AN INFORMATION-THEORETIC APPROACH TO DIVER-SITY EVALUATION OF PROMPT-BASED GENERATIVE MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

Text-conditioned generation models are commonly evaluated based on the quality of the generated data and its alignment with the input text prompt. On the other hand, several applications of prompt-based generative models require sufficient diversity in the generated data to ensure the models' capability of generating image and video samples possessing a variety of features. However, the existing diversity metrics are designed for unconditional generative models, and thus cannot distinguish the diversity arising from variations in text prompts and that contributed by the generative model itself. In this work, our goal is to quantify the prompt-induced and model-induced diversity in samples generated by promptbased models. Specifically, we propose the application of matrix-based information measures to address this task, decomposing the kernel-based entropy H(X)of generated data X into the sum of conditional entropy H(X|T), given text variable T, and mutual information I(X;T). We show that this information-theoretic approach decomposes the existing Vendi diversity score defined based on H(X)into the product of the following two terms: 1) Conditional-Vendi score based on H(X|T) to quantify the model-induced diversity, and 2) Information-Vendi score based on I(X;T) to measure the statistical relevance between X and prompt T. Our theoretical results provide an interpretation for this diversity quantification and show that the Conditional-Vendi score aggregates the Vendi scores within the modes of a mixture prompt distribution. We conduct several numerical experiments to show the correlation between the Conditional-Vendi score and the internal diversity of text-conditioned generative models.

032 033 034

006

008 009 010

011

013

014

015

016

017

018

019

021

023

024

025

026

027

028

029

031

1 INTRODUCTION

Prompt-based generative models, including text-to-image and text-to-video generation schemes, are
 widely used in various artificial intelligence (AI) applications. In prompt-based generative AI, the
 sample creation process begins with a text input and produces a random output aligned with that
 text. The conditional nature of this sample generation distinguishes prompt-based generative models
 from standard unconditional generative models where the objective is to produce samples distributed
 similarly to real data without any guiding input prompt. Since most evaluation metrics for generative
 models had been developed for unconditional models in the previous decade, the recent literature
 has sought to create scores tailored specifically for text-conditioned generative models.

The existing evaluation metrics for prompt-based generative models typically focus on fidelity and relevance in sample generation, i.e., they assess the visual quality of the produced samples and their alignment with the input prompt. Relevance is often measured by calculating a similarity score between a shared embedding of the text and image samples, e.g. in ClipScore (Hessel et al., 2021) which utilizes the CLIP embeddings of text and image data. Such shared embedding-based evaluation mechanisms have been further adapted to quantify the aesthetics, semantic consistency, and compositional accuracy of the generated data based on the input text prompt.

On the other hand, the diversity performance of prompt-based generative models has not been exclusively studied in the literature. The diversity scores proposed for unconditional generative models, such as Recall (Sajjadi et al., 2018; Kynkäänniemi et al., 2019), Coverage (Naeem et al., 2020),

Figure 1: Illustration of *prompt-induced diversity*, where the diversity of generated images follows the variety of prompts and has little variation in other details, vs. *model-induced diversity*, where the diversity of images for similar prompts is due to the generation model.

093

076 Vendi (Friedman & Dieng, 2023; Pasarkar & Dieng, 2024), and RKE (Jalali et al., 2023), are often 077 applied to quantify the variety of generated samples. However, in text-based generative models, the generated samples are typically produced in response to different input prompts, where the variation in input texts can significantly contribute to the diversity of the generated image or video samples. 079 Thus, the diversity of data produced by prompt-based models is influenced by two main factors: 1) the variety of input prompts, and 2) the internal diversity of the model introducing randomness into 081 the output samples. Figure 1 illustrates examples of prompt-induced diversity, where the variety of generated images is mostly due to the different prompts and the generated data has little variety in 083 other details (images of similar people with similar poses), and model-induced diversity where the 084 details not specified by the prompts vary significantly between generated images. This decompo-085 sition of diversity in text-based generative models has not been studied in the existing literature on conditional generative models including text-based image and video generation. 087

In this work, we focus on quantifying the two diversity components mentioned for prompt-based generative models. To this end, we propose an information-theoretic decomposition of the diversity of the model's output data, X. The proposed decomposition is based on a classical identity in information theory, which shows that for variables X and T, the Shannon entropy H(X), representing the uncertainty of X, can be decomposed into two terms as follows:

$$H(X) = H(X|T) + I(X;T)$$

Here, H(X|T) denotes the conditional entropy of data X given the text variable T, which we interpret as the internal diversity of the text-based generative model not caused by variation in the input text T. Furthermore, the mutual information term I(X;T) can be viewed as a measure of statistical relevance between the text T and the generated data X, quantifying how much information the model's output conveys about the input text.

099 To mathematically define the entropy-based scores, we follow the kernel-matrix-based entropy def-100 inition, which has been applied by (Friedman & Dieng, 2023; Jalali et al., 2023; Pasarkar & Dieng, 101 2024) to unconditional generative models. These references apply the matrix-based entropy in quan-102 tum information theory, that is the entropy of the eigenvalues of the kernel matrix of generated data 103 X, to measure the diversity of an unconditional model's generated data. To extend the framework to 104 conditional prompt-based generative models, we utilize the definition of matrix-based conditional 105 entropy proposed by Giraldo et al. (2014). This work provides a definition for the conditional entropy of two general positive semi-definite matrices, which we select to be the kernel matrices of 106 generated data X and text T. Following these definitions, our work extends the entropy-based 107 approach in (Friedman & Dieng, 2023; Jalali et al., 2023) to conditional generative models. We define the *Conditional-Vendi* and *Information-Vendi* scores which decompose the unconditional Vendi score to model-induced and prompt-induced diversity measures.

To statistically interpret the defined scores, we derive the statistic estimated by the proposed scores 111 from empirical generated samples. We show how the target statistic can be formulated in terms of 112 the kernel covariance matrix of the Kronecker product of text T and data X vectors. Importantly, 113 we prove a theorem to interpret and provide an operational meaning for the proposed entropy-based 114 scores. Note that the conditional entropy measures in (Giraldo et al., 2014) do not follow standard 115 information theory, and hence the defining equation $H(X,T) - H(T) = \mathbb{E}_{t \sim P_T}[H(X|T = t)],$ 116 well-known for Shannon conditional entropy, does not hold for the conditional entropy measure 117 in (Giraldo et al., 2014). To address this gap and provide a practical interpretation for the defined 118 conditional entropy H(X|T), we prove that under a mixture distribution P_T for text data with a hidden group variable G, the defined conditional entropy indeed aggregates H(X|G = g) given 119 prompt type $g \sim P_G$. This result shows the Conditional-Vendi is an aggregation of Vendi scores. 120

121 Specifically, our theoretical analysis on the connection between the Conditional VENDI score and 122 average of unconditional entropy scores indicate a spectral approach to interpret the diversity evalua-123 tion of the proposed score. Following the spectral identification of modes in the eigendecomposition 124 of matrix-based entropy function, we show that the modes used by the Conditional-VENDI score 125 follow from the eigenvectors of the kernel covariance matrix of the text prompt distributions. Therefore, we visualize the diversity contributed by the prompt-based generative model using the spectral 126 clustering of text samples according to the kernel function used in the definition of the diversity 127 score. After computing the eigendirections of the text kernel matrix, we analyze the Hadamard 128 product of each eigendirection-based rank-1 matrix and the joint (prompt,data) kernel matrix. This 129 analysis reveals the variant clusters of images generated for each group of input text samples. 130

We numerically evaluate the proposed diversity scores for standard text-to-image, text-to-video, and image-captioning generative models. In our experiments, we simulate text-based generative models for which the ground-truth rankings of internal diversity and relevance are known. Our experimental results validate the consistency of our proposed information-theoretic scores and the ground-truth ranking of the models. We further decompose the Conditional-Vendi score across different modes of input text data, evaluating the models' internal diversity across different types of input text. The following is a summary of the contributions of this work:

137 138

139

140

141

142

143

144

145

• Highlighting the diversity evaluation task in the context of conditional generative models,

- Proposing an information-theoretic framework for decomposing the diversity of generated data into prompt-induced and model-induces components to evaluate the internal diversity of prompt-based generative models
 - Providing an operational meaning for the defined scores and interpreting them as the average of entropy scores over the modes of a multi-modal text distribution
- Presenting numerical results on the consistency between the conditional entropy score and the model-induced diversity of text-to-image and text-to-video generative models.
- 146 147 148

149

2 RELATED WORK

Evaluation of deep generative models: The existing metrics for the evaluation of generative mod-150 els can be divided into reference-dependent and reference-free categories, as discussed in (Borji, 151 2022). As one type of reference-dependent metrics, a distance between generated and reference 152 distributions is measured using metrics such as FID (Heusel et al., 2017) and KID (Bińkowski et al., 153 2018). Other reference-based metrics such as the Inception Score (Salimans et al., 2016), GAN-154 train/GAN-test (Shmelkov et al., 2018), Precision/Recall (Sajjadi et al., 2018; Kynkäänniemi et al., 155 2019), and Density/Coverage (Naeem et al., 2020) are defined to quantify the diversity and quality 156 of generated data in comparison to the samples in the real dataset. In addition, assessing memoriza-157 tion and novelty has been studied in several references, including the authenticity score (Alaa et al., 158 2022) and Feature Likelihood Divergence (Jiralerspong et al., 2023) to assess generalizability, and the rarity score (Han et al., 2023), KEN (Zhang et al., 2024) proposed to assess novelty. Note that the 159 memorization metrics are inherently reference-based. In contrast, reference-free evaluations mea-160 sure diversity and quality based only based on the generated data. Specifically, the Vendi (Friedman 161 & Dieng, 2023; Pasarkar & Dieng, 2024) and RKE scores (Jalali et al., 2023) fall into this category.

162 Evaluation of conditional generative models: The evaluation of prompt-based generative models, 163 including text-to-image and text-to-video models, has been studied in several related works. Most 164 of the existing evaluation metrics attempt to measure the correlation between the prompt and the 165 output. A standard metric for measuring the alignment of prompt and image is CLIPScore (Hessel 166 et al., 2021), which measures the cosine similarity of the paired data using CLIP embedding. Some other works introduce different benchmarks and sets of prompts to evaluate different aspects. HEIM 167 (Lee et al., 2023) assesses twelve aspects of the sample generation, including text-image alignment, 168 image quality and bias. As noted by Astolfi et al. (2024), standard metrics focusing on style, aesthetics, and image quality, may overlook the diversity of images given a particular prompt. In their 170 work, they measure diversity separately for each prompt using a similarity function and average the 171 scores for the prompts. Kannen et al. (2024) follow a similar approach with the Vendi score. We 172 note that both these methods require generating multiple images per prompt with different seeds to 173 measure the score. On the other hand, our proposed Conditional-Vendi score does not require mul-174 tiple sample generations per prompt and instead analyzes the types of text prompt in the assessment. 175 Our theoretical results interpret Conditional-Vendi as an aggregation of the scores over text types.

Information measures for evaluating conditional generative models: Kim et al. (2022) utilize the mutual information (MI) between continuous text and image variables, and propose the Mutual Information Divergence (MID) score. This work fits a multivariate Gaussian distribution to the text and image data and then estimates their mutual information to quantify a relevance metric for conditional generative models. We note that our proposed Information-Vendi score is based on the matrix-based entropy score by Giraldo et al. (2014) which is different from the MI between Gaussian vectors fitted to the text and image data used in the MID score. Different from MID, Information-Vendi relies on kernel similarity values to identify a cluster variable for MI calculation.

3 PRELIMINARIES

185

193

194 195

202 203

210 211

Throughout the work, we focus on a conditional generative model that produces a data vector $X \in \mathcal{X}$ given an input text prompt $T \in \mathcal{T}$ according to a conditional distribution $P_{X|T}$, i.e., for text prompt T = t the model outputs a random sample following $P_{X|T=t}$. We consider *n* sample pairs $(t_i, x_i) \sim P_T \times P_{X|T}$ where each text prompt t_i is drawn independently from the distribution P_T and then the generated sample x_i is generated according to $P_{X|T=t_i}$. Our goal is to quantify the internal diversity of the prompt-based generative model, influencing the variety of data generated x_1, \ldots, x_n independently of the diversity of input texts t_1, \ldots, t_n .

