + (K − 1) · e−2τ ) ≤
K∑
j

Lτ
CE(f(x), j) ≤ K log(1 + (K − 1) · e2τ ).

Thus,

βRLτ
CE

(f)+
ηK

K − 1
log(1+ (K− 1)e−2τ ) ≤ Rη

Lτ
CE

(f) ≤ βRLτ
CE

+
ηK

K − 1
log(1+ (K− 1)e2τ ).

where β = (1− ηK
K−1 ). We can also write the inequality in terms of Rη

Lτ
CE

(f):

1

β

(
Rη

Lτ
CE

(f)− ηK

K − 1
log(1 + (K − 1)e2τ )

)
≤ RLτ

CE
(f) ≤ 1

β

(
Rη

Lτ
CE

− ηK

K − 1
log(1 + (K − 1)e−2τ )

)
.

For f̃ , we have:

RLτ
CE

(f̃)−RLτ
CE

(f⋆) ≤ 1

β

(
ηK

K − 1
logAK

η +Rη
Lτ

CE
(f̃)−Rη

Lτ
CE

(f⋆)

)
,

where AK
η =

(
1+(K−1)e2τ

1+(K−1)e−2τ

)
. Since η ≤ 1 − 1

K , f⋆ is the global minimizer of RLτ
CE

(f̃) and f̃ is

the global minimizer of Rη
Lτ

CE
(f̃), we have

0 ≤ RLτ
CE

(f̃)−RLτ
CE

(f⋆) ≤ ηK

(1− η)K − 1
·AK

τ ,

which concludes the proof.
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C PROOF OF THEOREM 3.3

Proof. For asymmetric label noise, we have

Rη
Lτ

CE
(f) =E(x,y)∼Pη

noisy
[Lτ

CE(f(x), y)]

=E(x,y⋆)∼Pclean [(1− ηi)Lτ
CE(f(x), y

⋆)] + E(x,y⋆)∼Pclean

∑
j ̸=y⋆

ηijLτ
CE(f(x), j)


≤E(x,y⋆)∼Pclean

(1− ηi)

K log(1 + (K − 1) · e2τ )−
∑
j ̸=y⋆

Lτ
CE(f(x), j)


+ E(x,y⋆)∼Pclean

∑
j ̸=y⋆

ηijLτ
CE(f(x), j)


=K log(1 + (K − 1) · e2τ ) · E(x,y⋆)∼Pclean(1− ηi)− E(x,y⋆)∼Pclean

∑
j ̸=y

λjLτ
CE(f(x), j)

 ,

where λj = (1− ηi − ηij). On the other hand, we have

Rη
Lτ

CE
(f) ≥ K log(1+(K−1)·e−2τ )·E(x,y⋆)∼Pclean(1−ηi)−E(x,y⋆)∼Pclean

∑
j ̸=y⋆

λjLτ
CE(f(x), j)


Hence,

Rη
Lτ

CE
(f⋆)−Rη

Lτ
CE

(f̃) ≤ BK
τ + E(x,y⋆)∼Pclean

∑
j ̸=y⋆

λj

(
Lτ
CE

(
f̃j(x), j

)
− (Lτ

CE (f∗(x), j))
)

where BK
τ = K log

(
1+(K−1)e2τ

1+(K−1)e−2τ

)
Ep(x,y) (1− ηi). Let q− and q+ denote the lower bound and

the upper bound in Proposition 3.1. We assume Rη
Lτ

CE
(f⋆) = q−, i.e., Lτ

CE (f⋆(x), y⋆) = q−,
which is only satisfied iff f⋆

j (x) = τ when j = y⋆ and f⋆
j (x) = −τ when j ̸= y⋆. In this

case, Lτ
CE (f⋆(x), j) = q+,∀j ̸= y⋆ and Lτ

CE (f⋆(x), j) ≤ q+,∀j ∈ [K]. Since f⋆ is the global
minimizer of RLτ

CE
(f) and λ = (1− ηi − ηij) > 0, we have

E(x,y⋆)∼Pclean

∑
j ̸=y⋆

λj

(
Lτ
CE(f̃(x), j)− Lτ

CE (f⋆(x), j)
) ≤ 0.

