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Abstract

Neural networks on simplicial complexes (SCs) can learn representations from data residing
on simplices such as nodes, edges, triangles, etc. However, existing works often overlook
the Hodge theorem that decomposes simplicial data into three orthogonal characteristic
subspaces, such as the identifiable gradient, curl and harmonic components of edge flows.
This provides a universal tool to understand the machine learning models on SCs, thus,
allowing for better principled and e�ective learning. In this paper, we study the e�ect of
this data inductive bias on learning on SCs via the principle of convolutions. Particularly,
we present a general convolutional architecture that respects the three key principles of
uncoupling the lower and upper simplicial adjacencies, accounting for the inter-simplicial
couplings, and performing higher-order convolutions. To understand these principles, we first
use Dirichlet energy minimizations on SCs to interpret their e�ects on mitigating simplicial
oversmoothing. Then, we show the three principles promote the Hodge-aware learning of
this architecture, through the lens of spectral simplicial theory, in the sense that the three
Hodge subspaces are invariant under its learnable functions and the learning in two nontrivial
subspaces is independent and expressive. Third, we investigate the learning ability of this
architecture in optic of perturbation theory on simplicial topologies and prove that the
convolutional architecture is stable to small perturbations. Finally, we corroborate the three
principles by comparing with methods that either violate or do not respect them. Overall,
this paper bridges learning on SCs with the Hodge theorem, highlighting its importance
for rational and e�ective learning from simplicial data, and provides theoretical insights to
convolutional learning on SCs.

1 Introduction

In the line of geometric deep learning (Bronstein et al., 2021), there is a growing interest in learning from
data defined on simplicial complexes. The motivation behind this comes from two limitations of standard
graph neural networks (GNNs). First, graphs are limited to model pairwise interactions between data entites
on nodes, yet polyadic (multi-way) interactions often arise in real-world networks (Battiston et al., 2020;
Benson et al., 2021; Torres et al., 2021), such as friendship networks (Newman et al., 2002), collaboration
networks (Benson et al., 2018), gene regulatory networks (Masoomy et al., 2021). Second, graphs are often
used to support signals on the nodes, and standard graph signal processing and GNN approaches often
revolve around signals and features on nodes. Yet, signals involved with multiple entities are less researched
compared to signals on nodes (with one entity). They arise as signal flows on edges, signals on triangles and
so on. For example, in physical networks, we may encounter water flows in a water supply network (Money
et al., 2022), tra�c flows in a road network (Jia et al., 2019), trading flows in financial networks (Lim, 2020)
and information flows in brain networks (Anand et al., 2022), as well as in human-generated networks, we
have collaboration data, such as triadic collaborations in coauthorship networks (Benson et al., 2018).

Simplicial complexes are a popular higher-order network model and have been shown e�ective to address
both limitations of graph-based models (Bick et al., 2021). They are composed of topological objects, namely,
nodes, edges, triangles, etc., which are simplices of di�erent orders. Simplicial complexes naturally describe
more topological (higher-order) relationships in networks, thus, having more topological expressive power
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than graphs. This has been the main motivation of recent neural networks developed on simplicial complexes
(Roddenberry & Segarra, 2019; Bunch et al., 2020; Ebli et al., 2020; Roddenberry et al., 2021; Bodnar et al.,
2021b; Chen et al., 2022b; Giusti et al., 2022). We also refer readers to the recent surveys (Papamarkou
et al., 2024; Besta et al., 2024). In analogy to standard GNNs relying on the adjacency between nodes, the
central idea behind these works is to rely on the relationships between simplices to enable learning. Such
relations can be twofold: first, two simplices can be lower and upper adjacent to each other, e.g., an edge can
be (lower) adjacent to another via a shared node, and can also be (upper) adjacent to another by locating
in a common triangle; and second, there exist inter-simplicial couplings (or simplicial incidences) between
simplices of di�erent orders, as shown in Fig. 1a. The aforementioned works mainly vary in terms of either
message-passing or convolutional flavor, or the type of simplicial relationships relying, either on only simplicial
adjacencies or on both adjacencies and incidences.

Furthermore, signals can be defined on simplices to model the data related to multiple entites in networks.
This has been the main focus of topological signal processing literature Barbarossa & Sardellitti (2020); Schaub
et al. (2021); Yang et al. (2022a). The celebrated combinatorial Hodge decomposition arising from discrete
calculus (Grady & Polimeni, 2010; Lim, 2020) provides a unique and characteristic decomposition of simplicial
signals into three components. This is particularly intuitive for edge flows which allows their decomposition
into gradient flows, curl flows and harmonic flows, that are, respectively, curl-free, divergence-free or both.
These notions from discrete calculus interestingly allow us to capture some physical properties of the simplicial
signals, such as the conservation laws (Grady & Polimeni, 2010). More importantly, this decomposition o�ers
a tool to better analyze simplicial signals, as reported in statistical ranking problems, financial exchange
markets (Jiang et al., 2011), tra�c networks (Jia et al., 2019), brain networks (Anand et al., 2022) and
game theory (Candogan et al., 2011). We hypothesize it will further promote better principled and e�ective
learning methods on simplicial complexes.

Given this context, we reckon that the aforementioned works on simplicial neural networks mostly focus on
the pure topological aspect of simplicial complexes. It lacks theoretical analyses of their learning capabilities
from the Hodge spectral perspective. Also, since SCs are often built from data and are prone to estimation
uncertainty, the learning on SCs benefits from a stability analysis to investigate their robustness against
perturbations on the simplicial topologies. Thus, in this paper, after reviewing some background on simplicial
complexes and simplicial signals in Section 2, we propose a more general and unified framework, namely,
simplicial complex convolutional neural network (SCCNN), and we focus on the following three theoretical
aspects.

Contributions

• In Section 3 we introduce SCCNN and emphasize its three principles, namely, uncoupling the
lower and upper simplicial adjacencies, accounting for the inter-simplicial couplings, and performing
higher-order convolutions. We then use the Dirichlet energy minimization on SCs to understand
how uncoupling the lower and upper adjacencies in Hodge Laplacians, as well as the inter-simplicial
couplings can mitigate simplicial oversmoothing.

• In Section 4, we characterize the spectral behavior of SCCNN and its expressive power under the help
of spectral simplicial theory (Steenbergen, 2013; Barbarossa & Sardellitti, 2020; Yang et al., 2021).
We show that an SCCNN performs independent and expressive learning in the three subspaces of the
Hodge decomposition, which are invariant under its learning operators. This Hodge-awareness (or
Hodge-aided bias) allows for e�ective and rational learning on SCs compared to MLPs or simplicial
message-passing networks (Bodnar et al., 2021b).

• In Section 5, we obtain a theoretical stability bound on the SCCNN outputs against small perturbations
on the simplicial connections. This allows us to see how the three principles and other network
factors can a�ect the stability, as well as the limitations of SCCNNs. This analysis in turn guides the
design of convolutional architectures.

In Section 6, we validate our theoretical findings and highlight the e�ect of the three principles, the need for
the Hodge-aware learning, as well as the stability, based on di�erent simplicial tasks including recovering
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foreign currency exchange (forex) rates, predicting triadic and tetradic collaborations, and ocean current
trajectories. Finally, we conclude the paper in Section 7 with a discussion on this work and its relations to
existing works.

2 Background

We first review simplicial complexes and data supported on simplices, which are natural generalizations of
the corresponding notions on graphs. Then, we introduce discrete calculus on simplicial complexes, which is
linked to the incidence matrices. Finally, we discuss the Hodge decomposition, which uniquely characterizes
the simplicial signals from three subspaces.

