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ABSTRACT

Text-conditioned generation models are commonly evaluated based on the qual-
ity of the generated data and its alignment with the input text prompt. On the
other hand, several applications of prompt-based generative models require suffi-
cient diversity in the generated data to ensure the models’ capability of generating
image and video samples possessing a variety of features. However, the exist-
ing diversity metrics are designed for unconditional generative models, and thus
cannot distinguish the diversity arising from variations in text prompts and that
contributed by the generative model itself. In this work, our goal is to quantify the
prompt-induced and model-induced diversity in samples generated by prompt-
based models. Specifically, we propose the application of matrix-based informa-
tion measures to address this task, decomposing the kernel-based entropy H(X)
of generated data X into the sum of conditional entropy H(X|T ), given text vari-
able T , and mutual information I(X;T ). We show that this information-theoretic
approach decomposes the existing Vendi diversity score defined based on H(X)
into the product of the following two terms: 1) Conditional-Vendi score based on
H(X|T ) to quantify the model-induced diversity, and 2) Information-Vendi score
based on I(X;T ) to measure the statistical relevance between X and prompt T .
Our theoretical results provide an interpretation for this diversity quantification
and show that the Conditional-Vendi score aggregates the Vendi scores within
the modes of a mixture prompt distribution. We conduct several numerical ex-
periments to show the correlation between the Conditional-Vendi score and the
internal diversity of text-conditioned generative models.

1 INTRODUCTION

Prompt-based generative models, including text-to-image and text-to-video generation schemes, are
widely used in various artificial intelligence (AI) applications. In prompt-based generative AI, the
sample creation process begins with a text input and produces a random output aligned with that
text. The conditional nature of this sample generation distinguishes prompt-based generative models
from standard unconditional generative models where the objective is to produce samples distributed
similarly to real data without any guiding input prompt. Since most evaluation metrics for generative
models had been developed for unconditional models in the previous decade, the recent literature
has sought to create scores tailored specifically for text-conditioned generative models.

The existing evaluation metrics for prompt-based generative models typically focus on fidelity and
relevance in sample generation, i.e., they assess the visual quality of the produced samples and
their alignment with the input prompt. Relevance is often measured by calculating a similarity
score between a shared embedding of the text and image samples, e.g. in ClipScore (Hessel et al.,
2021) which utilizes the CLIP embeddings of text and image data. Such shared embedding-based
evaluation mechanisms have been further adapted to quantify the aesthetics, semantic consistency,
and compositional accuracy of the generated data based on the input text prompt.

On the other hand, the diversity performance of prompt-based generative models has not been exclu-
sively studied in the literature. The diversity scores proposed for unconditional generative models,
such as Recall (Sajjadi et al., 2018; Kynkäänniemi et al., 2019), Coverage (Naeem et al., 2020),
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Prompt-induced Diversity Model-induced Diversity

A person is drinking tea Someone is drinking tea

Somebody drinks teaA person drinks tea

Someone is drinking teaA person eating lunch

A man reading a newspaper Somebody sitting at a cafe

Figure 1: Illustration of prompt-induced diversity, where the diversity of generated images follows
the variety of prompts and has little variation in other details, vs. model-induced diversity, where
the diversity of images for similar prompts is due to the generation model.

Vendi (Friedman & Dieng, 2023; Pasarkar & Dieng, 2024), and RKE (Jalali et al., 2023), are often
applied to quantify the variety of generated samples. However, in text-based generative models, the
generated samples are typically produced in response to different input prompts, where the variation
in input texts can significantly contribute to the diversity of the generated image or video samples.
Thus, the diversity of data produced by prompt-based models is influenced by two main factors: 1)
the variety of input prompts, and 2) the internal diversity of the model introducing randomness into
the output samples. Figure 1 illustrates examples of prompt-induced diversity, where the variety of
generated images is mostly due to the different prompts and the generated data has little variety in
other details (images of similar people with similar poses), and model-induced diversity where the
details not specified by the prompts vary significantly between generated images. This decompo-
sition of diversity in text-based generative models has not been studied in the existing literature on
conditional generative models including text-based image and video generation.

In this work, we focus on quantifying the two diversity components mentioned for prompt-based
generative models. To this end, we propose an information-theoretic decomposition of the diversity
of the model’s output data, X . The proposed decomposition is based on a classical identity in infor-
mation theory, which shows that for variables X and T , the Shannon entropy H(X), representing
the uncertainty of X , can be decomposed into two terms as follows:

H(X) = H
(
X|T

)
+ I

(
X;T

)
Here, H(X|T ) denotes the conditional entropy of data X given the text variable T , which we
interpret as the internal diversity of the text-based generative model not caused by variation in the
input text T . Furthermore, the mutual information term I(X;T ) can be viewed as a measure of
statistical relevance between the text T and the generated data X , quantifying how much information
the model’s output conveys about the input text.

To mathematically define the entropy-based scores, we follow the kernel-matrix-based entropy def-
inition, which has been applied by (Friedman & Dieng, 2023; Jalali et al., 2023; Pasarkar & Dieng,
2024) to unconditional generative models. These references apply the matrix-based entropy in quan-
tum information theory, that is the entropy of the eigenvalues of the kernel matrix of generated data
X , to measure the diversity of an unconditional model’s generated data. To extend the framework to
conditional prompt-based generative models, we utilize the definition of matrix-based conditional
entropy proposed by Giraldo et al. (2014). This work provides a definition for the conditional en-
tropy of two general positive semi-definite matrices, which we select to be the kernel matrices of
generated data X and text T . Following these definitions, our work extends the entropy-based
approach in (Friedman & Dieng, 2023; Jalali et al., 2023) to conditional generative models. We de-
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fine the Conditional-Vendi and Information-Vendi scores which decompose the unconditional Vendi
score to model-induced and prompt-induced diversity measures.

To statistically interpret the defined scores, we derive the statistic estimated by the proposed scores
from empirical generated samples. We show how the target statistic can be formulated in terms of
the kernel covariance matrix of the Kronecker product of text T and data X vectors. Importantly,
we prove a theorem to interpret and provide an operational meaning for the proposed entropy-based
scores. Note that the conditional entropy measures in (Giraldo et al., 2014) do not follow standard
information theory, and hence the defining equation H(X,T ) − H(T ) = Et∼PT

[H(X|T = t)],
well-known for Shannon conditional entropy, does not hold for the conditional entropy measure
in (Giraldo et al., 2014). To address this gap and provide a practical interpretation for the defined
conditional entropy H(X|T ), we prove that under a mixture distribution PT for text data with a
hidden group variable G, the defined conditional entropy indeed aggregates H(X|G = g) given
prompt type g ∼ PG. This result shows the Conditional-Vendi is an aggregation of Vendi scores.

Specifically, our theoretical analysis on the connection between the Conditional VENDI score and
average of unconditional entropy scores indicate a spectral approach to interpret the diversity evalua-
tion of the proposed score. Following the spectral identification of modes in the eigendecomposition
of matrix-based entropy function, we show that the modes used by the Conditional-VENDI score
follow from the eigenvectors of the kernel covariance matrix of the text prompt distributions. There-
fore, we visualize the diversity contributed by the prompt-based generative model using the spectral
clustering of text samples according to the kernel function used in the definition of the diversity
score. After computing the eigendirections of the text kernel matrix, we analyze the Hadamard
product of each eigendirection-based rank-1 matrix and the joint (prompt,data) kernel matrix. This
analysis reveals the variant clusters of images generated for each group of input text samples.

We numerically evaluate the proposed diversity scores for standard text-to-image, text-to-video, and
image-captioning generative models. In our experiments, we simulate text-based generative models
for which the ground-truth rankings of internal diversity and relevance are known. Our experimental
results validate the consistency of our proposed information-theoretic scores and the ground-truth
ranking of the models. We further decompose the Conditional-Vendi score across different modes
of input text data, evaluating the models’ internal diversity across different types of input text. The
following is a summary of the contributions of this work:

• Highlighting the diversity evaluation task in the context of conditional generative models,
• Proposing an information-theoretic framework for decomposing the diversity of generated data

into prompt-induced and model-induces components to evaluate the internal diversity of prompt-
based generative models

• Providing an operational meaning for the defined scores and interpreting them as the average of
entropy scores over the modes of a multi-modal text distribution

• Presenting numerical results on the consistency between the conditional entropy score and the
model-induced diversity of text-to-image and text-to-video generative models.

2 RELATED WORK

Evaluation of deep generative models: The existing metrics for the evaluation of generative mod-
els can be divided into reference-dependent and reference-free categories, as discussed in (Borji,
2022). As one type of reference-dependent metrics, a distance between generated and reference
distributions is measured using metrics such as FID (Heusel et al., 2017) and KID (Bińkowski et al.,
2018). Other reference-based metrics such as the Inception Score (Salimans et al., 2016), GAN-
train/GAN-test (Shmelkov et al., 2018), Precision/Recall (Sajjadi et al., 2018; Kynkäänniemi et al.,
2019), and Density/Coverage (Naeem et al., 2020) are defined to quantify the diversity and quality
of generated data in comparison to the samples in the real dataset. In addition, assessing memoriza-
tion and novelty has been studied in several references, including the authenticity score (Alaa et al.,
2022) and Feature Likelihood Divergence (Jiralerspong et al., 2023) to assess generalizability, and
the rarity score (Han et al., 2023), KEN (Zhang et al., 2024) proposed to assess novelty. Note that the
memorization metrics are inherently reference-based. In contrast, reference-free evaluations mea-
sure diversity and quality based only based on the generated data. Specifically, the Vendi (Friedman
& Dieng, 2023; Pasarkar & Dieng, 2024) and RKE scores (Jalali et al., 2023) fall into this category.
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Evaluation of conditional generative models: The evaluation of prompt-based generative models,
including text-to-image and text-to-video models, has been studied in several related works. Most
of the existing evaluation metrics attempt to measure the correlation between the prompt and the
output. A standard metric for measuring the alignment of prompt and image is CLIPScore (Hessel
et al., 2021), which measures the cosine similarity of the paired data using CLIP embedding. Some
other works introduce different benchmarks and sets of prompts to evaluate different aspects. HEIM
(Lee et al., 2023) assesses twelve aspects of the sample generation, including text-image alignment,
image quality and bias. As noted by Astolfi et al. (2024), standard metrics focusing on style, aes-
thetics, and image quality, may overlook the diversity of images given a particular prompt. In their
work, they measure diversity separately for each prompt using a similarity function and average the
scores for the prompts. Kannen et al. (2024) follow a similar approach with the Vendi score. We
note that both these methods require generating multiple images per prompt with different seeds to
measure the score. On the other hand, our proposed Conditional-Vendi score does not require mul-
tiple sample generations per prompt and instead analyzes the types of text prompt in the assessment.
Our theoretical results interpret Conditional-Vendi as an aggregation of the scores over text types.