Thus, we have
0 ≤ Rη

L (f⋆)−Rη
L(f̃) ≤ BK

τ ,

which concludes the proof.

D PROOF OF PROPOSITION 3.4

Proof. Let p = σ′
τ (z). Recall that −τ ≤ zj ≤ τ,∀j ∈ [K], we have:

1

1 + (K − 1) · e2τ
≤ pj ≤

1

1 + (K − 1) · e−2τ
,∀j ∈ [K],

Let MK
τ and NK

τ denote the lower and upper bound of pj . Given that the base loss ϕ(py) satisfies
the Lipschitz condition with constant L on the domain. For any py ∈ [MK

τ , NK
τ ], we have

|ϕ(py))− ϕ(MK
τ )| ≤ L|py)−MK

τ | ≤ L|NK
τ −MK

τ |,
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and

|ϕ(py))| = |ϕ(py))− ϕ(MK
τ ) + ϕ(MK

τ )|
≤ |ϕ(py))− ϕ(MK

τ )|+ |ϕ(MK
τ )|

≤ L|NK
τ −MK

τ |+ |ϕ(MK
τ )|.

Since NK
τ −MK

τ ≥ 0,∀τ > 0, we have:∣∣Lτ
ϕ (f(x;θ), y)

∣∣ ≤ L
(
NK

τ −MK
τ

)
+
∣∣ϕ(MK

τ )
∣∣ ,

which concludes the proof.

E THEORETICAL ANALYSIS UNDER INSTANCE-DEPENDENT SETTING

In Theorem 3.2 and Theorem 3.3, we have provably shown the noise-tolerant ability of cross-entropy
loss with LogitClip. Here, we extend the theoretical analysis to an instance-dependent setting, where
the noise rate ηx is a function of instance x and ηxj may vary across classes j.

Theorem E.1. Under instance-dependent label noise with 1− ηx > ηxj ,∀x, j ̸= y⋆x, where ηxj =
p(y = j | x),∀j ̸= i and (1− ηx) = p(y = i | x, y⋆ = i)), then

0 ≤ Rη
Lτ

CE
(f∗)−Rη

Lτ
CE

(f̃) ≤ CK
τ

where CK
τ = K log

(
1+(K−1)e2τ

1+(K−1)e−2τ

)
E(x,y⋆)∼Pclean (1− ηx) > 0.

Proof. For instance-dependent label noise, we have

Rη
Lτ

CE
(f) =E(x,y)∼Pη

noisy
[Lτ

CE(f(x), y)]

=EPxEPy⋆|xEPy|x,y⋆ [Lτ
CE(f(x), y)]

=E(x,y⋆)∼Pclean [(1− ηx)Lτ
CE(f(x), y

⋆)] + E(x,y⋆)∼Pclean

∑
j ̸=y⋆

ηxjLτ
CE(f(x), j)


≤E(x,y⋆)∼Pclean

(1− ηx)

K log(1 + (K − 1) · e2τ )−
∑
j ̸=y⋆

Lτ
CE(f(x), j)


+ E(x,y⋆)∼Pclean

∑
j ̸=y⋆

ηxjLτ
CE(f(x), j)


=K log(1 + (K − 1) · e2τ ) · E(x,y⋆)∼Pclean(1− ηx)− E(x,y⋆)∼Pclean

∑
j ̸=y

λxjLτ
CE(f(x), j)

 ,

where λj = (1− ηi − ηxj). On the other hand, we have

Rη
Lτ

CE
(f) ≥ K log(1+(K−1)·e−2τ )·E(x,y⋆)∼Pclean(1−ηx)−E(x,y⋆)∼Pclean

∑
j ̸=y⋆

λxjLτ
CE(f(x), j)


Hence,

Rη
Lτ

CE
(f⋆)−Rη

Lτ
CE

(f̃) ≤ CK
τ +E(x,y⋆)∼Pclean

∑
j ̸=y⋆

λxj

(
Lτ
CE

(
f̃j(x), j

)
− (Lτ

CE (f∗(x), j))
)
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where CK
τ = K log

(
1+(K−1)e2τ

1+(K−1)e−2τ

)
E(x,y⋆)∼Pclean (1− ηx). From the proof of Theorem 3.3, we

have Lτ
CE(f̃(x), j) − Lτ

CE (f⋆(x), j) ≤ 0,∀x, j ̸= y⋆x. Recall that λ = (1− ηx − ηxj) > 0, we
have

Ep(x,y)

∑
j ̸=y⋆

λxj

(
Lτ
CE(f̃(x), j)− Lτ

CE (f⋆(x), j)
) ≤ 0.