2.1 Simplicial complex and simplicial signals

Given a set V = {1, . . . , n0} of vertices, a k-simplex s
k is a subset of V with cardinality k + 1. Geometrically,

a node is a 0-simplex, an edge connecting two vertices is a 1-simplex and a triangular face (we shorten it as a
triangle) is a 2-simplex. A subset, with cardinality k, of s

k is a face. A coface of s
k is a (k + 1)-simplex that

has s
k as a face. Furthermore, one can collect k-simplices for k = 0, . . . , K to form a simplicial complex (SC)

S of order K with the inclusion restriction that if a simplex is in the SC, so are its subsets. A graph is an SC
of order one and by including some triangles, we obtain an SC of order two, as shown in Fig. 1a. We denote
the set of all k-simplices in S as S

k = {s
k
i }i=1,...,nk where nk = |S

k
|, i.e., S = fi

K
k=0

S
k.

Simplicial adjacency For any two k-simplices, we say they are lower (upper) adjacent if they share a
common face (coface), which natualy defines the notion of simplicial neighborhoods. For example, two nodes
are (upper) adjacent in a graph if they are connected by an edge. In Fig. 1a, edges e1 and e3 are lower
neighbors as they share node 1; while e1 and e2 are upper neighbors since they are located in the triangle t1.

Orientation For computational purposes, we annotate each simplex with an orientation, as an ordering
of the labels of its vertices (a node has a trivial orientation). Here we consider the increasing ordering as
the reference orientation, that is, a triangle s

2 = {i, j, k} is oriented as [i, j, k] for i < j < k, and an edge
s

1 = {i, j} is oriented as [i, j] for i < j.

Algebraic representation We use the incidence matrix Bk œ Rnk≠1◊nk to describe the relationships
between (k ≠ 1)- and k-simplices. Thus, B1 encodes the node-to-edge incidence and B2 the edge-to-triangle
incidence. In an oriented SC S, the entries of B1 and B2 are given by

[B1]ie =

Y
_]

_[

≠1, for e = [i, ·]
1, for e = [·, i]
0, otherwise.

[B2]et =

Y
___]

___[

1, for e = [i, j], t = [i, j, k]
≠1, for e = [i, k], t = [i, j, k]
1, for e = [j, k], t = [i, j, k]
0, otherwise.

(1)

We further define the k-Hodge Laplacian

Lk = B
€
k Bk + Bk+1B

€
k+1

(2)

with the lower Laplacian Lk,d = B
€
k Bk and the upper Laplacian Lk,u = Bk+1B

€
k+1

. We have a set of
Lk, k = 1, . . . , K ≠ 1 in an SC of order K with L0 = B1B

€
1

the graph Laplacian, and LK = B
€
KBK .

Topologically, Lk,d and Lk,u encode the lower and upper adjacencies of k-simplices, respectively. For example,
L1,d encodes the edge-to-edge adjacencies through nodes while L1,u encodes the adjacencies through triangles.

2.2 Simplicial signals and Hodge decomposition

Simplicial signals A k-simplicial signal (or data) xk œ Rnk supported on the simplicial set S
k is defined

by an alternating map fk : S
k

æ Rnk , which assigns a real value to a simplex, with the condition that if the
orientation of a simplex is anti-aligned with the reference orientation, then the signal will change the sign
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(a) SC (b) Edge flow (c) Gradient flow (d) Curl flow (e) Harmonic flow

Figure 1: (a) A simplicial 2-complex where green shaded triangles denote 2-simplices and the arrows denote
the chosen reference orientations. (b) An edge flow where we denote its divergence and curl in purple and
orange, respectively. (c)-(d) The Hodge decomposition of the edge flow in (b). The gradient flow is the
gradient of some node signal (in blue) and is curl-free. The curl flow can be obtained from some triangle
flow (in red), and is divergence-free. The harmonic flow has zero divergence and zero curl, and is circulating
around the hole {1, 3, 4}. Note that in this figure, the flow numbers are rounded up to two decimal places.
Thus, at some nodes or triangles with zero-divergence or zero-curl, the divergence or curl might not be exactly
zero.

(Lim, 2020). A d-dimensional simplicial feature Xk œ Rnk◊d can be defined for a rich representation learning
of simplices. For simplicity, we restrict our analysis to d = 1.

Incidence matrices as derivatives on SCs Given a simplicial signal xk, we can measure its variability
with respect to the faces and cofaces of k-simplices by computing Bkxk and B

€
k+1

xk (Grady & Polimeni,
2010). Specifically, B

€
1

x0 computes the gradient of a node signal x0 as the signal di�erence between
the adjacent nodes, i.e., [B€

1
x0][i,j] = [x0]j ≠ [x0]i, which is often used in the GNN literature. For an

edge flow x1, B1x1 computes its divergence, which is the di�erence between the total in-flow and out-flow
at node j, i.e., [B1x1]j =

q
i<j [x1][i,j] ≠

q
j<k[x1][j,k]. Moreover, B

€
2

x1 computes the curl of x1, i.e.,
[B€

2
x1]t = [x1][i,j] ≠ [x1][i,k] + [x1][j,k], which is the net-flow circulation in triangle t = [i, j, k]. As illustrated

in Fig. 1b, these two computations provide divergent and rotational variation measures of an edge flow, which
are analogous to the notions of divergence and curl for vector fields in continuous domains. In the following,
we introduce the Hodge decomposition (Hodge, 1989; Lim, 2020) which unfolds an edge flow into three unique
characteristic components.
Lemma 1 ((Lim, 2020)). We have B

€
2

B
€
1

= 0, i.e., the curl of the gradient is zero.
Theorem 2 (Hodge decomposition). The k-simplicial signal space Rnk admits a direct sum decomposition

Rnk = im(B€
k ) ü ker(Lk) ü im(Bk+1), thus, xk = xk,G + xk,H + xk,C, (3)

where xk,G = B
€
k xk≠1 for some xk≠1, and xk,C = Bk+1xk+1 for some xk+1. Moreover, we have ker(B€

k+1
) =

im(B€
k ) ü ker(Lk) and ker(Bk) = ker(Lk) ü im(Bk+1).

In the node space, this decomposition is trivial as Rn0 = ker(L0) ü im(B1) where the kernel of L0 contains
constant node data and the image of B1 contains nonconstant data. In the edge case, the three subspaces
carry more tangible meaning: the gradient space im(B€

1
) collects edge flows as the gradient of some node

signal, which are curl-free; the curl space im(B2) consists of flows cycling around triangles, which are div-free;
and flows in the harmonic space ker(L1) are both div- and curl-free. In this paper, we inherit the names
of three edge subspaces to general k-simplices. The above theorem states that any simplicial signal xk can
be uniquely expressed as xk = xk,G + xk,H + xk,C with the gradient part xk,G = B

€
k xk≠1, the curl part

xk,C = Bk+1xk+1, for some xk±1, and the harmonic part following Lkxk,H = 0. Figs. 1c to 1e provide the
three Hodge components of the edge flow in Fig. 1b.

3 Simplicial Complex CNNs

We first introduce the general convolutional architecture on SCs, then discuss the propreties of SCCNN and
study the e�ects of the three principles from an energy minimization perspective.
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(a) SC example (b) Lower edge conv. (c) Upper edge conv. (d) Inter-simplicial locality

Figure 2: (a) An SC where arrows indicate the reference orientations of edges and triangles. 2-simplices are
(filled) triangles shaded in green and open triangle {1, 3, 4} is not in the SC. (b) Lower convolution via H1 and
H1,d on edge e1. (c) Upper convolution via H1 and H1,u on e1. (d) Node 1 (in black) contains information
from its neighbors {2, 3, 4} (nodes in red), and projected information from edges which contribute to these
neighbors (denoted by arrows in red from edges to nodes), and from triangles {t1, t2, t3} which contribute to
those edges (denoted by double arrows in red from triangle centers to edges). This interaction is the coupling
between the intra- and the extended inter-simplicial locality.