Information measures for evaluating conditional generative models: Kim et al. (2022) utilize
the mutual information (MI) between continuous text and image variables, and propose the Mutual
Information Divergence (MID) score. This work fits a multivariate Gaussian distribution to the
text and image data and then estimates their mutual information to quantify a relevance metric for
conditional generative models. We note that our proposed Information-Vendi score is based on
the matrix-based entropy score by Giraldo et al. (2014) which is different from the MI between
Gaussian vectors fitted to the text and image data used in the MID score. Different from MID,
Information-Vendi relies on kernel similarity values to identify a cluster variable for MI calculation.

3 PRELIMINARIES

Throughout the work, we focus on a conditional generative model that produces a data vector X ∈
X given an input text prompt T ∈ T according to a conditional distribution PX|T , i.e., for text
prompt T = t the model outputs a random sample following PX|T=t. We consider n sample pairs
(ti, xi) ∼ PT × PX|T where each text prompt ti is drawn independently from the distribution PT

and then the generated sample xi is generated according to PX|T=ti . Our goal is to quantify the
internal diversity of the prompt-based generative model, influencing the variety of data generated
x1, . . . , xn independently of the diversity of input texts t1, . . . , tn.

3.1 ENTROPY-BASED DIVERSITY SCORES FOR UNCONDITIONAL GENERATIVE MODELS

Consider generated samples x1, . . . , xn ∈ X following the distribution PX of an unconditional
generative model. For a kernel function k : X ×X → R, the kernel similarity matrix K ∈ Rn×n is
K =

[
k(xi, xj)

]
1≤i,j≤n

. Following the standard definition, a kernel function k satisfies the positive
semidefinite property (PSD), which means that the above kernel matrix will be PSD for any arbitrary
selection of data points x1, . . . , xn ∈ X , i.e., all its eigenvalues are non-negative. A popular kernel
function is the Gaussian (RBF) kernel, which for a bandwdith parameter σ is defined as:

k(x, x′) = exp
(−∥∥x− x′

∥∥2
2

2σ2

)
(1)

Assuming that a kernel function k is normalized, i.e. k(x, x) = 1 for every x ∈ Rd, then the non-
negative eigenvalues λ1, . . . , λn of 1

nK will add up to 1, implying that they represent a probability
model. In the literature, Friedman & Dieng (2023); Jalali et al. (2023); Pasarkar & Dieng (2024)
propose using the general order-α Renyi entropy of the probability model as the model’s diversity
score, defined as follows for 1

nK:

Hα

(
X
)
:= Hα

( 1
n
K
)
=

1

1− α
log

( n∑
i=1

λα
i

)
(2)

In the special case of α = 1, the above definition results in the Shannon-entropy of eigenvalues
H1(

1
nK) =

∑n
i=1 λi log(1/λi). Also, we note that the Vendi and RKE scores defined by Friedman

& Dieng (2023); Pasarkar & Dieng (2024) are the exponential of the defined entropy measure, where

Vendiα
(
x1, . . . , xn

)
:= exp

(
Hα

( 1
n
K
))

(3)
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To statistically interpret the entropy measures of the samples’ kernel matrix, Bach (2022); Jalali
et al. (2023) note that the normalized kernel matrix 1

nK shares the same non-zero eigenvalues with
the empirical kernel covariance matrix ĈX defined as:

ĈX =
1

n

n∑
i=1

ϕ(Xi)ϕ(Xi)
⊤ (4)

Here, ϕ : X → Rd denotes the kernel feature map satisfying the relation k(x, x′) = ⟨ϕ(x), ϕ(x′)⟩
for every x, x′ ∈ X where ⟨·, ·⟩ is the standard inner-product in the Rd space. As a result, the entropy
of the kernel matrix K’s eigenvalues equals the entropy of ĈX . Note that ĈX is the empirical
estimation of the underlying kernel covariance matrix CX = EX∼PX

[
ϕ(X)ϕ(X)⊤

]
.

3.2 MATRIX-BASED CONDITIONAL ENTROPY AND MUTUAL INFORMATION

In the previous subsection, we reviewed the standard definition of order-α matrix-based entropy for
PSD matrices. Here, we discuss an extension proposed by Giraldo et al. (2014) to define matrix-
based conditional entropy and mutual information for two variables X ∈ X and T ∈ T . For
variables X and T , we consider normalized kernel functions kX : X×X → R and kT : T ×T → R,
where the kernel functions satisfy kX(x, x) = 1 and kT (t, t) = 1 for every input x and t. Given the
two kernel functions, Giraldo et al. (2014) define the order-α matrix-based joint entropy Hα(X,T )
as the order-α entropy of the PSD matrix 1

nKX ⊙KT , in which KX and KT are the kernel matrices
of X and T samples and ⊙ denotes the entry-wise Hadamard product.

Note that the Hadamard product KX ⊙ KT represents the kernel matrix of concatenated samples
[xi, ti], where we consider the kernel function kX,T ([x, t], [x

′, t′]) = kX(x, x′)kT (t, t
′) to be the

product of marginal kernel functions. This definition is sensible, since the joint similarity value,
taking value over [0, 1] in Gaussian kernels, is considered to be the multiplication of the similarity
scores for the text and output data vectors. Then, Giraldo et al. (2014) propose defining conditional
entropy Hα(X|T ) as the difference between the joint and marginal entropy values:

Hα

(
X|T

)
:= Hα

(
X,T

)
−Hα

(
T
)
= Hα

( 1
n
KX ⊙KT

)
−Hα(

1

n
KT ) (5)

Specifically, it is shown that the defined conditional entropy Hα(X|T ) is non-negative for every
normalized kernel function kX and kT . Furthermore, Giraldo et al. (2014) define the matrix-based
mutual information Iα(X;T ) as the difference between the defined conditional and marginal en-
tropy which is shown to be non-negative given normalized kernel functions kX and kT :

Iα
(
X;T

)
:= Hα

(
X
)
−Hα

(
X|T

)
= Hα

( 1
n
KX

)
+Hα

( 1
n
KT

)
−Hα

( 1
n
KX ⊙KT

)
(6)

4 AN INFORMATION-THEORETIC DIVERSITY QUANTIFICATION FOR
PROMPT-BASED GENERATIVE MODELS

We aim to extend the entropy-based diversity scores for unconditional generative models to condi-
tional text-based generative models. Note that if we only evaluate the entropy score of the generated
samples x1, . . . , xn, the evaluated score does not separate the diversity contributed by different
prompts from the internal diversity of the model creating varying samples for similar prompts.

To separate out the effect of diverse input prompts on the variety of the generated samples
x1, . . . ,xn, we propose applying the conditional entropy as formulated by Giraldo et al. (2014)
for a general quantum information-theoretic setting and propose the following order-α Conditional-
Vendi Score:

Conditional-Vendiα
(
x1, . . . , xn

∣∣t1, . . . , tn) := exp
(
Hα

( 1
n
KX ⊙KT

)
−Hα

( 1
n
KT

))
In the above, KX and KT denote the kernel matrices for the generated samples and input prompts,
respectively. In addition to the proposed Conditional-Vendi score for measuring the internal diversity
of the model, we propose the Information-Vendi score following the identity I(X;T ) = H(X) +
H(T )−H(X,T ) in standard information theory:

Information-Vendiα
(
x1, . , xn; t1, . , tn

)
:= exp

(
Hα

( 1
n
KX

)
+Hα

( 1
n
KT

)
−Hα

( 1
n
KX ⊙KT

))
5
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Note that the defined Conditional-Vendiα and Information-Vendiα lead to a decomposition of
Vendiα score (Pasarkar & Dieng, 2024) into the product of the following two terms:

Vendiα
(
x1, . . . , xn

)
=Conditional-Vendiα

(
x1, . . . , xn

∣∣t1, . . . , tn)
× Information-Vendiα

(
x1, . . . , xn; t1, . . . , tn

)
.

In the above, Vendiα measures the diversity of generated data x1, . . . , xn, while the
Conditional-Vendiα score is a quantification of the internal diversity of the model that is not in-
fluenced by the variety of input prompts. Also, Information-Vendiα can be viewed as a relevance
score quantifying how the diversity of generated samples is statistically correlated with the diver-
sity of text prompts. Therefore, the proposed decomposition leads to a mechanism for the internal
diversity evaluation of conditional generative models.

5 STATISTICAL INTERPRETATION OF THE ENTROPY-BASED SCORES

In this section, we aim to statistically interpret the defined conditional diversity scores as the ex-
pectation of prompt-specific entropy H(X|T = t). First, we derive the statistic estimated from
empirical samples by the entropy-based scores, and then we connect the conditional entropy mea-
sure to the expectation of unconditional entropy values. According to the Schur product theorem,
the Hadamard product KX⊙KT of PSD kernel matrices KX , KT will also be a PSD kernel matrix.
We note that the kernel matrix corresponds to the following feature map ϕX,T : X × T → Rdxdt

where ⊗ denotes the Kronecker product:

ϕX,T

(
[x, t]

)
= ϕX(x)⊗ ϕT (t)

The above holds due to the identity
〈
ϕX,T

(
[x, t]

)
, ϕX,T

(
[x′, t′]

)〉
= kX

(
x, x′)kT (t, t′). The fol-

lowing proposition formulates kernel-based conditional entropy and mutual information using ϕX,T .

Proposition 1. Consider the kernel matrices KX for samples x1, . . . , xn and KT for samples
t1, . . . , tn. Then, 1

nKX ⊙KT (used for defining joint entropy Hα(X,T )) share the same non-zero
eigenvalues with the following kernel covariance matrix:

ĈX,T :=
1

n

n∑
i=1

ϕX,T

(
[xi, ti]

)
ϕX,T

(
[xi, ti]

)⊤
=

1

n

n∑
i=1

[
ϕX

(
xi

)
ϕX

(
xi

)⊤]⊗ [
ϕT

(
ti
)
ϕT

(
ti
)⊤]

Corollary 1. Consider the composite feature map ϕX,T and joint kernel covariance ma-
trix ĈX,T defined above. Then, given marginal kernel covariance matrices ĈX =
1
n

∑n
i=1 ϕX(xi)ϕX(xi)

⊤, ĈT = 1
n

∑n
i=1 ϕT (ti)ϕT (ti)

⊤, the following holds for the defined con-
ditional entropy and mutual information:

Hα(X|T ) = Hα(ĈX,T )−Hα(ĈT ), Iα(X;T ) = Hα(ĈX) +Hα(ĈT )−Hα(ĈX,T )

Proof. The proof is deferred to the Appendix. Note that Conditional-Vendiα(x1, . , xn|t1, . , tn) =
exp

(
Hα(X|T )

)
and Information-Vendiα(x1, . , xn; t1, . , tn) = exp

(
Iα(X;T )

)
Corollary 1 shows that given the underlying covariance matrices CX = Ex∼PX

[
ϕX(x)ϕX(x)⊤

]
,

CT = Et∼PT

[
ϕT (t)ϕT (t)

⊤], and CX,T = E(x,t)∼PX,T

[
ϕX,T ([x, t])ϕX,T ([x, t])

⊤], the defined
entropy-based scores converge to the following statistics when the sample size n tends to infinity:

H̃α(X|T ) = Hα(CX,T )−Hα(CT ), Ĩα(X;T ) = Hα(CX) +Hα(CT )−Hα(CX,T ).

