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Abstract

In the past few years, the realm of deep learn-001
ing has captivated widespread interest, with002
multimodal deep learning (MMDL) rising as003
an exceptionally promising area. MMDL spe-004
cializes in processing and amalgamating data005
from varied communication channels, includ-006
ing text, speech, vision, and spatial indicators.007
This article delivers an exhaustive exploration008
of MMDL methodologies and their expansive009
applications. Furthermore, we delve into a010
detailed examination of diverse MMDL tech-011
niques, encapsulating the progression of model012
architectures, advancements in data augmenta-013
tion, refresh methods, and optimization tactics.014
The main goal of this review is to tackle the015
pressing challenges and delineate the trajec-016
tory for future research in the dynamic field of017
deep learning, especially focusing on the era of018
Large Language Models (LLMs). We believe019
that this comprehensive review will greatly en-020
hance the comprehension of MMDL and act as021
a crucial tool for researchers aiming to delve022
into new and promising research paths.023

1 Introduction024

Multimodal deep learning is a promising technique025

that utilizes information from multiple modalities,026

including vision, text, audio, and others, to enhance027

learning outcomes (Summaira et al., 2022). The028

exponential growth of knowledge in our world has029

created a need for more efficient and effective learn-030

ing approaches. Humans have the ability to lever-031

age cross-modal information to efficiently learn032

new concepts, which has inspired the development033

of multimodality (Vasco et al., 2022; Lin et al.,034

2023).035

Multimodality is fundamental to many areas of036

our society, such as scientific research (Nancekivell037

et al., 2021; Yan et al., 2022), education (Magnus-038

son and Godhe, 2019), medical diagnosis (Sveric039

et al., 2022; Chen et al., 2023c) and many more.040

However, multimodal deep learning is a critical041

yet underexplored problem in some areas, and 042

its exploration is essential for the development 043

of intelligent agents (Abdulrahman and Richards, 044

2022; Brinkschulte et al., 2022). The human abil- 045

ity to leverage cross-modal information is essen- 046

tial for effective learning and recognition of visual 047

objects, even with limited examples (Lin et al., 048

2023). In this regard, verbal language has been 049

shown to facilitate the recognition of visual ob- 050

jects, and the neuroscience literature provides am- 051

ple evidence that cognitive representations are in- 052

herently multimodal (Jackendoff, 1987; Smith and 053

Gasser, 2005). For example, different types of 054

stimuli, such as visual images, textual strings, and 055

audio clips, can evoke the same neurons, indicating 056

the existence of cross-modal or inter-modal rep- 057

resentations (Quiroga et al., 2005; Nanay, 2018). 058

These representations are fundamental to the hu- 059

man perceptual-cognitive system and play a cru- 060

cial role in the acquisition of new concepts and 061

knowledge (Gibson, 1969; Cohn, 2016). Thus, 062

multimodal deep learning techniques hold the po- 063

tential to significantly enhance learning outcomes 064

in various applications, including speech recogni- 065

tion (Kumar et al., 2022; Kshirsagar et al., 2023), 066

multimedia indexing (Snoek et al., 2006), human 067

behavior analysis (Pantic and Rothkrantz, 2003), 068

video captioning (Song et al., 2018), visual ques- 069

tion answering (Antol et al., 2015), among others. 070

The combination of multiple modalities enables the 071

deep learning models to have a more comprehen- 072

sive understanding of the environment since certain 073

cues are only present in specific modalities. For ex- 074

ample, the task of emotion recognition (Koolagudi 075

and Rao, 2012) is not only reliant on facial ex- 076

pressions which are captured through the visual 077

modality, but also on tone and pitch of the voice, 078

captured through the audio modality. The inclusion 079

of both modalities can encode a vast amount of 080

information about the emotional state. 081

In recent years, the field of multimodal learning 082
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Figure 1: The overall structure of this paper.