3.1 ENTROPY-BASED DIVERSITY SCORES FOR UNCONDITIONAL GENERATIVE MODELS

Consider generated samples $x_1, \ldots, x_n \in \mathcal{X}$ following the distribution P_X of an unconditional generative model. For a kernel function $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$, the kernel similarity matrix $K \in \mathbb{R}^{n \times n}$ is $K = [k(x_i, x_j)]_{1 \le i,j \le n}$. Following the standard definition, a kernel function k satisfies the positive semidefinite property (PSD), which means that the above kernel matrix will be PSD for any arbitrary selection of data points $x_1, \ldots, x_n \in \mathcal{X}$, i.e., all its eigenvalues are non-negative. A popular kernel function is the Gaussian (RBF) kernel, which for a bandwdith parameter σ is defined as:

$$k(x, x') = \exp\left(\frac{-\|x - x'\|_2^2}{2\sigma^2}\right)$$
(1)

Assuming that a kernel function k is normalized, i.e. k(x, x) = 1 for every $x \in \mathbb{R}^d$, then the nonnegative eigenvalues $\lambda_1, \ldots, \lambda_n$ of $\frac{1}{n}K$ will add up to 1, implying that they represent a probability model. In the literature, Friedman & Dieng (2023); Jalali et al. (2023); Pasarkar & Dieng (2024) propose using the general order- α Renyi entropy of the probability model as the model's diversity score, defined as follows for $\frac{1}{n}K$:

$$H_{\alpha}(X) := H_{\alpha}\left(\frac{1}{n}K\right) = \frac{1}{1-\alpha} \log\left(\sum_{i=1}^{n} \lambda_{i}^{\alpha}\right)$$
(2)

In the special case of $\alpha = 1$, the above definition results in the Shannon-entropy of eigenvalues $H_1(\frac{1}{n}K) = \sum_{i=1}^n \lambda_i \log(1/\lambda_i)$. Also, we note that the Vendi and RKE scores defined by Friedman & Dieng (2023); Pasarkar & Dieng (2024) are the exponential of the defined entropy measure, where

$$\operatorname{Vendi}_{\alpha}\left(x_{1},\ldots,x_{n}\right) := \exp\left(H_{\alpha}\left(\frac{1}{n}K\right)\right)$$
(3)

221 222

223

224

225

226 227

228

243 244

253

254 255

256

257

258

263

264

269

To statistically interpret the entropy measures of the samples' kernel matrix, Bach (2022); Jalali et al. (2023) note that the normalized kernel matrix $\frac{1}{n}K$ shares the same non-zero eigenvalues with the empirical kernel covariance matrix \hat{C}_X defined as:

$$\widehat{C}_X = \frac{1}{n} \sum_{i=1}^n \phi(X_i) \phi(X_i)^\top$$
(4)

Here, $\phi : \mathcal{X} \to \mathbb{R}^d$ denotes the kernel feature map satisfying the relation $k(x, x') = \langle \phi(x), \phi(x') \rangle$ for every $x, x' \in \mathcal{X}$ where $\langle \cdot, \cdot \rangle$ is the standard inner-product in the \mathbb{R}^d space. As a result, the entropy of the kernel matrix K's eigenvalues equals the entropy of \widehat{C}_X . Note that \widehat{C}_X is the empirical estimation of the underlying kernel covariance matrix $C_X = \mathbb{E}_{X \sim P_X} [\phi(X)\phi(X)^\top]$.

3.2 MATRIX-BASED CONDITIONAL ENTROPY AND MUTUAL INFORMATION

229 In the previous subsection, we reviewed the standard definition of order- α matrix-based entropy for 230 PSD matrices. Here, we discuss an extension proposed by Giraldo et al. (2014) to define matrix-231 based conditional entropy and mutual information for two variables $X \in \mathcal{X}$ and $T \in \mathcal{T}$. For 232 variables X and T, we consider normalized kernel functions $k_X : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ and $k_T : \mathcal{T} \times \mathcal{T} \to \mathbb{R}$, 233 where the kernel functions satisfy $k_X(x, x) = 1$ and $k_T(t, t) = 1$ for every input x and t. Given the two kernel functions, Giraldo et al. (2014) define the order- α matrix-based joint entropy $H_{\alpha}(X,T)$ 234 as the order- α entropy of the PSD matrix $\frac{1}{n}K_X \odot K_T$, in which K_X and K_T are the kernel matrices 235 of X and T samples and \odot denotes the entry-wise Hadamard product. 236

Note that the Hadamard product $K_X \odot K_T$ represents the kernel matrix of concatenated samples $[x_i, t_i]$, where we consider the kernel function $k_{X,T}([x, t], [x', t']) = k_X(x, x')k_T(t, t')$ to be the product of marginal kernel functions. This definition is sensible, since the joint similarity value, taking value over [0, 1] in Gaussian kernels, is considered to be the multiplication of the similarity scores for the text and output data vectors. Then, Giraldo et al. (2014) propose defining conditional entropy $H_{\alpha}(X|T)$ as the difference between the joint and marginal entropy values:

$$H_{\alpha}(X|T) := H_{\alpha}(X,T) - H_{\alpha}(T) = H_{\alpha}\left(\frac{1}{n}K_X \odot K_T\right) - H_{\alpha}\left(\frac{1}{n}K_T\right)$$
(5)

Specifically, it is shown that the defined conditional entropy $H_{\alpha}(X|T)$ is non-negative for every normalized kernel function k_X and k_T . Furthermore, Giraldo et al. (2014) define the matrix-based mutual information $I_{\alpha}(X;T)$ as the difference between the defined conditional and marginal entropy which is shown to be non-negative given normalized kernel functions k_X and k_T :

$$I_{\alpha}(X;T) := H_{\alpha}(X) - H_{\alpha}(X|T) = H_{\alpha}\left(\frac{1}{n}K_{X}\right) + H_{\alpha}\left(\frac{1}{n}K_{T}\right) - H_{\alpha}\left(\frac{1}{n}K_{X}\odot K_{T}\right)$$
(6)

4 AN INFORMATION-THEORETIC DIVERSITY QUANTIFICATION FOR PROMPT-BASED GENERATIVE MODELS

We aim to extend the entropy-based diversity scores for unconditional generative models to conditional text-based generative models. Note that if we only evaluate the entropy score of the generated samples x_1, \ldots, x_n , the evaluated score does not separate the diversity contributed by different prompts from the internal diversity of the model creating varying samples for similar prompts.

To separate out the effect of diverse input prompts on the variety of the generated samples x_1, \ldots, x_n , we propose applying the conditional entropy as formulated by Giraldo et al. (2014) for a general quantum information-theoretic setting and propose the following *order*- α *Conditional-Vendi Score*:

Conditional-Vendi_{$$\alpha$$} $(x_1, \ldots, x_n | t_1, \ldots, t_n) := \exp\left(H_{\alpha}\left(\frac{1}{n}K_X \odot K_T\right) - H_{\alpha}\left(\frac{1}{n}K_T\right)\right)$

In the above, K_X and K_T denote the kernel matrices for the generated samples and input prompts, respectively. In addition to the proposed Conditional-Vendi score for measuring the internal diversity of the model, we propose the *Information-Vendi* score following the identity I(X;T) = H(X) +H(T) - H(X,T) in standard information theory:

Information-Vendi_{$$\alpha$$} $(x_1, ..., x_n; t_1, ..., t_n) := \exp\left(H_{\alpha}\left(\frac{1}{n}K_X\right) + H_{\alpha}\left(\frac{1}{n}K_T\right) - H_{\alpha}\left(\frac{1}{n}K_X \odot K_T\right)\right)$

272 Note that the defined Conditional-Vendi_{α} and Information-Vendi_{α} lead to a decomposition of Vendi_{α} score (Pasarkar & Dieng, 2024) into the product of the following two terms: 273

$$\operatorname{Vendi}_{\alpha}(x_1, \dots, x_n) = \operatorname{Conditional-Vendi}_{\alpha}(x_1, \dots, x_n | t_1, \dots, t_n)$$
$$\times \operatorname{Information-Vendi}_{\alpha}(x_1, \dots, x_n; t_1, \dots, t_n).$$

277 In the above, Vendi_{α} measures the diversity of generated data x_1, \ldots, x_n , while the 278 Conditional-Vendi α score is a quantification of the internal diversity of the model that is not in-279 fluenced by the variety of input prompts. Also, Information-Vendi_{α} can be viewed as a relevance score quantifying how the diversity of generated samples is statistically correlated with the diversity of text prompts. Therefore, the proposed decomposition leads to a mechanism for the internal diversity evaluation of conditional generative models. 282

283 284

285

287

293

294

297

298

299

304

305

306 307

308

310

311

312 313 314

315

316 317 318

281

270 271

274 275 276

5 STATISTICAL INTERPRETATION OF THE ENTROPY-BASED SCORES

286 In this section, we aim to statistically interpret the defined conditional diversity scores as the expectation of prompt-specific entropy H(X|T = t). First, we derive the statistic estimated from 288 empirical samples by the entropy-based scores, and then we connect the conditional entropy mea-289 sure to the expectation of unconditional entropy values. According to the Schur product theorem, 290 the Hadamard product $K_X \odot K_T$ of PSD kernel matrices K_X , K_T will also be a PSD kernel matrix. We note that the kernel matrix corresponds to the following feature map $\phi_{X,T}: \mathcal{X} \times \mathcal{T} \to \mathbb{R}^{d_X d_t}$ 291 where \otimes denotes the Kronecker product: 292

$$\phi_{X,T}([x,t]) = \phi_X(x) \otimes \phi_T(t)$$

295 The above holds due to the identity $\langle \phi_{X,T}([x,t]), \phi_{X,T}([x',t']) \rangle = k_X(x,x')k_T(t,t')$. The fol-296 lowing proposition formulates kernel-based conditional entropy and mutual information using $\phi_{X,T}$.

Proposition 1. Consider the kernel matrices K_X for samples x_1, \ldots, x_n and K_T for samples t_1, \ldots, t_n . Then, $\frac{1}{n}K_X \odot K_T$ (used for defining joint entropy $H_{\alpha}(X,T)$) share the same non-zero eigenvalues with the following kernel covariance matrix:

$$\widehat{C}_{X,T} := \frac{1}{n} \sum_{i=1}^{n} \phi_{X,T} \left([x_i, t_i] \right) \phi_{X,T} \left([x_i, t_i] \right)^{\top} = \frac{1}{n} \sum_{i=1}^{n} \left[\phi_X \left(x_i \right) \phi_X \left(x_i \right)^{\top} \right] \otimes \left[\phi_T \left(t_i \right) \phi_T \left(t_i \right)^{\top} \right]$$

Corollary 1. Consider the composite feature map $\phi_{X,T}$ and joint kernel covariance matrix $C_{X,T}$ defined above. Then, given marginal kernel covariance matrices C_X = $\frac{1}{n}\sum_{i=1}^{n}\phi_X(x_i)\phi_X(x_i)^{\top}, \ \widehat{C}_T = \frac{1}{n}\sum_{i=1}^{n}\phi_T(t_i)\phi_T(t_i)^{\top}, \ the \ following \ holds \ for \ the \ defined \ con$ ditional entropy and mutual information:

$$H_{\alpha}(X|T) = H_{\alpha}(\widehat{C}_{X,T}) - H_{\alpha}(\widehat{C}_{T}), \quad I_{\alpha}(X;T) = H_{\alpha}(\widehat{C}_{X}) + H_{\alpha}(\widehat{C}_{T}) - H_{\alpha}(\widehat{C}_{X,T})$$

Proof. The proof is deferred to the Appendix. Note that Conditional-Vendi $_{\alpha}(x_1, .., x_n | t_1, .., t_n) =$ $\exp(H_{\alpha}(X|T))$ and Information-Vendi_{α} $(x_1, ..., x_n; t_1, ..., t_n) = \exp(I_{\alpha}(X;T))$

Corollary 1 shows that given the underlying covariance matrices $C_X = \mathbb{E}_{x \sim P_X} [\phi_X(x) \phi_X(x)^\top],$ $C_T = \mathbb{E}_{t \sim P_T} \left[\phi_T(t) \phi_T(t)^\top \right]$, and $C_{X,T} = \mathbb{E}_{(x,t) \sim P_{X,T}} \left[\phi_{X,T}([x,t]) \phi_{X,T}([x,t])^\top \right]$, the defined entropy-based scores converge to the following statistics when the sample size *n* tends to infinity:

$$\widetilde{H}_{\alpha}(X|T) = H_{\alpha}(C_{X,T}) - H_{\alpha}(C_T), \quad \widetilde{I}_{\alpha}(X;T) = H_{\alpha}(C_X) + H_{\alpha}(C_T) - H_{\alpha}(C_{X,T}).$$

319 Note that the entropy-based statistic $H_{\alpha}(C_X)$ represents the statistic estimated by the logarithm of 320 the Vendi score defined in (Friedman & Dieng, 2023). 321

Next, we prove that for a mixture text distribution P_T where the text variable follows random mode 322 $G \in \{1, \ldots, m\}$, the defined conditional entropy score aggregates the expectation of the uncondi-323 tional entropy score H(X|G = i) over the *m* text modes $1, \ldots, m$.