In an SC, taking x
l≠1

k≠1
, x

l≠1

k and x
l≠1

k+1
as inputs, an SCCNN at layer l = 1, . . . , L computes the k-simplicial

output x
l
k via a map

SCCNNl
k : {x

l≠1

k≠1
, x

l≠1

k , x
l≠1

k+1
} æ x

l
k, x

l
k = ‡(H l

k,dx
l≠1

k,d + H
l
kx

l≠1

k + H
l
k,ux

l≠1

k,u ) (4)

where

Hk =
Tdÿ

t=0

wk,d,tL
t
k,d +

Tuÿ

t=0

wk,u,tL
t
k,u (5)

is a simplicial convolutional filter (SCF, (Yang et al., 2022b)) with learnable coe�cients {wk,d,t}, {wk,u,t}, and
Hk,d =

qTd
t=0

w
Õ
k,d,tL

t
k,d and Hk,u =

qTu
t=0

w
Õ
k,u,tL

t
k,u are the lower and upper SCFs, respectively. Moreover,

x
l≠1

k,d = B
€
k x

l≠1

k≠1
and x

l≠1

k,u = Bk+1x
l≠1

k+1
are the lower and upper projections from (k ± 1)-simplices via

incidence relations to k-simplices, respectively, and ‡(·) is an elementwise nonlinearity. The convolution
operations in this SCCNN can be understood as follows: 1) The previous k-simplicial output x

l≠1

k is passed to
an SCF H

l
k of orders Td, Tu, which performs a linear combination of the signals from the lower-adjacent (up

to Td-hop) and upper-adjacent (up to Tu-hop) simplices. 2) The previous k ± 1-simplicial outputs x
l≠1

k±1
are

first projected to k-simplices, which are then convolved using a lower SCF and an upper SCF, respectively.
Example 3. In Fig. 2, we provide an example of SCCNN for the edge case k = 1. We focus on edge e1 and
consider the cases Td = Tu = 2. On edge e1, the SCF H1 linearly combines the signals from its direct lower
neighbors (edges in blue) and two-hop lower neighbors (edges in purple), as shown in Fig. 2b. It also combines
the signals from the direct upper neighbors (edges in red) and two-hop upper neighbors (edges in orange), as
shown in Fig. 2c. At the same time, the signals on nodes are projected on the edges, denoted by arrows in
blue and purple from nodes to edges in Fig. 2b, which are then combined to edge e1 by the lower SCF H1,d.
The signals on triangles are projected on the edges as well, denoted by double arrows in red and orange in
Fig. 2c, which are combined to edge e1 by the upper SCF H1,u.

This architecture subsumes the convolutional learning methods on SCs in Bunch et al. (2020); Ebli et al.
(2020); Roddenberry et al. (2021); Yang et al. (2022a); Chen et al. (2022b); Yang et al. (2022c). We refer
to Appendix C for a detailed discussion. Particularly, we here emphasize on the key three principles of an
SCCNN layer:

(P1) It uncouples the lower and upper parts in the Hodge Laplacian. This leads to an independent
treatment of the lower and upper adjacencies, achieved by using two sets of learnable weights. We
shall see in Section 4 that how this relates to the independent and expressive learning in the Hodge
subspaces given in Theorem 2.

(P2) It accounts for the inter-simplicial couplings via the incidence relations. The projections xk,d and
xk,u carry nontrivial information contained in the faces and cofaces of simplices (by Theorem 2).
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(P3) It performs higher-order convolutions. We consider Td, Tu Ø 1 in SCFs which leads to a multi-hop
receptive field on SCs.

In short, each SCCNN layer propagates information across SCs based on two simplicial adjacencies and two
incidences in a multi-hop fashion.

3.1 Properties

Simplicial locality The simplicial convolutions admit an intra-simplicial locality where the output Hkxk

is localized in Td-hop lower and Tu-hop upper k-simplicial neighborhoods (Yang et al., 2022b). An SCCNN
preserves such property as ‡(·) does not alter the information locality. It also admits an inter-simplicial
locality between k- and (k ± 1)-simplices due to the inter-simplicial couplings. This further extends to
simplices of orders k ± l if L Ø l because Bk‡(Bk+1) ”= 0 (Schaub et al., 2021). Moreover, the intra- and
inter-simplicial localities are coupled in a multi-hop way through higher-order convolutions such that, for
example, a node not only interacts with its incident edges and the triangles including it, but also with those
further hops away, as shown in Fig. 2d. We refer to Appendix B.1 for a more formal discussion.

Complexity An SCCNN layer has a parameter complexity of order O(Td + Tu) and a computational
complexity O(k(nk + nk+1) + nkmk(Td + Tu)), which are linear in the simplex dimensions. Here, mk is the
maximum number of neighbors for k-simplices. We refer to Appendix B.2 for more details.

Equivariance SCCNNs are permutation-equivairant, which allows us to list simplices in any order. They
are also orientation-equivariant if the activation function ‡(·) is odd, which gives us the freedom to choose
reference orientations. In Appendix B.3, we provide a more formal discussion on such equivariances and why
permutations form a symmetry group of an SC and orientation changes are symmetries of data spaces but
not SCs.

3.2 A simplicial Dirichlet energy perspective

Here we analyze the convolution architecture in Eq. (4) from an energy minimization perspective. First, we
extend the notion of Dirichlet energy from graphs to SCs.
Definition 4. The Dirichlet energy of a k-simplicial signal xk is

D(xk) = Dd(xk) + Du(xk) := ÎBkxkÎ
2

2
+ ÎB

€
k+1

xkÎ
2

2
. (6)

This Dirichlet energy returns the graph Dirichlet energy when k = 0. In this case, D(x0) = ÎB
€
1

x0Î
2

2
=q

i

q
jÎx0,i ≠ x0,jÎ

2 is the ¸2-norm of the gradient of the node signal x0. For edge flow x1, D(x1) consists of
two parts, ÎB1x1Î

2

2
and ÎB

€
2

x1Î
2

2
, which measure the total divergence and curl of x1, respectively, i.e., the

edge flow variations w.r.t. nodes and triangles. In the general case, Dd(xk) and Du(xk) measure the lower
and upper k-simplicial signal variations w.r.t. the faces and cofaces, respectively. A harmonic k-simplicial
signal xk has zero Dirichlet energy, e.g., a constant node signal and a div- and curl-free edge flow.

Simplicial shifting as Hodge Laplacian smoothing Bunch et al. (2020); Yang et al. (2022c) considered
Hk to be a weighted variant of I ≠ Lk, generalizing the graph convolutional network (GCN) (Kipf & Welling,
2017). This is necessarily a Hodge Laplacian smoothing as in Schaub et al. (2021)—given an initial signal x

0

k,
we consider the Dirichlet energy minimization:

min
xk

ÎBkxkÎ
2

2
+ “ÎB

€
k+1

xkÎ
2

2
, “ > 0,

gradient descent: x
l+1

k,gd
= (I ≠ ÷Lk,d ≠ ÷“Lk,u)xl

k

(7)

with step size ÷ > 0. The simplicial shifting x
l+1

k = w0(I ≠ Lk)xl
k is a gradient descent step with ÷ = “ = 1

and weighted by w0. A minimizer of Eq. (7) with “ = 1 is in fact in the harmonic space ker(Lk). Thus, a
neural network composed of simplicial shifting layers may generate an output with an exponentially decreasing
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Dirichlet energy as it deepens, formulated by the following proposition. We refer to this as simplicial
oversmoothing, a notion that generalizes the oversmoothing of a GCN and its variants (Nt & Maehara, 2019;
Cai & Wang, 2020; Rusch et al., 2023).
Proposition 5. If w

2

0
ÎI ≠ LkÎ

2

2
< 1, D(xl+1

k ) in a neural network of simplicial shifting layers exponentially
converges to zero.

However, when uncoupling the lower and upper parts of Lk in this shifting, associated to the case “ ”= 1,
the decrease of D(xk) can slow down or cease because the objective function in Eq. (7) instead looks for a
solution primarily in either ker(Bk) (for “ π 1) or ker(B€

k+1
) (for “ ∫ 1), not necessarily in ker(Lk), as we

shall corroborate in Section 6.

