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ABSTRACT

Recent research has suggested that the primate brain is more shallow than previ-
ously thought, challenging the traditionally assumed hierarchical structure of the
ventral visual pathway. Here, we demonstrate that optimizing convolutional net-
work architectures for brain-alignment via evolutionary neural architecture search
results in models with clear representational hierarchies. Despite having random
weights, the identified models achieve brain-alignment scores surpassing even
those of pretrained visual classification models - as measured by both linear en-
coding and representational similarity analysis. Furthermore, architectures opti-
mized for alignment with late ventral regions perform at the level, or better, than
state-of-the art models when trained on image classification tasks. These find-
ings suggest that hierarchical structure is a fundamental mechanism of primate
visual processing. Finally, this work demonstrates the potential of neural architec-
ture search as a framework for computational cognitive neuroscience research that
could reduce the field’s reliance on manually designed convolutional networks.

1 INTRODUCTION

Throughout the last decade, Convolutional Neural Networks (CNNs) have emerged as powerful cog-
nitive models capable of providing valuable insight into the neural mechanisms underlying primate
visual processing (Yamins et al., | 2014;|St-Yves et al.|[2023}/Guo et al.} 2025). In their seminal work,
Yamins et al.| (2014) demonstrated that CNNs trained to perform image classification can be used
to predict brain activity with greater accuracy than previously developed cognitive models. More-
over, their findings suggested a shared representational hierarchy between CNN layers and visual
cortex regions, where intermediate and late CNN layers correspond to intermediate and late visual
processing regions, respectively. However, recent research that directly explored the emergence
of brain-like hierarchy in neural networks trained to directly predict brain activity found evidence
against the necessity of entailment hierarchy (St-Yves et al.| [2023)). Based on their results, the
authors posit the shallow brain hypothesis, arguing that low-level representations may not be nec-
essary as preprocessing stages for higher-level representations. Our work expands on this shallow
vs deep-brain debate by employing Neural Architecture Search (NAS) to explore the emergence of
early visual cortex-like representation in network architectures optimized to align with late ventral
representation.

Previous studies have demonstrated that it is possible to identify CNNs with state-of-the-art classifi-
cation performance by directly optimizing model architectures using methods such as reinforcement
learning or genetic algorithms. For instance, (Xie & Yuille, 2017 [Liu et al., 2018)) leveraged ge-
netic algorithms to ‘evolve’ architectures that outperform manually designed CNNs on MNIST and
CIFAR-10 datasets. More recently, Mundt et al.|(2021)) employed NAS to identify network architec-
tures that, even without gradient descent training, compute representations that enable classification
performance comparable to fully trained deep networks by simply training a linear probe to predict
the image label. Building on this, we optimized CNN architectures to predict cognitive representa-
tions across different regions of the ventral stream. We formulate a simple hypothesis in favor of the
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Figure 1: The evolutionary neural architecture search framework: Starting with a generation of neu-
ral architectures, for each model embeddings of all images in the shared NSD dataset are extracted.
A ridge regression is then trained to predict the recorded fMRI activity and the correlation coeffi-
cient between the predicted and ground truth fMRI is calculated. The models are evaluated based on
the mean correlation for all subjects, and the bottom 50% are eliminated. Finally genetic operations
are used to repopulate the models for the next generation.

deep-brain model: Optimizing CNNs to predict late visual representations in the inferior temporal
(IT) cortex would spontaneously optimize their alignment with representations found in the early
(V2) and intermediate (V4) visual cortex regions in lower layers. Our results demonstrate that NAS
can identify CNN architectures with better brain alignment than manually designed image classi-
fication models such as AlexNet, VGG16 and CORNet. Furthermore, we found that the optimal
CNNss for predicting V2 and V4 representations were sub-networks of those optimized for predict-
ing IT representations, indicating that these earlier representations might be necessary when trying
to predict high level visual representations, therefore providing evidence in favor of the deep-brain
model of the visual cortex. Finally, we also observed that architectures optimized to predict brain
representations achieved competitive results when trained for image classification.

2 METHOD

We follow the standard evolutionary NAS methodology of allowing the genetic algorithm to per-
form selection, mutation, and crossover of the best networks in each generation to find an optimal
architecture for brain alignment (Liu et al.,2018). In the following section, we present the specifics
of this evolutionary architecture search. That is, we discuss the search space, the evaluation strategy,
and the genetic operators used to evolve each new generation of CNNs.

2.1 SEARCH SPACE

Following |Xie & Yuille| (2017, we construct an initial generation of random individual networks,
where each is a standard hierarchical stack of multiple convolution and max-pooling layers. We
empirically found that adding linear layers to the search space did not improve brain-alignment
and therefore excluded them to allow for faster convergence. We also limit the searchable hyper-
parameter ranges of the convolution layers kernel size (3 to 11), stride (1 to 4) and number of
filters (64 to 512). Furthermore, the max-pooling layers kernel size range was 2 to 3. Finally, to
further restrict the search space we also enforce the CNNSs to always have a monotonically increasing
number of filters across the layers, as receptive fields are expected to expand to integrate more
conceptual information in deeper layers.