Theorem 1. Consider the Gaussian kernel with bandwidth σ . Suppose T follows a mixture distribution $\sum_{i=1}^{m} \omega_i P_{T,i}$ where ω_i denotes the weight of the *i*th component $P_{T,i}$ with mean vector μ_i and total variance $\mathbb{E}_{T \sim P_{T,i}}[||T - \mu_i||_2^2] = \sigma_i^2$. Given the aggregation map $f(z) = \exp((1 - \alpha)z)$, for every order $\alpha \ge 2$, the matrix-based order- α conditional entropy satisfies the following inequality where $g(z) = \frac{\alpha}{\alpha - 1} \log(\frac{1}{1 - z/\|\omega\|_{\alpha}})$ is an increasing scalar function with g(0) = 0:

$$\left| \widetilde{H}_{\alpha}(X|T) - f^{-1} \Big(\mathbb{E}_{I \sim \boldsymbol{\omega}^{\alpha}} \Big[f \big(\widetilde{H}_{\alpha}(X|G=I) \big) \Big] \Big) \right| \leq 2g \Big(32 \sum_{i=1}^{k} \omega_{i} \Big[\frac{\sigma_{i}^{2}}{\sigma^{2}} + \sum_{j=1}^{i-1} \exp \Big(\frac{-\|\mu_{i} - \mu_{j}\|_{2}^{2}}{\sigma^{2}} \Big) \Big] \Big)$$

The above theorem shows that if the text samples come from m distinct modes satisfying $\frac{\|\mu_i - \mu_j\|_2}{\sigma} \gg 1 \text{ for every } i \neq j \text{ and } \frac{\mathbb{E}_{P_{T,i}}[\|T - \mu_i\|_2^2]}{\sigma^2} \ll 1, \text{ then the defined conditional entropy}$ score H(X|T) aggregates the unconditional entropy score H(X|G = i) given the prompt group. Therefore, this result extends the expectation-based interpretation of Shannon conditional entropy to the matrix-based conditional entropy defined in Giraldo et al. (2014).

Based on Theorem 1, we propose a text-type-based diversity evaluation, where we restrict the evaluation of the prompt-based generative model to the prompts in the same group, i.e. the same mode in the mixture text distribution. To do this, we find the eigendirections corresponding to the text clusters by performing an eigendecomposition of text kernel matrix $\frac{1}{n}K_T = \sum_{i=1}^n \lambda_i v_i v_i^T$ where $\lambda_1 \ge \cdots \lambda_n$ are the sorted eigenvalues and v_1, \ldots, v_n are the sorted eigenvectors. Then, we note that the Hadamard product $\frac{1}{n}K_X \odot K_T$ used for joint entropy can be decomposed as: $\frac{1}{n}K_X \odot K_T = \sum_{i=1}^n \lambda_i (K_X \odot v_i v_i^T)$. As a result, to evaluate the diversity of the generation model, we apply eigendocomposition to each $K_X \odot v_i v_i^T$, where v_i marks the samples in group *i*, and find the sample indices with the maximum entries on the principal eigenvectors of $K_X \odot v_i v_i^T$.

348 349

334

335 336

337

338

6 NUMERICAL RESULTS

350

358

We empirically evaluated the Conditional-Vendi and Information-Vendi scores for three types of conditional generative models: 1) text-to-image, 2) text-to-video generation, and 3) imagecaptioning models. For text-to-image models, we tested Flux (Lab, 2024), Stable Diffusion 2.1 (Rombach et al., 2022), Stable Diffusion XL (Podell et al., 2024), GigaGAN (Kang et al., 2023), Kandinsky (Razzhigaev et al., 2023), and PixArt (Chen et al., 2023b; 2024b). For prompt-based video generative models, we considered VideoCrafter1 (Chen et al., 2023a), Show-1 (Zhang et al., 2023), and Open-Sora (Zheng et al., 2024). For image-captioning models, we experimented with BLIP (Li et al., 2022), GIT (Wang et al., 2022), and GPT40-mini (OpenAI, 2024).

Embeddings used in the evaluation of generative models. Unlike standard embedding-based 359 scores for text-to-image models such as CLIPScore (Hessel et al., 2021), which require the same 360 embedding model for the text and generated image, the definitions of Conditional-Vendi and 361 Information-Vendi allow different feature extractors for text and generated sample. In our exper-362 iments, we followed (Stein et al., 2023; Kynkäänniemi et al., 2023), to use the DINOv2 (Oquab et al., 2023) embedding for image data. For text data, we used Gemini (Team, 2024) and CLIP 364 (Radford et al., 2021), and for video samples, following the video evaluation literature (Kim et al., 365 2024; Saito et al., 2020; Unterthiner et al., 2019), we used I3D (Carreira & Zisserman, 2017). To 366 select the bandwidth parameter σ , similar to (Jalali et al., 2023), we chose the Gaussian kernel band-367 width for each type of data as the smallest σ that ensures a variance below 0.01 in the evaluated 368 score over independent evaluations. We observed that for image data, $\sigma \in [20, 30]$; for text data, $\sigma \in [0.1, 0.8]$; and for video data, $\sigma \in [10, 20]$ can satisfy this requirement. 369

370 Quantifying model-induced diversity via Conditional-Vendi. To illustrate how Conditional-371 Vendi correlates with the model-induced diversity, we considered a toy experiment with 10 different 372 dog breeds from the ImageNet dataset (Deng et al., 2009) as simulated outputs for a text-to-image 373 model. We generated two sets of prompts using GPT40 (OpenAI, 2024). In the first set, the breed 374 of dog in the picture was not specified, while in the other one, the breed was explicitly mentioned. 375 As shown in Figure 2, increasing the number of breeds sampled from the dataset led to the growth of the Vendi score, regardless of the text prompt. However, Conditional-Vendi only increased when 376 the breed was not specified in the prompts, and in the second case where the breed had been in-377 cluded in the prompt, the score remained relatively constant, implying that the diversity in pictures

Figure 3: Evaluated Conditional-Vendi and Vendi scores on animal samples generated by Stable
Diffusion-XL. (Left Plot): we do not specify the animal types in the prompt, (Right Plot) we specify
the animal types in the prompt.

mostly follows the text prompt. To repeat this observation for text-to-image models, we considered
to types of animals generated by Stable Diffusion XL, as shown in Figure 3. Similar to the previous
experiment, we found that Conditional-Vendi increased at a more rapid rate when the prompts did
not specify the type of animal in the picture. In contrast, when the animal types were specified in
the prompts, there was only a slight increase in the Conditional-Vendi value.

Text-to-Image Model Evaluation: In Figure 4, we compared Flux, Stable Diffusion XL, Giga-421 GAN, and Kandinsky. As shown in the plot, we generated 30,000 samples using each model, and 422 then clustered the prompts into k groups, using k-means clustering on the Gemini embedding of 423 text data, for different values of k. To simulate varying diversity across clusters, we assigned the 424 image generated for the center of each cluster to all prompts within that cluster and measured the 425 scores for different clusters. For example, when k=2000, we had 2,000 images for the k clusters, 426 with the text in each cluster paired with one of the images. As k grows, we observed an increase 427 in Information-Vendi, validating the fact that the images become more relevant to their prompts. 428 Also, the Conditional-Vendi increased, as we expect the diversity of images to grow with more text clusters. Notably, while GigaGAN achieved a higher Vendi score, its Information-Vendi score was 429 lower than that of SD-XL. This observation suggests that GigaGAN performs well at generating 430 diverse outputs given prompts, but in terms of relevance, Flux and SD-XL are better. Our results 431 align with conclusions made by Astolfi et al. (2024).

Figure 4: Comparing Conditional-Vendi and Information-Vendi of different text-to-image models.

Figure 5: Quantifying image diversity for different clusters of text prompts. Images are generated using the PixArt- α model.

468 Measuring Conditional-Vendi across prompt types. To measure Conditional-Vendi conditioned 469 on the prompt type, we created 5000 prompts with different categories using GPT40 and generated 470 the corresponding images with the text-to-image models. In Figure 5, top 2 groups of PixArt- α in 471 terms of conditional entropy values are shown. We observed that "dog" text-based top 3 clusters of 472 images looked more diverse than the image clusters for "airplane"-type prompts. Also, our evaluated 473 Conditional-Vendi score of "dog" texts was significantly higher than that of the "airplane" class. We 474 have tested other generative models in the appendix.

Text-to-Video Model Evaluation. For the experiments on video data, to ensure the fairness of our
evaluation, we used VBench samples (Huang et al., 2024), which generated samples belong to the 8
content categories. In Figure 6, we used VideoCrafter-1, Show-1, and Open-Sora-1.2. We observed
that VideoCrafter videos look less diverse and, in some cases, may not correlate significantly with
the captions, when compared to Open-Sora. Confirming this observation, the Conditional-Vendi and
Information-Vendi scores were lower for VideoCrafter than those for Open-Sora.

Image-Captioning Evaluation. For image captioning, we used 10 classes from the ImageNet
 dataset as input for BLIP-2, GIT and GPT4o-mini. In Figure 7, we compared captions for the
 top three groups of images: gas pump, church, and cassette player. GIT generated more diverse
 captions compared to BLIP, which was confirmed by the Conditional-Vendi scores. On the other
 hand, GPT4o-mini generated longer and more detailed captions compared to GIT, which was also
 reflected in the evaluated Conditional-Vendi and Information-Vendi scores.

7 CONCLUSION

525 526 527

528 529

In this work, we proposed an evaluation score to measure the internal diversity of prompt-based 530 generative models, isolating diversity that is not induced by variations in text prompts. The pro-531 posed method is based on a decomposition of unconditional matrix-based entropy scores, Vendi and 532 RKE, into Conditional-Vendi and Information-Vendi components. From a theoretical perspective, 533 we derived the kernel-based statistics estimated by these scores and demonstrated their connection 534 to the expectation of unconditional entropy values given a fixed text prompt. In our experiments, we evaluated the proposed scores in multiple settings where the ground-truth ranking of model diversity 536 and relevance was known, showing that the scores correlate well with the ground-truth rankings. A 537 future direction is to apply the proposed scores to quantify biases in existing models regarding sample generation across different human ethnicities and genders. Additionally, using these scores as 538 a regularization penalty to train more diverse prompt-based models is another interesting area for further exploration.

540 REFERENCES

550

559

Ahmed Alaa, Boris Van Breugel, Evgeny S Saveliev, and Mihaela van der Schaar. How faithful
 is your synthetic data? sample-level metrics for evaluating and auditing generative models. In
 International Conference on Machine Learning, pp. 290–306. PMLR, 2022.

- Pietro Astolfi, Marlene Careil, Melissa Hall, Oscar Mañas, Matthew Muckley, Jakob Verbeek, Adriana Romero Soriano, and Michal Drozdzal. Consistency-diversity-realism pareto fronts of conditional image generative models, 2024. URL https://arxiv.org/abs/2406.10429.
- ⁵⁴⁹ Francis R. Bach. Information theory with kernel methods. *arXiv preprint arXiv:2202.08545*, 2022.
- Mikołaj Bińkowski, Danica J Sutherland, Michael Arbel, and Arthur Gretton. Demystifying mmd
 gans. *arXiv preprint arXiv:1801.01401*, 2018.
- Ali Borji. Pros and cons of gan evaluation measures: New developments. *Computer Vision and Image Understanding*, 215:103329, 2022. ISSN 1077-3142.
- João Carreira and Andrew Zisserman. Quo vadis, action recognition? a new model and the kinetics
 dataset. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4724–4733, 2017.
- Haoxin Chen, Menghan Xia, Yingqing He, Yong Zhang, Xiaodong Cun, Shaoshu Yang, Jinbo Xing,
 Yaofang Liu, Qifeng Chen, Xintao Wang, Chao Weng, and Ying Shan. Videocrafter1: Open
 diffusion models for high-quality video generation, 2023a.
- Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang, James
 Kwok, Ping Luo, Huchuan Lu, and Zhenguo Li. Pixart-α: Fast training of diffusion transformer
 for photorealistic text-to-image synthesis, 2023b.
- 567 Junsong Chen, Chongjian Ge, Enze Xie, Yue Wu, Lewei Yao, Xiaozhe Ren, Zhong-568 dao Wang, Ping Luo, Huchuan Lu, and Zhenguo Li. Pixart- σ : Weak – to – 569 strongtrainingof diffusion transformer for 4ktext – to – image generation, 2024a. URL.
- Junsong Chen, Yue Wu, Simian Luo, Enze Xie, Sayak Paul, Ping Luo, Hang Zhao, and Zhenguo Li.
 Pixart-δ : Fastandcontrollableimagegenerationwithlatentconsistencymodels, 2024b.
- J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical Image Database. In *CVPR09*, 2009.
- Dan Friedman and Adji Bousso Dieng. The vendi score: A diversity evaluation metric for machine learning. *Transactions on machine learning research*, 2023.
- Luis Gonzalo Sanchez Giraldo, Murali Rao, and Jose C Principe. Measures of entropy from data
 using infinitely divisible kernels. *IEEE Transactions on Information Theory*, 61(1):535–548, 2014.

