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Abstract

While the success of neural networks has been well-established across a variety of domains,
our ability to interpret these methods is still limited. Traditional variable importance
approaches in machine learning overcome this issue by providing local explanations about
particular predictive decisions — that is, they detail how important any given feature is to the
classification of a particular sample in the dataset. However, univariate mapping approaches
have been shown across many applications in the literature to generate false positives and
negatives in high-dimensional and collinear data settings. In this paper, we focus on the
slightly different task of global interpretability where our goal is to identify important groups
of variables by aggregating over collections of univariate signals to improve power and
mitigate false discovery. In the context of neural networks, a feature is rarely important on
its own, so our strategy is specifically designed to leverage partial covariance structures and
incorporate variable interactions into our proposed group feature ranking. Here, we extend
the recently proposed “RelATive cEntrality” (RATE) measure to the Bayesian deep learning
setting. We refer to this approach as the “GroupRATE” criterion. Given a trained network,
GroupRATE applies an information theoretic metric to the joint posterior distribution of
effect sizes to assess group-level significance of features. Importantly, unlike competing
approaches, our method does not require tuning parameters which can be costly and difficult
to select. We demonstrate the utility of our framework on both simulated and real data.

1 Introduction

Due to their high predictive performance, feedforward neural networks have become increasingly ubiquitous
in many fields including computer vision and natural language processing (LeCun et al., 2015). Unfortunately,
neural networks operate as “black boxes”: users are rarely able to understand the internal workings of the
network. As a result, these approaches have not been widely adopted in scientific settings where variable
selection tasks are often as important as prediction — one particular example being the identification of
biomarkers related to the progression of a disease. While neural networks are beginning to be used in high-risk
decision-making fields (e.g., automated medical diagnostics or self-driving cars such as in Lundervold &
Lundervold (2019); Rahman et al. (2019)), it is critically important that methods do not make predictions
based on artifacts or biases in the training data. Therefore, there is both a strong theoretical and practical
motivation to increase the global interpretability of neural networks and to better characterize the types of
relationships upon which they rely.

The increasingly important concept of interpretability in machine learning still lacks a well-established
definition in the literature. Despite recent surveys (Guidotti et al., 2018; Carvalho et al., 2019; Marcinkevics
& Vogt, 2020) and proposed guidelines (Rudin, 2019; Hall, 2019) to address this issue, conflicting views on
how interpretability should be evaluated still remain. Variable importance is one possible approach to achieve
global interpretability, where the goal is to rank each input feature based on its contributions to predictive
accuracy. This is in contrast to local interpretability, which aims to simply provide an explanation behind a
specific prediction or group of predictions (Arya et al., 2019; Clough et al., 2019). In this paper, we follow a
definition which refers to interpretability as “the ability to explain or to present in understandable terms to a
human” (Doshi-Velez & Kim, 2017). To this end, our main contribution is focused on global interpretability:
we address the problem of identifying important predictor variables given a trained neural network, focusing
especially on settings in which variables (or groups of variables) are intrinsically meaningful.
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Univariate mapping approaches have been shown to be underpowered and prone to high false discovery rates
in settings when there is complex correlation structure between features or when data is generated by many
variables with small effects (Galesloot et al., 2014). As a result, a recent strategy to improve the power
of variable importance methods is to leverage the naturally groupings of features that are well defined in
different applications. For example, in biomedicine, single-nucleotide polymorphisms (SNPs) fall within the
regulatory regions of genes, collections of microbiota form taxa, and medical images contain spatial regions
of pixels corresponding to anatomically relevant features. Grouping variables can also dramatically reduce
the number of objects to be compared by reducing the resolution at which a system is studied. This leads
to a reduction in both the computational cost and statistical complexity (e.g., by reducing the number of
tests when working in a hypothesis testing framework). Furthermore, groups may be a more natural scale
at which to interpret the system of interest. This is the case in brain magnetic resonance imaging (MRI)
scanning, where individual voxels have extremely limited meaning but can be grouped into brain regions that
are far more relevant and interpretable (Wehenkel et al., 2018). Lastly, grouping variables before calculating
importance can also give statistical benefits when features exhibit a high degree of collinearity within a group.
This is the case in medical imaging, where there is high spatial correlation between pixels or voxels, as well as
in genetic studies where linkage disequilibrium can cause SNPs within a genomic region to be highly collinear.

To that end, we describe an approach to interpret neural networks using a group-level extension of “RelATive
cEntrality” (RATE) criterion (Crawford et al., 2019), a recently-proposed univariate approach for assessing
variable importance in Bayesian models. We refer to our new flexible framework as GroupRATE which
assesses the importance of groups of variables according to some set of a priori annotations or domain
knowledge. Most importantly, GroupRATE can be used with any network architecture where some notion of
uncertainty can be computed over the predictions. The rest of the paper is structured as follows. Section
2 outlines related work on the interpretation of neural networks. Section 3 describes the univariate RATE
computation within the context for which it was originally proposed (Gaussian process regression). Section 4
contains the main methodological innovations of this paper. Here, we present a unified framework under
which RATE can be applied to neural networks based on variational Bayes and describe our main innovation
GroupRATE for estimating group-level variable importance. In Section 5, we demonstrate the utility of our
method in various simulation scenarios and real data applications, and compare our proposed framework to
competing approaches. We then close with a discussion.

2 Related Work

In the absence of a robustly defined metric for interpretability, most work on neural networks has centered
around locally interpretable methods with the goal to explain specific classification decisions with respect to
input features (Bach et al., 2015; Ribeiro et al., 2016; Shrikumar et al., 2016; Ancona et al., 2018; Sundararajan
et al., 2017; Adebayo et al., 2018). In this work, we focus instead on global interpretability where the goal is
to identify predictor variables that best explain the overall performance of a trained model. Previous work
in this context have attempted to solve this issue by selecting inputs that maximize the activation of each
layer within the network (Erhan et al., 2009). Another viable approach for achieving global interpretability is
to train more conventional statistical methods to mimic the predictive behavior of a neural network. This
“student” or “mimic” model is then retrospectively used to explain the predictions that a model would make
at a global level. Such mimic models are typically trained on the soft labels (the predicted probabilities)
output by the network, as these are often more informative than the corresponding hard (class) labels (Ba &
Caruana, 2014; Hinton et al., 2015; Che et al., 2016).

For example, using a decision tree (Frosst & Hinton, 2017; Kuttichira et al., 2019) or falling rule list (Wang
& Rudin, 2015) can yield straightforward characterizations of predictive outcomes. Unfortunately, these
simple models can struggle to mimic the accuracy of neural networks effectively. A random forest (RF) or
gradient boosting machine (GBM), on the other hand, is much more capable of matching the predictive
power of neural networks. Measures of feature importance can be computed for RFs and GBMs by permuting
information within the input variables and examining this null effect on test accuracy, or by calculating Mean
Decrease Impurity (MDI) (Breiman, 2001). The ability to establish variable importance in random forests
is a significant reason for their popularity in fields such as the life and clinical sciences (Chen et al., 2007),
where random forest and gradient boosting machine mimic models have been used as interpretable predictive
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models for patient outcomes (Che et al., 2016). A notable drawback of RFs and GBMs is that it can take a
significant amount of training time to achieve accuracy comparable to the neural networks that they serve to
mimic. This provides motivation for our direct approach, avoiding the need to train a separate model.