Inter-simplicial couplings as sources Given some nontrivial xk≠1 and xk+1, we consider the optimization

min
xk

ÎBkxk ≠ xk≠1Î
2

2
+ ÎB

€
k+1

xk ≠ xk+1Î
2

2
,

gradient descent: x
l+1

k,gd
= (I ≠ ÷Lk)xl

k + ÷(xk,d + xk,u)
(8)

with step size ÷ > 0. It resembles the convolutional layer, x
l+1

k = w0(I ≠ Lk)xl
k + w1xk,d + w2xk,u with

some learnable weights, in Bunch et al. (2020); Yang et al. (2022c).
Proposition 6. We have D(xl+1

k ) Æ w
2

0
ÎI ≠ LkÎ

2

2
D(xl

k) + w
2

1
⁄max(Lk,d)Îxk,dÎ

2

2
+ w

2

2
⁄max(Lk,u)Îxk,uÎ

2

2
.

The signal projections from the lower and upper simplices act as energy sources for x
l
k, and also the

objective function in Eq. (8) looks for an xk in the image spaces of Bk+1 and B
€
k , instead of ker(Lk). Thus,

inter-simplicial couplings pay a role in mitigating the oversmoothing.

Here we showed that simply generalzing GCNs to simplices will inherit its oversmoothing risks. However,
by uncoupling the lower and upper Laplacians and accounting for the inter-simplicial couplings we could
mitigate this issue. This can also be explained by means of a di�usion process on SCs (Ziegler et al., 2022),
which we discuss in Appendix B.4.

4 From convolutional to Hodge-aware

In this section, we first introduce the Hodge-invariant operator, which is an operator such that the three
Hodge subspaces are invariant under it. Then, we show that the SCF is such an operator and SCCNN,
guided by the three principles (P1-P3), performs Hodge-invariant learning, allowing for rational and e�ective
learning on SCs while remaining expressive. Throughout the exposition, we rely on the simplicial spectral
theory (Barbarossa & Sardellitti, 2020; Yang et al., 2021; 2022b), which also allows us to characterize the
expressive power of SCCNNs. We refer to the detailed derivations and proofs in Appendix E.
Definition 7 (Invariant subspace). Let V be a finite-dimensional vector space over R with dim(V ) Ø 1, and
let T : V æ V be an operator in V. A subspace U µ V is an invariant subspace under T if Tu œ U for all
u œ U , i.e., the image of every vector in U under T remains within U . We denote this as T |U : U æ U where
T |U is the restriction of T on U .

Given the notion of invariant subspace, we then define the Hodge-invariant operators.
Definition 8 (Hodge-invariant operator). Let ⇤ œ {im(B€

k ), im(Bk+1), ker(Lk)} be any Hodge subspace of
Rnk . A linear transformation F : Rnk æ Rnk is a Hodge-invariant operator if for all xk œ ⇤ it holds that
F (xk) œ ⇤. That is, any simplicial signal in a certain Hodge subspace remains in that subspace under F .
Definition 9 ((Barbarossa & Sardellitti, 2020)). The simplicial Fourier transform (SFT) of xk is x̃k = U

€
k xk

where the eigenbasis Uk of Lk acts as the simplicial Fourier basis and the eigenvalues in �k = diag(⁄k) are
simplicial frequencies.
Proposition 10 (Yang et al. (2022b)). The SFT basis can be found as Uk = [Uk,H Uk,G Uk,C] where

• Uk,H is the eigenvector matrix associated to the zero eigenvalues �k,H = diag(⁄k,H), named as
harmonic frequencies,
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• Uk,G is associated to the nonzero eigenvalues in �k,G = diag(⁄k,G) of Lk,d, named as gradient
frequencies, and

• Uk,C is associated to the nonzero eigenvalues in �k,C = diag(⁄k,C), named as curl frequencies.

Moreover, they span the Hodge subspaces:

span(Uk,H) = ker(Lk), span(Uk,G) = im(B€
k ), span(Uk,C) = im(Bk+1) (9)

where span(•) denotes all possible linear combinations of columns of •.
Remark 11. The frequency notion in general carries the physical meaning of signal variations. In the simplicial
case, gradient frequencies reflect the degree of lower variations Dd(uk,G) of the associated gradient Fourier
basis, and curl frequencies reflect the degree of upper variations Du(uk,C) of the associated curl basis.
Harmonic frequencies (zeros) correspond to the basis having zero lower and upper variations. In the edge case,
the gradient and curl frequencies, respectively, correspond to the total divergence and total curl, measuring
how divergent and rotational the associated basis is (Yang et al., 2022b).
Proposition 12. The SCF Hk is a Hodge-invariant operator. That is, for any xk œ ⇤, we have Hkxk œ ⇤,
for ⇤ œ {im(B€

k ), im(Bk+1), ker(Lk)}. Moreover, the SCF operation can be implicitly written as

Hkxk = Hk|
im(B€

k
)
xk,G + Hk|ker(Lk)xk,H + Hk|im(Bk+1)xk,C (10)

where Hk|
im(B€

k
)

=
qTd

t=1
wk,d,tL

t
k,d + (wk,d,0 + wk,u,0)I is the restriction of Hk on the gradient space

im(B€
k ), Hk|ker(Lk) = (wk,d,0 + wk,u,0)I is the restriction of Hk on the harmonic space, and Hk|im(Bk+1) =

qTu
t=0

wk,u,tL
t
k,u + (wk,d,0 + wk,u,0)I is the restriction on the curl space.

Provided with the Hodge-invariance of Hk and the SFT, we can perform a spectral analysis, which is of
interest to further understand the SCCNN since simplicial frequencies reflect the variation characteristics of
simplicial signals.

4.1 Spectral analysis

Consider the SFT x̃k = [x̃€
k,H, x̃

€
k,G, x̃

€
k,C]€ of xk where each component is the intensity of xk at a certain

simplicial frequency. We can understand how an SCCNN convolutional layer yk = Hk,dxk,d+Hkxk+Hk,uxk,u

regulates/learns from the simplicial signals at di�erent frequencies by performing the SFT
Y
_]

_[

ỹk,H = h̃k,H § x̃k,H

ỹk,G = h̃k,d § x̃k,d + h̃k,G § x̃k,G

ỹk,C = h̃k,C § x̃k,C + h̃k,u § x̃k,u,

(11)

with § the elementwise multiplication. The nk-dimensional vector h̃k = diag(U€
k HkUk) = [h̃€

k,H h̃
€
k,G h̃

€
k,C]€

is the frequency response vector of Hk with

h̃k,H = (wk,d,0 + wk,u,0)1, h̃k,G =
qTd

t=0
wk,d,t⁄

§t
k,G + wk,u,01, h̃k,C =

qTu
t=0

wk,u,t⁄
§t
k,C + wk,d,01, (12)

where ·
§t is the elementwise t-th power of a vector. Likewise,

h̃k,d =
qTd

t=0
w

Õ
k,d,t⁄

§t
k,G + w

Õ
k,u,01, and h̃k,u =

qTu
t=0

w
Õ
k,u,t⁄

§t
k,C + w

Õ
k,d,01 (13)

are the frequency response vectors of Hk,d and Hk,u. The spectral relation in Eq. (11) shows that the gradient
SFT x̃k,G is learned by a gradient response h̃k,G, while the curl SFT x̃k,C is learned by a curl response h̃k,C.
The two learnable responses are independent and they only coincide at the trivial harmonic frequency, as
shown by the two individual curves in Fig. 3a. Moreover, the lower and upper projections are independently
learned by h̃k,d and h̃k,u, respectively.

The elementwise nonlinearity induces an information spillage that one type of spectra could be spread over
other types. That is, ‡(ỹk,G) could contain information in harmonic or curl subspaces, as illustrated in
Fig. 3b. This is to increase the expressive power of SCCNN, which we characterize as follows.
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Figure 3: (a) (top): Independent gradient and curl learning responses. (bottom): Stability-selectivity tradeo�
of SCFs where h̃G has better stability but smaller selectivity than g̃G. (b) Information spillage of nonlinearity.
(c) The distance between the perturbed outputs and true when node adjacencies are perturbed. (top): L = 1,
triangle output remains clean. (bottom): L = 2, triangle output is perturbed.