Jiyeon Han, Hwanil Choi, Yunjey Choi, Junho Kim, Jung-Woo Ha, and Jaesik Choi. Rarity score : A new metric to evaluate the uncommonness of synthesized images. In *The Eleventh International Conference on Learning Representations*, 2023. URL https://openreview.net/forum? id=JTGimap_-F.

- Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. CLIPScore: a reference-free evaluation metric for image captioning. In *EMNLP*, 2021.
- Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans trained by a two time-scale update rule converge to a local nash equilibrium. *Advances in neural information processing systems*, 30, 2017.
- Ziqi Huang, Yinan He, Jiashuo Yu, Fan Zhang, Chenyang Si, Yuming Jiang, Yuanhan Zhang, Tianxing Wu, Qingyang Jin, Nattapol Chanpaisit, Yaohui Wang, Xinyuan Chen, Limin Wang, Dahua Lin,
 Yu Qiao, and Ziwei Liu. VBench: Comprehensive benchmark suite for video generative models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 2024.

Mohammad Jalali, Cheuk Ting Li, and Farzan Farnia. An information-theoretic evaluation of gen erative models in learning multi-modal distributions. In *Thirty-seventh Conference on Neural Infor- mation Processing Systems*, 2023.

Marco Jiralerspong, Joey Bose, Ian Gemp, Chongli Qin, Yoram Bachrach, and Gauthier Gidel.
 Feature likelihood score: Evaluating the generalization of generative models using samples. In
 Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https://
 openreview.net/forum?id=l2VKZkolT7.

Minguk Kang, Jun-Yan Zhu, Richard Zhang, Jaesik Park, Eli Shechtman, Sylvain Paris, and Taesung
 Park. Scaling up gans for text-to-image synthesis. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2023.

- Nithish Kannen, Arif Ahmad, Marco Andreetto, Vinodkumar Prabhakaran, Utsav Prabhu,
 Adji Bousso Dieng, Pushpak Bhattacharyya, and Shachi Dave. Beyond aesthetics: Cultural competence in text-to-image models, 2024. URL https://arxiv.org/abs/2407.06863.
- Jin-Hwa Kim, Yunji Kim, Jiyoung Lee, Kang Min Yoo, and Sang-Woo Lee. Mutual information
 divergence: A unified metric for multimodal generative models. In Alice H. Oh, Alekh Agarwal,
 Danielle Belgrave, and Kyunghyun Cho (eds.), *Advances in Neural Information Processing Systems*,
 2022. URL https://openreview.net/forum?id=wKd2XtSRsjl.
- Pum Jun Kim, Seojun Kim, and Jaejun Yoo. STREAM: Spatio-temporal evaluation and analysis
 metric for video generative models. In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=7JfKCZQPxJ.
- Tuomas Kynkäänniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Improved
 precision and recall metric for assessing generative models. *Advances in Neural Information Processing Systems*, 32, 2019.
- Tuomas Kynkäänniemi, Tero Karras, Miika Aittala, Timo Aila, and Jaakko Lehtinen. The role of imagenet classes in fréchet inception distance. In *The Eleventh International Conference on Learning Representations*, 2023. URL https://openreview.net/forum?id=4oXTQ6m_ws8.
- Black Forest Lab. Flux: A diffusion-based text-to-image (t2i) model. https://github.com/
 blackforestlab/flux, 2024. Accessed: 2024-09.
- Tony Lee, Michihiro Yasunaga, Chenlin Meng, Yifan Mai, Joon Sung Park, Agrim Gupta, Yunzhi
 Zhang, Deepak Narayanan, Hannah Benita Teufel, Marco Bellagente, Minguk Kang, Taesung Park,
 Jure Leskovec, Jun-Yan Zhu, Li Fei-Fei, Jiajun Wu, Stefano Ermon, and Percy Liang. Holistic
 evaluation of text-to-image models. In *Thirty-seventh Conference on Neural Information Processing Systems Datasets and Benchmarks Track*, 2023. URL https://openreview.net/forum?
 id=qY9LR7403Z.
- Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-training for unified vision-language understanding and generation. In *ICML*, 2022.
- Muhammad Ferjad Naeem, Seong Joon Oh, Youngjung Uh, Yunjey Choi, and Jaejun Yoo. Reli able fidelity and diversity metrics for generative models. In *International Conference on Machine Learning*, pp. 7176–7185. PMLR, 2020.
- 640 OpenAI. GPT-40 mini: advancing cost-efficient intelligence, July 2024.

633

639

Maxime Oquab, Timothée Darcet, Theo Moutakanni, Huy V. Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Russell Howes, Po-Yao
Huang, Hu Xu, Vasu Sharma, Shang-Wen Li, Wojciech Galuba, Mike Rabbat, Mido Assran, Nicolas
Ballas, Gabriel Synnaeve, Ishan Misra, Herve Jegou, Julien Mairal, Patrick Labatut, Armand Joulin,
and Piotr Bojanowski. Dinov2: Learning robust visual features without supervision, 2023.

647 Azim Ospanov, Jingwei Zhang, Mohammad Jalali, Xuenan Cao, Andrej Bogdanov, and Farzan Farnia. Towards a scalable reference-free evaluation of generative models. In *The Thirty*- eighth Annual Conference on Neural Information Processing Systems, 2024. URL https://openreview.net/forum?id=Ex3rPvEct8.

Amey Pasarkar and Adji Bousso Dieng. Cousins of the vendi score: A family of similarity-based
 diversity metrics for science and machine learning. In *International Conference on Artificial Intel- ligence and Statistics*. PMLR, 2024.

⁶⁵⁴ Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
⁶⁵⁵ Penna, and Robin Rombach. SDXL: Improving latent diffusion models for high-resolution image
⁶⁵⁶ synthesis. In *The Twelfth International Conference on Learning Representations*, 2024. URL
⁶⁵⁷ https://openreview.net/forum?id=di52zR8xgf.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
Learning transferable visual models from natural language supervision, 2021.

Anton Razzhigaev, Arseniy Shakhmatov, Anastasia Maltseva, Vladimir Arkhipkin, Igor Pavlov, Ilya
 Ryabov, Angelina Kuts, Alexander Panchenko, Andrey Kuznetsov, and Denis Dimitrov. Kandinsky:
 an improved text-to-image synthesis with image prior and latent diffusion, 2023. URL https:
 //arxiv.org/abs/2310.03502.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF Confer- ence on Computer Vision and Pattern Recognition (CVPR)*, pp. 10684–10695, June 2022.

Masaki Saito, Shunta Saito, Masanori Koyama, and Sosuke Kobayashi. Train sparsely, generate densely: Memory-efficient unsupervised training of high-resolution temporal gan. *International Journal of Computer Vision*, 128(10):2586–2606, Nov 2020. ISSN 1573-1405. 10.1007/s11263-020-01333-y. URL https://doi.org/10.1007/s11263-020-01333-y.

Mehdi SM Sajjadi, Olivier Bachem, Mario Lucic, Olivier Bousquet, and Sylvain Gelly. Assessing
generative models via precision and recall. *Advances in neural information processing systems*, 31,
2018.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, Xi Chen, and Xi Chen. Improved techniques for training GANs. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 29. Curran Associates, Inc., 2016.

Konstantin Shmelkov, Cordelia Schmid, and Karteek Alahari. How good is my gan? In *Proceedings of the European conference on computer vision (ECCV)*, pp. 213–229, 2018.

 George Stein, Jesse C. Cresswell, Rasa Hosseinzadeh, Yi Sui, Brendan Leigh Ross, Valentin Villecroze, Zhaoyan Liu, Anthony L. Caterini, J. Eric T. Taylor, and Gabriel Loaiza-Ganem. Exposing flaws of generative model evaluation metrics and their unfair treatment of diffusion models, 2023.

688 Gemini Team. Gemini 1.5: Unlocking multimodal understanding across millions of tokens of 689 context, 2024. URL https://arxiv.org/abs/2403.05530.

Thomas Unterthiner, Sjoerd van Steenkiste, Karol Kurach, Raphaël Marinier, Marcin Michalski, and
 Sylvain Gelly. FVD: A new metric for video generation, 2019. URL https://openreview.
 net/forum?id=rylgEULtdN.

Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu,
 and Lijuan Wang. Git: A generative image-to-text transformer for vision and language, 2022. URL
 https://arxiv.org/abs/2205.14100.

David Junhao Zhang, Jay Zhangjie Wu, Jia-Wei Liu, Rui Zhao, Lingmin Ran, Yuchao Gu, Difei
 Gao, and Mike Zheng Shou. Show-1: Marrying pixel and latent diffusion models for text-to-video
 generation. arXiv preprint arXiv:2309.15818, 2023.

Jingwei Zhang, Cheuk Ting Li, and Farzan Farnia. An interpretable evaluation of entropy-based novelty of generative models. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian

Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), Proceedings of the 41st International Conference on Machine Learning, volume 235 of Proceedings of Machine Learning Research, pp. 59148–59172. PMLR, 21–27 Jul 2024. URL https://proceedings.mlr.
 press/v235/zhang24ac.html.

Zangwei Zheng, Xiangyu Peng, Tianji Yang, Chenhui Shen, Shenggui Li, Hongxin Liu, Yukun Zhou, Tianyi Li, and Yang You. Open-sora: Democratizing efficient video production for all, March 2024. URL https://github.com/hpcaitech/Open-Sora.

A PROOFS

 A.1 PROOF OF PROPOSITION 1

First, we observe that for every $x, x' \in \mathcal{X}$ and $t, t' \in \mathcal{T}$, the following holds:

$$\phi_{X,T}([x,t])^{\top}\phi_{X,T}([x',t']) = (\phi_X(x) \otimes \phi_T(t))^{\top} (\phi_X(x') \otimes \phi_T(t'))$$
$$= (\phi_X(x)^{\top}\phi_X(x')) \otimes (\phi_T(t)^{\top}\phi_T(t'))$$
$$= k_X(x,x') \otimes k_T(t,t')$$
$$= k_X(x,x')k_T(t,t')$$

Therefore, the Hadamard product of kernel matrices $\frac{1}{n}K_X \odot K_T$ can be written as

$$\frac{1}{n}K_X \odot K_T = \frac{1}{n}\Phi_{X,T}\Phi_{X,T}^{\top}$$

in terms of the matrix of samples' feature maps $\Phi_{X,T} \in \mathbb{R}^{n \times d_x d_t}$ with its *i*th row being $\phi_{X,T}([x_i, t_i])$. We observe that the matrices $\frac{1}{n} \Phi_{X,T} \Phi_{X,T}^\top$ and $\frac{1}{n} \Phi_{X,T}^\top \Phi_{X,T}$ share the same non-zero eigenvalues, that are the square of the singular values of $\Phi_{X,T}$. Therefore, $\frac{1}{n} K_X \odot K_T$ has the same non-zero eigenvalues as the following matrix

$$\frac{1}{n} \Phi_{X,T}^{\top} \Phi_{X,T} = \frac{1}{n} \sum_{i=1}^{n} \phi_{X,T}([x_i, t_i]) \phi_{X,T}([x_i, t_i])^{\top}$$

which is the defined matrix $\hat{C}_{X,T}$. Therefore, the proof of the proposition is complete.

A.2 PROOF OF COROLLARY 1

As we showed in Proposition 1, the Hadarmard product $\frac{1}{n}K_X \odot K_T$ shares the same non-zero eigenvalues with $\hat{C}_{X,T}$. Also, as noted by Jalali et al. (2023), $\frac{1}{n}K_X$ and $\frac{1}{n}K_T$ have the same nonzero eigenvalues as of \hat{C}_X and \hat{C}_T , respectively. Since the order- α matrix-based entropy is only a function of the input matrix's non-zero eigenvalues (zero eigenvalues have no impact on the entropy value), we can conclude that

$$H_{\alpha}(X|T) := H_{\alpha}\left(\frac{1}{n}K_{X} \odot K_{T}\right) - H_{\alpha}\left(\frac{1}{n}K_{T}\right)$$
$$= H_{\alpha}(\widehat{C}_{X,T}) - H_{\alpha}(\widehat{C}_{T}),$$

and also

 $I_{\alpha}(X;T) := H_{\alpha}\left(\frac{1}{n}K_{X}\right) + H_{\alpha}\left(\frac{1}{n}K_{T}\right) - H_{\alpha}\left(\frac{1}{n}K_{X} \odot K_{T}\right)$ $= H_{\alpha}(\widehat{C}_{X}) + H_{\alpha}(\widehat{C}_{T}) - H_{\alpha}(\widehat{C}_{X|T}).$

754 A.3 PROOF OF THEOREM 1

To prove Theorem 1, we begin by showing the following lemma.