3 Relevant Background

In this section, we give a brief review on previous results that are relevant to our main methodological
innovations for performing group variable importance in Bayesian neural networks. Throughout, we assume
that we have access to some trained Bayesian model with the ability to draw samples from its posterior
predictive distribution. This reflects the post-hoc nature of our objective of finding important subsets of
variables.

3.1 Effect Size Analogues for Bayesian Nonparametric Models

Assume that we have an N -dimensional response vector y and an N ×J design matrix X with N observations
and J covariates. To begin, we consider a standard linear regression model where

y = f + ε, f = Xβ, ε ∼ N (0, τ 2I) , (1)
where β is a J-dimensional vector of additive effect sizes, ε is an N -dimensional vector of error terms that is
assumed to follow a multivariate normal distribution with mean zero 0 and scaled variance term τ2, and I is
an identity matrix. In classical statistics, a least squares estimate of the regression coefficients is defined as
the projection of the response variable onto the column space of the data: Proj(X, y) = X†y, with X† being
the Moore-Penrose generalized inverse. For high-dimensional settings with correlated features, one may also
consider using regularization via ridge regression such that Proj(X, y) = (X⊺X + ϑI)−1X⊺y where λ > 0 is a
penalty parameter.

In Bayesian nonparametric models, we relax the additive assumption in the covariates and consider a learned
nonlinear function f that has been evaluated on the N -observed samples (Kolmogorov & Rozanov, 1960;
Schölkopf et al., 2001; 2002)

y = f + ε, ε ∼ N (0, τ 2I) , (2)
where f = [f(x1), . . . , f(xN )]⊺. Previous work considered Gaussian process regression, where f ∼ N (0, K)
lives within a reproducing kernel Hilbert space (RKHS) defined by some nonlinear covariance function
kii′ = k(xi, xi′) for each element in K (Rasmussen & Williams, 2006). Here, we consider a mean-field
Bayesian neural network constructed such that f is also drawn from a multivariate normal. The effect size
analogue, denoted eβ, represents the nonparametric equivalent to coefficient estimates in linear regression
using common approaches such as generalized ordinary least squares or regularization. Similarly, this can
then be defined as the result of Proj(X, f) which projects the learned nonlinear vector f onto the original
design matrix X in the following respective ways

eβLinear = X†f , eβRidge = (X⊺X + ϑI)−1X⊺f , (3)
with ϑ ≥ 0 representing a free regularization parameter. Some intuition for the effect size analogue can
be gained as follows. After having fit a probabilistic model, we consider the fitted values f and regress
these predictions onto the input variables so as to see how much variance these features explain. This is
a simple way of understanding the relationships that the model has learned. The coefficients produced by
this linear projection have their normal interpretation: they provide a summary of the relationship between
the covariates in X and f . For example, while holding everything else constant, increasing some feature
xj by 1 will increase f by eβj . In the case of kernel machines, theoretical results for identifiability and
sparsity conditions of the effect size analogue have been previously developed when using the Moore-Penrose
generalized inverse as the projection operator (Crawford et al., 2018).

3.2 Univariate Variable Importance using Relative Centrality Measures

Similar to regression coefficients in linear models, effect size analogues are not used to solely determine variable
significance. Indeed, there are many approaches to infer univariate associations based on the magnitude of
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effect size estimates, but many of these techniques rely on arbitrary thresholding and fail to account for
key covarying relationships that exist within the data. The “RelATive cEntrality” measure (or RATE) was
developed as a post-hoc approach for variable prioritization that mitigates these concerns (Crawford et al.,
2019).

Consider a sample from the predictive distribution of eβ, obtained by iteratively transforming draws from
the posterior of f via one of the deterministic projections specified in Equation (3). The RATE criterion
summarizes how much any one variable contributes to the total information the model has learned. Effectively,
this is done by taking the Kullback-Leibler divergence (KLD) between (i) the conditional posterior predictive
distribution p(eβ−j | eβj = 0) with the effect of the j-th predictor being set to zero, and (ii) the marginal
distribution p(eβ−j) with the effects of the j-th predictor being integrated out. In this work, we denote the
RATE criterion as the following

γj = KLDjP
k KLDk

,

where γj quantifies the importance of the j-th variable in the model and

KLDj := KL
�

p(eβ−j) ∥ p( eβ−j | eβj = 0)
�

=
Z

log
 

p(eβ−j)
p(eβ−j | eβj = 0)

!
p(eβ−j) deβ−j . (4)

Note that the KLDj is a non-negative quantity, and equals zero if and only if the j-th variable is of little-to-no
importance, since removing its effect has no influence on the joint distribution other variable effects. In
addition, the RATE criterion is bounded within the range γj ∈ [0, 1] and has the natural interpretation of
measuring a variable’s relative entropy — with a higher value equating to more importance.

3.3 Closed-Form Relative Centrality Measures

Under the modeling assumptions for the weight-space Gaussian process in Equation (2), the posterior
distribution of the effect size analogue eβ via the projections specified in Equation (3) is multivariate normal
with an empirical mean vector µ and positive semi-definite covariance/precision matrix Ω = Λ−1. Given
these values, we may partition conformably for the j-th input variable such that

µ =
�

µj

µ−j

�
, Ω =

�
ωj ω⊺

−j

ω−j Ω−j

�
, Λ =

�
λj λ⊺

−j

λ−j Λ−j

�
. (5)

With these normality assumptions, after conditioning on eβj = 0, Equation (4) for the RATE criterion has the
following closed-form solution

KLDj = 1
2

�
tr(Ω−jΛ−j) − log |Ω−jΛ−j | − (J − 1) + δjµ2

j

�
, (6)

where tr(·) is the matrix trace function, and δj = λ⊺
−jΛ−1

−jλ−j characterizes the implied linear rate of
change of information when the effect of any predictor is absent — thus, providing a natural (non-negative)
numerical summary of the role of each eβj plays in defining the full joint posterior distribution. In other
words, δj is larger for variables whose effects also have greater dependency on the effects of other variables.
Crawford et al. (2019) show that, in a dataset with a reasonably large number of J features, the term
tr(Ω−jΛ−j) − log |Ω−jΛ−j | − (J − 1) remains relatively equal for each input variable and, thus, makes a
negligible contribution to when determining the variable importance. Therefore, in practice, we compute
RATE measures using the following approximation

KLDj ≈ δjµ2
j/2 . (7)

Note that the scalability of the RATE calculation in Equation (7) (which includes a feature’s posterior mean
and the joint covariance matrix) is O(JN2 + J2N + J4) for N observations and J variables. The leading
order term is O(J4) which is driven by J independent O(J3) operations of solving the (J − 1)-dimensional
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linear systems δj for j = 1, . . . , J . This restricts the current implementation of RATE to datasets of size
n ⪅ 105 and J ⪅ 104 if the system is solved. Fortunately, the matrix Λ−1

−j differs by only a single row and
column between consecutive values of the j-th index, meaning that low-rank updates can be used to solve
δj = λ⊺

−jΛ−1
−jλ−j in O(J2) time using the Sherman-Morrison formula (Hager, 1989). Given the partition in

Eq. (5), we can approximate Λ−1
−j using a rank-1 update for each feature in the model. This can be done by

removing the j-th row and column from the following matrix

Λ−1
−j ≈

�
Λ − Λωjω⊺

j Λ/
�
1 + ω⊺

j Λωj

��
−j

. (8)

Ultimately, this reduces the computational complexity of Equation (7) to just J-independent O(J2) operations
which can be parallelized.