has experienced a surge in growth and development,083

with numerous studies exploring various aspects084

of this field. However, due to the diverse nature085

of multimodal data (Lahat et al., 2015) and the in-086

terdisciplinary nature of the field (Magnusson and087

Godhe, 2019; Yan et al., 2022; Chen et al., 2023c),088

research in this area tends to be fragmented and iso-089

lated within different domains. This lack of an in-090

tegrated overview poses a challenge to researchers091

seeking a comprehensive understanding of the lat-092

est developments in the rapidly evolving field of093

multimodal learning, especially in the context of094

the explosive growth of large language models.095

To this end, our paper endeavors to offer a com-096

prehensive examination of the existing literature on097

multimodal learning, as shown in Figure 1. And098

our contribution can be summarized as following:099

(1) We present an in-depth overview of various100

MMDL methodologies, including model architec-101

tural evolution, data augmentation and refresh, and102

optimization strategies. (2) We summarise the ap-103

plication of current large-scale models in MMDL104

in four ways and the research pain points of mul-105

timodal learning in the LLM era, which opens up106

new avenues for investigating multimodality. (3)107

We provide a comparative analysis of current large108

scale models in the field of multimodal learning on109

various benchmark and evaluation metrics. Com-110

parative analysis helps researchers to get directions111

in future research. (4) We emphasize the five pri-112

mary challenges and possible future research areas113

of MMDL. By focusing on the challenges and op-114

portunities inherent in multimodal learning, we aim115

to bridge the gap between theoretical understanding116

and practical implementation. 117

2 Prior work 118

2.1 Advancements in Multimodal Learning 119

Architectures 120

In recent times, the domain of multimodal repre- 121

sentation learning, particularly in the context of 122

vision-text tasks, has seen a significant surge in in- 123

terest. This area of study has become a focal point 124

of attention within the academic and scientific cir- 125

cles. Therefore, in our exposition, we primarily 126

focus on delineating the model architecture, with 127

specific emphasis on vision-text based models. 128

ViLT is a type of visual language model that was 129

proposed by (Kim et al., 2021). This model does 130

not require convolution or region supervision, and 131

it embeds text into Vision Transformer (Yuan et al., 132

2021) with minimal design for visual and language 133

pre-training. Specifically, the embedding layers of 134

raw pixels are shallow and computationally light, 135

similar to text tokens, with most of the computation 136

concentrated on modeling modality interactions, as 137

shown in Figure 2 (b). While external visual infor- 138

mation typically provides a richer representation 139

of modalities compared to text information, which 140

aligns with human perception, ViLT’s suboptimal 141

performance can be attributed to the shallow encod- 142

ing of the visual modality, despite its fast computa- 143

tional speed. ALBEF (Li et al., 2021a) addresses 144

this performance issue by employing a deeper vi- 145

sual encoder and aligning image and text represen- 146

tations prior to fusing them through cross-modal 147

attention, as depicted in Figure 2(c). Another ap- 148
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Figure 2: The current vision-language models architecture can be classified into five categories, as represented by (a)
to (e). where VE, TE, and CE denote the Visual Encoder, Textual Encoder, and Cross-modal Encoder, respectively.
The height of each rectangle in the illustration corresponds to its relative computational cost, and VE = TE denotes
that the visual encoder and the textual encoder have comparable parameters or computational costs.

proach, CLIP (Radford et al., 2021), illustrated in149

Figure 2(a), is renowned for its efficient computa-150

tion and high-quality feature extraction. For tasks151

like Visual Question Answering, CLIP relies on152

a dot product to determine similarity. However,153

CLIP’s encoder suffers from the limitation of equal154

sizing for visual and textual inputs, resulting in155

suboptimal performance in various model fusion156

tasks due to shallow interaction. To better adapt157

to various multimodal tasks, VLMo (Bao et al.,158

2022) presents a unified approach to multimodal159

pre-training and fine-tuning by utilizing modality160

experts and freezing the parameters of the shared161

multimodal layer. This approach strikes a balance162

between computational efficiency and performance.163

VLMo trains different experts for different tasks,164

resulting in enhanced multimodal representation165

learning while reducing computational costs. Table166

1 shows the performance of some of the models167

discussed above.168

The above models use the encoder side of the169

Transformer structure for multimodal tasks, and170

there are also some recent works studying how to171

use the decoder side of the Transformer for genera-172

tion tasks, including BLIP (Li et al., 2022a), CoCa173

(Yu et al., 2022) and the BEiT series (Bao et al.,174

2021; Peng et al., 2022; Wang et al., 2022).175

BLIP is a recent model that utilizes two deep text-176

visual encoders for effective information extraction.177

It combines the advantages of both ALBEF and178

VLMO, and unifies vision-language understand-179

ing and generation in a single framework. The180

model employs parameter sharing to reduce com-181

putational complexity while achieving significant182

progress. On the other hand, CoCa also adopts a183

similar model architecture to ALBEF as depicted in184

Figure 2(c), but uses a text decoder for encoding on185

the textual side. It demonstrates excellent perfor-186

mance in multimodal generation tasks. BEiT is a 187

type of multimodal model that uses self-supervised 188

learning to pre-training vision Transformers using 189

a masked image modeling task. BEiT-v2 and BEiT- 190

v3 further enhance this approach by employing new 191

pre-training tasks and architecture. BEiT-v3 also 192

draws inspiration from VLMo, utilizing multiple 193

experts and treating image information as a foreign 194

language to unify vision-language tasks, resulting 195

in exceptional performance. Table 2 includes a per- 196

formance comparison between the different mod- 197

els. 198

Model # Pretrain
Images

VQA NLVR2

test-dev test-std dev test-P

ViLT (Kim et al., 2021) 4M 71.26 - 75.70 76.13
ALBEF (Li et al., 2021a) 4M 74.54 74.70 80.24 80.50
VLMo (Bao et al., 2022) 4M 76.64 76.89 82.77 83.34

Table 1: Model performance on VQA and NLVR2. We
report vqa-score on VQA test-dev and test-standard split,
and report accuracy for NLVR2 development and public
test set (test-P). The reported results are from published
literature (Bao et al., 2022).