Lemma 1. Suppose that the kernel function k and variable T satisfy the assumptions in Theorem 1. Then, the following Frobenius norm bound holds for $C_i = \mathbb{E}[\phi_X(x)\phi_X(x)^\top | G = i]$ where $G \in \{1, ..., m\}$ is the cluster random variable for text T:

$$\left\|C_{X\otimes T} - \sum_{i=1}^m \omega_i C_i \otimes \phi_T(\mu_i) \phi_T(\mu_i)^\top\right\|_F^2 \le \frac{\sum_{i=1}^m 2\omega_i \sigma_i^2}{\sigma^2}.$$

Proof. To show this lemma, we define T_i as a variable distributed as $P_{T|G=i}$. Then,

$$\begin{split} \left\| C_{X\otimes T} - \sum_{i=1}^{m} \omega_{i} C_{i} \otimes \phi(\mu_{i}) \phi(\mu_{i})^{\top} \right\|_{F}^{2} \\ &= \left\| \mathbb{E} \left[\phi_{X}(x) \phi_{X}(x)^{\top} \otimes \phi_{T}(t) \phi_{T}(t)^{\top} \right] - \sum_{i=1}^{m} \omega_{i} C_{i} \otimes \phi(\mu_{i}) \phi(\mu_{i})^{\top} \right\|_{F}^{2} \\ &= \left\| \sum_{i=1}^{m} \omega_{i} \mathbb{E} \left[\phi_{X}(x) \phi_{X}(x)^{\top} \otimes \phi_{T}(t) \phi_{T}(t)^{\top} \right] G = i \right] - \sum_{i=1}^{m} \omega_{i} C_{i} \otimes \phi(\mu_{i}) \phi(\mu_{i})^{\top} \right\|_{F}^{2} \\ &= \left\| \sum_{i=1}^{m} \omega_{i} \mathbb{E} \left[\phi_{X}(x) \phi_{X}(x)^{\top} \otimes \phi_{T}(t) \phi_{T}(t)^{\top} \right] G = i \right] - \sum_{i=1}^{m} \omega_{i} \mathbb{E} \left[\phi_{X}(x) \phi_{X}(x)^{\top} \otimes \phi_{T}(\mu_{i}) \phi_{T}(\mu_{i})^{\top} \right] G = i \right] \right\|_{F}^{2} \\ &= \left\| \sum_{i=1}^{m} \omega_{i} \mathbb{E} \left[\phi_{X}(x) \phi_{X}(x)^{\top} \otimes \left(\phi_{T}(t) \phi_{T}(t)^{\top} - \phi_{T}(\mu_{i}) \phi_{T}(\mu_{i})^{\top} \right) \right] G = i \right] \right\|_{F}^{2} \\ &\leq \sum_{i=1}^{m} \omega_{i} \mathbb{E} \left[\left\| \phi_{X}(x) \phi_{X}(x)^{\top} \otimes \left(\phi_{T}(t) \phi_{T}(t)^{\top} - \phi_{T}(\mu_{i}) \phi_{T}(\mu_{i})^{\top} \right) \right\|_{F}^{2} \right] G = i \right] \\ & \left(\stackrel{b}{\Rightarrow} \sum_{i=1}^{m} \omega_{i} \mathbb{E} \left[\left\| \phi_{X}(x) \phi_{X}(x)^{\top} \right\|_{F}^{2} \right\| \phi_{T}(t) \phi_{T}(\mu_{i})^{\top} - \phi_{T}(\mu_{i}) \phi_{T}(\mu_{i})^{\top} \right\|_{F}^{2} \right] G = i \right] \\ & \left(\stackrel{c}{\Rightarrow} \sum_{i=1}^{m} \omega_{i} \mathbb{E} \left[2 - 2 \exp \left(\frac{-\left\| \left\| t - \mu_{i} \right\|_{2}^{2} \right] G = i \right] \\ & \left(\stackrel{c}{=} \sum_{i=1}^{m} \omega_{i} \left[2 - 2 \exp \left(\frac{-\left\| \left\| t - \mu_{i} \right\|_{2}^{2} \right] G = i \right] \\ & \left(\stackrel{c}{=} \sum_{i=1}^{m} \omega_{i} \left[2 - 2 \exp \left(\frac{-\left\| \left\| t - \mu_{i} \right\|_{2}^{2} \right] G = i \right] \\ & \left(\stackrel{c}{=} \sum_{i=1}^{m} \omega_{i} \left[2 - 2 \exp \left(\frac{-\left\| \left\| t - \mu_{i} \right\|_{2}^{2} \right] G = i \right] \\ & \left(\stackrel{c}{=} \sum_{i=1}^{m} \omega_{i} \left[2 - 2 \exp \left(\frac{-\left\| \left\| t - \mu_{i} \right\|_{2}^{2} \right] G = i \right] \\ & \left(\stackrel{c}{=} \sum_{i=1}^{m} \omega_{i} \left[2 - 2 \exp \left(\frac{-\left\| \left\| t - \mu_{i} \right\|_{2}^{2} \right] G = i \right] \\ & \left(\stackrel{c}{=} \sum_{i=1}^{m} \omega_{i} \left[2 - 2 \exp \left(\frac{-\left\| \left\| t - \mu_{i} \right\|_{2}^{2} \right] G = i \right] \\ & \left(\stackrel{c}{=} \sum_{i=1}^{m} \omega_{i} \left[2 - 2 \exp \left(\frac{-\left\| \left\| t - \mu_{i} \right\|_{2}^{2} \right\| G = i \right] \\ & \left(\stackrel{c}{=} \sum_{i=1}^{m} \omega_{i} \left[2 - 2 \exp \left(\frac{-\left\| \left\| t - \mu_{i} \right\|_{2}^{2} \right\| G = i \right] \\ & \left(\stackrel{c}{=} \sum_{i=1}^{m} \omega_{i} \left[2 - 2 \exp \left(\frac{-\left\| \left\| t - \mu_{i} \right\|_{2}^{2} \right\| G = i \right] \\ & \left(\stackrel{c}{=} \sum_{i=1}^{m} \omega_{i} \left[\frac{1}{\sigma^{2}} \right] \\ & \left(\stackrel{c}{=} \sum_{i=1}^{m} \omega_{i} \left[\frac{1}{\sigma^{2}} \right] \\ & \left(\stackrel{c}{=} \sum_{i=1}^{m} \omega_{i} \left[\frac{1}{\sigma^{2}} \right] \\$$

In the above, (a) follows from Jensen's inequality for the convex Frobenius-norm-squared function. (b) holds because $||A \otimes B||_F^2 = ||A||_F^2 ||B||_F^2$ for every matrices A, B. (c) comes from the nor-malized Gaussian kernel satisfying $\langle \phi_T(t), \phi_T(t) \rangle = k(t,t) = 1$, resulting in $\|\phi_T(t)\phi_T(t)^{\top}\|_F^2 = \text{Tr}(\phi_T(t)\phi_T(t)^{\top}\phi_T(t)\phi_T(t)^{\top}) = \text{Tr}(\phi_T(t)\phi_T(t)^{\top}) = 1$. (d) follows from the Gaussian kernel definition, proving that $\phi_T(t)^{\dagger} \phi_T(\mu_i) = \exp(-\|t - \mu_i\|_2^2/2\sigma^2)$. (e) shows the application of Jensen's inequality to the concave $s(z) = 1 - \exp(-z)$. (f) holds because $s(z) = 1 - \exp(-z)$ is a monotonically increasing function. Finally, (g) follows from the inequality $1 - \exp(-z) \le z$ for every scalar z. Therefore, the proof is complete.

Next, we apply the Gram–Schmidt process to $\phi_T(\mu_1), \ldots, \phi_T(\mu_m)$ to find orthogonal vectors u_1, \ldots, u_m . We let $u_1 = \phi_T(\mu_1)$. Then, for every $2 \le i \le m$, we define

$$u_i := \phi(\mu_i) - \sum_{j=1}^{i-1} \langle \phi(\mu_i), u_j \rangle u_j$$

816 As a result, the following holds

$$\begin{aligned} & \left\|\sum_{i=1}^{m} \omega_{i} C_{i} \otimes \phi(\mu_{i}) \phi(\mu_{i})^{\top} - \sum_{i=1}^{m} \omega_{i} C_{i} \otimes u_{i} u_{i}^{\top}\right\|_{F}^{2} \\ & = \left\|\sum_{i=1}^{m} \omega_{i} C_{i} \otimes \left(\phi(\mu_{i}) \phi(\mu_{i})^{\top} - u_{i} u_{i}^{\top}\right)\right\|_{F}^{2} \\ & = \sum_{i=1}^{m} \omega_{i} \left\|C_{i} \otimes \left(\phi(\mu_{i}) \phi(\mu_{i})^{\top} - u_{i} u_{i}^{\top}\right)\right\|_{F}^{2} \\ & = \sum_{i=1}^{m} \omega_{i} \left\|C_{i}\right\|_{F}^{2} \left\|\phi(\mu_{i}) \phi(\mu_{i})^{\top} - u_{i} u_{i}^{\top}\right\|_{F}^{2} \\ & = \sum_{i=1}^{m} \omega_{i} \left\|\phi(\mu_{i}) \phi(\mu_{i})^{\top} - u_{i} u_{i}^{\top}\right\|_{F}^{2} \\ & = \sum_{i=1}^{m} \omega_{i} \left\|\phi(\mu_{i}) \phi(\mu_{i})^{\top} - u_{i} u_{i}^{\top}\right\|_{F}^{2} \\ & = \sum_{i=1}^{m} \omega_{i} \left(1 + \|u_{i}\|^{4} - 2\left(u_{i}^{\top} \phi_{T}(\mu_{i})\right)^{2}\right) \\ & \leq \sum_{i=1}^{m} \omega_{i} \left(1 + u_{i}^{\top} \phi(\mu_{i})\right) \left(1 - u_{i}^{\top} \phi(\mu_{i})\right) \\ & = 2\sum_{i=1}^{m} \omega_{i} \left(1 + u_{i}^{\top} \phi(\mu_{i})\right) \left(1 - u_{i}^{\top} \phi(\mu_{i})\right) \\ & \leq 4\sum_{i=1}^{m} \sum_{j=1}^{i-1} \omega_{i} \exp\left(\frac{-\|\mu_{i} - \mu_{j}\|_{2}^{2}}{\sigma^{2}}\right). \end{aligned}$$

Here, (h) follows from the application of Jensen's inequality for the convex Frobenius-norm-squared. (i) holds since the text kernel is normalized and $\langle \phi_X(x), \phi_X(x) \rangle = k_X(x,x) = 1$, and therefore $\|C_i\|_F \leq \mathbb{E}[\|\phi_X(x)\|_2^2] = 1$. (j) follows from the expansion $\|uu^\top - vv^\top\|_F^2 = \|u\|_2^4 + \|v\|_2^4 - 2\langle u, v \rangle^2$. (k) holds because $u_i^\top \phi_T(\mu_i) \leq 1$ and

$$u_i^{\top} \phi_T(\mu_i) = 1 - \sum_{j=1}^{i-1} \langle \phi_T(\mu_i), u_j \rangle^2 \ge 1 - \sum_{j=1}^{i-1} \exp\left(\frac{-\|\mu_i - \mu_j\|_2^2}{\sigma^2}\right)$$

Since we know that for every matrices $A, B \in \mathbb{R}^{d \times d}$, $||A + B||_F^2 \le 2||A||_F^2 + 2||B||_F^2$, the above results show that

$$\left\| C_{X \otimes T} - \sum_{i=1}^{m} \omega_i C_i \otimes u_i u_i^{\top} \right\|_F^2 \le \sum_{i=1}^{m} 4\omega_i \frac{\sigma_i^2}{\sigma^2} + \sum_{i=2}^{m} \sum_{j=1}^{i-1} 8\omega_i \exp\left(\frac{-\|\mu_i - \mu_j\|_2^2}{\sigma^2}\right).$$

As a result, the Hoffman-Wielandt inequality shows that for the sorted eigenvalues vector λ of $C_{X\otimes T}$ and sorted eigenvalues vector $\widetilde{\lambda}$ of $\sum_{i=1}^{m} \omega_i C_i \otimes u_i u_i^{\top}$ the following holds:

$$\left\|oldsymbol{\lambda} - \widetilde{oldsymbol{\lambda}}
ight\|_2^2 \leq \left\|C_{X\otimes T} - \sum_{i=1}^m \omega_i C_i \otimes u_i u_i^ op
ight\|_F^2$$

861
862
863
$$\leq \sum_{i=1}^{m} 4\omega_i \frac{\sigma_i^2}{\sigma^2} + \sum_{i=2}^{m} \sum_{j=1}^{i-1} 8\omega_i \exp\left(\frac{-\|\mu_i - \mu_j\|_2^2}{\sigma^2}\right).$$