3.4 Relationship between Relative Centrality and Mutual Information

To build further intuition about centrality measures, we establish a formal connection between the RATE
measure and mutual information (MI). By simplifying the definition of mutual information, we have

MI( eβ−j , eβj) =
ZZ

p(eβ−j , eβj) log
 

p(eβ−j , eβj)
p(eβ−j)p( eβj)

!
deβ−j deβj

=
ZZ

p(eβj)p( eβ−j | eβj) log
 

p(eβ−j | eβj)
p(eβ−j)

!
deβ−j deβj

=
Z

p(eβj) KL
�

p(eβ−j | eβj) ∥ p( eβ−j)
�

deβj .

(9)

While the RATE criterion compares the marginal distribution p(eβ−j) to the conditional distribution
p(eβ−j | eβj = 0) with the effect of the j-th predictor being set to zero, the mutual information criterion
compares p(eβ−j) to the conditional distribution p(eβ−j | eβj) for all the possible values of eβj . Whenever the
effect size analogue follows a normal distribution eβ ∼ N (µ, Ω), the unnormalized RATE criterion for the
j-th variable is given by Equation (6). In the same setting, the mutual information can be computed as

MI( eβ−j , eβj) = 1
2 log

�
δj |Ω−j ||Ω|−1�

, (10)

where the above is equal to 0 if and only if eβ−j and eβj are independent. To see the difference between the
two information theoretic measures in Equations (6) and (10), notice that MI(eβ−j , eβj) only depends on the
values of the covariance/precision matrix Ω = Λ−1. This is in contrast to the RATE criterion which also
takes the posterior mean (or marginal effect) of input features µ into account when determining variable
importance. Therefore, if a feature is only marginally associated with an outcome but does not have any
significant covarying relationships with other variables in the data, RATE will still identify this feature as
being an important predictor.

4 Variable Importance in Bayesian Neural Networks

We now detail the main methodological contributions of this paper. First, we describe a motivating Bayesian
neural network framework which utilizes variational inference. Next, we propose a new effect size analogue
projection that is more robust to collinear input data. Lastly, we extend the univariate RATE criterion to
also consider group-level variable importance (i.e., assessing the association of collections of features) with an
approach that we refer to as the GroupRATE measure. Importantly, this extension also has a closed-form
for scalable implementation in high-dimensional settings. Furthermore, to our knowledge, grouped variable
importance has not yet been studied for neural networks, despite several analogous works for other supervised
models (Yuan & Lin, 2006; Simon et al., 2013; Gregorutti et al., 2015; Wehenkel et al., 2018).
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4.1 Motivating Neural Network Architecture

In this section, we take a probabilistic view on prediction which is made possible by using a Bayesian neural
network. In contrast to a “standard” neural network, which uses maximum likelihood point-estimates for
its parameters, a Bayesian neural network assumes a prior distribution over its weights. The posterior
probability over the weights, learned during the training phase, can then be used to compute the posterior
predictive distribution. Once again, we consider a general predictive task with an N -dimensional set of
response variables y and an N × J design matrix X with p covariates. For this problem, we assume the
following hierarchical network architecture to learn the predicted response in the data

by = σ(f), f = H(θ)w + b, w ∼ π , (11)

where σ(·) is a link function, θ is a vector of inner layer weights, and f is an N -dimensional vector of smooth
latent values or “functions” that need to be estimated. Here, we use H(θ) to denote an N × L matrix of
activations from the penultimate layer (which are fixed given a set of inputs X and point estimates for the
inner layer weights θ), w ∼ π is a L-dimensional vector of weights at the output layer assumed to follow
prior distribution π, and b is an N -dimensional vector of the deterministic bias that is produced during the
training phase.

The hierarchical structure of Equation (11) is motivated by the fact that we are most interested in the
posterior distribution of the latent variables when computing the effect size analogues and, subsequently,
interpretable RATE measures. To this end, we may logically split the network architecture into three key
components: (i) an input layer of the original predictor variables, (ii) hidden layers where parameters are
deterministically computed, and (iii) the outer layer where the parameters and activations are treated as
random variables. Since the resulting functions are a linear combination of these components, their joint
distribution will be closed-form if the posterior distribution of the weight parameters can also be written in
closed-form. Restricting that only the weights in the outer layer are stochastic also brings computational
benefits during network training as it drastically reduces the number of parameters (versus learning a posterior
for every parameter in the network).

There are two important features that come with this neural network specification. First, we may easily
generalize this type of architecture to different predictive tasks through the link function σ(·). For example,
we may apply our model to the classification problem by increasing the number of output nodes to match
the number of categories and redefining link function to be the sigmoid function. Regression is even simpler
where we would let the link function be the identity. Second, the structure of the hidden layers can be of any
size or type, provided that we have access to draws of the posterior predictive distribution for the response
variables. Ultimately, this flexibility means that a wide range of existing probabilistic network architectures
can be easily modified to be used with RATE. A simple example of this architecture is illustrated in Figure 1.

4.2 Posterior Inference with Variational Bayes

As the size of datasets in many application areas continues to grow, it has become less feasible to implement
traditional Markov Chain Monte Carlo (MCMC) algorithms for inference. This has motivated approaches for
supervised learning that are based on variational Bayes and the stochastic optimization of a variational lower
bound (Hinton & Van Camp, 1993; Barber & Bishop, 1998; Graves, 2011). In this work, we use variational
Bayes because it has the additional benefit of providing closed-form expressions for the posterior distribution
of the weights in the outer layer w and, subsequently, the functions f . Here, we first specify a prior π(w) over
the weights and replace the intractable true posterior p(w | y) ∝ p(y | w)π(w) with an approximating family
of distributions qϕ(w). The overall goal of variational inference is to select the member of the approximating
family that is closest to the true posterior which is done by minimizing the divergence KL(qϕ(w) ∥ p(w | y)),
with respect to variational ϕ. This is equivalent to maximizing the so-called variational lower bound.