Note that the entropy-based statistic Hα(CX) represents the statistic estimated by the logarithm of
the Vendi score defined in (Friedman & Dieng, 2023).

Next, we prove that for a mixture text distribution PT where the text variable follows random mode
G ∈ {1, . . . ,m}, the defined conditional entropy score aggregates the expectation of the uncondi-
tional entropy score H(X|G = i)over the m text modes 1, . . . ,m.

6
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Theorem 1. Consider the Gaussian kernel with bandwidth σ. Suppose T follows a mixture distri-
bution

∑m
i=1 ωiPT,i where ωi denotes the weight of the ith component PT,i with mean vector µi and

total variance ET∼PT,i
[∥T − µi∥22] = σ2

i . Given the aggregation map f(z) = exp((1 − α)z), for
every order α ≥ 2, the matrix-based order-α conditional entropy satisfies the following inequality
where g(z) = α

α−1 log
(

1
1−z/∥ω∥α

)
is an increasing scalar function with g(0) = 0:∣∣∣∣H̃α(X|T )− f−1

(
EI∼ωα

[
f
(
H̃α(X|G = I)

)])∣∣∣∣ ≤2 g(32 k∑
i=1

ωi

[σ2
i

σ2
+

i−1∑
j=1

exp
(−∥µi − µj∥22

σ2

)])

The above theorem shows that if the text samples come from m distinct modes satisfying
∥µi−µj∥2

σ ≫ 1 for every i ̸= j and
EPT,i

[∥T−µi∥2
2]

σ2 ≪ 1, then the defined conditional entropy
score H(X|T ) aggregates the unconditional entropy score H(X|G = i) given the prompt group.
Therefore, this result extends the expectation-based interpretation of Shannon conditional entropy
to the matrix-based conditional entropy defined in Giraldo et al. (2014).

Based on Theorem 1, we propose a text-type-based diversity evaluation, where we restrict the eval-
uation of the prompt-based generative model to the prompts in the same group, i.e. the same
mode in the mixture text distribution. To do this, we find the eigendirections corresponding to
the text clusters by performing an eigendecomposition of text kernel matrix 1

nKT =
∑n

i=1 λiviv
⊤
i

where λ1 ≥ · · ·λn are the sorted eigenvalues and v1, . . . , vn are the sorted eigenvectors. Then,
we note that the Hadamard product 1

nKX ⊙ KT used for joint entropy can be decomposed as:
1
nKX ⊙ KT =

∑n
i=1 λi

(
KX ⊙ viv

⊤
i

)
. As a result, to evaluate the diversity of the generation

model, we apply eigendocomposition to each KX ⊙ viv
⊤
i , where vi marks the samples in group i,

and find the sample indices with the maximum entries on the principal eigenvectors of KX ⊙ viv
⊤
i .

6 NUMERICAL RESULTS

We empirically evaluated the Conditional-Vendi and Information-Vendi scores for three types
of conditional generative models: 1) text-to-image, 2) text-to-video generation, and 3) image-
captioning models. For text-to-image models, we tested Flux (Lab, 2024), Stable Diffusion 2.1
(Rombach et al., 2022), Stable Diffusion XL (Podell et al., 2024), GigaGAN (Kang et al., 2023),
Kandinsky (Razzhigaev et al., 2023), and PixArt (Chen et al., 2023b; 2024b). For prompt-based
video generative models, we considered VideoCrafter1 (Chen et al., 2023a), Show-1 (Zhang et al.,
2023), and Open-Sora (Zheng et al., 2024). For image-captioning models, we experimented with
BLIP (Li et al., 2022), GIT (Wang et al., 2022), and GPT4o-mini (OpenAI, 2024).

Embeddings used in the evaluation of generative models. Unlike standard embedding-based
scores for text-to-image models such as CLIPScore (Hessel et al., 2021), which require the same
embedding model for the text and generated image, the definitions of Conditional-Vendi and
Information-Vendi allow different feature extractors for text and generated sample. In our exper-
iments, we followed (Stein et al., 2023; Kynkäänniemi et al., 2023), to use the DINOv2 (Oquab
et al., 2023) embedding for image data. For text data, we used Gemini (Team, 2024) and CLIP
(Radford et al., 2021), and for video samples, following the video evaluation literature (Kim et al.,
2024; Saito et al., 2020; Unterthiner et al., 2019), we used I3D (Carreira & Zisserman, 2017). To
select the bandwidth parameter σ, similar to (Jalali et al., 2023), we chose the Gaussian kernel band-
width for each type of data as the smallest σ that ensures a variance below 0.01 in the evaluated
score over independent evaluations. We observed that for image data, σ ∈ [20, 30]; for text data,
σ ∈ [0.1, 0.8]; and for video data, σ ∈ [10, 20] can satisfy this requirement.

Quantifying model-induced diversity via Conditional-Vendi. To illustrate how Conditional-
Vendi correlates with the model-induced diversity, we considered a toy experiment with 10 different
dog breeds from the ImageNet dataset (Deng et al., 2009) as simulated outputs for a text-to-image
model. We generated two sets of prompts using GPT4o (OpenAI, 2024). In the first set, the breed
of dog in the picture was not specified, while in the other one, the breed was explicitly mentioned.
As shown in Figure 2, increasing the number of breeds sampled from the dataset led to the growth
of the Vendi score, regardless of the text prompt. However, Conditional-Vendi only increased when
the breed was not specified in the prompts, and in the second case where the breed had been in-
cluded in the prompt, the score remained relatively constant, implying that the diversity in pictures
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Prompts:

A dog appears in the image.

Here, you can spot a dog.

There is a dog present in this scene.

This is clearly a dog in the photo.

Look at the dog in this shot.

An image of a dog is shown here.

A dog can be seen in the image.

Prompts:

A beagle dog appears in the image.

Here, you can spot a Samoyed dog.

There is a shih-Tzu dog present in this scene.

This is clearly an English foxhound dog in the photo.

Look at the golden retriever dog in this shot.

An image of a Border terrier dog is shown here.

An Australian terrier dog can be seen in the image.

Unspecified dog prompts Breed-specified dog prompts

Model 2:

Samples from 2 dog breeds

Model 4:

Samples from 4 dog breeds
Model 8:

Samples from 8 dog breeds

Figure 2: Evaluated Conditional-Vendi and Vendi scores on dog samples in the ImageNet dataset.
(Left Plot): we simulated prompts on ”dog” pictures without specifying the dog breed, (Right Plot)
we added the breed information for dogs to the prompts.

Prompts:

An animal is rolling in the grass.

An animal resting near a sand dune.

An animal is drinking from a river.

An animal is resting under a tree.

An animal is resting in a grassy pasture.

An animal is walking through jungle.

An animal is reaching up for leaves.

Prompts:

A fox is rolling in the grass.

A camel is resting near a sand dune.

A wolf is drinking from a river.

A cow is resting under a tree.

A sheep is resting in a grassy pasture.

An elephant is walking through thick jungle.

A giraffe is reaching up for leaves.

Unspecified animal prompts Type-specified animal prompts

Figure 3: Evaluated Conditional-Vendi and Vendi scores on animal samples generated by Stable
Diffusion-XL. (Left Plot): we do not specify the animal types in the prompt, (Right Plot) we specify
the animal types in the prompt.

mostly follows the text prompt. To repeat this observation for text-to-image models, we considered
10 types of animals generated by Stable Diffusion XL, as shown in Figure 3. Similar to the previous
experiment, we found that Conditional-Vendi increased at a more rapid rate when the prompts did
not specify the type of animal in the picture. In contrast, when the animal types were specified in
the prompts, there was only a slight increase in the Conditional-Vendi value.

Text-to-Image Model Evaluation: In Figure 4, we compared Flux, Stable Diffusion XL, Giga-
GAN, and Kandinsky. As shown in the plot, we generated 30,000 samples using each model, and
then clustered the prompts into k groups, using k-means clustering on the Gemini embedding of
text data, for different values of k. To simulate varying diversity across clusters, we assigned the
image generated for the center of each cluster to all prompts within that cluster and measured the
scores for different clusters. For example, when k=2000, we had 2,000 images for the k clusters,
with the text in each cluster paired with one of the images. As k grows, we observed an increase
in Information-Vendi, validating the fact that the images become more relevant to their prompts.
Also, the Conditional-Vendi increased, as we expect the diversity of images to grow with more text
clusters. Notably, while GigaGAN achieved a higher Vendi score, its Information-Vendi score was
lower than that of SD-XL. This observation suggests that GigaGAN performs well at generating
diverse outputs given prompts, but in terms of relevance, Flux and SD-XL are better. Our results
align with conclusions made by Astolfi et al. (2024).
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a happy dog is playing at home.
an ancient building in the park.

a curious dog is playing in the park.
A shallow river in the forest.

a happy dog is running in a park.
A shallow river by the city.

an old building by the ocean.
A clear river by the city.

an elegant building in the park.

Prompt N

A curious dog playing is in the park.
A happy dog is in the park.

A happy dog is playing at home.

A shallow river in the forest. 
A shallow river by the city.

A clear river by the city. 

an old building by the ocean. 
an old building in the park. 
an elegant building in the park. 

MS-COCO Prompts

…

…

Cluster 
prompts in
to k groups

Pair the clustered prompts with the 
generated image

Experiment steps

A curious dog is playing at park.
A happy dog is in the park.
A happy dog is playing at home.

A shallow river in the forest. 
A shallow river by the city.
A clear river by the city. 

an old building by the ocean. 
an old building in the park. 
an elegant building in the park. 

Generate 
image for 
the center 
of clusters 
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Figure 4: Comparing Conditional-Vendi and Information-Vendi of different text-to-image models.