However, previous works in multimodal learn- 199

ing have mainly focused on fusing input modali- 200

ties after significant independent processing, which 201

can be time-consuming and computationally ex- 202

pensive. In contrast, the human brain performs 203

multimodal processing almost immediately (An- 204

gelaki and Cullen, 2008). Therefore, one crucial 205

design decision in multimodal learning is how to 206

best combine, or fuse, the different input modal- 207

ities. To address this issue, recent research (Xu 208

et al., 2022) proposes a cross-model encoder that 209

simultaneously uses multimodal information fusion 210

during model encoding, as shown in Figure 2(e), 211

achieving excellent interaction under two-modal 212

fusion. This approach aims to better simulate the 213

way the human brain processes multiple modali- 214
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ties, which may lead to improved performance and215

efficiency in multimodal learning tasks.216

Model VQAv2 NLVR2

test-dev test-std dev test-P

ALBEF (Li et al., 2021a) 75.84 76.04 82.55 83.14
BLIP (Li et al., 2022a) 78.25 78.32 82.15 82.24
CoCa (Yu et al., 2022) 82.30 82.30 86.10 87.00

BEiT-3 (Wang et al., 2022) 84.19 84.03 91.51 92.58

Table 2: Model performance on visual question an-
swering and visual reasoning. We report vqa-score on
VQAv2 test-dev and test-standard splits, accuracy for
NLVR2 development set and public test set (test-P). The
reported results are from published literature (Wang
et al., 2022).