Since the architecture specified in Equation (11) contains point estimates at the hidden layers, we cannot
train the network by simply maximizing the lower bound with respect to the variational parameters. Instead,
all parameters must be optimized jointly as follows

arg max
ϕ,θ

Eqϕ(w) [log p(y | w, θ)] − η KL(qϕ(w) ∥ π(w)) (12)
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Figure 1: An example of the probabilistic neural network architecture used in this work. The first layer weights
θ are point estimates, while the outer layer weights w are assumed to be random variables following some
prior distribution π = (π(w1), π(w2), π(w3)). The input variables x1 and x2 are fed through the hidden layers
(h1, h2, h3) as linear combinations with their corresponding weights θ. Estimates of the predicted functions
f are obtained via a linear combination of the activations and samples from the posterior distribution of the
outer layer weights w = (w1, w2, w3). Note that this figure does not include the deterministic bias terms used
in Equation (11) for simplicity.

where η ≥ 0 denotes a divergence regularization term (Higgins et al., 2016). We then use stochastic
optimization to train the network. Depending on the chosen variational family, the gradients of the minimized
KL(qϕ(w) ∥ π(w)) may be available in closed-form, while gradients of the log-likelihood log p(y | w, θ) are
evaluated using Monte Carlo samples and the local reparameterization trick (Kingma et al., 2015). Following
this procedure, we obtain an optimal set of parameters for qϕ(w), with which we can sample posterior draws
for the outer layer.

In this work, we will use isotropic Gaussians as the family of approximating distributions

qϕ(w) = N (m, V), ϕ = {m, V}, (13)

with mean vector m and a diagonal covariance matrix V. This makes the mean-field assumption that the
variational posterior fully factorizes over the elements of w (Blei et al., 2017). One advantage of this choice
is that it ensures that the predicted functions f will follow a multivariate Gaussian distribution as well.
Using Equations (11) and (13), we may derive the implied distribution over the latent values using the affine
transformation

f | X, y ∼ N (H(θ)m + b, H(θ)VH(θ)⊺). (14)

While the elements of w are independent, dependencies in the input data (via the hidden activations H(θ))
induce a non-diagonal covariance between the elements of f .

4.3 Effect Size Analogues via Covariance Projection Operators

After having conducted (variational) Bayesian inference, we now have access to (empirical) draws from the
posterior p(f | X, y) which we can use to define an effect size analogue for neural networks. In practice,
we could use the Moore-Penrose generalized inverse as proposed in Equation (3) but, in the case of highly
correlated inputs, these operators can suffer from instability (see a small simulation study in Appendix A),
explaining the well-known phenomenon of linear regression suffering in the presence of collinearity. While
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regularization poses a viable solution to this problem, the selection of an optimal penalty parameter is not
always a straightforward task (see ϑ in the second half of Equation (3)). As a result, we propose a much
simpler projection operator that is particularly effective in application areas where data measurements can be
perfectly collinear (e.g., pixels in an image). Our solution is to use a linear measure of dependence separately
for each predictor based on the sample covariance. Namely, for each of the J input variables

eβCov = cov(X, f) = X⊺Cf/(N − 1) , (15)

where cov(X, f) = [cov(x1, f), . . . , cov(xJ , f)] is based on the sample covariance, C = I − 11⊺/N denotes
a centering matrix, I is an N -dimensional identity matrix, and 1 is an N -dimensional vector of ones.
Probabilistically, since the posterior of the function values f is normally distributed according to Equation
(14), the above is equivalent to assuming that eβCov | X, y ∼ N (µ, Ω) where

µ = 1
N − 1X⊺CH(θ)m, Ω = 1

(N − 1)2 X⊺CH(θ)VH(θ)⊺C⊺X. (16)

These moments, along with empirical estimates of the precision matrix Ω = Λ−1, can be used directly in
Equations (6)-(8) to compute RATE measures for univariate prioritization of each input variable. Intuitively,
each element in eβCov represents some measure of how well the original data at the input layer explains the
variation between observations in y. Moreover, under this approach, if two predictors xj and xk are almost
perfectly collinear, then the corresponding effect sizes will also be very similar since cov(xj , f) ≈ cov(xk, f).
To build a better intuition for identifiability under this covariance projection, recall simple linear regression
where ordinary least squares (OLS) estimates are unique modulo the span of the data (Wold et al., 1984). A
slightly different issue will arise for the effect size analogues computed via Equation (15), where now two
estimates are unique modulo the span of a vector of ones, or span{1}. We now make the following formal
statement.
Claim 4.1. Two effect size analogues computed via the covariance projection operators, eβ1 = cov(X, f1) and
eβ2 = cov(X, f2), are equivalent if and only if the corresponding functions are related by f1 = f2 + c1, where
1 is a vector of ones and c is some arbitrary constant.

The proof of this claim is trivial and follows directly from the covariance being invariant with respect to
changes in location. Other proofs connecting this effect size to classic statistical measures can be found in
the Appendix B.

4.4 Extension of Relative Centrality Measures for Groups of Variables

In many applications, variable selection and prioritization approaches have been shown to be underpowered
in settings with small signal-to-noise ratios. For example, in genome-wide association studies, univariate
association mapping for single nucleotide polymorphisms (SNPs) can be underpowered for “polygenic” traits
which are generated by many mutations of small effect (Manolio et al., 2009; Visscher et al., 2012; Zhou et al.,
2013; Yang et al., 2014; Bulik-Sullivan et al., 2015; Wray et al., 2018). To mitigate this issue, recent work
have extended methodology to assess the joint global importance for multiple input variables at a time. In
the case of genetics, one can use prior knowledge about how groups of SNPs within a particular genomic
region are combined (e.g., in a gene or signaling pathway) to detect biologically relevant disease mechanisms
underlying complex traits (Liu et al., 2010; Wu et al., 2010; Carbonetto & Stephens, 2013; de Leeuw et al.,
2015; Lamparter et al., 2016; Nakka et al., 2016; Zhu & Stephens, 2018; Sun et al., 2019).

The univariate RATE criterion in Equation (6) can also be extended for these types of “set-based” analyses.
Assume that we have G-predefined annotations {A1, . . . , AG} which detail how different variables are related
to each other. Let each group g represent a known collection of variables j ∈ Ag with cardinality |Ag|. As
done in the univariate case, once we have access to draws from the posterior distribution of the effect size
analogue eβ, we may conformably partition the mean vector and covariance/precision matrices with respect
to the g-th group of input variables as follows

µ =
�

µg

µ−g

�
, Ω =

�
Ωg Ω∗⊺

−g

Ω∗
−g Ω−g

�
, Λ =

�
Λg Λ∗⊺

−g

Λ∗
−g Λ−g

�
.
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where Ω∗
−g and Λ∗

−g are used to denote the covariance and precision matrices between variables inside and
outside of the annotated set Ag, respectively. Following the same logic used to derive Equation (6), the
RATE criterion to assess the centrality of group g is given as

KLDg = 1
2

�
tr(Ω−gΛ−g) − log |Ω−gΛ−g| − (J − |Ag|) + µ⊺

g∆gµg

�
, (17)

where now ∆g = Λ∗⊺
−gΛ−1

−gΛ∗
−g and characterizes the implied linear rate of change of information when the

effect of all predictors in the g-th group are absent from the model. We refer to the scaled extension of
Equation (17) as the GroupRATE criterion. Note that, in practice, the cardinality of groups can differ which
may introduce bias in the GroupRATE. To mitigate this bias, we divide the KLD by the size of each group

γg =
KLDg

�
|Ag|P

l KLDl

�
|Al|

(18)

which effectively penalizes the GroupRATE measures for larger groups. This simple correction results in the
median correlation between the KL divergences and the size of any group to be zero (see Results).