Mode #1 Mode #2 Mode #3

Caption Mode #1

A big airplane is descending above the clouds.
An old airplane is ascending on the runway.

A massive airplane is ascending at sunset.
A modern airplane is hovering in a storm.

An old airplane is soaring over the desert.

Caption Mode #2

A happy dog is walking in the mountains.

A friendly dog is jumping on a sunny day.

A furry dog is digging in the forest.
A sleepy dog is barking on the beach.

A sleepy dog is sleeping on a sunny day.

Conditional-Vendi
exp(Hα(X|G=i))

Cond-Vendiα=1= 21.29

Cond-RKE (Vendiα=2)= 3.07

Cond-Vendiα=1= 82.81

Cond-RKE (Vendiα=2)= 6.35

Figure 5: Quantifying image diversity for different clusters of text prompts. Images are generated
using the PixArt-α model.

Measuring Conditional-Vendi across prompt types. To measure Conditional-Vendi conditioned
on the prompt type, we created 5000 prompts with different categories using GPT4o and generated
the corresponding images with the text-to-image models. In Figure 5, top 2 groups of PixArt-α in
terms of conditional entropy values are shown. We observed that ”dog” text-based top 3 clusters of
images looked more diverse than the image clusters for ”airplane”-type prompts. Also, our evaluated
Conditional-Vendi score of ”dog” texts was significantly higher than that of the ”airplane” class. We
have tested other generative models in the appendix.

Text-to-Video Model Evaluation. For the experiments on video data, to ensure the fairness of our
evaluation, we used VBench samples (Huang et al., 2024), which generated samples belong to the 8
content categories. In Figure 6, we used VideoCrafter-1, Show-1, and Open-Sora-1.2. We observed
that VideoCrafter videos look less diverse and, in some cases, may not correlate significantly with
the captions, when compared to Open-Sora. Confirming this observation, the Conditional-Vendi and
Information-Vendi scores were lower for VideoCrafter than those for Open-Sora.

Image-Captioning Evaluation. For image captioning, we used 10 classes from the ImageNet
dataset as input for BLIP-2, GIT and GPT4o-mini. In Figure 7, we compared captions for the
top three groups of images: gas pump, church, and cassette player. GIT generated more diverse
captions compared to BLIP, which was confirmed by the Conditional-Vendi scores. On the other
hand, GPT4o-mini generated longer and more detailed captions compared to GIT, which was also
reflected in the evaluated Conditional-Vendi and Information-Vendi scores.
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Caption Mode #1

close up video of flower petals

close up video of strawberry plant

close up video of tree bark

tree with golden leaves

close up view of a plant

VideoCrafter-1 Open-Sora-1.2Show-1

Caption Mode #2

close up shot of a wild bear

a bear wearing red jersey

close up video of snail

an American crocodile

close up of a lemur

Caption Mode #3

high angle shot of a clock tower

close up shot of a steel structure

an apartment building with balcony

low angle shot of a building

top view of a high rise building

Cond-Vendiα=1 = 6.45

Info-Vendiα=1 = 3.80

Cond-Vendiα=1 = 19.18

Info-Vendiα=1 = 9.18Evaluated Scores:
Cond-Vendiα=1 = 5.18

Info-Vendiα=1 = 3.13

Figure 6: Measuring Conditional-Vendi and Information-Vendi for text-to-video models

Image Mode #1

Image Mode #2

Image Mode #3

BLIP-2 GIT GPT4o-mini

a gas pump with three different colors.
a gas pump with two different types of fuel.
a man filling up his car at a gas station.
a woman filling up her car at a gas station.
an old red gas pump in front of a barn.
an old gas pump in front of a house.

a gas pump at a gas station with a red gas pump.
a gas pump at a gas station in the middle of a 
road.
a woman in a white dress is filling up a car.
a vintage gas station with a man filling up a gas 
pump.
an old gas pump sitting in a field.
an old gas pump sitting in front of a building.

A vintage gas pump with a faded sign, displaying old 
pricing and a weathered metallic finish.
A man stands at a gas pump, holding a nozzle and 
filling two metal containers on a cart. He wears a black 
vest over a blue shirt and denim jeans, with a focused 
expression. In the background.
A vintage green gas pump stands in a grassy area, 
surrounded by trees and a white building in the 
background.

the inside of a church with wooden 
benches.
the interior of a church with wooden pews.
a church with a steeple and a graveyard
a church with a graveyard and a clock tower
a white church with two steeple towers
a white church with a red door and a fence

the interior of the cathedral of the holy trinity.
the interior of a church with stained windows.
a small church with a steeple and a sign that 
says "catholic church ".
a church with a stone roof and a graveyard.
a white church with a steeple and a blue sky.
a white church with a steeple and steps.

Interior of a spacious church featuring wooden pews, 
stained glass windows, and a decorative altar at end.
a tall stone church with a pointed steeple and multiple 
spires, surrounded by a graveyard with weathered 
tombstones.
a white church with a steeple, surrounded by dark 
clouds, with light one side of the building.

a stereo system with a record player.
a stereo system with a cassette player and a 
radio.
a blue cassette player with headphones 
and a microphone.
a silver portable cassette 
player with earphones.
the interior of a car with a radio and dash
a car radio with a digital display and buttons

the stereo system is in the floor of the computer 
room.
the radio is a stereo system that can be used to 
record or record a player.
the boombox is a compact cassette player that 
can be used as a microphone.
sony's original sony audio cassette player.
the radio is a compact car that can be used as a 
radio.

a stereo system with two large speakers, a display 
panel in the center, and a remote control beside it.
a vintage boombox with a cassette tape deck and 
speakers, featuring various buttons and a handle on 
top.
car dashboard displaying radio and climate control 
buttons, air vents above, and a textured surface around 
the controls

Cond-Vendiα=1 = 10.9

Info-Vendiα=1 = 3.28

Cond-Vendiα=1 = 13.10

Info-Vendiα=1 = 3.98Evaluated Scores:
Cond-Vendiα=1 = 4.09

Info-Vendiα=1 = 2.28

Figure 7: Conditional-Vendi and Information-Vendi of image-captioning models for 3 image types

7 CONCLUSION

In this work, we proposed an evaluation score to measure the internal diversity of prompt-based
generative models, isolating diversity that is not induced by variations in text prompts. The pro-
posed method is based on a decomposition of unconditional matrix-based entropy scores, Vendi and
RKE, into Conditional-Vendi and Information-Vendi components. From a theoretical perspective,
we derived the kernel-based statistics estimated by these scores and demonstrated their connection
to the expectation of unconditional entropy values given a fixed text prompt. In our experiments, we
evaluated the proposed scores in multiple settings where the ground-truth ranking of model diversity
and relevance was known, showing that the scores correlate well with the ground-truth rankings. A
future direction is to apply the proposed scores to quantify biases in existing models regarding sam-
ple generation across different human ethnicities and genders. Additionally, using these scores as
a regularization penalty to train more diverse prompt-based models is another interesting area for
further exploration.
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A PROOFS

A.1 PROOF OF PROPOSITION 1

First, we observe that for every x, x′ ∈ X and t, t′ ∈ T , the following holds:

ϕX,T ([x, t])
⊤ϕX,T ([x

′, t′]) =
(
ϕX(x)⊗ ϕT (t)

)⊤(
ϕX(x′)⊗ ϕT (t

′)
)

=
(
ϕX(x)⊤ϕX(x′)

)
⊗

(
ϕT (t)

⊤ϕT (t
′)
)

= kX(x, x′)⊗ kT (t, t
′)

= kX(x, x′)kT (t, t
′)

Therefore, the Hadamard product of kernel matrices 1
nKX ⊙KT can be written as

1

n
KX ⊙KT =

1

n
ΦX,TΦ

⊤
X,T

in terms of the matrix of samples’ feature maps ΦX,T ∈ Rn×dxdt with its ith row being
ϕX,T ([xi, ti]). We observe that the matrices 1

nΦX,TΦ
⊤
X,T and 1

nΦ
⊤
X,TΦX,T share the same non-

zero eigenvalues, that are the square of the singular values of ΦX,T . Therefore, 1
nKX ⊙KT has the

same non-zero eigenvalues as the following matrix

1

n
Φ⊤

X,TΦX,T =
1

n

n∑
i=1

ϕX,T ([xi, ti])ϕX,T ([xi, ti])
⊤

which is the defined matrix ĈX,T . Therefore, the proof of the proposition is complete.

A.2 PROOF OF COROLLARY 1

As we showed in Proposition 1, the Hadarmard product 1
nKX ⊙ KT shares the same non-zero

eigenvalues with ĈX,T . Also, as noted by Jalali et al. (2023), 1
nKX and 1

nKT have the same non-
zero eigenvalues as of ĈX and ĈT , respectively. Since the order-α matrix-based entropy is only a
function of the input matrix’s non-zero eigenvalues (zero eigenvalues have no impact on the entropy
value), we can conclude that

Hα(X|T ) := Hα

( 1
n
KX ⊙KT

)
−Hα(

1

n
KT )

= Hα(ĈX,T )−Hα(ĈT ),

and also

Iα(X;T ) := Hα

( 1
n
KX

)
+Hα

( 1
n
KT

)
−Hα

( 1
n
KX ⊙KT

)
= Hα(ĈX) +Hα(ĈT )−Hα(ĈX,T ).

A.3 PROOF OF THEOREM 1

To prove Theorem 1, we begin by showing the following lemma.
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Lemma 1. Suppose that the kernel function k and variable T satisfy the assumptions in Theorem 1.
Then, the following Frobenius norm bound holds for Ci = E

[
ϕX(x)ϕX(x)⊤|G = i

]
where G ∈

{1, . . . ,m} is the cluster random variable for text T :

∥∥∥CX⊗T −
m∑
i=1

ωiCi ⊗ ϕT (µi)ϕT (µi)
⊤
∥∥∥2
F
≤

∑m
i=1 2ωiσ

2
i

σ2
.