2.2 Enhancing Multimodal Data:217

Augmentation and Refresh Strategies218

In multimodal learning, training models often rely219

on web-sourced data, which is prone to contain-220

ing noise that may degrade model performance.221

To mitigate this, researchers have devised various222

methods for augmenting and refining data.223

A notable technique is DataMix (Liu et al.,224

2020), which implements a blending-based strat-225

egy to create new image-text pairs. This method226

involves altering existing pairs through random227

weighted averaging, thus generating unique data228

instances. Conversely, DataEcho (Cioffi and Bing-229

ham, 1994) applies an echo-based technique to230

modify image-text pairs, producing fresh data pairs231

and thereby contributing to the data augmentation232

process.233

Differently, DataReMix (Mao et al., 2021) em-234

ploys a strategy of pair replacement or swapping,235

aiming to diversify the dataset and enhance model236

resilience. Beyond simple augmentation and re-237

finement, the advent of multimodal self-supervised238

learning marks a significant stride forward. This239

method uses one modality as a supervisory signal240

for another, such as image-to-speech or image-to-241

text. For instance, MixGen (Hao et al., 2023) inno-242

vates by generating new training samples through243

a process of image interpolation and text sequence244

concatenation from existing pairs, enriching the245

diversity and quality of multimodal data.246

Additionally, the data filter and caption tech-247

nique (Li et al., 2022a) involves fine-tuning models248

with high-quality, manually labeled data and sub-249

sequently filtering and enhancing a vast amount of250

web data. This enhances the correlation between251

images and text.252

These advancements are proving to be invalu- 253

able in augmenting the quality and volume of mul- 254

timodal data, thereby elevating model performance. 255

They are especially critical in contexts where ac- 256

cess to high-quality training data is scarce. 257

2.3 Optimization Strategies in Multimodal 258

Learning 259

Optimization strategies play a pivotal role in aug- 260

menting the performance and broadening the gener- 261

alization capabilities of multimodal models, which 262

process diverse data types such as text, images, 263

and audio. These models typically necessitate ei- 264

ther alignment or fusion of modalities at feature or 265

decision levels for optimal functioning. 266

2.3.1 Refining Multimodal Loss Functions 267

The loss function in a multimodal model quanti- 268

fies the deviation between the model’s output and 269

the actual label, guiding the optimization process. 270

Recent advancements have introduced innovative 271

methods to enhance the alignment or fusion in mul- 272

timodal models. For example, Xu et al. (2023b) de- 273

veloped a balanced multimodal learning approach 274

using the multimodal cosine loss function. This 275

method adapts feature and weight normalization 276

to multimodal contexts, thus refining the model’s 277

discriminative capabilities. 278

In a similar vein, Yang et al. (2021) introduced 279

TACo, a method for multimodal alignment using 280

three distinct loss functions. This approach lever- 281

ages unimodal self-supervised information, cross- 282

modal comparison data, and cross-task shared in- 283

sights to construct these loss functions. They work 284

by improving the representation within each modal- 285

ity, enhancing similarity across different modalities, 286

and utilizing correlations between various tasks. 287

Other techniques focus on balancing the influ- 288

ence of different modalities or tasks by modulat- 289

ing the loss function’s weights. Approaches like 290

dynamic weighting (Abels et al., 2019) or adap- 291

tive weighting (Walia et al., 2019) allocate weights 292

based on the modality or task’s difficulty, signifi- 293

cance, or relevance, thereby optimizing the model 294

more effectively. 295

New loss functions have also been designed 296

to boost the alignment or fusion of modalities. 297

These include methods based on contrast learn- 298

ing (Li et al., 2021a, 2022a), self-supervised learn- 299

ing (Alayrac et al., 2020), and cross-task learning 300

(Chen et al., 2017; Hu et al., 2020). These tech- 301

niques utilize various levels of information, such as 302
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unimodal intra-modal data, cross-modal similarity,303