Since u_1, \ldots, u_m are orthogonal vectors, the definition of Kronecker product implies that the eigenvalues of $\sum_{i=1}^{m} \omega_i C_i \otimes u_i u_i^{\top}$ will be the union of the eigenvalues of $\omega_i C_i \otimes u_i u_i^{\top}$ over $i \in \{1, \ldots, m\}$. On the other hand, we know that the non-zero eigenvalues of $\omega_i C_i \otimes u_i u_i^{\top}$ will be equal to the factor $\omega_i ||u_i||_2^2$ times the eigenvalues of C_i . Also, we know that $1 \geq 1$ $||u_i||_2^2 \ge 1 - 2\sum_{j=1}^{i-1} \exp(-\frac{||\mu_i - \mu_j||_2^2}{\sigma^2})$. Consequently, we can show that for vector $\widehat{\lambda}_{x\otimes t} =$ Union $(\omega_i \operatorname{Eigs}(C_i) : i \in \{1, \dots, m\})$, we have the following for every $\alpha \ge 2$ and defined in-creasing function g in Theorem 1

$$\begin{aligned} \left| \widetilde{H}_{\alpha}(X,T) - \frac{1}{1-\alpha} \log(\|\widehat{\lambda}_{x\otimes t}\|_{\alpha}^{\alpha}) \right| &\leq g(\|\widetilde{\lambda}_{x\otimes t}\|_{\alpha} - \|\widehat{\lambda}_{x\otimes t}\|_{\alpha}) \\ &\leq g(\|\operatorname{sort}(\widetilde{\lambda}_{x\otimes t}) - \operatorname{sort}(\widehat{\lambda}_{x\otimes t})\|_{\alpha}) \\ &\leq g(\|\operatorname{sort}(\widetilde{\lambda}_{x\otimes t}) - \operatorname{sort}(\widehat{\lambda}_{x\otimes t})\|_{2}) \\ &\leq g\Big(\sum_{i=1}^{m} 4\omega_{i} \frac{\sigma_{i}^{2}}{\sigma^{2}} + \sum_{i=2}^{m} \sum_{j=1}^{i-1} 16\omega_{i} \exp\left(\frac{-\|\mu_{i} - \mu_{j}\|_{2}^{2}}{\sigma^{2}}\right)\Big). \end{aligned}$$

> Note that the above proof holds for every marginal distribution on X, and we choose a deterministic constant X = 0, then the joint entropy reduces to the marginal entropy and the above inequality also shows the following:

i=1

$$\left| \widetilde{H}_{\alpha}(T) - \frac{1}{1-\alpha} \log \left(\| [\omega_1, \dots, \omega_m] \|_{\alpha}^{\alpha} \right) \right| \leq g \left(\sum_{i=1}^m 4\omega_i \frac{\sigma_i^2}{\sigma^2} + \sum_{i=2}^m \sum_{j=1}^{i-1} 16\omega_i \exp \left(\frac{-\|\mu_i - \mu_j\|_2^2}{\sigma^2} \right) \right).$$

Therefore, following the Triangle inequality and the definition $\widetilde{H}_{\alpha}(X|T) = \widetilde{H}_{\alpha}(X,T) - \widetilde{H}_{\alpha}(T)$, the previous two inequalities prove that

$$\left| \widetilde{H}_{\alpha}(X|T) - \left(\frac{1}{1-\alpha} \log\left(\|\widehat{\lambda}_{x\otimes t}\|_{\alpha}^{\alpha} \right) - \frac{1}{1-\alpha} \log\left(\|[\omega_{1},\ldots,\omega_{m}]\|_{\alpha}^{\alpha} \right) \right) \right|$$

$$\leq 2g \left(\sum_{i=1}^{m} 4\omega_{i} \frac{\sigma_{i}^{2}}{\sigma^{2}} + \sum_{i=2}^{m} \sum_{j=1}^{i-1} 16\omega_{i} \exp\left(\frac{-\|\mu_{i}-\mu_{j}\|_{2}^{2}}{\sigma^{2}} \right) \right).$$

On the other hand, we can simplify the above expression as

$$\frac{1}{1-\alpha} \log(\|\widehat{\lambda}_{x\otimes t}\|_{\alpha}^{\alpha}) - \frac{1}{1-\alpha} \log(\|[\omega_1, \dots, \omega_m]\|_{\alpha}^{\alpha})$$

$$= \frac{1}{1-\alpha} \log\left(\sum_{i=1}^{m} \omega_i^{\alpha} \|\lambda_{C_i}\|_{\alpha}^{\alpha}\right) - \frac{1}{1-\alpha} \log\left(\sum_{i=1}^{m} \omega_i^{\alpha}\right)$$

$$= \frac{1}{1-\alpha} \log \left(\sum_{i=1}^{m} \frac{\omega_i^{\alpha}}{\sum_{j=1}^m \omega_j^{\alpha}} \|\lambda_{C_i}\|_{\alpha}^{\alpha} \right)$$

Note that the definition $f_{\alpha}(t) = \exp((1-\alpha)t)$ implies that $f_{\alpha}^{-1}(z) = \frac{1}{1-\alpha}\log(z)$, which connects to the entropy definition as $H(X|G=i) = f_{\alpha}^{-1}(\|\lambda_{C_i}\|_{\alpha}^{\alpha})$. As a result, we can combine the previous two equations and complete the proof as:

$$\left|\widetilde{H}_{\alpha}(X|T) - f_{\alpha}^{-1} \left(\sum_{i=1}^{m} \frac{\omega_{i}^{\alpha}}{\sum_{j=1}^{m} \omega_{j}^{\alpha}} f_{\alpha} \left(\widetilde{H}_{\alpha}(X|G=i) \right) \right) \right|$$

917
$$\leq 2g \Big(\sum_{i=1}^{m} 4\omega_i \frac{\sigma_i^2}{\sigma^2} + \sum_{i=2}^{m} \sum_{j=1}^{i-1} 16\omega_i \exp\left(\frac{-\|\mu_i - \mu_j\|_2^2}{\sigma^2}\right) \Big).$$

Figure 8: Substituting images generated from models trained on MS-COCO dataset.

В ADDITIONAL NUMERICAL RESULTS

B 1 CORRELATION BETWEEN PROMPTS AND GENERATED OUTPUT

To measure the correlation between text and image using Information-Vendi, we used MS-COCO 938 captions to generate images with Stable Diffusion XL and Flux. We gradually substituted the gen-939 erated images with random ones for the same prompts at different substitution rates. As the substi-940 tution rate increased, the correlation between the text and image pairs decreased. In Figure 8, we 941 measured Information-Vendi at various substitution rates and observed that as the substitution rate 942 increased, Information-Vendi decreased, demonstrating that our score can successfully measure the 943 correlation between text and image. Unlike other correlation metrics, such as CLIPScore, which 944 require the same embedding for both text and image, our method places no such restriction. This 945 allows for the use of different embeddings for text and image. Furthermore, our approach can be 946 easily generalized to other conditional models, such as text-to-text or text-to-video generation.

947 948 949

931

932 933 934

935 936

937

MEASURING CONDITIONAL-VENDI ACROSS PROMPT TYPES **B**.2

In this section, we conducted additional experiments similar to those in Figure 5. We created 5,000 950 prompts across different categories using GPT40 and generated corresponding images with text-to-951 image models. We reported Conditional-Vendi for the top 3 groups in the text data on PixArt- α , 952 Stable Diffusion XL text-to-image generative models. 953

954 As shown in Figure 9, Figure 10 and Figure 11, we observed the same behavior during these experiments: the Conditional-Vendi score for "dog" prompts was significantly higher than for the 955 "airplane" and "sofa" categories. This observation suggests that the outputs of generative models 956 are unbalanced when presented with different groups of text prompts. 957

958 959

961

B.3 QUANTIFYING MODEL-INDUCED DIVERSITY VIA CONDITIONAL-VENDI.

960 In this section, we provided a more detailed version of Figure 3. As shown in Figure 12, we found that Conditional-Vendi increased at a more rapid rate when the prompts did not specify the type of 962 animal in the picture. In contrast, when the animal types were specified in the prompts, there was 963 only a slight increase in the Conditional-Vendi score.

964 965 966

B.4 ADDITIONAL NUMERICAL EVALUATION OF THE CONDITIONAL-VENDI SCORE

967 To further experiment the correlation between the intrinsic model diversity and the defined 968 Conditional-Vendi score, we have performed experiments of quantifying the diversity scores for unspecified and type-specified prompts when generating data from standard text-to-image models. 969 To conduct an extensive evaluation of the Conditional-Vendi score, we performed the experiments 970 on the nine combinations of three category types, 1) animals, 2) fruits, 3) objects, and three SOTA 971 text-to-image generation models SDXL, Kandinsky, and PixArt- Σ Chen et al. (2024a). In each

972		Mode #1	Mode #2	Mode #3	Conditional-Vendi
973	Caption Mode #1	A 100	Les and the		$\exp(H_{\alpha}(X/G=i))$
974	A big aimlane is descending above the clouds				
975	An old airplane is ascending on the runway. A massive airplane is ascending at sunset.		A series	-	Cond-Vendi _{$\alpha=1$} = 77.31
976	A modern aiplane is hovering in a storm. An old aiplane is soaring over the desert.		A CT		Cond-KKE (vend $\alpha=2$)= 5.59
977	A quiet aimlane is gliding at sunset. A new aimlane is cruising through the mountains.	Ser Ser			
978	An airplane is maneuvering on the runway.	Support of the second s			
979	Caption Mode #2	B. L. B.			
980	A happy dog is walking in the mountains.	1 24 34	IPI AA		
981	A friendly dog is jumping on a sunny day. A furry dog is digging in the forest.				Cond-Vendi _{$\alpha=1$} = 197.32
982	A sleepy dog is barking on the beach. A sleepy dog is sleeping on a sunny day.				Cond-RKE (Vendi _{$\alpha=2$})= 8.47
983	A playful dog is walking in the snow. A curious dog is playing in the park.				
984	An energetic dog is chasing on the street.				
985	Caption Mode #3				
986					
987	A luxurious sofa is resting near the window. A stylish sofa is placed in the bedroom.			2 A A	Cond-Vendi _{$\alpha=1$} = 108.28
988	A soft sofa is standing in the bedroom. A vintage sofa is positioned in the corner.				Cond-RKE (Vendi _{$\alpha=2)= 6.79$}
989	A large sofa is placed in the living room. An old sofa is resting in the living room.				
000	A cozy sofa is arranged in the hallway.				

Figure 9: Quantifying image diversity for different clusters of text prompts. Images are generated using the Stable Diffusion XL model.

1013 1014

991

992

993 994

Figure 10: Quantifying image diversity for different clusters of text prompts. Images are generated using the PixArt- α model.

1016 1017

1015

1018

1019 of the nine experiments, we generated prompts on 10 different types related to each category and 1020 created image samples by inputting the prompts to the text-to-image model. In each experiment, 1021 we simulated 10 prompt-based generative models by considering image samples from j types for 1022 $j \in \{1, ..., 10\}$.

1023 In addition, given the original prompts specifying the type of category in the image, we compared 1024 the Vendi and Conditional-Vendi scores among the three text-to-image models. Figures ??? show 1025 the comparison between the scores of the three models, which suggest the higher intrinsic diversity measure by Conditional-Vendi for the SD-XL and PixArt- Σ models.

Figure 11: Quantifying image diversity for different clusters of text prompts. Images are generated using the Flux model.

B.5 CORRELATION BETWEEN GROUNDTRUTH-CLUSTER-VENDI AND CONDITIONAL-VENDI SCORES

To validate the theoretical connection between the Vendi and Conditional-Vendi scores, we performed an experiment and evaluated a baseline metric called GroundTruth-Cluster-Vendi score. To measure the GroundTruth-Cluster-Vendi score, we utilize the side knowledge of the ground-truth clusters of the input prompts and then compute and average the regular Vendi scores for the data generated within each cluster. Mathematically, given t sample cluster sets in $S = \{S_1, \ldots, S_t\}$, which partition the input text indices $\{1, \ldots, n\}$, we define the Cluster-Vendi score as follows, where $|S_j|$ denotes the cardinality of subset S_j :

1046

1047 1048 1049

1050

1051

106

1062

 $\text{Cluster-Vendi}(x_1, \dots, x_n | \mathcal{S}) := \sum_{i=1}^t \frac{|S_i|}{n} \cdot \text{Vendi}(\{x_j : j \in S_i\}).$ Note that the above definition requires the knowledge of the clusters, which could be given by an

1064 oracle in the case of the GroundTruth-Cluster-Vendi score, or computed by a clustering algorithm
 1065 such as K-Means to obtain the KMeans-Cluster-Vendi score. Observe that given the knowledge of
 1066 the clusters revealed by an oracle, the GroundTruth-Cluster-Vendi score is a sensible definition of
 1067 internal model diversity, which, as shown in Theorem 1, is expected to correlate with our defined
 1068 Conditional-Vendi score.