Proof. To show this lemma, we define Ti as a variable distributed as PT |G=i. Then,

∥∥∥CX⊗T −
m∑
i=1

ωiCi ⊗ ϕ(µi)ϕ(µi)
⊤
∥∥∥2
F

=
∥∥∥E[ϕX(x)ϕX(x)⊤ ⊗ ϕT (t)ϕT (t)

⊤]− m∑
i=1

ωiCi ⊗ ϕ(µi)ϕ(µi)
⊤
∥∥∥2
F

=
∥∥∥ m∑
i=1

ωiE
[
ϕX(x)ϕX(x)⊤ ⊗ ϕT (t)ϕT (t)

⊤∣∣G = i
]
−

m∑
i=1

ωiCi ⊗ ϕ(µi)ϕ(µi)
⊤
∥∥∥2
F

=
∥∥∥ m∑
i=1

ωiE
[
ϕX(x)ϕX(x)⊤ ⊗ ϕT (t)ϕT (t)

⊤∣∣G = i
]
−

m∑
i=1

ωiE
[
ϕX(x)ϕX(x)⊤ ⊗ ϕT (µi)ϕT (µi)

⊤∣∣G = i
]∥∥∥2

F

=
∥∥∥ m∑
i=1

ωiE
[
ϕX(x)ϕX(x)⊤ ⊗

(
ϕT (t)ϕT (t)

⊤ − ϕT (µi)ϕT (µi)
⊤
)∣∣G = i

]∥∥∥2
F

(a)

≤
m∑
i=1

ωiE
[∥∥∥ϕX(x)ϕX(x)⊤ ⊗

(
ϕT (t)ϕT (t)

⊤ − ϕT (µi)ϕT (µi)
⊤
)∥∥∥2

F

∣∣G = i
]

(b)
=

m∑
i=1

ωiE
[∥∥∥ϕX(x)ϕX(x)⊤

∥∥∥2
F

∥∥∥ϕT (t)ϕT (t)
⊤ − ϕT (µi)ϕT (µi)

⊤
∥∥∥2
F

∣∣G = i
]

(c)
=

m∑
i=1

ωiE
[∥∥∥ϕT (t)ϕT (t)

⊤ − ϕT (µi)ϕT (µi)
⊤
∥∥∥2
F

∣∣G = i
]

(d)
=

m∑
i=1

ωiE
[
2− 2 exp

(−∥t− µi∥22
σ2

)∣∣G = i
]

(e)

≤
m∑
i=1

ωi

[
2− 2 exp

(−E[∥t− µi∥22
∣∣G = i

]
σ2

)]
(f)

≤
m∑
i=1

ωi

[
2− 2 exp

(−σ2
i

σ2

)]
(g)

≤
m∑
i=1

2ωi
σ2
i

σ2

In the above, (a) follows from Jensen’s inequality for the convex Frobenius-norm-squared function.
(b) holds because ∥A ⊗ B∥2F = ∥A∥2F ∥B∥2F for every matrices A, B. (c) comes from the nor-
malized Gaussian kernel satisfying ⟨ϕT (t), ϕT (t)⟩ = k(t, t) = 1, resulting in ∥ϕT (t)ϕT (t)

⊤∥2F =
Tr

(
ϕT (t)ϕT (t)

⊤ϕT (t)ϕT (t)
⊤) = Tr

(
ϕT (t)ϕT (t)

⊤) = 1. (d) follows from the Gaussian kernel
definition, proving that ϕT (t)

⊤ϕT (µi) = exp
(
−∥t − µi∥22/2σ2

)
. (e) shows the application of

Jensen’s inequality to the concave s(z) = 1 − exp(−z). (f) holds because s(z) = 1 − exp(−z) is
a monotonically increasing function. Finally, (g) follows from the inequality 1 − exp(−z) ≤ z for
every scalar z. Therefore, the proof is complete.
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Next, we apply the Gram–Schmidt process to ϕT (µ1), . . . , ϕT (µm) to find orthogonal vectors
u1, . . . , um. We let u1 = ϕT (µ1). Then, for every 2 ≤ i ≤ m, we define

ui :=ϕ(µi)−
i−1∑
j=1

⟨ϕ(µi), uj⟩uj .

As a result, the following holds∥∥∥ m∑
i=1

ωiCi ⊗ ϕ(µi)ϕ(µi)
⊤ −

m∑
i=1

ωiCi ⊗ uiu
⊤
i

∥∥∥2
F

=
∥∥∥ m∑
i=1

ωiCi ⊗
(
ϕ(µi)ϕ(µi)

⊤ − uiu
⊤
i

)∥∥∥2
F

(h)

≤
m∑
i=1

ωi

∥∥∥Ci ⊗
(
ϕ(µi)ϕ(µi)

⊤ − uiu
⊤
i

)∥∥∥2
F

=

m∑
i=1

ωi

∥∥∥Ci

∥∥∥2
F

∥∥∥ϕ(µi)ϕ(µi)
⊤ − uiu

⊤
i

∥∥∥2
F

(i)

≤
m∑
i=1

ωi

∥∥∥ϕ(µi)ϕ(µi)
⊤ − uiu

⊤
i

∥∥∥2
F

(j)
=

m∑
i=1

ωi

(
1 + ∥ui∥4 − 2

(
u⊤
i ϕT (µi)

)2)
≤

m∑
i=1

ωi

(
2− 2

(
u⊤
i ϕ(µi)

)2)
=2

m∑
i=1

ωi

(
1 + u⊤

i ϕ(µi)
)(

1− u⊤
i ϕ(µi)

)
(k)

≤ 4

m∑
i=1

i−1∑
j=1

ωi exp
(−∥µi − µj∥22

σ2

)
.

Here, (h) follows from the application of Jensen’s inequality for the convex Frobenius-norm-squared.
(i) holds since the text kernel is normalized and ⟨ϕX(x), ϕX(x)⟩ = kX(x, x) = 1, and therefore
∥Ci∥F ≤ E[∥ϕX(x)∥22] = 1. (j) follows from the expansion ∥uu⊤ − vv⊤∥2F = ∥u∥42 + ∥v∥42 −
2⟨u, v⟩2. (k) holds because u⊤

i ϕT (µi) ≤ 1 and

u⊤
i ϕT (µi) = 1−

i−1∑
j=1

⟨ϕT (µi), uj⟩2 ≥ 1−
i−1∑
j=1

exp
(−∥µi − µj∥22

σ2

)
.

Since we know that for every matrices A,B ∈ Rd×d, ∥A + B∥2F ≤ 2∥A∥2F + 2∥B∥2F , the above
results show that∥∥∥CX⊗T −

m∑
i=1

ωiCi ⊗ uiu
⊤
i

∥∥∥2
F
≤

m∑
i=1

4ωi
σ2
i

σ2
+

m∑
i=2

i−1∑
j=1

8ωi exp
(−∥µi − µj∥22

σ2

)
.

As a result, the Hoffman-Wielandt inequality shows that for the sorted eigenvalues vector λ of
CX⊗T and sorted eigenvalues vector λ̃ of

∑m
i=1 ωiCi ⊗ uiu

⊤
i the following holds:

∥∥λ− λ̃
∥∥2
2
≤

∥∥∥CX⊗T −
m∑
i=1

ωiCi ⊗ uiu
⊤
i

∥∥∥2
F

≤
m∑
i=1

4ωi
σ2
i

σ2
+

m∑
i=2

i−1∑
j=1

8ωi exp
(−∥µi − µj∥22

σ2

)
.
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Since u1, . . . , um are orthogonal vectors, the definition of Kronecker product implies that the
eigenvalues of

∑m
i=1 ωiCi ⊗ uiu

⊤
i will be the union of the eigenvalues of ωiCi ⊗ uiu

⊤
i over

i ∈ {1, . . . ,m}. On the other hand, we know that the non-zero eigenvalues of ωiCi ⊗ uiu
⊤
i

will be equal to the factor ωi∥ui∥22 times the eigenvalues of Ci. Also, we know that 1 ≥
∥ui∥22 ≥ 1 − 2

∑i−1
j=1 exp(−

∥µi−µj∥2
2

σ2 ). Consequently, we can show that for vector λ̂x⊗t =

Union
(
ωi Eigs(Ci) : i ∈ {1, . . . ,m}

)
, we have the following for every α ≥ 2 and defined in-

creasing function g in Theorem 1∣∣∣H̃α(X,T )− 1

1− α
log

(
∥λ̂x⊗t∥αα

)∣∣∣ ≤ g
(
∥λ̃x⊗t∥α − ∥λ̂x⊗t∥α

)
≤ g

(
∥sort

(
λ̃x⊗t

)
− sort

(
λ̂x⊗t

)
∥α

)
≤ g

(
∥sort

(
λ̃x⊗t

)
− sort

(
λ̂x⊗t

)
∥2
)

≤ g
( m∑
i=1

4ωi
σ2
i

σ2
+

m∑
i=2

i−1∑
j=1

16ωi exp
(−∥µi − µj∥22

σ2

))
.

Note that the above proof holds for every marginal distribution on X , and we choose a deterministic
constant X = 0, then the joint entropy reduces to the marginal entropy and the above inequality
also shows the following:

∣∣∣H̃α(T )−
1

1− α
log

(
∥[ω1, . . . , ωm]∥αα

)∣∣∣ ≤ g
( m∑
i=1

4ωi
σ2
i

σ2
+

m∑
i=2

i−1∑
j=1

16ωi exp
(−∥µi − µj∥22

σ2

))
.

Therefore, following the Triangle inequality and the definition H̃α(X|T ) = H̃α(X,T ) − H̃α(T ),
the previous two inequalities prove that

∣∣∣H̃α(X|T )−
( 1

1− α
log

(
∥λ̂x⊗t∥αα

)
− 1

1− α
log

(
∥[ω1, . . . , ωm]∥αα

))∣∣∣
≤ 2g

( m∑
i=1

4ωi
σ2
i

σ2
+

m∑
i=2

i−1∑
j=1

16ωi exp
(−∥µi − µj∥22

σ2

))
.

On the other hand, we can simplify the above expression as

1

1− α
log

(
∥λ̂x⊗t∥αα

)
− 1

1− α
log

(
∥[ω1, . . . , ωm]∥αα

)
=

1

1− α
log

( m∑
i=1

ωα
i ∥λCi

∥αα
)
− 1

1− α
log

( m∑
i=1

ωα
i

)
=

1

1− α
log

( m∑
i=1

ωα
i∑m

j=1 ω
α
j

∥λCi∥αα
)

Note that the definition fα(t) = exp((1− α)t) implies that f−1
α (z) = 1

1−α log(z), which connects
to the entropy definition as H(X|G = i) = f−1

α (∥λCi
∥αα). As a result, we can combine the previous

two equations and complete the proof as:

∣∣∣H̃α(X|T )− f−1
α

( m∑
i=1

ωα
i∑m

j=1 ω
α
j

fα
(
H̃α(X|G = i)

))∣∣∣
≤ 2g

( m∑
i=1

4ωi
σ2
i

σ2
+

m∑
i=2

i−1∑
j=1

16ωi exp
(−∥µi − µj∥22

σ2

))
.
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Caption Mode #1

A modern day bathroom with a unusual sink.

A bathroom with a sink and a toilet.

A small little bathroom with a toilet in it.