and cross-task shared information, to forge more304

effective loss functions that enhance the model’s305

generalization capabilities.306

2.3.2 Incorporating Quantum Theory in307

Multimodal Learning308

Handling multimodal information and sentiment309

analysis involves understanding human cognition,310

a task where classical probabilistic methods often311

struggle. These traditional methods typically fall312

short in effectively capturing the dynamic interplay313

between modalities and contexts from a cognitive314

perspective. Quantum theory, however, has demon-315

strated its prowess in overcoming the limitations316

of classical probability theory in modeling human317

cognition. It not only achieves superior perfor-318

mance but also offers enhanced interpretability in319

this context (Zhang et al., 2020; Li et al., 2021b).320

Several groundbreaking studies have explored321

quantum-inspired models for sentiment analysis322

and multimodal information processing. Gkoumas323

et al. (2021b) developed a quantum cognition-324

based fusion strategy. In this model, utterances are325

conceptualized as quantum states within a complex-326

valued emotional Hilbert space, with single-modal327

decisions represented as incompatible observables.328

This approach allows for an innovative handling of329

diverse emotional judgment scenarios.330

Gkoumas et al. (2021a) introduced a quantum331

probability neural model specifically for video emo-332

tion analysis. The model uses the concept of en-333

tanglement, a form of inseparability in quantum334

mechanics, for the fusion of two modalities. It ef-335

fectively captures both classical and non-classical336

correlations between these modalities by quantify-337

ing non-classical correlations accurately.338

Li et al. (2021b) proposed a quantum-inspired339

network for dialogue emotion recognition. This net-340

work adeptly fuses multimodal data and integrates341

dialogue context to accurately identify emotions in342

each utterance. Additionally, Zhang et al. (2020) in-343

troduced a quantum-inspired multi-modal network344

(QMN) framework. This framework incorporates345

a density matrix-based CNN (Kalchbrenner et al.,346

2014), a quantum measurement-inspired influence347

model, and a quantum interference-inspired deci-348

sion fusion method. It is designed to model both349

intra- and inter-utterance interactions, significantly350

enhancing emotion recognition in speakers.351

2.4 Exploring Additional Relevant Research 352

2.4.1 Advancements in General-Purpose 353

Modeling 354

Foundation models have garnered significant in- 355

terest for their versatility across various down- 356

stream applications. Despite architectural simi- 357

larities, most pre-trained models are generally op- 358

timized for specific tasks or modalities. Baevski 359

et al. (2022) introduced a universal learning frame- 360

work applicable to different modalities, yet it still 361

relies on modality-specific encoders. Tsimpoukelli 362

et al. (2021) demonstrated the transferability of 363

in-context learning capabilities of frozen language 364

models to vision-language settings. Alayrac et al. 365

(2022) implemented a broad-spectrum understand- 366

ing of images, videos, and text through a large- 367

scale frozen language model. Reed et al. (2022) 368

developed a multifaceted agent functioning as a 369

multi-modal, multi-task, and multi-embodiment 370

generalist policy. Furthermore, Hao et al. (2022) 371

proposed the METALM model, leveraging a semi- 372

causal language model as a universal interface to 373

various foundation models. This model integrates 374

a suite of pre-trained encoders to process diverse 375

modalities and interact with the language model, 376

thereby facilitating the resolution of a range of 377

tasks without necessitating individual task retrain- 378

ing. 379

2.4.2 Scaling Capabilities and Flexibility 380

Pre-trained models have proven efficacious in both 381

vision and language tasks, as highlighted by (Doso- 382

vitskiy et al., 2021; Zhai et al., 2022) in vision 383

and (Raffel et al., 2020; Kaplan et al., 2020) in 384

language. To scale effectively, a flexible task in- 385

terface is essential for large language models to 386

excel in diverse tasks. Chen et al. (2022) intro- 387

duced PaLI, a model that concurrently processes 388

language and vision. PaLI generates text from vi- 389

sual and textual inputs, handling an array of vision, 390

language, and multimodal tasks across different 391

languages. The model utilizes a scaled-up 4B pa- 392

rameter Vision Transformer as its vision backbone, 393

optimizing compute resources through the use of 394

pre-trained models. Lu et al. (2022a) proposed 395

Unified-IO, a Seq2Seq model capable of execut- 396

ing various tasks using a single architecture with- 397

out necessitating task or modality-specific compo- 398

nents. This unification is achieved by converting 399

every task’s output into a sequence of discrete to- 400

kens. Unified-IO demonstrates robust performance 401
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across diverse benchmarks, including GRIT bench-402