In the numerical settings of the previous section, where we know the ground-truth clusters based on the type of animal, fruit, or object in the texts, we computed the value of the GroundTruth-Cluster-Vendi score and compared it with the evaluated Conditional-Vendi score. As demonstrated in Figures 22, the two diversity scores, Conditional-Vendi and GroundTruth-Cluster-Vendi, highly correlate for the ten simulated generative models in the experiments.

However, note that in a real-world scenario, we do not have access to the ground-truth clusters.
To estimate the score, we should use a clustering algorithm such as K-Means to find the clusters
and compute the Cluster-Vendi score. We note that the optimization problem addressed by standard clustering algorithms represents a challenging non-convex optimization, which, depending on
the algorithm's initial point, could converge to different solutions. Our numerical results with the
K-Means clustering algorithm in Figure 23 also demonstrated these clustering challenges and, in
several cases, failed to find the ground-truth clusters with high accuracy.

B.6 Algorithm for Computing Conditional-Vendi and Information-Vendi

1125

1126

1127

1128

1130

In this section, we present the algorithm to compute the Conditional-Vendi and Information-Vendi scores. Using the definition provided in Section 4, combined with the entropy definition in equation 3, we calculate the Conditional-Vendi score. The steps are outlined in Algorithm 1.

1129 B.7 QUALITATIVE RESULTS FOR GENERATIVE MODELS TRAINED ON MS-COCO DATASET

In this section, we provide images and prompts corresponding to Figure 4. Figure 25 illustrates
 three clusters obtained by applying KMeans to cluster MS-COCO validation set prompts into 1000
 clusters. The images are presented for four generative models. Comparing the prompts with the generated images reveals that FLUX exhibits the highest alignment between text and image, while

GigaGAN demonstrates greater diversity but misses some features of the prompts. These observa-tions are further supported by the Conditional-Vendi and Information-Vendi metrics.

1181 B.8 EFFECT OF BANDWIDTH ON CONDITIONAL-VENDI AND INFORMATION-VENDI

1180

To further investigate the effect of bandwidth on Conditional-Vendi and Information-Vendi, we began by selecting the image bandwidth similar to prior works Friedman & Dieng (2023); Ospanov et al. (2024). We then measured and plotted the scores using varying text kernel bandwidths. Figure 26 demonstrates consistent rankings of the four models across different bandwidth parameters. The results indicate that as the kernel bandwidth increases, the number of text clusters increases, leading to a decrease in the Information-Vendi value.

Figure 21: Evaluated (unconditional) Vendi and Conditional-Vendi scores of three text-to-image models in the category-based experiments with varying number of types within each of the categories: Animals, Fruits, Objects.

Under review as a conference paper at ICLR 2025

Figure 23: Comparing the Correlation of KMeans-Conditional-Vendi with Groundtruth-Cluster-Vendi.