A bathroom with a sink, paper roll, toilet and mirror.

A bathroom with a toilet a bath tub and a sink.

A white toilet sitting inside of a bathroom.

A bathroom with an enclosed toilet and a large sink.

A small bathroom stall with a toilet and wash basin.

Caption Mode #2

A close up of a plate of food containing broccoli.

A man eating a slice of pizza next to food stands.

A table prepared with food is seen in this image.

A plate filled with different food on a table.

Table full of hot dogs, ribs and other party food.

A plate of food, including a sandwich and salad.

There are many plates of foods on this table.

Plates of food placed on a colorful bed.
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Figure 8: Substituting images generated from models trained on MS-COCO dataset.

B ADDITIONAL NUMERICAL RESULTS

B.1 CORRELATION BETWEEN PROMPTS AND GENERATED OUTPUT

To measure the correlation between text and image using Information-Vendi, we used MS-COCO
captions to generate images with Stable Diffusion XL and Flux. We gradually substituted the gen-
erated images with random ones for the same prompts at different substitution rates. As the substi-
tution rate increased, the correlation between the text and image pairs decreased. In Figure 8, we
measured Information-Vendi at various substitution rates and observed that as the substitution rate
increased, Information-Vendi decreased, demonstrating that our score can successfully measure the
correlation between text and image. Unlike other correlation metrics, such as CLIPScore, which
require the same embedding for both text and image, our method places no such restriction. This
allows for the use of different embeddings for text and image. Furthermore, our approach can be
easily generalized to other conditional models, such as text-to-text or text-to-video generation.

B.2 MEASURING CONDITIONAL-VENDI ACROSS PROMPT TYPES

In this section, we conducted additional experiments similar to those in Figure 5. We created 5,000
prompts across different categories using GPT4o and generated corresponding images with text-to-
image models. We reported Conditional-Vendi for the top 3 groups in the text data on PixArt-α,
Stable Diffusion XL text-to-image generative models.

As shown in Figure 9, Figure 10 and Figure 11, we observed the same behavior during these ex-
periments: the Conditional-Vendi score for ”dog” prompts was significantly higher than for the
”airplane” and ”sofa” categories. This observation suggests that the outputs of generative models
are unbalanced when presented with different groups of text prompts.

B.3 QUANTIFYING MODEL-INDUCED DIVERSITY VIA CONDITIONAL-VENDI.

In this section, we provided a more detailed version of Figure 3. As shown in Figure 12, we found
that Conditional-Vendi increased at a more rapid rate when the prompts did not specify the type of
animal in the picture. In contrast, when the animal types were specified in the prompts, there was
only a slight increase in the Conditional-Vendi score.

B.4 ADDITIONAL NUMERICAL EVALUATION OF THE CONDITIONAL-VENDI SCORE

To further experiment the correlation between the intrinsic model diversity and the defined
Conditional-Vendi score, we have performed experiments of quantifying the diversity scores for
unspecified and type-specified prompts when generating data from standard text-to-image models.
To conduct an extensive evaluation of the Conditional-Vendi score, we performed the experiments
on the nine combinations of three category types, 1) animals, 2) fruits, 3) objects, and three SOTA
text-to-image generation models SDXL, Kandinsky, and PixArt-Σ Chen et al. (2024a). In each
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Mode #1 Mode #2 Mode #3

Caption Mode #1

A big airplane is descending above the clouds.
An old airplane is ascending on the runway.

A massive airplane is ascending at sunset.
A modern airplane is hovering in a storm.

An old airplane is soaring over the desert.

A quiet airplane is gliding at sunset.
A new airplane is cruising through the mountains.

An airplane is maneuvering on the runway.

Caption Mode #2

A happy dog is walking in the mountains.

A friendly dog is jumping on a sunny day.

A furry dog is digging in the forest.
A sleepy dog is barking on the beach.

A sleepy dog is sleeping on a sunny day.
A playful dog is walking in the snow.

A curious dog is playing in the park.

An energetic dog is chasing on the street.

Caption Mode #3

A large sofa is positioned near the window.

A luxurious sofa is resting near the window.

A stylish sofa is placed in the bedroom.
A soft sofa is standing in the bedroom.

A vintage sofa is positioned in the corner.
A large sofa is placed in the living room.

An old sofa is resting in the living room.

A cozy sofa is arranged in the hallway.

Conditional-Vendi
exp(Hα(X|G=i))

Cond-Vendiα=1= 77.31

Cond-RKE (Vendiα=2)= 5.59

Cond-Vendiα=1= 197.32

Cond-RKE (Vendiα=2)= 8.47

Cond-Vendiα=1= 108.28

Cond-RKE (Vendiα=2)= 6.79

Figure 9: Quantifying image diversity for different clusters of text prompts. Images are generated
using the Stable Diffusion XL model.

Mode #1 Mode #2 Mode #3

Caption Mode #1

A big airplane is descending above the clouds.
An old airplane is ascending on the runway.

A massive airplane is ascending at sunset.
A modern airplane is hovering in a storm.

An old airplane is soaring over the desert.

A quiet airplane is gliding at sunset.
A new airplane is cruising through the mountains.

An airplane is maneuvering on the runway.

Caption Mode #2

A happy dog is walking in the mountains.

A friendly dog is jumping on a sunny day.

A furry dog is digging in the forest.
A sleepy dog is barking on the beach.

A sleepy dog is sleeping on a sunny day.
A playful dog is walking in the snow.

A curious dog is playing in the park.

An energetic dog is chasing on the street.

Caption Mode #3

A large sofa is positioned near the window.

A luxurious sofa is resting near the window.

A stylish sofa is placed in the bedroom.
A soft sofa is standing in the bedroom.

A vintage sofa is positioned in the corner.
A large sofa is placed in the living room.

An old sofa is resting in the living room.

A cozy sofa is arranged in the hallway.

Conditional-Vendi
exp(Hα(X|G=i))

Cond-Vendiα=1= 21.29

Cond-RKE (Vendiα=2)= 3.07

Cond-Vendiα=1= 82.81

Cond-RKE (Vendiα=2)= 6.35

Cond-Vendiα=1= 36.85

Cond-RKE (Vendiα=2)= 4.16

Figure 10: Quantifying image diversity for different clusters of text prompts. Images are generated
using the PixArt-α model.

of the nine experiments, we generated prompts on 10 different types related to each category and
created image samples by inputting the prompts to the text-to-image model. In each experiment,
we simulated 10 prompt-based generative models by considering image samples from j types for
j ∈ {1, . . . , 10}.
In addition, given the original prompts specifying the type of category in the image, we compared
the Vendi and Conditional-Vendi scores among the three text-to-image models. Figures ??? show
the comparison between the scores of the three models, which suggest the higher intrinsic diversity
measure by Conditional-Vendi for the SD-XL and PixArt-Σ models.
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Mode #1 Mode #2 Mode #3

Caption Mode #1

A big airplane is descending above the clouds.
An old airplane is ascending on the runway.

A massive airplane is ascending at sunset.
A modern airplane is hovering in a storm.

An old airplane is soaring over the desert.

A quiet airplane is gliding at sunset.
A new airplane is cruising through the mountains.

An airplane is maneuvering on the runway.

Caption Mode #2

A happy dog is walking in the mountains.

A friendly dog is jumping on a sunny day.

A furry dog is digging in the forest.
A sleepy dog is barking on the beach.

A sleepy dog is sleeping on a sunny day.
A playful dog is walking in the snow.

A curious dog is playing in the park.

An energetic dog is chasing on the street.

Caption Mode #3
A wide river is cascading in the forest.

A shallow river is streaming in the forest.

A raging river is streaming in the forest.

A wide river is surging in the canyon.

A muddy river is streaming by the mountains.

A swift river is flowing by the city.

A wide river is trickling through the jungle.

A wide river is cascading under the bridge.

Conditional-Vendi
exp(Hα(X|G=i))

Cond-Vendiα=1= 70.81

Cond-RKE (Vendiα=2)= 8.83

Cond-Vendiα=1= 93.17

Cond-RKE (Vendiα=2)= 11.07

Cond-Vendiα=1= 84.82

Cond-RKE (Vendiα=2)= 9.86

Figure 11: Quantifying image diversity for different clusters of text prompts. Images are generated
using the Flux model.

B.5 CORRELATION BETWEEN GROUNDTRUTH-CLUSTER-VENDI AND CONDITIONAL-VENDI
SCORES

To validate the theoretical connection between the Vendi and Conditional-Vendi scores, we per-
formed an experiment and evaluated a baseline metric called GroundTruth-Cluster-Vendi score. To
measure the GroundTruth-Cluster-Vendi score, we utilize the side knowledge of the ground-truth
clusters of the input prompts and then compute and average the regular Vendi scores for the data
generated within each cluster. Mathematically, given t sample cluster sets in S = {S1, . . . , St},
which partition the input text indices {1, . . . , n}, we define the Cluster-Vendi score as follows,
where |Sj | denotes the cardinality of subset Sj :

Cluster-Vendi
(
x1, . . . , xn | S

)
:=

t∑
i=1

|Si|
n
·Vendi

({
xj : j ∈ Si

})
.

Note that the above definition requires the knowledge of the clusters, which could be given by an
oracle in the case of the GroundTruth-Cluster-Vendi score, or computed by a clustering algorithm
such as K-Means to obtain the KMeans-Cluster-Vendi score. Observe that given the knowledge of
the clusters revealed by an oracle, the GroundTruth-Cluster-Vendi score is a sensible definition of
internal model diversity, which, as shown in Theorem 1, is expected to correlate with our defined
Conditional-Vendi score.

In the numerical settings of the previous section, where we know the ground-truth clusters based
on the type of animal, fruit, or object in the texts, we computed the value of the GroundTruth-
Cluster-Vendi score and compared it with the evaluated Conditional-Vendi score. As demonstrated
in Figures 22, the two diversity scores, Conditional-Vendi and GroundTruth-Cluster-Vendi, highly
correlate for the ten simulated generative models in the experiments.

However, note that in a real-world scenario, we do not have access to the ground-truth clusters.
To estimate the score, we should use a clustering algorithm such as K-Means to find the clusters
and compute the Cluster-Vendi score. We note that the optimization problem addressed by stan-
dard clustering algorithms represents a challenging non-convex optimization, which, depending on
the algorithm’s initial point, could converge to different solutions. Our numerical results with the
K-Means clustering algorithm in Figure 23 also demonstrated these clustering challenges and, in
several cases, failed to find the ground-truth clusters with high accuracy.
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Prompts:

An animal is rolling in the grass.

An animal resting near a sand dune.

An animal is drinking from a river.

An animal is resting under a tree.