2.1.1 FITNESS EVALUATION

Adapting the approach of Mundt et al.|(2021) we evaluate multiple randomly initialized versions
of the same network, guaranteeing that the models are picked based on architecture, rather than a
lucky weight initialization (the lottery ticket hypothesis). We use the Net2Brain toolbox to evalu-
ate network performance Bersch et al.| (2025): First, we extract the last layer image encoding and
train a ridge regression to predict fMRI responses to the same image. We then calculate the Pearson
correlation coefficient of predicted and ground-truth neural responses on a held-out test set. The co-
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Figure 2: Left: The average rewards for the architectures optimized to predict V2, V4, and IT brain
activations in each generation. Right: The optimal EvoIT architecture.

efficient is averaged across ten consecutive random seeds for each subject to generate model fitness.
Finally, to speed convergence, in the first two generations we artificially increase the population size
by evaluating every layer of each network (not just the last) and use the best performing sub-network
in following generations. Following common practice, the random network weights were initialized
using a Kaiming uniform distribution with a bias of zero.

2.2  GENETIC OPERATORS

After all the models in a generation are evaluated, we remove the bottom 50% of the CNN population
based on fitness. We then create new offspring networks to repopulate the population. This is
achieved using standard mutation and crossover genetic operators (Xie & Yuillel 2017).

Our mutation strategy employs three operators on each selected parent network: addition, modifi-
cation, and removal. The addition operation introduces new layers while maintaining architectural
validity, with special attention to channel dimensionality progression and layer-type constraints.
Modification alternate between layer-type transformations (with probability P = 0.3) and parame-
ter refinements (P = 0.7) in which architecture elements such as the kernel size are adjusted. The
removal operation preserves network integrity by selectively eliminating layers while maintaining
essential architectural elements (minimum depth of one layer and output size larger than one).

Our crossover operator implements a single-point crossover strategy in which architectures exchange
structural information at a randomly selected position. The operation creates offspring by preserving
the parent’s layers up to the crossover point and inheriting the remaining layers from the second
parent, maintaining architectural validity through constraint checking.

2.3 DATASET

The regression was trained using data from the NSD Dataset Allen et al.|(2022), a large-scale fMRI
dataset of 8 subjects viewing thousands of natural scenes. Specifically, we used a set of 872 im-
ages shared across all subjects. Following (Guo et al., [2025)), we used a subset of five subjects
(subjects 1,2,4,5,7) with a high signal-to-noise ratio (SNR). Moreover, we focused on the brain ac-
tivity recorded in V2, V4, and the Inferior Temporal cortex (IT) as stand-ins for representations in
the early, intermediate, and late ventral stream respectively. Specifically, IT activations were con-
structed by concatenating activations from the FFA, FBA, EBA and PPA regions|Kanwisher & Dilks
(2013).

2.4 BASELINE MODELS

We compare the brain-alignment of our models against well known CNNs such as AlexNet and
VGG16 which are often used as cognitive models (see [Yamins et al.| (2014); |Guo et al.| (2025)).
Moreover, we also use CORNetS which was specifically designed to process information in a more
brain-like manner Kubilius et al.|(2019).
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3 EXPERIMENTS AND RESULTS

The brain alignment results reported in this section are in terms of percent of variance explained
relative to the lower noise ceiling. For representational similarity analysis we followed the standard
lower noise ceiling calculation Nili et al.| (2014). For the linear encoding based alignment score we
used the regression method presented by [Lage-Castellanos et al.| (2019). We report performance for
model layer with the highest alignment score.

3.1 EVOLUTIONARY SEARCH FOR COGNITIVE MODELS

We ran our evolutionary search three times for each brain region. Each run consisted of 100 genera-
tions with a mutation rate of 0.25 and a crossover rate of 0.5. The optimal architectures discovered
were identical in all runs optimizing for the alignment with the same brain region save for minor
differences in stride sizes, indicating that the identified networks are robust to noise in the evolu-
tionary search process. Furthermore, the three optimal architectures for V2, V4, and the IT - which
we coin EvoV2, EvoV4, and EvolT - had high alignment with their respective brain regions, outper-
forming most baseline models (Table . The number of layers in the EvoV2, EvoV4, and EvolT
architectures was five, six, and nine respectively (Figure 2] right).

y V2 V4 IT

Reg | RSA | Reg | RSA | Reg | RSA
Random 8 5.15 | 5.14 | 3.09 | 1.29 | 0.40

AlexNet .
Trained 4.6 1451 | 259 | 7.54 | 1.12 | 1.16
VGG16 Ran.dom 1.09 | 303 | 54 | 1.51 | 095 | 0.12
Trained | 13.76 | 16.12 | 4.82 | 691 | 0.75 | 0.85
CORNet Ran'dom 2.38 1.52 | 233 | 091 | 0.65 | 0.33
Trained | 2.276 | 17.82 | 14 | 9.99 | 1.13 | 1.09
Random | 119 | 599 | 6.15 | 347 | 095 | 041