5 Results

In this section, we illustrate the performance of our interpretable Bayesian neural network framework
with GroupRATE for prioritizing groups of variables in regression settings. Here, the goal is to show how
determining group variable importance for a trained neural network with the RATE measure compares
with commonly used group-level modeling techniques in the field. Finally, we examine the potential of our
approach in real datasets from genetics and biomedical imaging, respectively.

5.1 Simulation Study

For all assessments with synthetic data, we consider a simulation design that is often used to explore the
power statistical methods (Crawford et al., 2018; 2019). Once again let X denote a design matrix of N
independent observations with J predictor variables. In this study, we assume that these features are sampled
from a zero-mean log-normal distribution such that

log x ∼ N (0, Σ)

where Σ = 0.9Σgrp + 0.1Σbg is a combination of group-dependent covariance Σgrp and background covariance
Σbg structures, respectively. Here, we assume that the background covariance follows an inverse-Wishart
distribution Σbg ∼ W−1(I, J + 3) with an identity scale matrix and J + 3 degrees of freedom. Briefly, the
inverse-Wishart is a distribution over positive-definite matrices and is a conjugate prior to the covariance of a
multivariate Gaussian. The degrees of freedom in the inverse-Wishart controls the concentration of the density
around the scale matrix, with larger values increasing this concentration. We assume that the structure of the
group covariance Σgrp is block-diagonal with the blocks of non-zero components corresponding to annotated
groups {A1, . . . , AG} and zeros everywhere else. Namely, this structure is given is

Σgrp =




Σ1
grp 0 · · · 0
0 Σ2

grp · · · 0
...

... . . . ...
0 0 · · · ΣG

grp




where we also allow an inverse-Wishart distribution over the groups Σg
grp ∼ W−1(I, |Ag| + 3). The group

structure is an important part of these simulations. In these simulations, we assume that there are G groups
with the sizes of each group being randomly determined via a multinomial distribution

|A1|, . . . , |AG| ∼ Multinomial(J, 1/J)
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which enforces
P

g |Ag| = J . A single sample of Σ is shown in Figure 2. This construction of features ensures
there is group-dependent structure in the covariance while also containing non-trivial relationships between
other variables.

To complete the simulations, we first randomly select a subset of associated groups and then we use the
design matrix X in the following generative linear model

y =
X

c∈C
xcβc + Wθ + ε, ε ∼ N (0, τ 2I) (19)

where y is an N -dimensional synthetic response vector; C represents the set of all causal features in the
randomly selected causal groups; xc is the c-th causal feature vector with a corresponding nonzero additive
effect size βc; W is an N × M dimensional matrix which holds all pairwise interactions between the causal
features, with the columns of this matrix assumed to be the Hadamard (element-wise) product between
feature vectors of the form xj ◦ xk for the j-th and k-th features; θ is the M -dimensional vector of interaction
effect sizes; and ε is an N -dimensional vector of environmental noise. In these simulations, we assume that
the total variation of the synthetic response variable is V[y] = 1. Here, we allow the additive and interaction
effect sizes to be randomly drawn from standard normal distributions. Next, we scale the additive, pairwise
interactions, and the environmental noise terms so that they collectively explain a fixed proportion of this
variance where

V

"X

c∈C
xcβc

#
= ρv2, V[Wθ] = (1 − ρ)v2, V[ε] = 1 − v2. (20)

Intuitively, v2 determines how much variance in the simulated response is due to signal versus noise, while ρ
is a mixture parameter which determines how much of the signal is driven by linear versus nonlinear effects.
Given the simulation procedure above, we fix v2 = 0.8 and J = 103 features. We then simulate a wide range
of scenarios by varying the following settings:

• sample size: N = 103, 2 × 103, and 5 × 103 individuals;

• number of associated groups: G = 50, 100, and 200;

• contribution of additive effects: ρ = 0.4 and 0.6.

In the results below, we will refer to Scenario I as the case where the response is controlled mostly by
additivity (i.e., ρ = 0.75) and Scenario II as the setting where additivity and pairwise interactions account for
an equal share of the signal (i.e., ρ = 0.5). All figures and tables show the mean performances (and standard
errors) across 50 simulated replicates for each combination of parameter settings.

Detail of Competing Methods. The main goal of this simulation study is to compare the performance
of our proposed GroupRATE framework to that of other commonly used group-level variable importance
methods. To assess the power of GroupRATE, we train a four layer Bayesian neural network with probabilistic
weights in the last layer by maximizing the evidence lower bound using the Adam optimizer with a learning
rate of 10−3 for a maximum of 300 epochs (Kingma & Ba, 2014). Training of this model used 80% of the
samples while the remaining 20% were held-out as testing data. In addition, we used 10% of the training set
as validation data to monitor the behavior of the loss function — where we terminate the training algorithm
if the validation loss did not decrease for 30 consecutive epochs (i.e., early stopping). The weight of the
divergence regularization term in the evidence lower bound is set to η = 0.3 throughout (see Equation (12))
and a standard isotropic normal prior is used for all variational parameters. Lastly, rectified linear unit
(ReLU) activations are used for hidden layers, each of which contains eight units, and the output layer
contains two units and uses an identity activation. Note that no hyper-parameter optimization is performed
on the Bayesian neural network as the aim here is not to optimize generalization performance. In a real
application, it would be assumed that an extensive hyper-parameter search and cross-validation would have
already been performed to obtain a final model. Instead, the task is to interpret this model via a post-hoc
analysis. We evaluate GroupRATE using the effect size analogue computed with the generalized inverse and
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Figure 2: A sample of the covariance structure and variable groupings used in the simulation study. Here,
the total covariance Σ is a combination of group-dependent covariance Σgrp and background covariance Σbg
structures, respectively. Note that the matrices are partitioned based on the group structure.

ridge regularization projections from Equation (3), as well as with the covariance operator from Equation
(15).

We compare the performance of GroupRATE to seven other group-level prioritization approaches which
effectively take aggregate summaries over the following univariate variable importance methods:

• vanilla gradients (Simonyan et al., 2014);

• gradients×input (Shrikumar et al., 2016);

• integrated gradients (Sundararajan et al., 2017);

• guided back-propagation (Springenberg et al., 2015);

• smoothed gradients (Smilkov et al., 2017);

• a random forest mimic model with mean decrease Gini variable importance (Breiman, 2001).

The first five of these methods use saliency maps which compute local scores using the gradient of the neural
network output with respect to a particular observation in the data. For example, the simplest “vanilla”
saliency map attributes the partial derivative ∂fi/∂xij as the importance of the j-th feature in the i-th
sample. In practice, we can then assign global importance using

PN
i=1 |∂f/∂xj | /N . In these simulations, we

assign group-level importance by simply taking the mean over the univariate global scores for the variables in
a given group Ag. For the “vanilla” saliency maps, this done by computing the following

sg = 1
|Ag|

X

j∈Ag

"
1
N

NX

i=1

����
∂f

∂xj

����

#
. (21)

Indeed, the drawbacks of saliency-based methods have been well-documented (Adebayo et al., 2018; Kinder-
mans et al., 2019; Ghorbani et al., 2019), but we include them here due to their popularity. We encourage
the reader to see Ancona et al. (2018) for an analysis and comparison of these saliency methods.