An animal is resting in a grassy pasture.

An animal is walking through jungle.

An animal is reaching up for leaves.

Prompts:

A fox is rolling in the grass.

A camel is resting near a sand dune.

A wolf is drinking from a river.

A cow is resting under a tree.

A sheep is resting in a grassy pasture.

An elephant is walking through thick jungle.

A giraffe is reaching up for leaves.

Unspecified animal prompts Type-specified animal prompts

Prompts:

An animal is rolling in the grass.

An animal resting near a sand dune.

An animal is drinking from a river.

An animal is resting under a tree.

An animal is resting in a grassy pasture.

An animal is walking through jungle.

An animal is reaching up for leaves.

Prompts:

A fox is rolling in the grass.

A camel is resting near a sand dune.

A wolf is drinking from a river.

A cow is resting under a tree.

A sheep is resting in a grassy pasture.

An elephant is walking through thick jungle.

A giraffe is reaching up for leaves.

Unspecified animal prompts Type-specified animal prompts

Model 2:

Samples from 2 animal groups

Model 4:

Samples from 4 animal groups

Model 8:

Samples from 8 animal groups

Figure 12: Comparing Conditional-Vendi with Vendi on different animal groups generated by Stable
Diffusion-XL.

B.6 ALGORITHM FOR COMPUTING CONDITIONAL-VENDI AND INFORMATION-VENDI

In this section, we present the algorithm to compute the Conditional-Vendi and Information-Vendi
scores. Using the definition provided in Section 4, combined with the entropy definition in equa-
tion 3, we calculate the Conditional-Vendi score. The steps are outlined in Algorithm 1.

B.7 QUALITATIVE RESULTS FOR GENERATIVE MODELS TRAINED ON MS-COCO DATASET

In this section, we provide images and prompts corresponding to Figure 4. Figure 25 illustrates
three clusters obtained by applying KMeans to cluster MS-COCO validation set prompts into 1000
clusters. The images are presented for four generative models. Comparing the prompts with the
generated images reveals that FLUX exhibits the highest alignment between text and image, while
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Prompts:

An animal is rolling in the grass.

An animal resting near a sand dune.

An animal is drinking from a river.

An animal is resting under a tree.

An animal is resting in a grassy pasture.

An animal is walking through jungle.

An animal is reaching up for leaves.

Prompts:

A fox is rolling in the grass.

A camel is resting near a sand dune.

A wolf is drinking from a river.

A cow is resting under a tree.

A sheep is resting in a grassy pasture.

An elephant is walking through thick jungle.

A giraffe is reaching up for leaves.

Unspecified animal prompts Type-specified animal prompts

kandinksy

Prompts:

An animal is rolling in the grass.

An animal resting near a sand dune.

An animal is drinking from a river.

An animal is resting under a tree.

An animal is resting in a grassy pasture.

An animal is walking through jungle.

An animal is reaching up for leaves.

Prompts:

A fox is rolling in the grass.

A camel is resting near a sand dune.

A wolf is drinking from a river.

A cow is resting under a tree.

A sheep is resting in a grassy pasture.

An elephant is walking through thick jungle.

A giraffe is reaching up for leaves.

Unspecified animal prompts Type-specified animal prompts

kandinksy

Model 2:
Samples from 2 animal groups  

Model 4:
Samples from 4 animal groups  

Model 8:
Samples from 8 animal groups  

Figure 13: Comparing Conditional-Vendi with Vendi on different animal groups generated by
PixArtΣ.

GigaGAN demonstrates greater diversity but misses some features of the prompts. These observa-
tions are further supported by the Conditional-Vendi and Information-Vendi metrics.

B.8 EFFECT OF BANDWIDTH ON CONDITIONAL-VENDI AND INFORMATION-VENDI

To further investigate the effect of bandwidth on Conditional-Vendi and Information-Vendi, we be-
gan by selecting the image bandwidth similar to prior works Friedman & Dieng (2023); Ospanov
et al. (2024). We then measured and plotted the scores using varying text kernel bandwidths. Fig-
ure 26 demonstrates consistent rankings of the four models across different bandwidth parameters.
The results indicate that as the kernel bandwidth increases, the number of text clusters increases,
leading to a decrease in the Information-Vendi value.
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Prompts:

An animal is rolling in the grass.

An animal resting near a sand dune.

An animal is drinking from a river.

An animal is resting under a tree.

An animal is resting in a grassy pasture.

An animal is walking through jungle.

An animal is reaching up for leaves.

Prompts:

A fox is rolling in the grass.

A camel is resting near a sand dune.

A wolf is drinking from a river.

A cow is resting under a tree.

A sheep is resting in a grassy pasture.

An elephant is walking through thick jungle.

A giraffe is reaching up for leaves.

Unspecified animal prompts Type-specified animal prompts

kandinksy

Prompts:

An animal is rolling in the grass.

An animal resting near a sand dune.

An animal is drinking from a river.

An animal is resting under a tree.

An animal is resting in a grassy pasture.

An animal is walking through jungle.

An animal is reaching up for leaves.

Prompts:

A fox is rolling in the grass.

A camel is resting near a sand dune.

A wolf is drinking from a river.

A cow is resting under a tree.

A sheep is resting in a grassy pasture.

An elephant is walking through thick jungle.

A giraffe is reaching up for leaves.

Unspecified animal prompts Type-specified animal prompts

kandinksy

Model 2:
Samples from 2 animal groups  

Model 4:
Samples from 4 animal groups  

Model 8:
Samples from 8 animal groups  

Figure 14: Comparing Conditional-Vendi with Vendi on different animal groups generated by
Kandinsky.
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Prompts:

A Chair is placed under a sprawling tree.
A Sofa is glowing in the light of a nearby fire.
A Book is balancing on the edge of a table.

A Clock is positioned in an office setup.
A Lamp is sitting under a hanging light bulb.

A laptop is half-hidden behind a stack of boxes.
A car is in the corner of a large warehouse.
The cup is precariously balanced on rocks.

Unspecified object prompts Type-specified object prompts

Prompts:

An object is placed under a sprawling tree.
An object is glowing in the light of a nearby fire.

An object is balancing on the edge of a table.
An object is positioned in an office setup.

An object is sitting under a hanging light bulb.
An object is half-hidden behind a stack of boxes.
An object is in the corner of a large warehouse.
The object is precariously balanced on rocks.

pixart

Prompts:

A Chair is placed under a sprawling tree.
A Sofa is glowing in the light of a nearby fire.
A Book is balancing on the edge of a table.

A Clock is positioned in an office setup.
A Lamp is sitting under a hanging light bulb.

A laptop is half-hidden behind a stack of boxes.
A car is in the corner of a large warehouse.
The cup is precariously balanced on rocks.

Unspecified object prompts Type-specified object prompts

Prompts:

An object is placed under a sprawling tree.
An object is glowing in the light of a nearby fire.

An object is balancing on the edge of a table.
An object is positioned in an office setup.

An object is sitting under a hanging light bulb.
An object is half-hidden behind a stack of boxes.
An object is in the corner of a large warehouse.
The object is precariously balanced on rocks.

pixart
Model 2:

Samples from 2 fruit types  
Model 4:

Samples from 4 fruit types  
Model 8:

Samples from 8 fruit types  

Figure 15: Comparing Conditional-Vendi with Vendi on different fruit types generated by Stable
Diffusion-XL.
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Prompts:

An apple is next to a cold glass of fresh juice.
A banana is being sliced with a sharp knife.

The watermelon is blended into a smoothie.
The pineapple is falling out of a grocery bag.

A strawberry is being washed.
The peach is sitting on a kitchen countertop.

A cherry is being sliced with a knife.
A mango is sitting on a colorful plate.

Unspecified fruit prompts Type-specified fruit prompts

Prompts:

A fruit is next to a cold glass of fresh juice.
A fruit is being sliced with a sharp knife.

The fruit is blended into a smoothie.
The fruit is falling out of a grocery bag.

A fruit is being washed.
The fruit is sitting on a kitchen countertop.

A fruit is being sliced with a knife.
A fruit is sitting on a colorful plate.

kandinsky

Prompts:

An apple is next to a cold glass of fresh juice.
A banana is being sliced with a sharp knife.

The watermelon is blended into a smoothie.
The pineapple is falling out of a grocery bag.

A strawberry is being washed.
The peach is sitting on a kitchen countertop.

A cherry is being sliced with a knife.
A mango is sitting on a colorful plate.

Unspecified fruit prompts Type-specified fruit prompts

Prompts:

A fruit is next to a cold glass of fresh juice.
A fruit is being sliced with a sharp knife.

The fruit is blended into a smoothie.
The fruit is falling out of a grocery bag.

A fruit is being washed.
The fruit is sitting on a kitchen countertop.

A fruit is being sliced with a knife.
A fruit is sitting on a colorful plate.

kandinskyModel 2:
Samples from 2 fruit types  

Model 4:
Samples from 4 fruit types  

Model 8:
Samples from 8 fruit types  

Figure 16: Comparing Conditional-Vendi with Vendi on different fruit types generated by Kandin-
sky.
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Prompts:

An apple is next to a cold glass of fresh juice.
A banana is being sliced with a sharp knife.

The watermelon is blended into a smoothie.
The pineapple is falling out of a grocery bag.

A strawberry is being washed.
The peach is sitting on a kitchen countertop.

A cherry is being sliced with a knife.
A mango is sitting on a colorful plate.

Unspecified fruit prompts Type-specified fruit prompts
Prompts:

A fruit is next to a cold glass of fresh juice.
A fruit is being sliced with a sharp knife.

The fruit is blended into a smoothie.
The fruit is falling out of a grocery bag.

A fruit is being washed.
The fruit is sitting on a kitchen countertop.

A fruit is being sliced with a knife.
A fruit is sitting on a colorful plate.

pixart

Prompts:

An apple is next to a cold glass of fresh juice.
A banana is being sliced with a sharp knife.

The watermelon is blended into a smoothie.
The pineapple is falling out of a grocery bag.

A strawberry is being washed.
The peach is sitting on a kitchen countertop.

A cherry is being sliced with a knife.
A mango is sitting on a colorful plate.

Unspecified fruit prompts Type-specified fruit prompts
Prompts:

A fruit is next to a cold glass of fresh juice.
A fruit is being sliced with a sharp knife.

The fruit is blended into a smoothie.
The fruit is falling out of a grocery bag.

A fruit is being washed.
The fruit is sitting on a kitchen countertop.