Proposition 13. An SCCNN layer with inputs xk,d, xk, xk,u is at most expressive as an MLP ‡(GÕ
k,dxk,d +

Gkxk + G
Õ
k,uxk,u) with Gk = Gk,d + Gk,u where Gk,d and G

Õ
k,d are analytical matrix functions of Lk,d,

while Gk,u and G
Õ
k,u are analytical matrix functions of Lk,u. This expressivity can be achieved by setting

Td = T
Õ
d

= nk,G and Tu = T
Õ
u

= nk,C in Eq. (4) with nk,G the number of distinct gradient frequencies and
nk,C the number of distinct curl frequencies.

The proof follows from Cayley-Hamilton theorem (Horn & Johnson, 2012). This expressive power can be
better understood from the spectral perspective — The gradient SFT x̃k,G can be learned as expressive as
by an analytical vector-valued function g̃k,G, which collects the eigenvalues of Gk,d at gradient frequencies.
The curl SFT x̃k,C can be learned as expressive as by another analytical vector-valued function g̃k,C, which
collects the eigenvalues of Gk,u at curl frequencies. These two functions need only to coincide at the harmonic
frequency. In addition, the SFTs of lower and upper projections can be learned as expressive as by two
independent analytical vector-valued functions as well.

4.2 Hodge-aware learning

Given the expressive power in Proposition 13 and the spectral relation in Eq. (11), we show that SCCNN
performs a Hodge-aware learning in the following sense, which comes with advantages over the existing
approaches.
Theorem 14. An SCCNN is Hodge-aware: 1) The SCF Hk is a Hodge-invariant learning operator. Specif-
ically, three Hodge subspaces are invariant under Hk; 2) The lower SCF Hk,d and upper SCF Hk,u are,
respectively, gradient- and curl-invariant learning operators; 3) The learnings in the gradient and curl spaces
are independent; And 4) the learnings in the gradient and curl spaces are expressive as in Proposition 13.

This theorem shows that an SCCNN performs an expressive and independent learning in the gradient and
curl subspaces from the three inputs while preserving the three subspaces to be invariant w.r.t its learnable
SCFs. This allows for the rational and e�ective learning on SCs, as illustrated in Fig. 4, from the two aspects.
These three-fold properties of an SCCNN, respectively, come from the convolutional architecture choice, the
uncoupling of the lower and upper adjacencies, and the higher-order convolutions in the SCCNN.

On the one hand, Proposition 12 shows that the operation of Hk on the simplicial signal space is equivalent
to a summation of its restrictions Hk|⇤ on three smaller subspaces ⇤. This Hodge-invariant nature of the
learnable SCFs substantially shrinks the learning space of an SCCNN and allows for an e�ective learning. On
the other hand, simplicial signals often present implicit or explicit properties that di�erent Hodge subspaces
can capture. For example, water flows, tra�c flows, electrical currents (Grady & Polimeni, 2010; Jia et al.,
2019) follow flow conservation, i.e., being div-free in the gradient space ker(B1), while exchange rates can be
modelled as curl-free edge flows (Jiang et al., 2011). Owing to the Hodge-invariance of H1 and its independent

9



Under review as submission to TMLR

Figure 4: An illustration of the Hodge-aware learning of an SCCNN. We show that how an edge flow x1,
together with the lower and upper projections x1,d and x1,u, are transformed by an SCCNN in the spectral
domain. The implicit operation H1x1 (in the dashed box on the right) reflects the Hodge-aware learning: 1)
H1 is Hodge invariant: each component is learned within their own subspace, and H1 does not mix up the
three subspaces; 2) The learning in the gradient and curl subspaces are independent where features at shared
frequencies ⁄G,2 and ⁄C,1 can be separately learned; and 3) The learning operators are expressive in the sense
that the spectral responses are as expressive as any analytical functions in the gradient and curl frequencies.

learning in the nontrivial subspaces, an SCCNN can capture such characteristics of real-world edge flows
e�ectively. When it comes to regression tasks on SCs, an SCCNN can generate outputs respecting these
physicial laws.

Remark 15 (Relation to message passing networks). Message-passing simplicial networks (MPSNs) (Bodnar
et al., 2021b) using MLP to aggregate and update are non-Hodge-aware. Their learning functions pursue direct
mappings between the much larger signal space Rnk , thus, requiring more training data for accurate learning,
as well as a larger computational complexity. Moreover, MPSN does not preserve the Hodge subspaces, i.e.,
it is not Hodge-invariant. Thus, they might generate outputs with small losses (e.g., mean-squared-errors)
in regression tasks, yet not respecting the physical laws being either div- or curl-free properties such as the
above simplicial signals. We shall corroborate this in Appendix G.

Remark 16 (Relation to other convolutional methods). While most convolutional networks on SCs use Hodge-
invariant learning operators, they are not strictly Hodge-aware, resulting in practical limits. For example, Ebli
et al. (2020) considered Hk =

q
i wiL

i
k, which preserves the Hodge subspaces yet does not uncouple the lower

and upper parts of Lk. This makes it strictly less expressive and non-Hodge-aware. Consider two frequencies
⁄G = ⁄C which share a common value but correspond to the gradient and curl subspaces, respectively. The
simplicial signal components at these two frequencies are always learned in the same fashion, which induces
contradicting issues when the underlying component in one subspace should be diminished while the one in
the other subspace should be preserved. This underlines the importance of uncoupling the two adjacencies
because the lower and upper Laplacians operate in di�erent subspaces. Roddenberry et al. (2021) applied Hk

with Td = Tu = 1. Spatially, this limits the receptive field of each simplex to its direct neighbors. Spectrally,
it leads to a linear learning frequency response. A similar treatment was considered in Bunch et al. (2020);
Yang et al. (2022c) which simply generalized the GCN without uncoupling the two adjacencies, and gave a
limited low-pass linear spectral response, as shown in Fig. 3a and discussed in Section 3.2.
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5 How robust are SCCNNs to domain perturbations?

In practice, an SCCNN is often built on a weighted SC to capture the strengths of simplicial adjacencies and
incidences. We defer the explicit formulations in Appendix F.1 since it has the same form as Eq. (4) in this
case, except for that the Hodge Laplacians are weighted, as well as the incidence matrices. These matrices
are often defined following Grady & Polimeni (2010); Horak & Jost (2013); Guglielmi et al. (2023). For
example, Bunch et al. (2020); Yang et al. (2022c) considered a particular random walk formulation (Schaub
et al., 2020). They can also be learned from data, e.g., via an attention method (Goh et al., 2022; Giusti
et al., 2022). For the weighted incidence matrices B

€
k , Bk+1, we use operators Rk,d, Rk,u in this section.

To highlight the need for a stability analysis, note that, on the one hand, we may lack the true underlying
topologies in SCs as they are often estimated from noisy data; and we may undergo adversarial attacks on
the topologies. On the other hand, we want to characterize the stability-selectivity tradeo� of SCCNN, in
analogy to the study for CNNs (Bruna & Mallat, 2013; Qiu et al., 2018; Bietti & Mairal, 2017) and GNNs
(Gama et al., 2019b; 2020a; Kenlay et al., 2021; Parada-Mayorga et al., 2022).

This motivates us to investigate the stability of SCCNN: how far are the outputs of an SCCNN before and
after perturbations are applied to SCs? We consider the following relative perturbation model, generalizing
the graph perturbation model in Gama et al. (2019b)
Definition 17 (Relative perturbation). Consider some perturbation matrix of an appropriate dimension. For
the weighted Hodge Laplacian Lk,d, its relative perturbed version is ‚Lk,d = Lk,d + Ek,dLk,d + Lk,dEk,d with
perturbation Ek,d; likewise for ‚Lk,u by Ek,u. For the weighted incidence matrix Rk,d, its relative perturbed
version is ‚Rk,d = Rk,d + Jk,dRk,d with perturbation Jk,d; likewise for ‚Rk,u by Jk,u.