Lastly, we consider a random forest mimic model, which is a regression model that takes in the original
simulated features X but is trained on the predicted values f of the fitted Bayesian neural network as response
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variables (rather than on the original synthetic outputs y). Using this mimic model approach, we compute
global group-level scores by taking the mean-decrease of univariate Gini importance values for each j-th
variable that have been annotated g-th group Ag. Using the mean to aggregate variable-level importances to
estimate group-level importance has been investigated by Wehenkel et al. (2018) in the context of 3D brain
imaging data applications. Their simulation studies found that using the mean resulted in the best variable
selection performance and so that is the same approach we used here.

Evaluation of Competing Methods. Figure 3 shows boxplots of the power for each of the different
methods over 50 simulated replicates. Here, we assess performance by comparing each method’s ability to
rank true positives over false positives via the area under their respective receiver operating characteristic
curves (AUCs), where a higher value denotes better accuracy in prioritizing the causal groups used in the
generative model of the simulations. Overall, there are a few important takeaways from these comparisons.
First, most of the methods exhibited better performance as the sample sizes of the simulated data increases
(median AUCs ≥ 0.9). The second key takeaway is that power for all approaches is consistently better when
the simulated data are generated by fewer causal groups. The latter occurs because each associated group
(and the features assigned to them) make a greater individual contribution to the overall variance for the
response (i.e., V[y]/50 > V[y]/100 > V[y]/200). Similar trends in performance have been shown during the
assessment of high-dimensional variable selection methods in other application areas (Li et al., 2015; Crawford
et al., 2017; Zhu & Stephens, 2018; Demetci et al., 2021; Wang et al., 2021; Tang et al., 2022). The one
exception that differed from these general trends was the random forest mimic model which had a median
AUC ≈ 0.85 for the simpler tasks (i.e., a combination of sample sizes N , few causal groups G, and variation
driven primarily by additivity ρ) and suffered a decrease in AUC towards 0.6 for the hardest tasks. The
integrated gradients and gradient×input also suffered for more complicated simulation designs.

The GroupRATE AUCs were consistently competitive with the other best-performing methods (guided
back-propagation and smoothed gradients) but there were small differences between the projections used to
compute the effect size analogues. Using the ridge and generalized inverse projections both generally led to
higher AUCs than the covariance projection which we hypothesize is due to features being simulated with
relatively simple block-wise correlation structures (see depiction in Figure 2). The groups in this simulation
have a range of sizes which, as previously mentioned in Equation (18), may introduce a bias in GroupRATE
scores that are not present in the original RATE calculation. Figure 4A shows that the KL divergence values
for a group is positively correlated with the group size, especially for the proposed covariance projection. This
correlation decreases towards zero as the sample size of the data N increases, but this bias can be mitigated
by dividing the KL divergences by the number of features included in each group (Figure 4B).

Run Times and Scalability of Competing Methods. One area in which the different methods studied
in this simulation study differ is in their ability to scale to high-dimensional data settings. In this section, we
compare this scalability. Since each of these methods perform post-hoc variable importance, our evaluation of
their respective computational costs does not include the time spent training a model beforehand.

The ten methods that we consider can be divided into three classes based on how they compute group-level
importance scores. The first three approaches use GroupRATE with effect size analogues that are computed
with different projection operators. The ridge and generalized inverse projections both require a singular value
decomposition of the design matrix X, which has an O(N2J) running time for N samples and J features. On
the other hand, the covariance projection only involves a O(N2J) matrix multiplication, which has the same
asymptotic running time as the singular value decomposition but is cheaper in terms of wall clock time. This
makes the covariance projection the cheapest computationally of the three effect size analogue projections.
Once the effect sizes have been computed, we must empirically compute the moments of their posterior
distribution µ, Ω, and Λ via an additional O(JN2 + J2N) matrix multiplication. The final step is solving
Equations (17) and (18) for each of the G annotated groups, which requires G independent solutions of a
linear system, each of which are O(J3). Therefore, the computational complexity of the entire GroupRATE
calculation is the following

O(JN2 + J2J + GJ3) , (22)

12



●●● ●● ●●
● ●● ●●

● ●

●

●●● ●● ●●●
● ●●● ●●●

●●
●● ●●

●● ●● ● ●
● ●●●

● ●

●

●● ●● ●● ●
●●●● ●●●●

●● ●● ●● ●
●●●● ●●●●

●
●

●

●●

●
●

●●

●●

●
●

● ●●

●●
●●

●

●

●

●

●
●

●●
●●

●

●
●●

●
●

●
●

50 groups 100 groups 200 groups

0.5 0.6 0.7 0.8 0.9 1.0 0.5 0.6 0.7 0.8 0.9 1.0 0.5 0.6 0.7 0.8 0.9 1.0

Smoothed gradients

Integrated gradients

Guided backpropagation

Gradient x input

Vanilla gradients

Random forest mimic

GroupRATE (Ridge)

GroupRATE (Pseudoinverse)

GroupRATE (Covariance)

Group prioritisaion AUC

Im
po

rta
nc

e 
m

et
ho

d

Sample
size (n)

10,000
30,000
50,000

(a) Scenario I (ρ = 0.6)

●●
●●● ●● ●●

● ●●

● ●●●●● ●
● ●●● ●

●

●●

●

●●● ●●
● ●● ●●●

●●● ●● ●●
● ● ● ●●

●●● ●● ●●
● ● ● ●●

●
●●

●

●●

●●
● ● ●

●

● ●

●●
●●

●
● ●

●
● ●

●
●

● ●●

●
●

●

●

●●

●

●●

●
● ●

●

●
●● ●

●
●● ●

●●

50 groups 100 groups 200 groups

0.5 0.6 0.7 0.8 0.9 1.0 0.5 0.6 0.7 0.8 0.9 1.0 0.5 0.6 0.7 0.8 0.9 1.0

Smoothed gradients

Integrated gradients

Guided backpropagation

Gradient x input

Vanilla gradients

Random forest mimic

GroupRATE (Ridge)

GroupRATE (Pseudoinverse)

GroupRATE (Covariance)

Group prioritisaion AUC

Im
po

rta
nc

e 
m

et
ho

d

Sample
size (n)

10,000
30,000
50,000

(b) Scenario II (ρ = 0.4)

Figure 3: Box plots of the area under the curves (AUCs) for group-level prioritization for GroupRATE
and competing variable importance approaches in different simulation scenarios with 50 replicates. The red
horizontal line indicates an AUC = 0.5 (i.e., the expected performance of random importance scores). All
AUCs are also tabulated in Table S1.

which is dominated by the ESA posterior calculation for N ≫ J datasets and by the solution of the KLD
for N ≪ J datasets. The empirical computation times for the GroupRATE framework with each projection
in our simulation study are shown in Figure 5A. These timings are split into the time required to calculate
the parameters of the posterior distribution p(eβ | X, y) and the subsequent KL divergence interactions. The
covariance projection is the fastest of the three, as expected; however, this difference is on the order of minutes
and so is negligible in practice for datasets of these sizes.