$\begin{split} \hline & \hline \text{Algorithm 1 Conditional-Vendi and Information-Vendi} \\ \hline & \hline \text{I: Input: Sample sets } \{\mathbf{x}_1, \dots, \mathbf{x}_n\} \text{ and } \{\mathbf{t}_1, \dots, \mathbf{t}_n\}, \text{Gaussian kernel bandwidths } \sigma_i^2, \sigma_t^2, \mathbf{c}_t^2, $		
$\begin{aligned} \hline \text{Algorithm 1 Conditional-Vendi and Information-Vendi} \\ \hline 1: \text{ Input: Sample sets } \{\mathbf{x}_1, \dots, \mathbf{x}_n\} \text{ and } \{\mathbf{t}_1, \dots, \mathbf{t}_n\}, \text{ Gaussian kernel bandwidths } \sigma_i^2, \sigma_i$		
Algorithm 1 Conditional-Vendi and Information-Vendi 1: Input: Sample sets $\{\mathbf{x}_1, \dots, \mathbf{x}_n\}$ and $\{\mathbf{t}_1, \dots, \mathbf{t}_n\}$, Gaussian kernel bandwidths $\sigma_i^2, \sigma_i^2, \sigma_i$		
1: Input: Sample sets $\{\mathbf{x}_{1}, \dots, \mathbf{x}_{n}\}$ and $\{\mathbf{t}_{1}, \dots, \mathbf{t}_{n}\}$, Gaussian kernel bandwidths $\sigma_{i}^{2}, \sigma_{t}^{2}, \sigma_{\alpha}^{2}, \sigma_$	Algori	ithm 1 Conditional-Vendi and Information-Vendi
2: Compute kernel matrices: $K_{\mathbf{X}} = \frac{1}{n} [k(\mathbf{x}_i, \mathbf{x}_j)]_{n \times n}, K_{\mathbf{T}} = \frac{1}{n} [k(\mathbf{t}_i, \mathbf{t}_j)]_{n \times n}$ 3: Perform eigendecomposition on the $K_{\mathbf{X}}, K_{\mathbf{T}}$ and $\frac{1}{n} K_{\mathbf{X}} \odot K_{\mathbf{T}}$ matrices: $\{\lambda_1^{\mathbf{X}}, \dots, \lambda_n^{\mathbf{X}}\} \leftarrow \text{Eigendecomposition}(K_{\mathbf{X}})$ $\{\lambda_1^{\mathbf{T}}, \dots, \lambda_n^{\mathbf{T}}\} \leftarrow \text{Eigendecomposition}(K_{\mathbf{T}})$ $\{\lambda_1^{\mathbf{X},\mathbf{T}}, \dots, \lambda_n^{\mathbf{X},\mathbf{T}}\} \leftarrow \text{Eigendecomposition}(K_{\mathbf{T}})$ $\{\lambda_1^{\mathbf{X},\mathbf{T}}, \dots, \lambda_n^{\mathbf{X},\mathbf{T}}\} \leftarrow \text{Eigendecomposition}(\frac{1}{n}K_{\mathbf{X}} \odot K_{\mathbf{T}})$ 4: Compute $H_{\alpha}(\frac{1}{n}K_{\mathbf{X}}), H_{\alpha}(\frac{1}{n}K_{\mathbf{T}})$ and $H_{\alpha}(\frac{1}{n}K_{\mathbf{X}} \odot K_{\mathbf{T}})$ using their eigenvalues. $H_{\alpha}(\frac{1}{n}K_{\mathbf{X}}) \leftarrow \frac{1}{1-\alpha}\log(\sum_{i=1}^{n}(\lambda_i^{\mathbf{X}})^{\alpha})$ $H_{\alpha}(\frac{1}{n}K_{\mathbf{X}} \odot K_{\mathbf{T}}) \leftarrow \frac{1}{1-\alpha}\log(\sum_{i=1}^{n}(\lambda_i^{\mathbf{X},\mathbf{T}})^{\alpha})$ 5: Compute Conditional-Vendi and Information-Vendi Conditional-Vendi_{\alpha}(x_1, \dots, x_n t_1, \dots, t_n) \leftarrow \exp(H_{\alpha}(\frac{1}{n}K_{\mathbf{X}} \odot K_{\mathbf{T}}) - H_{\alpha}(\frac{1}{n}K_{\mathbf{X}} \odot K_{\mathbf{T}})	1: Ι η	aput: Sample sets $\{\mathbf{x}_1, \ldots, \mathbf{x}_n\}$ and $\{\mathbf{t}_1, \ldots, \mathbf{t}_n\}$, Gaussian kernel bandwidths σ_i^2, σ_t^2 , or
$\{\lambda_{1}^{\mathbf{X}}, \dots, \lambda_{n}^{\mathbf{X}}\} \leftarrow \text{Eigendecomposition}(K_{\mathbf{X}}) \\ \{\lambda_{1}^{\mathbf{T}}, \dots, \lambda_{n}^{\mathbf{T}}\} \leftarrow \text{Eigendecomposition}(K_{\mathbf{T}}) \\ \{\lambda_{1}^{\mathbf{X},\mathbf{T}}, \dots, \lambda_{n}^{\mathbf{X},\mathbf{T}}\} \leftarrow \text{Eigendecomposition}(\frac{1}{n}K_{\mathbf{X}} \odot K_{\mathbf{T}}) \\ \text{4: Compute } H_{\alpha}(\frac{1}{n}K_{\mathbf{X}}), H_{\alpha}(\frac{1}{n}K_{\mathbf{T}}) \text{ and } H_{\alpha}(\frac{1}{n}K_{\mathbf{X}} \odot K_{\mathbf{T}}) \text{ using their eigenvalues.} \\ H_{\alpha}(\frac{1}{n}K_{\mathbf{X}}) \leftarrow \frac{1}{1-\alpha}\log\left(\sum_{i=1}^{n}(\lambda_{i}^{\mathbf{X}})^{\alpha}\right) \\ H_{\alpha}(\frac{1}{n}K_{\mathbf{T}}) \leftarrow \frac{1}{1-\alpha}\log\left(\sum_{i=1}^{n}(\lambda_{i}^{\mathbf{T}})^{\alpha}\right) \\ H_{\alpha}(\frac{1}{n}K_{\mathbf{X}} \odot K_{\mathbf{T}}) \leftarrow \frac{1}{1-\alpha}\log\left(\sum_{i=1}^{n}(\lambda_{i}^{\mathbf{X},\mathbf{T}})^{\alpha}\right) \\ \text{5: Compute Conditional-Vendi and Information-Vendi} \\ \text{Conditional-Vendi}_{\alpha}(x_{1}, \dots, x_{n} t_{1}, \dots, t_{n}) \leftarrow \exp\left(H_{\alpha}(\frac{1}{n}K_{\mathbf{X}} \odot K_{\mathbf{T}}) - H_{\alpha}(\frac{1}{n}K_{\mathbf{X}} \odot K_{\mathbf{T}})\right) \\ \text{Information-Vendi}_{\alpha}(x_{1}, \dots, x_{n}; t_{1}, \dots, t_{n}) \leftarrow \exp\left(H_{\alpha}(\frac{1}{n}K_{\mathbf{X}}) + H_{\alpha}(\frac{1}{n}K_{\mathbf{T}}) - H_{\alpha}(\frac{1}{n}K_{\mathbf{X}} \odot K_{\mathbf{T}})\right) \\ \end{array}$	2: C 3: P	ompute kernel matrices: $K_{\mathbf{X}} = \frac{1}{n} [k(\mathbf{x}_i, \mathbf{x}_j)]_{n \times n}, K_{\mathbf{T}} = \frac{1}{n} [k(\mathbf{t}_i, \mathbf{t}_j)]_{n \times n}$ erform eigendecomposition on the $K_{\mathbf{X}}, K_{\mathbf{T}}$ and $\frac{1}{n} K_{\mathbf{X}} \odot K_{\mathbf{T}}$ matrices:
$\{\lambda_{1}^{\mathbf{T}}, \dots, \lambda_{n}^{\mathbf{T}}\} \leftarrow \text{Eigendecomposition}(K_{\mathbf{T}}) \\ \{\lambda_{1}^{\mathbf{X},\mathbf{T}}, \dots, \lambda_{n}^{\mathbf{X},\mathbf{T}}\} \leftarrow \text{Eigendecomposition}(\frac{1}{n}K_{\mathbf{X}} \odot K_{\mathbf{T}}) \end{cases}$ 4: Compute $H_{\alpha}(\frac{1}{n}K_{\mathbf{X}}), H_{\alpha}(\frac{1}{n}K_{\mathbf{T}})$ and $H_{\alpha}(\frac{1}{n}K_{\mathbf{X}} \odot K_{\mathbf{T}})$ using their eigenvalues. $H_{\alpha}(\frac{1}{n}K_{\mathbf{X}}) \leftarrow \frac{1}{1-\alpha}\log\left(\sum_{i=1}^{n}(\lambda_{i}^{\mathbf{X}})^{\alpha}\right) \\ H_{\alpha}(\frac{1}{n}K_{\mathbf{T}}) \leftarrow \frac{1}{1-\alpha}\log\left(\sum_{i=1}^{n}(\lambda_{i}^{\mathbf{T}})^{\alpha}\right) \\ H_{\alpha}(\frac{1}{n}K_{\mathbf{X}} \odot K_{\mathbf{T}}) \leftarrow \frac{1}{1-\alpha}\log\left(\sum_{i=1}^{n}(\lambda_{i}^{\mathbf{X},\mathbf{T}})^{\alpha}\right) \end{cases}$ 5: Compute Conditional-Vendi and Information-Vendi Conditional-Vendi_{\alpha}(x_{1}, \dots, x_{n} t_{1}, \dots, t_{n}) \leftarrow \exp\left(H_{\alpha}(\frac{1}{n}K_{\mathbf{X}} \odot K_{\mathbf{T}}) - H_{\alpha}(\frac{1}{n}K_{\mathbf{X}} \odot K_{\mathbf{T}})\right)		$\{\lambda_1^{\mathbf{X}}, \dots, \lambda_n^{\mathbf{X}}\} \leftarrow \operatorname{Eigendecomposition}(K_{\mathbf{X}})$
$\{\lambda_{1}^{\mathbf{X},\mathbf{T}},\ldots,\lambda_{n}^{\mathbf{X},\mathbf{T}}\} \leftarrow \text{Eigendecomposition}(\frac{1}{n}K_{\mathbf{X}}\odot K_{\mathbf{T}})$ 4: Compute $H_{\alpha}(\frac{1}{n}K_{\mathbf{X}})$, $H_{\alpha}(\frac{1}{n}K_{\mathbf{T}})$ and $H_{\alpha}(\frac{1}{n}K_{\mathbf{X}}\odot K_{\mathbf{T}})$ using their eigenvalues. $H_{\alpha}(\frac{1}{n}K_{\mathbf{X}}) \leftarrow \frac{1}{1-\alpha}\log\left(\sum_{i=1}^{n}(\lambda_{i}^{\mathbf{X}})^{\alpha}\right)$ $H_{\alpha}(\frac{1}{n}K_{\mathbf{T}}) \leftarrow \frac{1}{1-\alpha}\log\left(\sum_{i=1}^{n}(\lambda_{i}^{\mathbf{T}})^{\alpha}\right)$ $H_{\alpha}(\frac{1}{n}K_{\mathbf{X}}\odot K_{\mathbf{T}}) \leftarrow \frac{1}{1-\alpha}\log\left(\sum_{i=1}^{n}(\lambda_{i}^{\mathbf{X},\mathbf{T}})^{\alpha}\right)$ 5: Compute Conditional-Vendi and Information-Vendi Conditional-Vendi _{α} ($x_{1},\ldots,x_{n} t_{1},\ldots,t_{n}$) $\leftarrow \exp\left(H_{\alpha}(\frac{1}{n}K_{\mathbf{X}}\odot K_{\mathbf{T}}) - H_{\alpha}(\frac{1}{n}K_{\mathbf{X}}\odot K_{\mathbf{T}})\right)$		$\{\lambda_1^{\mathbf{T}}, \dots, \lambda_n^{\mathbf{T}}\} \leftarrow \operatorname{Eigendecomposition}(K_{\mathbf{T}})$
4: Compute $H_{\alpha}(\frac{1}{n}K_{\mathbf{X}})$, $H_{\alpha}(\frac{1}{n}K_{\mathbf{T}})$ and $H_{\alpha}(\frac{1}{n}K_{\mathbf{X}} \odot K_{\mathbf{T}})$ using their eigenvalues. $H_{\alpha}(\frac{1}{n}K_{\mathbf{X}}) \leftarrow \frac{1}{1-\alpha}\log\left(\sum_{i=1}^{n}(\lambda_{i}^{\mathbf{X}})^{\alpha}\right)$ $H_{\alpha}(\frac{1}{n}K_{\mathbf{T}}) \leftarrow \frac{1}{1-\alpha}\log\left(\sum_{i=1}^{n}(\lambda_{i}^{\mathbf{T}})^{\alpha}\right)$ $H_{\alpha}(\frac{1}{n}K_{\mathbf{X}} \odot K_{\mathbf{T}}) \leftarrow \frac{1}{1-\alpha}\log\left(\sum_{i=1}^{n}(\lambda_{i}^{\mathbf{X},\mathbf{T}})^{\alpha}\right)$ 5: Compute Conditional-Vendi and Information-Vendi Conditional-Vendi_{\alpha}(x_{1},\ldots,x_{n} t_{1},\ldots,t_{n}) \leftarrow \exp\left(H_{\alpha}(\frac{1}{n}K_{\mathbf{X}} \odot K_{\mathbf{T}}) - H_{\alpha}(\frac{1}{n}K_{\mathbf{X}} \odot K_{\mathbf{T}})\right) Information-Vendi_{\alpha}(x_{1},\ldots,x_{n};t_{1},\ldots,t_{n}) \leftarrow \exp\left(H_{\alpha}(\frac{1}{n}K_{\mathbf{X}}) + H_{\alpha}(\frac{1}{n}K_{\mathbf{T}}) - H_{\alpha}(\frac{1}{n}K_{\mathbf{X}} \odot K_{\mathbf{T}})\right)		$\{\lambda_1^{\mathbf{X},\mathbf{T}},\ldots,\lambda_n^{\mathbf{X},\mathbf{T}}\} \leftarrow \text{Eigendecomposition}(\frac{1}{n}K_{\mathbf{X}} \odot K_{\mathbf{T}})$
$H_{\alpha}\left(\frac{1}{n}K_{\mathbf{X}}\right) \leftarrow \frac{1}{1-\alpha}\log\left(\sum_{i=1}^{n}(\lambda_{i}^{\mathbf{X}})^{\alpha}\right)$ $H_{\alpha}\left(\frac{1}{n}K_{\mathbf{T}}\right) \leftarrow \frac{1}{1-\alpha}\log\left(\sum_{i=1}^{n}(\lambda_{i}^{\mathbf{T}})^{\alpha}\right)$ $H_{\alpha}\left(\frac{1}{n}K_{\mathbf{X}}\odot K_{\mathbf{T}}\right) \leftarrow \frac{1}{1-\alpha}\log\left(\sum_{i=1}^{n}(\lambda_{i}^{\mathbf{X},\mathbf{T}})^{\alpha}\right)$ 5: Compute Conditional-Vendi and Information-Vendi Conditional-Vendi and Information-Vendi Information-Vendi_{\alpha}(x_{1},,x_{n} t_{1},,t_{n}) \leftarrow \exp\left(H_{\alpha}\left(\frac{1}{n}K_{\mathbf{X}}\odot K_{\mathbf{T}}\right) - H_{\alpha}\left(\frac{1}{n}K_{\mathbf{X}}\odot K_{\mathbf{T}}\right)\right)	4: C	ompute $H_{\alpha}(\frac{1}{n}K_{\mathbf{X}})$, $H_{\alpha}(\frac{1}{n}K_{\mathbf{T}})$ and $H_{\alpha}(\frac{1}{n}K_{\mathbf{X}} \odot K_{\mathbf{T}})$ using their eigenvalues.
$H_{\alpha}\left(\frac{1}{n}K_{\mathbf{T}}\right) \leftarrow \frac{1}{1-\alpha}\log\left(\sum_{i=1}^{n}(\lambda_{i}^{\mathbf{T}})^{\alpha}\right)$ $H_{\alpha}\left(\frac{1}{n}K_{\mathbf{X}}\odot K_{\mathbf{T}}\right) \leftarrow \frac{1}{1-\alpha}\log\left(\sum_{i=1}^{n}(\lambda_{i}^{\mathbf{X},\mathbf{T}})^{\alpha}\right)$ 5: Compute Conditional-Vendi and Information-Vendi Conditional-Vendi _{\alpha} (x_{1},,x_{n} t_{1},,t_{n}) \leftarrow \exp\left(H_{\alpha}\left(\frac{1}{n}K_{\mathbf{X}}\odot K_{\mathbf{T}}\right) - H_{\alpha}\left(\frac{1}{n}K_{\mathbf{T}}\right)\right)Information-Vendi _{\alpha} (x_{1},,x_{n};t_{1},,t_{n}) \leftarrow \exp\left(H_{\alpha}\left(\frac{1}{n}K_{\mathbf{X}}\right) + H_{\alpha}\left(\frac{1}{n}K_{\mathbf{T}}\right) - H_{\alpha}\left(\frac{1}{n}K_{\mathbf{X}}\odot K_{\mathbf{T}}\right)\right)		$H_{lpha}ig(rac{1}{n}K_{\mathbf{X}}ig) \leftarrow rac{1}{1-lpha}\log\Bigl(\sum_{i=1}^{n}(\lambda_{i}^{\mathbf{x}})^{lpha}\Bigr)$
$H_{\alpha}\left(\frac{1}{n}K_{\mathbf{X}}\odot K_{\mathbf{T}}\right) \leftarrow \frac{1}{1-\alpha}\log\left(\sum_{i=1}^{n}(\lambda_{i}^{\mathbf{X},\mathbf{T}})^{\alpha}\right)$ 5: Compute Conditional-Vendi and Information-Vendi Conditional-Vendi _{\alpha} (x_{1},,x_{n} t_{1},,t_{n}) \leftarrow \exp\left(H_{\alpha}\left(\frac{1}{n}K_{\mathbf{X}}\odot K_{\mathbf{T}}\right) - H_{\alpha}\left(\frac{1}{n}K_{\mathbf{T}}\right)\right) Information-Vendi _{\alpha} (x_{1},,x_{n};t_{1},,t_{n}) \leftarrow \exp\left(H_{\alpha}\left(\frac{1}{n}K_{\mathbf{X}}\right) + H_{\alpha}\left(\frac{1}{n}K_{\mathbf{T}}\right) - H_{\alpha}\left(\frac{1}{n}K_{\mathbf{X}}\odot K_{\mathbf{T}}\right)\right)		$H_{lpha}ig(rac{1}{n}K_{\mathbf{T}}ig) \leftarrow rac{1}{1-lpha}\log\Bigl(\sum_{i=1}^n (\lambda_i^{\mathbf{T}})^{lpha}\Bigr)$
5: Compute Conditional-Vendi and Information-Vendi Conditional-Vendi _{α} $(x_1, \ldots, x_n t_1, \ldots, t_n) \leftarrow \exp\left(H_\alpha\left(\frac{1}{n}K_{\mathbf{X}} \odot K_{\mathbf{T}}\right) - H_\alpha\left(\frac{1}{n}K_{\mathbf{T}}\right)\right)$ Information-Vendi _{α} $(x_1, \ldots, x_n; t_1, \ldots, t_n) \leftarrow \exp\left(H_\alpha\left(\frac{1}{n}K_{\mathbf{X}}\right) + H_\alpha\left(\frac{1}{n}K_{\mathbf{T}}\right) - H_\alpha\left(\frac{1}{n}K_{\mathbf{X}} \odot K_{\mathbf{T}}\right)\right)$		$H_{lpha}ig(rac{1}{n}K_{\mathbf{X}}\odot K_{\mathbf{T}}ig)\ \leftarrow\ rac{1}{1-lpha}\log\Bigl(\sum_{i=1}^n(\lambda_i^{\mathbf{X},\mathbf{T}})^{lpha}\Bigr)$
Conditional-Vendi _{α} $(x_1, \ldots, x_n t_1, \ldots, t_n) \leftarrow \exp\left(H_\alpha\left(\frac{1}{n}K_{\mathbf{X}} \odot K_{\mathbf{T}}\right) - H_\alpha\left(\frac{1}{n}K_{\mathbf{T}}\right)\right)$ Information-Vendi _{α} $(x_1, \ldots, x_n; t_1, \ldots, t_n) \leftarrow \exp\left(H_\alpha\left(\frac{1}{n}K_{\mathbf{X}}\right) + H_\alpha\left(\frac{1}{n}K_{\mathbf{T}}\right) - H_\alpha\left(\frac{1}{n}K_{\mathbf{X}} \odot K_{\mathbf{T}}\right)\right)$	5: C	ompute Conditional-Vendi and Information-Vendi
Information-Vendi _{α} $(x_1,, x_n; t_1,, t_n) \leftarrow \exp\left(H_{\alpha}\left(\frac{1}{n}K_{\mathbf{X}}\right) + H_{\alpha}\left(\frac{1}{n}K_{\mathbf{T}}\right) - H_{\alpha}\left(\frac{1}{n}K_{\mathbf{X}}\odot\right)\right)$		Conditional-Vendi _{α} $(x_1, \ldots, x_n t_1, \ldots, t_n) \leftarrow \exp\left(H_{\alpha}\left(\frac{1}{n}K_{\mathbf{X}} \odot K_{\mathbf{T}}\right) - H_{\alpha}\left(\frac{1}{n}K_{\mathbf{T}}\right)\right)$
	In	$\text{formation-Vendi}_{\alpha}\left(x_{1},.,x_{n};t_{1},.,t_{n}\right) \leftarrow \exp\left(H_{\alpha}\left(\frac{1}{n}K_{\mathbf{X}}\right) + H_{\alpha}\left(\frac{1}{n}K_{\mathbf{T}}\right) - H_{\alpha}\left(\frac{1}{n}K_{\mathbf{X}}\odot H_{\alpha}\right)\right)$
6: Output: Conditional-Vendi and Information-Vendi	6: ()	utput: Conditional-Vendi and Information-Vendi

bandwidth parameter σ for text samples bandwidth parameter σ for text samples

1.0

Figure 26: Effect of text kernel bandwidth on Conditional-Vendi and Information-Vendi scores