mark, NYUv2-Depth, ImageNet, VQA2.0, OK-403

VQA, Swig, VizWizGround, BoolQ, and SciTail,404

without the need for task-specific fine-tuning.405

2.4.3 Advancing Efficiency and Flexibility in406

Multimodal Frameworks407

For the practical deployment of multimodal frame-408

works, developing an efficient and adaptable frame-409

work is critical. In this context, Li et al. (2022b)410

introduced FLZP, a novel and efficient language-411

image pre-training method. This approach en-412

hances the learning capabilities and efficiency of413

CLIP by incorporating MAE. The FLZP model un-414

dertakes an exploration into the scaling of model415

size, dataset size, and training epochs, yielding416

impressive outcomes across a variety of vision-417

language benchmarks.418

Additionally, Zhu et al. (2022c) proposed Uni-419

Perceiver, a unified architecture for generic percep-420

tion tailored for zero-shot and few-shot tasks. This421

model harmonizes vision and language modalities422

into a singular framework, demonstrating robust423

performance across a spectrum of diverse tasks.424

The utilization of a large-scale dataset encompass-425

ing images and text in its training phase enables it426

to learn rich representations, which can be further427

fine-tuned for specific downstream applications.428

Moreover, Zhu et al. (2022a) introduced Uni-429

Perceiver-MoE, a sparse generalist model featuring430

conditional mixture of expertse. This model inte-431

grates vision and language modalities into a single432

unified system. Uni-Perceiver-MoE has garnered433

considerable attention for its ability to efficiently434

handle a wide range of tasks while maintaining a435

unified approach. The flexibility and efficiency of436

these frameworks mark significant strides in the437

field of multimodal learning, paving the way for438

more practical and versatile applications.439

2.5 Exploring the Landscape of Large440

Language Models in Multimodal Learning441

The arena of multimodal learning has been revo-442

lutionized by the advent of large-scale language443

model pretraining, which has demonstrated ex-444

ceptional performance in a variety of downstream445

tasks, sparking widespread research interest. A key446

distinguishing factor among these models is their447

pretraining objectives and architectural designs.448

Notably, GPT series (Radford et al., 2018, 2019;449

Brown et al., 2020) have pioneered in pretraining450

causal language models using decoder-only Trans-451

formers, revealing remarkable capabilities in few- 452

shot and in-context learning. 453

GPT-4 (Tasar and Tasar, 2023), as one of the 454

most prominent models in this field, has emerged 455

as a titan with its 1.5 trillion parameters. It uniquely 456

processes both image and text inputs, producing 457

text outputs. Trained on a comprehensive multi- 458

modal dataset, including web texts, images, videos, 459

and audio, GPT-4 has demonstrated proficiency in 460

tasks such as natural language understanding and 461

generation, image captioning, visual question an- 462

swering, and more. Its performance on various 463

benchmarks has been compared to human-level 464

proficiency, as detailed in Table 3. 465

Our analysis primarily focuses on the applica- 466

tion of these large-scale models in multimodal 467

learning, categorized into four main approaches. 468

(1) Freezing LLMs and training additional struc- 469

tures like visual encoders to adapt them for spe- 470

cific tasks, exemplified by mPLUG-Owl (Ye et al., 471

2023), LLaVA (Liu et al., 2023a), Mini-GPT4 (Zhu 472

et al., 2023), and PaLM-E (Driess et al., 2023). (2) 473

Converting visual information into textual input 474

for LLMs, as seen in PICA (Yang et al., 2022), 475

PromptCap (Hu et al., 2022), and ScienceQA (Lu 476

et al., 2022b). (3) Utilizing visual modalities to in- 477

fluence LLM decoding, such as in ZeroCap (Tewel 478

et al., 2022). (4) Employing LLMs as a central hub 479

for integrating and leveraging multimodal models, 480

like VisualChatGPT (Wu et al., 2023a) and MM- 481

REACT (Yang et al., 2023b). 482

Due to the rapid development of large language 483

models (LLMs), there is an increasing trend to- 484

ward using LLMs as backbones for constructing 485

large-scale multimodal models. These models pri- 486

marily focus on the fusion of vision and text modal- 487

ities, aiming to create versatile and widely appli- 488

cable multimodal deep learning models. Table 4 489

in Appendix A presents an overview of the key 490

technologies and applications pertinent to Multi- 491

modal Large Language Models. This includes vari- 492

ous innovative approaches like Multimodal Instruc- 493

tion Tuning (M-IT), Multimodal In-Context Learn- 494

ing (M-ICL), Multimodal Chain-of-Thought (M- 495

CoT), LLM-Aided Visual Reasoning (LAVR), Mul- 496

timodal Hallucination (MMH), and Multimodal 497

RLHF (M-RLHF). These methodologies illustrate 498

the diverse ways in which LLMs can be leveraged 499

in multimodal contexts. 500
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Models Perception Cognition

Existence Count Position Color Poster Celebrity Scene Landmark Artwork OCR Commonsense
Reasoning

Numerical
Calculation

Text
Translation

Code
Reasoning

mPLUG-Owl (Ye et al., 2023) 120.00 50.00 50.00 55.00 136.05 100.29 135.5 159.25 96.25 65.00 78.57 60.00 80.00 57.50
LLaVA (Liu et al., 2023a) 185.00 155.00 133.00 170.00 160.54 152.94 161.25 170.50 117.75 125.00 127.86 42.50 77.50 47.50

MiniGPT-4 (Zhu et al., 2023) 68.33 55.00 43.33 75.00 41.84 54.41 71.75 54.00 60.50 57.50 59.29 45.00 - 40.00
MMICL (Zhao et al., 2023a) 170.00 160.00 81.67 156.67 146.26 141.76 153.75 136.13 135.50 100.00 136.43 82.50 132.50 77.50

Gemini Pro (Team et al., 2023) 175.00 131.67 90.00 163.33 164.97 147.35 144.75 158.75 135.75 185.00 129.29 77.50 145.00 85.00
LLAMA-Adapter V2 (Gao et al., 2023) 185.00 133.33 56.67 118.33 147.96 136.76 156.25 167.84 123.75 102.50 106.43 47.50 112.50 90.00

GPT-4V (Tasar and Tasar, 2023) 190.00 160.00 95.00 150.00 192.18 - 151.00 - 148.00 185.00 142.14 130.00 75.00 170.00

Table 3: Model performance on MME benchmark. MME measures both perception and cognition abilities on a total
of 14 subtasks. Each of the 14 subtasks is worth 200 points. The score is the sum of the accuracy and the accuracy+.
We adopted reported results from published literature (Fu et al., 2023).