The second type of methods are those based on gradients (i.e., saliency maps). Here, these are implemented in
TensorFlow and so the gradient evaluations are computed efficiently using automatic differentiation. However,
within the class of saliency methods, there are those requiring a single gradient evaluation (i.e., vanilla
gradients, gradient×input, and guided back-propagation) and those that use repeated evaluations to smooth
the gradients (i.e., integrated gradients and smoothed gradients). The random forest mimic model is distinct
from the other two types of method as it requires training an entire additional model. This necessitates a
hyper-parameter search and cross-validation which, while easy to parallelize, is computationally expensive.

The empirical computation times of the saliency-based methods are shown in Figure 5B. Integrated gradi-
entsand smoothed gradients have the longest running times due to computing repeated gradient evaluations.
We want to note that, while these methods are not particularly fast, none of these running times are sufficiently
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Figure 4: Panel (a) depicts simulation results showing that the KL divergence values for a group (via Equation
(17)) are positively correlated with group size. Panel (b) illustrates that this can be mitigated by dividing
each KLD by the corresponding group size when calculating GroupRATE scores.

long to preclude their inclusion in an analysis for datasets of these sizes. The random forest mimic is not
plotted here because its cross-validation procedure has a run time that is up to 2 orders of magnitude larger
than both GroupRATE and the saliency-based methods.

5.2 Assessing Gene Importance in Genome-wide Association Studies

To demonstrate the GroupRATE criterion in real data, we turn to a genome-wide association (GWA) study
of a heterogeneous stock of mice dataset from the Wellcome Trust Centre for Human Genetics (Valdar et al.,
2006, http://mtweb.cs.ucl.ac.uk/mus/www/mouse/index.shtml). We focus on analyzing two quantitative
traits: body length and percentage of CD8+ cells. This dataset contains N ≈ 2000 and J ≈ 10,000 single
nucleotide polymorphisms (SNPs) with minor allele frequencies above 5% — with exact numbers varying
slightly depending on the phenotype. In the traditional genome-wide association (GWA) framework, SNPs are
individually tested for their marginal importance; however, this approach has been shown to have drawbacks
and can suffer from low power when the architecture of a trait is complex (Manolio et al., 2009; Yang et al.,
2010; Visscher et al., 2012; Yang et al., 2014). As a result, recent approaches have aimed to combine SNPs
within a chromosomal region to detect more biologically relevant genes and enriched pathways (Liu et al.,
2010; Ionita-Laza et al., 2013; Nakka et al., 2016; Zhu & Stephens, 2018; Cheng et al., 2019; Demetci et al.,
2021). Our interpretable Bayesian neural network framework can be used for similar tasks using GroupRATE.
We choose to analyze these particular traits because their architectures represent a realistic mixture of the
simulation scenarios we detailed in the previous section. Specifically, these traits have been shown to have
various levels of broad-sense heritability (i.e., varying signal-to-noise ratios v2) with different contributions
from both additive and non-additive genetic effects (i.e., different values of ρ) (Valdar et al., 2006; Chen
et al., 2012; Mackay, 2014; Tyler et al., 2016; Crawford et al., 2018; 2019).

Here, we use the Mouse Genome Database (MGD) (Blake et al., 2003, http://www.informatics.jax.org)
and define groups as collections of SNPs with genomic positions that fall within the same gene (or pseudogene).
For simplicity, we eliminate genes with completely overlapping annotations. This resulted in 3,749 total genes
(or groups of SNPs) across the 20 chromosomes in the mouse genome to be analyzed. After having trained
our neural network, we run GroupRATE on each of these groups using Equation (17) with the three different
effect size projection operators to create gene importance scores. We provide summary tables which list all
the results after running these three approaches on both the body length and CD8+ phenotypes (Tables
S2 and S3). We also use Manhattan plots to visually display the gene-level mapping results across each of
these traits, where chromosomes are shown in alternating colors for clarity and notable top ranked genes
are highlighted (Figures 6 and S2). Lastly, to further provide contextual relevance of our results, we use the
GWAS catalog (https://www.ebi.ac.uk/gwas/) to identify molecular categories with an overrepresentation
of the most important genes reported by GroupRATE within each trait.
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Figure 5: Mean empirical computation times for the different group-level variable importance methods across
100 replicates. Panel (a) depicts the time it takes to run the GroupRATE framework while using different
effect size analogue projections. The bars denote the time to compute the KL-divergence posterior, while the
lines indicate the total GroupRATE calculation (effect size analog (ESA) posterior estimation plus the KL-
divergence computation). Panel (b) shows the computational time that it takes to run competing approaches
with parallelization while using 32 threads. The random forest mimic is excluded as its computation time is
1-2 orders of magnitude larger than the saliency methods (G = 50 with N = 1 × 104 takes 460 seconds, and
G = 200 with N = 5 × 104 takes over 2.5 hours).
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Overall, we found that a large number of the highly ranked genes identified by GroupRATE with the covariance
projection have previously been identified by past publications as having some functional relationship with
the traits of interest. For example, GroupRATE ranks the genes Dnah8 and Rsph1 on chromosome 17 as
being the top two most enriched for the percentage of CD8+ cells in mice (Figure 6). This same region has
been reported by multiple functional studies as having highly significant quantitative trait loci (Stefansson
et al., 2007; Winkelmann et al., 2007) and has been identified by many computational methods have as having
variants that contribute to non-additive variation for CD8+ cells (Crawford et al., 2019; Demetci et al.,
2021). Valdar et al. (2006) also reported finding the most significant non-additive effects for immunological
phenotypes (including percentage of CD8+ cells) around the major histocompatibility complex (MHC) on
chromosome 17. Similarly, GroupRATE prioritizes Rarb on chromosome 14 as being the top ranked genes
for body length. For context, Rarb has an orthologous gene in humans which contains common body mass
index-associated variants that confer risk of extreme obesity (Cotsapas et al., 2009).

In these data, using GroupRATE with the different effect size analogues led to identifying different enriched
genomic regions for both body length and the percentage of CD8+ cell traits. We believe that this is most
likely due to the theoretical properties underlying their respective projection operators. First, performing
group-level importance using the generalized inverse effect size analogue failed to yield any distinct gene
rankings in either phenotype. We hypothesize that this is largely due to the Bayesian neural network and the
least squares projection struggling to discern between associated features in the presence of high collinearity
(see Appendix A). In contrast, regularization via the ridge is designed to select no more than a few variants in
a given correlation block (Hoerl & Kennard, 1970). While this leads to better identification of signal than the
generalized inverse (which has no penalization term), it still does not prioritize all trait-relevant genes. For
example, in body length, GroupRATE with the ridge projection does not give any high importance to genes
on chromosome 2 which has been shown to play a significant role in the genetics of growth, body weight,
and body composition in mice (Yi et al., 2004; 2006; Lembertas et al., 1997; Jerez-Timaure et al., 2004;
Vitarius et al., 2006; Ankra-Badu et al., 2009). The covariance operator, on the other hand, will compute
analogue estimates based on the true effect size among all correlated variants in a gene boundary (again see
Appendix A). This strategy is also not perfect in all cases. To see this, in the body length trait, performing
GroupRATE with the covariance operator failed to highly prioritize any genes on the X chromosome — which
is interesting because the X chromosome is well known to strongly influence adiposity and metabolism in
mice (Chen et al., 2012). Nonetheless, in general, GroupRATE with the covariance operator was able to
identify more significant genes associated with body length and CD8+ cell percentage.