This models the domain perturbations on the strengths of adjacent and incident relations, e.g., a large weight
is applied when two edges are weakly or not adjacent, or data on a node is projected on an edge not incident
to it. Moreover, this quantifies the relative perturbations with respect to the local simplicial topology in
the sense that weaker connections in an SC are deviated by perturbations proportionally less than stronger
connections. We further define the integral Lipschitz property of spectral filters to measure the variability of
spectral response functions of Hk.
Definition 18 (Intergral Lipschitz SCF). An SCF Hk is integral Lipschitz with constants ck,d, ck,u Ø

0 if the derivatives of its spectral response functions h̃k,G(⁄) and h̃k,C(⁄) follow that |⁄h̃
Õ
k,G(⁄)| Æ

ck,d and |⁄h̃
Õ
k,C(⁄)| Æ ck,u.

This property provides a stability-selectivity tradeo� of SCFs independently in the gradient and curl frequencies.
A spectral response can have both a good selectivity and stability in small frequencies (a large |h̃

Õ
k,·| for

⁄ æ 0), while it tends to be flat for having better stability at the cost of selectivity (a small variability for
large ⁄) in large frequencies, as shown in Fig. 3a. As of the polynomial nature of responses, all SCFs of
SCCNN are integral Lipschitz. We also denote the integral Lipschitz constant for the lower SCFs Hk,d by
ck,d and for the upper SCFs Hk,u by ck,u without loss of generality.

Under the following assumptions, we now characterize the stability bound of SCCNN.
Assumption 19. The perturbations are small such that ÎEk,dÎ2Æ ‘k,d, ÎJk,dÎ2Æ Ák,d, ÎEk,uÎ2Æ ‘k,u and
ÎJk,uÎ2Æ Ák,u, where ÎAÎ2 = max|x|1=1ÎAxÎ2 is the operator norm (spectral radius) of a matrix A.
Assumption 20. The SCFs Hk of an SCCNN have a normalized bounded frequency response (for simplicity,
though unnecessary), likewise for Hk,d and Hk,u.
Assumption 21. The lower and upper projections are finite such that ÎRk,dÎ2 Æ rk,d and ÎRk,uÎ2 Æ rk,u.
Assumption 22. The nonlinearity ‡(·), e.g., relu, tanh, sigmoid, is c‡-Lipschitz with c‡ Ø 0.
Assumption 23. The initial inputs x

0

k, for all k, are finite, such that Îx
0

kÎ2 Æ [—]k. We collect them in
— = [—0, . . . , —K ]€.
Theorem 24. Let x

L
k be the k-simplicial signal output of an L-layer SCCNN on a weighted SC. Let x̂

L
k be

the output of the same SCCNN but on a relatively perturbed SC. Under Assumptions 19 to 23, the Euclidean
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distance between the two outputs is finite and upper-bounded

Îx̂
L
k ≠ x

L
k Î2 Æ [d]k with d = c

L
‡

Lÿ

l=1

‚Zl≠1
T Z

L≠l
—, (14)

where for K = 2,

T =

S

U
t0 t0,u

t1,d t1 t1,u

t2,d t2

T

V , Z =

S

U
1 r0,u

r1,d 1 r1,u

r2,d 1

T

V , ‚Z =

S

U
1 r̂0,u

r̂1,d 1 r̂1,u

r̂2,d 1

T

V , (15)

with r̂k,d = rk,d(1 + Ák,d) and r̂k,u = rk,u(1 + Ák,u). Notice that T , Z and ‚Z are tridiagonal and follow a
similar structure for a general K. The diagonal entries of T are tk = ck,d�k,d‘k,d + ck,u�k,u‘k,u. The
o�-diagonal entries are tk,d = rk,dÁk,d + ck,d�k,d‘k,drk,d and tk,u = rk,uÁk,u + ck,u�k,u‘k,urk,u, where �k,d

captures the eigenvector misalignment between Lk,d and perturbation Ek,d with a factor n
1/2

k , and likewise
for �k,u.

We refer to Appendix F.2 for a two-step proof. This result bounds the outputs of an SCCNN on all simplicial
levels, showing that they are stable to small perturbations on the simplicial adjacencies and incidences.
Specifically, we make two observations from the complicated expression. First, the stability bound depends on
i) the degree of perturbations including their magnitudes ‘k,· and Ák,·, and the eigenspace misalignment �k,·;
ii) the integral Lipschitz properties ck,· of SCFs; and, iii) the degree of projections rk,·. Second, the stability
of the k-output depends on the factors related to not only k-simplices, but also simplices of adjacent orders
due to inter-simplicial couplings. For example, when L = 1, the node output bound d0 is a�ected by factors
in the node space, as well as the edge space factored by the projection degree. As the layer deepens, this
mutual dependence expands further. When L = 2, the factors in the triangle space also a�ect the stability of
the node output d0, as we observe in Fig. 3c.

More importantly, this stability bound provides practical implications for convolutional learning on SCs.
While accounting for inter-simplicial couplings may be beneficial, SCCNN becomes less stable as the number
of layers increases due to the mutual dependence between outputs on di�erent simplicial levels. Thus, to
maintain the expressive power, higher-order SCFs can be used in exchange for shallow layers. This does not
harm the stability.

• First, the high-frequency components can be spread over in the low frequency due to the nonlinearity
(i.e., the information spillage in Fig. 3b) where the spectral responses are more selective without
losing much the stability. For example, if the simplicial signal has large high gradient frequency
components, we need the SCCNN to be integral Lipschitz in order to guarantee the stability. That
is, the frequency response should be smooth in high gradient frequencies, as shown by h̃G in Fig. 3a
(bottom). However, the due to the nonlinearity, the information at high gradient frequencies could
spill at lower frequencies, where the spectral responses are more selective and can help discriminate
in the subsequent layers.

• Second, higher-order SCFs are easier to be learned with smaller integral Lipschitz constants than
lower-order ones due to the increased degree of freedom, thus, leading to an increased stability.
This can be easily seen by comparing one-order and two-order cases. We experimentally investigate
this in Section 6.4. Moreover, we discuss how to guarantee better intergral Lipschitz properties in
Appendix G.4.4 by means of regularizations.

6 Experiments

The goal of this section is to answer the following four research questions with experiments on various
simplicial-level regression and classification tasks:

RQ 1 What are the e�ects of the three principles of SCCNN, i.e., uncoupling the lower and upper parts of
Hodge Laplacians (P1), the inter-simplicial couplings (P2), and higher-order convolutions (P3)?
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Table 1: Forex results (nmse|total arbitrage, ¿).

Methods Random Noise Curl Noise Interpolation
Input 0.119±0.004|29.19±0.874 0.552±0.027|122.4±5.90 0.717±.030|106.4±0.902

Baseline (¸2 regularization) 0.036±0.005|2.29±0.079 0.050±0.002|11.12±0.537 0.534±0.043|9.67±0.082

SNN (Ebli et al., 2020) 0.110±0.005|23.24±1.03 0.446±0.017|86.95±2.20 0.702±0.033|104.74±1.04

PSNN (Roddenberry et al., 2021) 0.008±0.001|0.984±0.170 0.000±0.000|0.000±0.000 0.009±0.001|1.13±0.329

MPSN (Bodnar et al., 2021b) 0.039±0.004|7.74±0.88 0.076±0.012|14.92±2.49 0.117±0.063|23.15±11.7

SCCNN, id 0.027±0.005|0.000±0.000 0.000±0.000|0.000±0.000 0.265±0.036|0.000±0.000

SCCNN, tanh 0.002±0.000|0.325±0.082 0.000±0.000|0.003±0.003 0.003±0.002|0.279±0.151

RQ 2 How do the uncoupling of the lower and upper parts of Hodge Laplacians and the inter-simplicial
couplings a�ect the simplicial oversmoothing?

RQ 3 How does the Hodge-aware property of SCCNN play a role in di�erent tasks on SCs, compared to
non-Hodge-aware methods?

RQ 4 How do di�erent factors a�ect the stability of SCCNN, and how can we maintain the stability while
keeping the expressive power?