A fruit is being sliced with a knife.
A fruit is sitting on a colorful plate.

pixart
Model 2:

Samples from 2 fruit types  
Model 4:

Samples from 4 fruit types  
Model 8:

Samples from 8 fruit types  

Figure 17: Comparing Conditional-Vendi with Vendi on different fruit types generated by PixArt-Σ.
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Prompts:

A Chair is placed under a sprawling tree.
A Sofa is glowing in the light of a nearby fire.
A Book is balancing on the edge of a table.

A Clock is positioned in an office setup.
A Lamp is sitting under a hanging light bulb.

A laptop is half-hidden behind a stack of boxes.
A car is in the corner of a large warehouse.
The cup is precariously balanced on rocks.

Unspecified object prompts Type-specified object prompts

Prompts:

An object is placed under a sprawling tree.
An object is glowing in the light of a nearby fire.

An object is balancing on the edge of a table.
An object is positioned in an office setup.

An object is sitting under a hanging light bulb.
An object is half-hidden behind a stack of boxes.
An object is in the corner of a large warehouse.
The object is precariously balanced on rocks.

sdxl

Prompts:

A Chair is placed under a sprawling tree.
A Sofa is glowing in the light of a nearby fire.
A Book is balancing on the edge of a table.

A Clock is positioned in an office setup.
A Lamp is sitting under a hanging light bulb.

A laptop is half-hidden behind a stack of boxes.
A car is in the corner of a large warehouse.
The cup is precariously balanced on rocks.

Unspecified object prompts Type-specified object prompts

Prompts:

An object is placed under a sprawling tree.
An object is glowing in the light of a nearby fire.

An object is balancing on the edge of a table.
An object is positioned in an office setup.

An object is sitting under a hanging light bulb.
An object is half-hidden behind a stack of boxes.
An object is in the corner of a large warehouse.
The object is precariously balanced on rocks.

sdxl
Model 2:

Samples from 2 object categories  
Model 4:

Samples from 4 object categories 
Model 8:

Samples from 8 object categories 

Figure 18: Comparing Conditional-Vendi with Vendi on different fruit types generated by Stable
Diffusion-XL.
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Prompts:

A Chair is placed under a sprawling tree.
A Sofa is glowing in the light of a nearby fire.
A Book is balancing on the edge of a table.

A Clock is positioned in an office setup.
A Lamp is sitting under a hanging light bulb.

A laptop is half-hidden behind a stack of boxes.
A car is in the corner of a large warehouse.
The cup is precariously balanced on rocks.

Unspecified object prompts Type-specified object prompts

Prompts:

An object is placed under a sprawling tree.
An object is glowing in the light of a nearby fire.

An object is balancing on the edge of a table.
An object is positioned in an office setup.

An object is sitting under a hanging light bulb.
An object is half-hidden behind a stack of boxes.
An object is in the corner of a large warehouse.
The object is precariously balanced on rocks.

kandinsky

Prompts:

A Chair is placed under a sprawling tree.
A Sofa is glowing in the light of a nearby fire.
A Book is balancing on the edge of a table.

A Clock is positioned in an office setup.
A Lamp is sitting under a hanging light bulb.

A laptop is half-hidden behind a stack of boxes.
A car is in the corner of a large warehouse.
The cup is precariously balanced on rocks.

Unspecified object prompts Type-specified object prompts

Prompts:

An object is placed under a sprawling tree.
An object is glowing in the light of a nearby fire.

An object is balancing on the edge of a table.
An object is positioned in an office setup.

An object is sitting under a hanging light bulb.
An object is half-hidden behind a stack of boxes.
An object is in the corner of a large warehouse.
The object is precariously balanced on rocks.

kandinsky
Model 2:

Samples from 2 object categories  
Model 4:

Samples from 4 object categories 
Model 8:

Samples from 8 object categories 

Figure 19: Comparing Conditional-Vendi with Vendi on different object categories types generated
by Kandinsky.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Prompts:

A Chair is placed under a sprawling tree.
A Sofa is glowing in the light of a nearby fire.
A Book is balancing on the edge of a table.

A Clock is positioned in an office setup.
A Lamp is sitting under a hanging light bulb.

A laptop is half-hidden behind a stack of boxes.
A car is in the corner of a large warehouse.
The cup is precariously balanced on rocks.

Unspecified object prompts Type-specified object prompts

Prompts:

An object is placed under a sprawling tree.
An object is glowing in the light of a nearby fire.

An object is balancing on the edge of a table.
An object is positioned in an office setup.

An object is sitting under a hanging light bulb.
An object is half-hidden behind a stack of boxes.
An object is in the corner of a large warehouse.
The object is precariously balanced on rocks.

pixart

Prompts:

A Chair is placed under a sprawling tree.
A Sofa is glowing in the light of a nearby fire.
A Book is balancing on the edge of a table.

A Clock is positioned in an office setup.
A Lamp is sitting under a hanging light bulb.

A laptop is half-hidden behind a stack of boxes.
A car is in the corner of a large warehouse.
The cup is precariously balanced on rocks.

Unspecified object prompts Type-specified object prompts

Prompts:

An object is placed under a sprawling tree.
An object is glowing in the light of a nearby fire.

An object is balancing on the edge of a table.
An object is positioned in an office setup.

An object is sitting under a hanging light bulb.
An object is half-hidden behind a stack of boxes.
An object is in the corner of a large warehouse.
The object is precariously balanced on rocks.

pixart
Model 2:

Samples from 2 object categories  
Model 4:

Samples from 4 object categories 
Model 8:

Samples from 8 object categories 

Figure 20: Comparing Conditional-Vendi with Vendi on different object categories types generated
by PixArt-Σ.
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Figure 21: Evaluated (unconditional) Vendi and Conditional-Vendi scores of three text-to-image
models in the category-based experiments with varying number of types within each of the cate-
gories: Animals, Fruits, Objects.
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Figure 22: Comparing the Correlation of Conditional-Vendi with Groundtruth-Cluster-Vendi.
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Figure 23: Comparing the Correlation of KMeans-Conditional-Vendi with Groundtruth-Cluster-
Vendi.
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Scores: Cond-Vendi = 5.18
Info-Vendi = 3.13

Caption Mode #1

close up video of flower petals
a leaf on a glass

the long trunks of tall trees in the forest
trees in the forest during sunny day

close up video of tree bark
reflection of tree branches

trunks of many trees in the forest
tree leaves providing shades from the sun

leaves swaying in the wind
low angle shot of baobab tree

close up video of strawberry plant
close up video of tree bark

tree with golden leaves
close up view of a plant

Caption Mode #2

curious cat sitting and looking around
a black dog wearing halloween costume

close up shot of a wild bear
a zebra eating grass on the field

a bear wearing red jersey
close up video of snail

a gorilla eating a carrot
close up of wolf

a meerkat looking around
a hyena in a zoo

lemur eating grass leaves
an owl being trained by a man

an American crocodile
close up of a lemur

Caption Mode #3

high angle shot of a clock tower
close up shot of a steel structure

an apartment building with balcony
low angle shot of a building

tower on hill
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asian historic architecture
mosque in the middle east
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Figure 24: Measuring Conditional-Vendi and Information-Vendi for text-to-video models
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Algorithm 1 Conditional-Vendi and Information-Vendi

1: Input: Sample sets {x1, . . . ,xn} and {t1, . . . , tn}, Gaussian kernel bandwidths σ2
i , σ2

t , order
α.

2: Compute kernel matrices: KX = 1
n [k(xi,xj)]n×n, KT = 1

n [k(ti, tj)]n×n

3: Perform eigendecomposition on the KX, KT and 1
nKX ⊙KT matrices:

{λX
1 , . . . , λX

n } ← Eigendecomposition(KX)

{λT
1 , . . . , λ

T
n } ← Eigendecomposition(KT)

{λX,T
1 , . . . , λX,T

n } ← Eigendecomposition(
1

n
KX ⊙KT)

4: Compute Hα(
1
nKX), Hα(

1
nKT) and Hα(

1
nKX ⊙KT) using their eigenvalues.

Hα

( 1
n
KX

)
← 1

1− α
log

( n∑
i=1

(λx
i )

α
)

Hα

( 1
n
KT

)
← 1

1− α
log

( n∑
i=1

(λT
i )

α
)

Hα

( 1
n
KX ⊙KT

)
← 1

1− α
log

( n∑
i=1

(λX,T
i )α

)
5: Compute Conditional-Vendi and Information-Vendi

Conditional-Vendiα
(
x1, . . . , xn

∣∣t1, . . . , tn) ← exp
(
Hα

( 1
n
KX ⊙KT

)
−Hα

( 1
n
KT

))
Information-Vendiα

(
x1, . , xn; t1, . , tn

)
← exp

(
Hα

( 1
n
KX

)
+Hα

( 1
n
KT

)
−Hα

( 1
n
KX⊙KT

))
6: Output: Conditional-Vendi and Information-Vendi
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Caption Mode #3
A young man riding a skateboard on a stone wall.

A man balancing on a skateboard in front of a graffiti covered wall.
A man doing a trick on a wall with a skateboard.

Bearded skateboarder maintains balance while skating up wall.
A man standing next to a stone wall while holding a skateboard.

There is a man skateboard on the side of a wall.
a guy skate boarding on the edge of a wall

A man on a skateboard is trying to jump over a wall.
two black and white skate boards under a black steel bench

Caption Mode #1
A building displaying a clock showing the time to be 6 oclock.

A clock hanging from the ceiling of a building.
A large metal green clock hanging from the side of a building.

A clock that is on top of a sign.
A large clock mounted to a brick wall.

A large clock hanging off the side of a tall building.
A clock in near the triangular roof of a large building.

A large clock and a sign on top of a building.
A large clock mounted to the side of a building.

Caption Mode #2
The elephant has a large white spot on its abdomen.

The truck driver hauls an elephant down the highway.
A man getting a kiss on the neck from an elephant's trunk

A large elephant walking next to a man
A woman in white shirt climbing onto an elephant.

A man is leaning over a fence offering food to an elephant/
A large elephant standing on the side of a lake.

A man standing next to an elephant who stole his hat with it's trunk.
A man standing near an elephant with its trunk outstretched.
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Figure 25: Effect of text kernel bandwidth on Conditional-Vendi and Information-Vendi scores

0.2 0.4 0.6 0.8 1.0
bandwidth parameter σ for text samples

100

101

102

103

C
on

di
tio

na
l-

V
en

di

GigaGAN
SDXL
Kandinsky
FLUX

0.2 0.4 0.6 0.8 1.0
bandwidth parameter σ for text samples

102

103

104

105

In
fo

rm
at

io
n-

V
en

di

GigaGAN
SDXL
Kandinsky
FLUX

Figure 26: Effect of text kernel bandwidth on Conditional-Vendi and Information-Vendi scores
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