Thus, we have
0 ≤ Rη

L (f⋆)−Rη
L(f̃) ≤ CK

τ ,

which concludes the proof.

F MORE DETAILS ON EXPERIMENT SETUP

Hyperparameter setting. We conduct all the experiments on NVIDIA GeForce RTX 3090, and
implement all methods by PyTorch. We tune the hyperparameters for all compared methods and
find that the optimal settings basically match those in their original papers. Specifically, for GCE,
we set q = 0.7. For SCE, we set α = 0.5 and β = 1.0. For AEL loss, we set a = 2.5. For AUL
loss, we set a = 5.5 and q = 3. For PHuber-CE, we set τ = 10 for CIFAR-10 and τ = 30 for
CIFAR-100 and WebVision. For the experiments of NCE+MAE on CIFAR-100 and WebVision, we
set α = 50 and β = 1. For NCE+AGCE on CIFAR-100, we set α = 50, β = 0.1, a = 1.8 and
q = 3.0. On WebVision, we set the hyperparameters of NCE+AGCE as α = 50, β = 0.1, a = 2.5,
and q = 3.0. For the best τ of our LogitClip, it may depend on the dataset, noise type, and the base
loss. In Table 5, we present the best values of 1/τ in CE with LogitClip.

Table 5: Best Values of 1/τ for CE+LogitClip on different datasets with various noise settings.

Dataset Symmetric-20% Symmetric-50% Asymmetric Dependent Real-world

CIFAR-10 1.0 1.5 2.5 2.0 2.5

CIFAR-100 0.5 0.5 2.5 0.5 0.5

WebVision 1.2

G MORE EMPIRICAL RESULTS

Table 6: Test performance comparison for DivideMix (Li et al., 2020) on noisy CIFAR-10 with
different noisy types. The results show that our method can boost the performance of DivideMix.

Method Symmetric-50% Asymmetric Dependent Real-world

DivideMix 94.41 92.02 94.11 92.24
+LC(Ours) 95.15 92.73 95.25 93.16

G.1 CAN LOGITCLIP IMPROVE DEEP LEARNING METHODS?

In the experiments shown in Section 4, we show that our method can consistently improve the noise
robustness of existing popular losses, including non-robust losses and robust losses. One may raise
the question: Can LogitClip improve deep learning methods? Here, we use DivideMix (Li et al.,
2020) as the representative method to show the universality of our LogitClip. For the experiments
with DivideMix, we use the same setting as those reported in the paper of DivideMix. Specifically,
we use an 18-layer PreAct Resnet (He et al., 2016) and train it using SGD with a momentum of 0.9,
a weight decay of 0.0005, and a batch size of 128. The network is trained for 300 epochs. The warm-
up period is 10 epochs for CIFAR-10. For the hyperparameters, we set M = 2, T = 0.5, α = 4,
and τ = 0.5. For DivideMix + LogitClip, we employ the logit clipping for all the model outputs
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during training. The test performance for DivideMix on noisy CIFAR-10 is reported in Table 6.
From the results, we can observe that our LogitClip can consistently improve the performance of
DivideMix with a meaningful margin, which validates the universality of our method in boosting
noise robustness.

G.2 LOGIT CLIPPING VS. NORM REGULARIZATION

As demonstrated in Subsection 3.2, our training objective can be formalized as a constrained opti-
mization with inequality constraint. Therefore, we may consider an alternative method by simply
adding the constraint via the Lagrangian multiplier, termed Norm Regularization:

Llogit penalty(f(x; θ), y) = LCE(f(x; θ), y) + λ∥f(x; θ)∥2.
In the experiments, we select the best λ in {0.01, 0.05, 0.1, 0.5}. Our results in Figure 4 show
that Norm Regularization is inferior to our LogitClip across four noise types, while both methods
improve the test accuracy compared to Cross Entropy loss. With Norm Regularization, we notice
that the trained network can suffer from optimization difficulty and sometimes fail to converge if
λ is too large (which is needed to regularize the logit norm effectively). Overall, we show that
simply constraining the logit norm during training cannot achieve comparable performance as our
LogitClip, which significantly improves the noise robustness.

sym-20% sym-50% asym dep real
Noise Type
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Figure 4: Test performance comparison among CE, Norm Regularization (+Reg), and our method
(+LC) on noisy CIFAR-10 across different noise types.