5.3 Structural Brain Region Enrichment Analysis in MRI Scans

To demonstrate the application of GroupRATE on other types of data, we evaluated it on structural brain MRI.
The images are available as part of the UK Biobank, which conducted a comprehensive study of 500,000 people
recruited from the UK’s general population between 2006 and 2010 (Miller et al., 2016). The participants
aged between 40-69 years old and provided blood samples for biochemical tests, imaging, genotyping, as well
as a wide range of self-reported information and physical measurements. The protocols for obtaining the
different measurements from the participants have been published in the literature (Alfaro-Almagro et al.,
2018).

Studies have shown that the difference between true brain age and the brain age predicted by a model
can act as a biomarker for risk stratification and clinical applications (Cole et al., 2017; Hajek et al., 2019;
Kolbeinsson et al., 2020). However, the best performing models in the literature are often neural networks
which are difficult to interpret. Here, we apply GroupRATE to the analysis of brain age difference in the UK
Biobank population to identify structural brain regions that highly associate with this biomarker.

This study utilized 12,022 3D images from a release accessible to researchers. The images employed were
T1-weighted, which accentuate the difference between white and grey matter. A subset of 522 images were
used for a held-out test set. At full 1 mm3 resolution, the 182 × 218 × 182 volumes are too large for efficient
computation, therefore we applied GroupRATE to downsampled volumes. The downsampling operation was
a learned convolutional layer with both kernel size and stride set to 7. This resulted in a smaller volume of
26 × 31 × 26 to which GroupRATE can be efficiently applied. The 140 groups are defined from the brain
region atlas provided as part of the UK Biobank imaging release. All images had been aligned to the MNI152
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Figure 6: Group-level genome-wide scan for percentage of CD8+ cells in the heterogeneous stock of mice
dataset. Here, GroupRATE variable importance is computed while using effect size analogues derived from
the (a) covariance, (b) generalized inverse, and (c) ridge penalized projections. Chromosomes are shown in
alternating colors for clarity, with the top notable genes being annotated on the plot near their genomic
position. ‡: Genes that replicated as being highly prioritized while using different effect size analogues.

template, allowing for direct voxel-to-voxel mapping between the atlas and images. The 182 × 218 × 182 atlas
was dowmsampled using max-pooling (kernel size and stride both set to 7) to give a volume map with the
same dimension as the MRI.

We fit a prediction model using a convolutional neural network with 3D ResNet-like blocks. The details of
the non-Bayesian model architecture and training have been previously described in Kolbeinsson et al. (2021).
The changes we made here were to replace the final layer with a Bayesian equivalent whose weights make use
of variational inference. The training objective was equation 12 with η = 10−4 optimized using Adam. The
Bayesian layers were created using the Bayesianize library (Ritter et al., 2021).

The main results of the GroupRATE analysis are shown in Figure 7, while the complete results for all
groups are shown in Figure S3. GroupRATE identifies a number of brain regions that have associations with
increased brain age difference as shown in previous studies. The highest ranked region was the left planum
temporale, which is thought to be neurologically connected to language (Binder et al., 1996; Wernicke, 1874).
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Figure 7: Ranked importance of the top 20 groups identified by GroupRATE using the covariance effect size
analogue. A subset of the 140 total regions have notably higher importance. Most of these groups have been
described previously as having associations with brain development, ageing or disorders.

Furthermore, changes to its volume have been associated with schizophrenia (Kwon et al., 1999). Gyri regions
were particularly highlighted with the left postcentral gyrus and the right angular gyrus being the second
and third highest ranked region, respectively. Previous studies on brain structure changes with age have also
found both of these regions to reduce in volume with increased age (Sussman et al., 2016), demonstrating
that GroupRATE is selecting structurally-relevant regions.

6 Discussion

In this paper, we developed a novel group-level global interpretability method for Bayesian neural networks.
Here, we focused on settings in which collections of predictor variables are intrinsically meaningful and the
goal is to rank these groups of features based on their scientific relevance. We worked in a very flexible
variational Bayes approach to deep learning and proposed a sample covariance operator to develop an effect
size analogue for the input variables of a neural network. Next, we extended the recently proposed RelATive
cEntrality (RATE) measure (Crawford et al., 2019) to our setting, provided closed-form solutions for its
implementation, and developed the GroupRATE criterion. Lastly, we illustrated the performance of our
framework in a thorough simulation study and in broad real data applications including statistical genetics
and biomedical imaging. Our method outperforms or achieves performance on par with the state-of-the-art,
while avoiding the need for a separate and (often) time consuming tuning step.

In its current form, we have focused on demonstrating the utility of GroupRATE with a particular Bayesian
neural network where only the weights on the outer layer are considered as random variables (see again Figure
1). Note, however, that we are not restricted to this architecture and each of the innovations we have presented
can be applied to any deep learning method that provides a notion of uncertainty over the predictions.
The effect size analogue is merely a multivariate summary statistic which can be derived after fitting any
model. This means that, as long as one has access to empirical estimates of its posterior distribution, relative
centrality measures can always be computed. While the variational Bayes framework described in our work
gives an exact Gaussian posterior over f , many recent works have focused on calculating approximations to
the posterior of an already-trained deterministic network using Laplace approximations (Ritter et al., 2018) or
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stochastic gradient descent iterates (Maddox et al., 2019). Combining these approaches with the GroupRATE
framework would allow variable importance calculations to be performed on an already trained deterministic
network (without the need for retraining with a mean-field variational posterior on the final layer).

Much of this study was motivated by the increasing popularity of nonparametric predictive modeling
(particularly with neural networks) in biomedical applications. As long as such methods continue to be
applied in areas where interpretability is a requirement, post-hoc methods such as Group(RATE) will have
utility. Rudin (2019) suggest that a better modeling approach is to place interpretability at the heart of model
building from the beginning of a project. Fortunately, Bayesian neural networks offer this possibility through
the use of sparsity inducing priors (van Bergen et al., 2020; Song & Li, 2021; Chen et al., 2020; Kassani et al.,
2022; Lu et al., 2018; Feng & Simon, 2017; Fortuin, 2022; Ghosh et al., 2019; Cheng et al., 2022) or from
constructing partially connected network architectures that are based on biological annotations or scientific
knowledge (Demetci et al., 2021; Elmarakeby et al., 2021; Bourgeais et al., 2021). However, this approach is
extremely challenging for problems with very little a priori knowledge and so post-hoc interpretation methods
are likely to remain useful in practice for the foreseeable future.
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