3 Challenges and Future Directions in501

Multimodal Deep Learning502

3.1 Addressing Imbalance in Multimodal503

Learning Environments504

Within the realm of multimodal deep learning,505

the challenge of imbalance learning stands as a506

formidable obstacle, arising when the distribution507

of data across various modalities or classes assumes508

an uneven, skewed configuration. This intricate509

concern materializes in instances where certain510

modalities assert dominance, eclipsing others in511

frequency, or when specific classes are endowed512

with a surplus of samples or features. The reper-513

cussions of such imbalance reverberate through514

the learning process, potentially engendering bias515

and suboptimal performance. This manifests as516

an overemphasis on majority modalities or classes,517

and a corresponding neglect of their minority coun-518

terparts.519

Interestingly, even the expanse of large-scale520

models is not immune to the clutches of this issue,521

as the constraints of data quality and quantity re-522

main steadfast. In the tapestry of training data, cer-523

tain modalities might be absent, marred by noise, or524

misaligned—a predicament that casts shadows on525

the model’s capacity to glean meaningful represen-526

tations and intermodal interactions. Furthermore,527

class disparities can introduce complexities of their528

own, ushering in intricate and diverse patterns that529

beset the model’s predictive accuracy and confi-530

dence.531

The endeavor to judiciously sample imbalanced532

data from diverse modalities while preserving533

coherence between them stands as an intricate534

quandary. Novel strategies are on the horizon,535

encompassing modality-specific sampling tactics,536

holistic joint sampling methodologies that take into537

account the intermodal relationships, and the inte-538

gration of generative models to conjure synthetic539

samples. These prospective solutions beckon for540

rigorous investigation and refinement, sparking the 541

evolution of effective approaches that can adeptly 542

surmount this challenge. 543

3.2 Advancing Domain Generalization in AI 544

with Multimodal Few-Shot Learning 545

Multimodal Few-Shot Learning stands at the fore- 546

front of artificial intelligence research, rapidly ex- 547

panding as it delves into leveraging multiple data 548

types like images, text, and audio. This field aims 549

to equip intelligent systems with the ability to 550

quickly comprehend new tasks or concepts from 551

minimal data input. The ultimate goal is to develop 552

agents that can effortlessly navigate and adapt to a 553

wide array of environments, transcending the limi- 554

tations of specific domains, languages, and modali- 555

ties. 556

The progression of Multimodal Few-Shot Learn- 557

ing relies heavily on pushing the limits of what’s 558

possible by venturing into complex scenarios that 559

test the boundaries of this technology. Central to 560

this progress is the ability to effectively align and 561

integrate data from various modalities. This align- 562

ment is crucial for the success of few-shot learning 563

initiatives, as it forms the basis for teaching intel- 564

ligent agents to grasp new concepts with limited 565

examples. 566

Moreover, the advancement of this field demands 567

rigorous testing and evaluation of these multimodal 568

few-shot learning models against the realities of 569

practical, real-world data and applications. A sig- 570

nificant challenge in this endeavor is to imbue these 571

models with robust domain generalization capabili- 572

ties. This involves preparing them to perform well 573

in unfamiliar, out-of-domain situations. Enhanc- 574

ing the models’ ability to generalize across varied 575

domains is a key objective, aiming to forge truly 576

intelligent agents that can perform effectively in 577

diverse and unforeseen environments. 578
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3.3 Advancing Multimodal Category579