For comparison, we consider the following learning methods on single-level simplices:

• simplicial neural network (SNN) (Ebli et al., 2020), which does not respect P1 and P2 and is
non-Hodge-aware;

• principled simplicial neural network (PSNN) (Roddenberry et al., 2021), which does not respect P2
and P3 and is non-Hodge-aware;

• simplicial convolutional neural networks (SCNN)1 (Yang et al., 2022a), which does not respect P2
but is Hodge-aware;

and the following learning methods on simplicial complexes:

• Bunch (Bunch et al., 2020), which does not respect P1 and P2 and is non-Hodge-aware;
• MPSN (Bodnar et al., 2021b), which is based on message-passing and not Hodge-aware.

We also considered the MLP and standard GNN (De�errard et al., 2016) as baselines to highlight the e�ect
of SC topology on simplicial-level tasks. We refer to Appendix C for the detailed comparisons between these
methods and SCCNN, as well as to Appendix G for the full experimental details.

6.1 Foreign currency exchange (RQs 1, 3)

In forex problems, to build a fair market, the arbitray-free condition implies that for any currencies i, j, k,
it follows that r

i/j
r

j/k = r
i/k where r

i/j is the exchange rate between i and j. That is, the exchange path
i æ j æ k provides no profit or loss over a direct exchange i æ k. Following Jiang et al. (2011), we model
exchange rates as edge flows in an SC of order two, specifically, via [x1][i,j] = log(ri/j). This conveniently
translates the arbitrage-free condition into x1 being curl-free, i.e., [x1][i,j] + [x1][j,k] ≠ [x1][i,k] = 0 in any
triangle [i, j, k]. We consider a real-world forex market at three timestamps, which contains certain degree
of arbitrage (Jia et al., 2019; Yang et al., 2024). We focus on recovering a fair market in two scenarios,
first, from noisy exchange rates where random noise and noise only in the curl space modelling random
arbitrage (“curl noise”) are added, and second, when only 50% of the total rates are observed. To evaluate
the performance, we measure the normalized mean squared error (nmse) and total arbitrage (total curl), both
equally important for achieving a fair market.

From Table 1, we make the following observations on the impacts of P1 and P3, as well as the Hodge-awareness.
1Note that the di�erence between SCCNN and SCNN lies in that the latter does not include the inter-layer projections, as

detailed in Appendix C thus, we refer to our method, simplicial complex CNN.
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Table 2: Simplex prediction (AUC, ø) .

Methods 2-simplex 3-simplex
Mean (Benson et al., 2018) 62.8±2.7 63.6±1.6
MLP 68.5±1.6 69.0±2.2
GNN (De�errard et al., 2016) 93.9±1.0 96.6±0.5
SNN (Ebli et al., 2020) 92.0±1.8 95.1±1.2
PSNN (Roddenberry et al., 2021) 95.6±1.3 98.1±0.5
SCNN (Yang et al., 2022a) 96.5±1.5 98.3±0.4
Bunch (Bunch et al., 2020) 98.3±0.5 98.5±0.5
MPSN (Bodnar et al., 2021b) 98.1±0.5 99.2±0.3
SCCNN 98.7±0.5 99.4±0.3

Table 3: Ablation study on SCCNN and the hy-
perparameters for the best results.

Missing component 2-simplex Hyper Params.
— 98.7±0.5 L = 2, T = 2
Edge-to-Node 93.9±1.0 L = 5, T = 2
Node-to-Node 98.7±0.4 L = 4, T = 2
Edge-to-Edge 98.5±1.0 L = 3, T = 2
Node-to-Edge 98.8±0.3 L = 4, T = 2
Node input 98.2±0.5 L = 2, T = 4
Edge input 98.1±0.4 L = 2, T = 3

1) MPSN performs poorly at this task: although it reduces the nmse, it outputs unfair rates with
large arbitrage, against the forex principle, because it is not Hodge-aware and unable to capture the
arbitrage-free property with small amount of data (cf. Remark 15).

2) SNN performs poorly as well: as discussed in Remark 16, it restricts the gradient and curl spaces to
be always learned in the same fashion and makes it impossible to perform disjoint learning in two
subspaces. However, since there are eigenvalues which share a common value but live in di�erent
subspaces in this SC, it requires preserving the gradient component while removing the curl one here.

3) PSNN can reconstruct relatively fair forex rates with small nmse. The reconstruction from curl
noise is perfect, while in the other two cases, the nmse and arbitrage are three times larger than the
proposed SCCNN due to the limited expressivity of linear learning responses.

4) SCCNN performs the best in both reducing the total error and the total arbitrage, ultimately,
corroborating the impact of performing Hodge-aware learning.

We notice that with an identity activation function (‡ = id), the arbitrage-free rule is fully learned by an
SCCNN. However, it has relatively large errors in the random noise and interpolation cases due to its limited
linear expressive power. With a nonlinearity ‡ = tanh, an SCCNN can tackle these more challenging cases,
finding a good compromise between overall errors and data characteristics.

6.2 Simplicial oversmoothing analysis (RQ 2)
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Figure 5: Simplicial oversmoothing.

We use simplicial shifting layers (i.e., Eq. (7) composed with ‡ = tanh)
to illustrate the evolution of Dirichlet energies of the outputs on nodes,
edges and triangles in an SC of order two with respect to the number
of layers. The corresponding inputs are randomly sampled from a
uniform distribution U([≠5, 5]). Fig. 5 (the dashed lines) shows that
simply generalizing the GCN on SCs as in Bunch method could lead
to oversmoothing on simplices of all orders. This aligns with our
theoretical results in Section 3.2. However, uncoupling the lower and
upper parts of L1 (e.g., by setting “ = 2 in Eq. (7)) could mitigate the
oversmoothing on edges, as shown by the dotted line. Lastly, when we
account for the inter-simplicial coupling, as shown by the solid lines
(where we applied Eq. (8)), it could almost prevent the oversmoothing,
since it provides energy sources. We refer to Appendix G.1 for other results.

6.3 Simplex prediction (RQs 1, 3-4)

We consider the prediction task of 2- and 3-simplices which extends the link (1-simplex) prediction in graphs.
Our approach is to first learn the representations of lower-order simplices and then use an MLP with their
concatenation as inputs to identify if a simplex is closed or open, which generalizes the link prediction method
of Zhang & Chen (2018). Considering a coauthorship dataset (Ammar et al., 2018), we built an SC following
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Ebli et al. (2020) where nodes represent authors and (k ≠ 1)-simplices thus represent the collaborations of
k-authors. The input simplicial signals are the numbers of citations, e.g., x1 and x2 are those of dyadic
and triadic collaborations. Thus, 2-simplex (3-simplex) prediction amounts to predicting triadic (tetradic)
collaborations. We evaluate the AUC (area under the curve) performance.

From Table 2, we make three observations on the e�ect of the three key principles. 1) SCCNN, MPSN and
Bunch methods outperform the ones without inter-simplicial couplings. This highlights that accounting for
contributions from faces and cofaces increases the representation power of the network. 2) SCNN performs
better than an SNN, which shows that uncoupling the lower and upper parts in Lk improves the representation
learning. 3) SCCNN performs better than Bunch (similarly, SCNN better than PSNN), showing that higher-
order convolution further improves predictions. 4) While MPSN performs similar to SCCNN, it has three
times more parameters than an SCCNN (Appendix G.3.6) under the settings of the best results.

Ablation study We then perform an ablation study to investigate the roles of di�erent components in
an SCCNN. As reported in Table 3, we remove certain simplicial relations in the SCCNN and evaluate the
prediction performance. Without the edge-to-node incidence, when inputting the node features to the MLP
predictor, it is equivalent to a GNN, which has a poor performance. When removing other adjacencies
or incidences, the best performance remains similar but with an increased model complexity (more layers
required). This however is not preferred, because the stability decreases as the architecture deepens and the
model gets influenced by factors in other simplicial spaces, as discussed in Section 5 and shown in Fig. 3c.
We also consider the case with limited input where the input on nodes or on edges is missing. The best
performance of an SCCNN only slightly drops with an increase of the convolution order.