G.3 PERFORMANCE ON CLEAN DATASETS

We evaluate the performance of LogitClip on the clean CIFAR-100 dataset with different τ . As
discussed in Section 3 (Proposition 3.1), LogitClip is equivalent to vanilla cross-entropy loss if the
τ is sufficiently large. Contrastively, a small τ will induce a large lower bound on the loss value,
which may lead to difficulty in loss optimization (Underfitting). As shown in Table 7, LogitClip
with a large τ achieves comparable performance as the vanilla CE loss. Besides, the performance of
LogitClip can be degraded as we decrease the value of τ , which validates the underfitting issue in
our analysis.

Table 7: Performance of CE+LogitClip under different τ on the clean CIFAR-100 dataset.

τ 20 10 2 1 0.5 0.25 CE

Accuracy 75.90 75.51 74.38 73.23 68.00 46.04 75.98

H RELATIONS TO LOGITNORM

Recent work (Wei et al., 2022a) employs logit normalization (LogitNorm) to improve the OOD
detection and calibration performance. For all training inputs, the logit vector is normalized to be
a unit vector with a constant norm and the resulting loss is defined as: Llogit norm(f(x; θ), y) =

− log efy/(τ∥f∥)∑k
i=1 efi/(τ∥f∥) . Our work bears three critical differences, in terms of the problem setting,

methodology, and theoretical insights.
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(1) Problem setting: LogitNorm focuses on improving the performance of detecting out-of-
distribution (OOD) examples during the test time, while our work aims to enhance the robustness
against noisy labels in the training stage. The learning tasks are fundamentally different.

(2) Methodology: We propose to clamp the logit vector to ensure it is upper bounded by a constant,
while LogitNorm enforces the norm of logit vectors to be an exact constant for all samples. From
a constrained optimization perspective, LogitNorm enforces equality constraint on the L2 norm of
logit vector, whereas LogitClip enforces inequality constraint. Hence, LogitClip enforces a less
strict objective than LogitNorm. Choosing the way of clipping-by-norm is the only reason why our
approach seems technically similar to the LogitNorm. As discussed in Section 5, we consider the
variant of clipping-by-value and provide a detailed comparison between the two different clipping
operations in LogitClip. Referring to the relationship between Gradient Clipping (Abadi et al., 2016;
Zhang et al., 2020) and Gradient Normalization (NGD) (Hazan et al., 2015; Murray et al., 2019),
LogitClip is a unique method that differs from LogitNorm.

(3) Theoretical insight: LogitNorm aims to decouple the influence of logits’ magnitude from net-
work optimization, and they empirically shows that their method leads to more meaningful infor-
mation to differentiate in-distribution and OOD samples. In contrast, our LogitClip is designed to
enforce an upper bound of the resulting loss, as shown in Proposition 3.1. Furthermore, we provide
a theoretical interpretation to further understand why LogitClip introduces the noise-tolerant abil-
ity and which kinds of loss functions LogitClip can work with. In summary, our analysis builds a
connection between LogitClip and noise robustness, which is novel to the best of our knowledge.

In Table 8, we present the performance comparison of LogitClip and LogitNorm in learning with
noisy labels. From the comparison, we find that LogitClip is superior to the LogitNorm in this
task, especially in those complicated settings. For example, in the asymmetric setting, LogitClip
outperforms the LogitNorm method by a large margin of 5.1%. Intuitively, LogitNorm can improve
the robustness to label noise because it also induces a loss bound. However, it enforces a more strict
constraint on all training examples, which may make LogitNorm suboptimal in this task.

Table 8: Comparison between LogitClip and LogitNorm on the CIFAR-10 dataset with various noise
settings.

Method Sym-50% Asymmetric Dependent Real

LogitNorm 83.97 81.81 84.56 80.10
LogitClip 84.37 86.91 86.74 82.06
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