EvoV2 )
Trained | 3.76 | 6.33 | 1.81 | 3.52 | 0.69 | 0.56
Random | 11.98 | 394 | 65 | 247 | 1.2 | 041

EvoV4 .
Trained | 3.544 | 6.32 1.9 | 400 | 0.55 | 0.60
EvoIT Random | 10.64 | 390 | 6.63 | 2.70 | 1.92 | 0.43
Trained | 8.82 | 16.33 | 4.06 | 8.27 | 1.04 | 1.18

Table 1: Brain-model similarity as measured by linear encoding (Reg) and representational similar-
ity analysis (RSA) across brain regions and model architectures with trained and random weights.
Similarity is given calculated by normalizing the correlation coefficient using the lower noise ceil-
ing. All Trained models use weights optimized on the CIFAR-10 classification (Section .

3.2 REPRESENTATIONAL HIERARCHY IN EVOLUTIONARY COGNITIVE MODELS

We formulated the following hypothesis in favor of the existence of hierarchical entailment across
brain region representations: optimizing CNNs to predict activations in the IT representations will
also spontaneously optimize the networks to learn V2 and V4 representations. To accomplish this
we tested the brain-alignment of each brain region with each architecture (Table [T). Indeed, we
find that EvolT contained sub-networks that are competitive predictors of V2 and V4 (in fact, a
subnetwork of EvolT was the best in class V4 model). Specifically, the EvolT layer that was most
correlated with V4 was the third pooling layer (Figure 2] left). Moreover, manually inspecting the
best performing architectures we observed that the EvoV4 and EvolT architectures contained sub-
networks virtually identical to EvoV2 and EvoV4 respectively. Overall, these results indicate that
to compute representations similar to those found in the IT it is indeed beneficial to first compute
representations similar to those found in V2 and V4.
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3.3 TRAINING EVOLUTIONARY COGNITIVE MODELS FOR IMAGE CLASSIFICATION

CNNss designed to perform image classification are state-of-the-art cognitive models [Yamins et al.
(2014). Here we investigate if CNNs with architectures that were specifically optimized for brain-
alignment can be trained to perform image classification. To achieve this we used the best archi-
tectures identified by the evolutionary search by adding a linear layer with Softmax on top of the
CNN backbone and training the models with cross-entropy on the CIFAR-10 dataset for 7 epochs.
To establish multiple baselines we also randomized the weights of the baseline CNNs and trained
them using a similar procedure.

We observe that the classification performance increased for models optimized to align with later
ventral regions, with EvoV?2 having the lowest score, followed by EvoV4 and EvolT. Overall, the
performance of EvoIT was close to the performance of several baseline models (Table 2)).

EvoV2 EvoV4 EvolT VGG16 AlexNet CORNet

Top-1

A 64.1 67.7 71.2 78.5 79.5 80.85
ccuracy

Table 2: Classification performance after training randomly initialized models on CIFAR-10

4 DISCUSSION AND FUTURE WORK

In this paper we used genetic algorithm based neural architecture search to optimize the architecture
of the convolutional neural networks directly to be more brain-like. Through this framework we
identified network architectures that had high similarity to various brain regions despite the lack of
any gradient descent based training. Moreover, we found that the model optimized for similarity
with late ventral stream areas contained subnetworks that were virtually identical to those identified
as the optimal models for similarity with early and intermediate visual cortex representations. This
finding directly contributes to the recent discussion regarding the hierarchy - or lack thereof - found
across visual cortex representation (Yamins et al.,[2014; |St-Yves et al.| 2023).

More broadly, the framework presented here is a potential new useful tool for computational cog-
nitive neuroscience research. Previous research tackling questions regarding the architecture of
the brain often followed a specific recipe: CNN architectures are modified in a controlled manner
while the training data and function are held constant. Model-brain alignment is then measured to
determine if the modification improves brain similarity, which would be taken as evidence that the
modification constitutes an abstraction of a mechanism found in the brain (for example see Guo et al.
(2025))). In contrast, the cognitive NAS framework presented here optimizes the model architecture
directly, instead of relaying on handcrafted CNNs, which might introduce unwanted bias.

The initial results presented here highlight the potential utility of Cognitive NAS for the research
community. However, the results of our experiments also raise multiple questions. Specifically,
while the evolved networks were powerful encoding models, their performance was subpar when
measured through representational similarity analysis. This might be due to our choice of using
ridge regression for fitness evaluation. Interestingly, training the networks using the CIFAR-10
classification task improved brain-alignment as measured by RSA while lowering the regression
score. This might indicate that the representation space of the evolved models lacks some structural
elements that can only be learned through gradient descent training. Future work should carefully
investigate the impact of the brain-similarity measure used during the NAS on the trajectory of the
architecture search and the final networks identified as optimal cognitive models.
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