Reasoning580

Multimodal Category Reasoning, a vibrant field in581

AI, seeks to integrate diverse modalities like text,582

images, and audio for complex reasoning tasks in-583

cluding question answering and classification. This584

integration marks a crucial evolution towards a585

higher level of intelligence in AI, enhancing the586

scope and adaptability of multimodal deep learning587

across various domains. Key to advancing in this588

field is enhancing the interpretability of multimodal589

reasoning models. A pivotal approach here is the590

adoption of multimodal thought chains, designed591

to minimize reasoning errors and create a coherent,592

interconnected thought process across modalities,593

fostering a unified reasoning framework. Addition-594

ally, integrating high-quality external multimodal595

knowledge graphs into these models is essential for596

addressing model hallucinations and ensuring accu-597

racy in reasoning. This integration not only bolsters598

the models’ cognitive capabilities but also guar-599

antees precision and reliability in their outcomes,600

significantly enriching their reasoning potential.601

3.4 Navigating Towards Integrated602

Multimodal Processing603

In the current landscape of large-scale multimodal604

models, a predominant approach involves a multi-605

tiered process for interpreting user inputs. Typi-606

cally, this starts with converting a user’s query into607

a text-based format, followed by applying various608

visual or other modal tools for generating results.609

While this method effectively combines different610

unimodal models for multimodal capabilities, its611

sequential or multi-tiered nature is prone to the612

compounding of errors, potentially leading to mis-613

leading or incorrect outcomes.614

In contrast, human cognition naturally processes615

multiple modalities simultaneously, using this inte-616

gration for judgment and logical reasoning. Thus,617

the quest for true artificial general intelligence chal-618

lenges us to develop a unified model within a single619

framework. This model would need to efficiently620

blend information from various modalities, allow-621

ing for comprehensive reasoning and consistent622

decision-making while avoiding the introduction623

of noise from additional modalities.624

The goal is to mimic the human brain’s skill in625

merging information from different sensory inputs626

with a similar level of accuracy in aligning different627

modalities in large-scale multimodal models. Pur-628

suing this path opens the door to a new generation 629

of computational systems that reflect the human 630

ability to synergistically process and incorporate 631

information from multiple sources. In different 632

scenarios, careful consideration of the appropriate 633

backbones is essential, as is the thoughtful selection 634

of prompts and their embedding strategies. This 635

nuanced approach is crucial for the development of 636

versatile and effective multimodal AI systems. 637

3.5 Prioritizing Safety, Explainability, and 638

Modality-Specific Considerations in 639

Large-Scale Multimodal Models 640

In the realm of large-scale multimodal models, 641

safety and explainability are paramount, but equally 642

important is the need to address the unique limi- 643

tations of different modalities. Each modality – 644

be it text, image, or audio – has its own set of 645

constraints and potential biases. Addressing these 646

modality-specific challenges is crucial for enhanc- 647

ing the model’s overall effectiveness and reliability. 648

A key strategy is to equip these models with ca- 649

pabilities to identify and counteract the weaknesses 650

inherent in individual modalities. This approach 651

enhances the model’s overall safety and reliability, 652

and ensures more controlled and accurate content 653

generation. Furthermore, incorporating these con- 654

siderations into the model’s framework involves 655

creating metrics that assess how well these chal- 656

lenges are managed. Such metrics will guide the 657

development of multimodal models that are not 658

only high-performing but also adhere to strict safety 659

and ethical standards, resulting in responsible, user- 660

centric, and trustworthy AI systems. 661

4 Conclusion 662

In this paper, we provide a focused synthesis of 663

multimodal deep learning, emphasizing its inte- 664

gration of diverse data types like text, speech, 665

and images, especially in the context of large lan- 666

guage models. Our exploration of evolving MMDL 667

methodologies, including advanced model architec- 668

tures and data handling techniques, offers a clear 669

view of the field’s current state and future poten- 670

tial. We also highlighted the diverse applications 671

of MMDL, identifying challenges and opportuni- 672

ties in the LLM era. Our comparative analysis 673

of current models provides a framework for un- 674

derstanding their performance and guides future 675

research directions. 676

8



5 Limitations677

Despite our comprehensive approach, this survey678

is subject to several limitations. Firstly, due to the679

rapidly evolving nature of the field of multimodal680

deep learning, our review may not encompass all re-681

cent developments and methodologies. The field’s682

rapid progression often leads to the emergence of683

new models and techniques shortly after a literature684

review is conducted. Secondly, while we strive for685

a thorough comparative analysis of current models,686

the assessment is limited by the availability and687

accessibility of benchmark datasets and evaluation688

metrics. As a result, some potentially impactful689

models might not be included in our analysis due690

to the lack of comprehensive evaluation data.691
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Categories Title Venue Code

Multimodal Instruction Tuning

MobileVLM (Chu et al., 2023) arXiv !

Vary (Wei et al., 2023) arXiv !

CogAgent (Hong et al., 2023) arXiv !
Pixel Aligned Language Models (Xu et al., 2023a) ICLR -

See, Say, and Segment (Wu et al., 2023b) arXiv -
Honeybee (Cha et al., 2023) arXiv !

Gemini (Team et al., 2023) Google !

OneLLM (Han et al., 2023) AAAI !

Dolphins (Ma et al., 2023) arXiv !

LL3DA (Chen et al., 2023b) arXiv !

Multimodal In-Context Learning

Hijacking Context in Large Multi-modal Models (Jeong, 2023) arXiv -
Prompting Large Language Models with Answer Heuristics for Knowledge-based Visual Question Answering (Shao et al., 2023) CVPR !

MMICL (Zhao et al., 2023b) arXiv !

OpenFlamingo (Awadalla et al., 2023) arXiv !

Med-Flamingo (Moor et al., 2023) arXiv !
AVIS (Hu et al., 2023) arXiv -

MIMIC-IT (Li et al., 2023a) arXiv !

Exploring Diverse In-Context Configurations for Image Captioning (Yang et al., 2023a) NeurIPS !

ICL-D3IE (He et al., 2023) ICCV !

Visual Programming (Gupta and Kembhavi, 2023) CVPR !

Multimodal Chain-of-Thought

DDCoT (Zheng et al., 2023) NeurIPS !

Shikra (Chen et al., 2023a) arXiv !

EmbodiedGPT (Mu et al., 2023) arXiv !

Learn to Explain (Lu et al., 2022c) NeurIPS !

LLM-Aided Visual Reasoning

V* (Wu and Xie, 2023) arXiv !

Prompt, Generate, then Cache (Zhang et al., 2023) CVPR !

LayoutGPT (Feng et al., 2023) arXiv !

ControlLLM (Liu et al., 2023b) arXiv !

Mindstorms in Natural Language-Based Societies of Mind (Zhuge et al., 2023) NeurIPS !

PointCLIP V2 (Zhu et al., 2022b) CVPR !

Multimodal Hallucination

MOCHa (Ben-Kish et al., 2023) EUSIPCO !

Mitigating Fine-Grained Hallucination by Fine-Tuning Large Vision-Lanquage Models with Caption Rewrites (Wang et al., 2023) arXiv !

RLHF-V (Yu et al., 2023b) arXiv !

OPERA (Huang et al., 2023) arXiv !
Mitigating Hallucination in Visual Language Models with Visual Supervision (Chen et al., 2023d) arXiv -

HalluciDoctor (Yu et al., 2023a) arXiv !

Evaluating Object Hallucination in Large Vision-Language Models (Lu et al., 2023) EMNLP !

Multimodal RLHF
Silkie (Li et al., 2023b) arXiv !

RLHF-V (Yu et al., 2023b) arXiv !

Aligning Large Multimodal Models with Factually Augmented RLHF (Sun et al., 2023) arXiv !

Table 4: Key technologies and applications of the Multimodal Large Language Model, including Multimodal
Instruction Tuning (M-IT), Multimodal In-Context Learning (M-ICL), Multimodal Chain-of-Thought (M-CoT),
LLM-Aided Visual Reasoning (LAVR), Multimodal Hallucination (MMH), and Multimodal RLHF (M-RLHF).
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