6.3.1 Stability analysis (RQ 4)
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Stability bounds To investigate the stability bound in Eq. (14),
we add perturbations to relatively shift the eigenvalues of the Hodge
Laplacians and the singular values of the projection matrices by ‘ œ [0, 1]
(cf. Assumption 19). We compare the bound in Eq. (14) to the
experimental ¸2 distance on each simplex level. As shown in Fig. 6
where the dashed lines are the theoretical stability bounds whereas the
solid ones are the experimental stability bounds, we see the bounds
become tighter as perturbation increases.

Stability dependence across simplices For 2-simplex prediction
of K = 2, we measure the distance between the simplicial outputs of
SCCNN with and without perturbations on nodes, edges, and triangles,
i.e., Îx

L
k ≠ x̂

L
k Î/Îx

L
k Î, for k = 0, 1, 2. Fig. 7 shows that overall the stabilities of di�erent simplicial outputs are

dependent on each other. Specifically, we see that the triangle output is not influenced by the perturbation
on node weights until L = 2; likewise, the node output is not influenced by the perturbations on triangle
weights when L = 1. Also, perturbations on the edge weights will perturbe the outputs on nodes, edges,
triangles when L = 1. This corroborates our discussions in Section 5.

E�ect of number of simplices We observe that the same degree of perturbations added to di�erent
simplices causes di�erent degrees of instability, owing to the number nk of k-simplices in Eq. (14). Since
n0 < n1 < n2, the perturbations on node weights cause less instability than those on edge and triangle
weights.

E�ect of number of layers As the number of layers increases, Fig. 7 also shows that the stability of
SCCNN degrades, which corresponds to our analysis of using shallow layers.

6.4 Trajectory prediction (RQ 1, 4)

We consider the task of predicting trajectories in a synthetic SC and ocean drifters from Schaub et al. (2020),
following Roddenberry et al. (2021). From Table 4, we first observe that the SCCNN and Bunch methods
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Figure 7: The relative di�erence of SCCNN outputs on simplices of di�erent orders when perturbations are
applied to only nodes, edges and triangles and the number of layers varies.

Table 4: Trajectory prediction (accuracy, ø).

Methods Synthetic trajectories Ocean drifters
SNN (Ebli et al., 2020) 65.5±2.4 52.5±6.0
PSNN (Roddenberry et al., 2021) 63.1±3.1 49.0±8.0
SCNN (Yang et al., 2022a) 67.7±1.7 53.0±7.8
Bunch (Bunch et al., 2020) 62.3±4.0 46.0±6.2
SCCNN 65.2±4.1 54.5±7.9

do not always perform better than those without inter-simplicial couplings. This is because zero inputs are
applied on nodes and triangles following Roddenberry et al. (2021), which makes inter-simplicial couplings
inconsequential. Secondly, an SCCNN performs better than Bunch on average, and SCNN better than PSNN,
showing the advantages of higher-order convolutions. Note that the prediction here aims to find the best
candidate from the neighborhood of the end node, which depends on the node degree. Since the average node
degree of the synthetic SC is 5.24 and that in the ocean drifter data is 4.81, a random guess has around 20%
accuracy. The high standard derivations may result from the limited ocean drifter data size.

6.4.1 Stability analysis (RQ 4)
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Figure 8: Stability and accuracy of
SCCNN versus convolutional orders.

Di�erently from Section 6.3.1, we further investigate the stability in
terms of the integral Lipschitz properties and convolutional orders. We
consider SCNNs (Yang et al., 2022a) with orders Td = Tu œ {1, 3, 5}

and train them with regularizations on the integral Lipschitz constants.
As shown in Fig. 8, the higher-order case has better stability (smaller
¸2 distance between the outputs without and with perturbations) and
consistent better accuracy, compared to the lower-order case. This is
because the additional flexibility in the higher-order case allows the
filters to have better intergral Lipschitz properties and thus better
stability, while maintaining the accuracy. We refer to Appendix G.4.4
for a detailed design of the regularizations, as well as more in-depth
experimental analysis.

7 Related Works, Discussions and Conclusion

Related works Our work is mainly related to learning methods on SCs. Roddenberry & Segarra (2019)
first used L1,d to build neural networks on edges in a graph setting without the upper edge adjacency. Ebli
et al. (2020) then generalized convolutional GNNs (Kipf & Welling, 2017; De�errard et al., 2016) to simplices
by using the Hodge Laplacian. Roddenberry et al. (2021); Yang et al. (2022a) instead uncoupled the lower
and upper Laplacians to perform one- and multi-order convolutions, to which Goh et al. (2022); Giusti et al.
(2022); Lee et al. (2022) added attention schemes. Keros et al. (2022) considered a variant of Roddenberry
et al. (2021) to identify topological “holes” and Chen et al. (2022b) combined shifting on nodes and edges for
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link prediction. These works learned within a simplicial level and did not consider the incidence relations
(inter-simplicial couplings) in SCs, which was included by Bunch et al. (2020); Yang et al. (2022c). These
works considered convolutional-type methods, which can be subsumed by SCCNNs. Meanwhile, Bodnar
et al. (2021b); Hajij et al. (2021) generalized the message passing on graphs (Xu et al., 2018a) to SCs,
relying on both adjacencies and incidences. Most of these works focused on extending GNNs to SCs by
varying the information propagation on SCs with limited theoretical insights into their components. Among
them, Roddenberry et al. (2021) discussed the equivariance of PSNN to permutation and orientation, which
SCCNNs admit as well. Bodnar et al. (2021b) studied the messgae-passing on SCs in terms of WL test of
SCs built by completing cliques in a graph. The more closely related work is (Yang et al., 2022a), which gave
only a spectral formulation based on SCFs but not SCCNNs. We refer to Papamarkou et al. (2024); Besta
et al. (2024) for an overview of the current progress on learning on SCs.

Discussions In our opinion, the advantage of SCs is not only about them being able to model higher-
order network structures, but also support simplicial data, which can be both human-generated data like
coauthorship, and physical data like flow-type data. This is why we approached the analysis from the
perspectives of both simplicial structures and the simplicial data, i.e., the Hodge theory and spectral simplicial
theory (Hodge, 1989; Lim, 2020; Yang et al., 2021; Barbarossa & Sardellitti, 2020; Steenbergen, 2013; Yang
et al., 2022b; Govek et al., 2018). We provided insights into why the three principles (P1-P3) are needed
and how they can guide the e�ective and rational learning from simplicial data. As we have practically
found, SCCNNs perform well in applications where data exhibits properties characterized by the Hodge
decomposition due to the Hodge-awareness, while non-Hodge-aware learners fail at giving rational results. In
cases where data does not possess such properties, SCCNNs have better or comparable performance than the
ones which violate or do not respect the three principles.

Concurrently, there are works on more general cell complexes, e.g., (Hajij et al., 2020; 2022; Sardellitti et al.,
2021; Roddenberry et al., 2022; Bodnar et al., 2021a), where 2-cells inlcude not only triangles, but also general
polygon faces. We focus on SCs because a regular cell complex can be subdivided into an SC (Lundell et al.,
1969; Grady & Polimeni, 2010) to which the analysis in this paper applies, or we can generalize our analysis
by allowing B2 to include 2-cells. This is however informal and does not exploit the power of cell complexes,
which relies on cellular sheaves, as studied in (Hansen & Ghrist, 2019; Bodnar et al., 2022).

Conclusion We proposed three principles (P1-P3) for convolutional learning on SCs, summarized in
a general architecture, SCCNNs. Our analysis showed this architecture, guided by the three principles,
demonstrates an awareness of the Hodge decomposition and performs rational, e�ective and expressive
learning from simplicial data. Furthermore, our study reveals that SCCNNs exhibit stability and robustness
against perturbations in the strengths of simplicial connections. Experimental results validate the benefits of
respecting the three principles and the Hodge-awareness, as well as the stability results. Overall, our work
establishes a solid theoretical fundation for convolutional learning on SCs, highlighting the importance of the
Hodge theorem.
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