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Abstract

In this article, we introduce audio-visual dataset distillation, a task to construct a smaller
yet representative synthetic audio-visual dataset that maintains the cross-modal seman-
tic association between audio and visual modalities. Dataset distillation techniques have
primarily focused on image classification. However, with the growing capabilities of audio-
visual models and the vast datasets required for their training, it is necessary to explore
distillation methods beyond the visual modality. Our approach builds upon the foundation
of Distribution Matching (DM), extending it to handle the unique challenges of audio-visual
data. A key challenge is to jointly learn synthetic data that distills both the modality-
wise information and natural alignment from real audio-visual data. We introduce a vanilla
audio-visual distribution matching framework that separately trains visual-only and audio-
only DM components, enabling us to investigate the effectiveness of audio-visual integration
and various multimodal fusion methods. To address the limitations of unimodal distilla-
tion, we propose two novel matching losses: implicit cross-matching and cross-modal gap
matching. These losses work in conjunction with the vanilla unimodal distribution match-
ing loss to enforce cross-modal alignment and enhance the audio-visual dataset distillation
process. Extensive audio-visual classification and retrieval experiments on four audio-visual
datasets, AVE, MUSIC-21, VGGSound, and VGGSound-10K, demonstrate the effectiveness
of our proposed matching approaches and validate the benefits of audio-visual integration
with condensed data. This work establishes a new frontier in audio-visual dataset distilla-
tion, paving the way for further advancements in this exciting field. Our source code and
pre-trained models will be released.

1 Introduction

Dataset distillation aims to learn a condensed dataset such that it retains most of the essential information
of the entire training data. Recent progress in dataset distillation techniques, such as gradient matching
(Zhao et al., 2020; Zhao & Bilen, 2021), trajectory matching (Cazenavette et al., 2022; Wu et al., 2023; Liu
et al., 2023), and distribution matching (Zhao & Bilen, 2023; Zhao et al., 2023; Wang et al., 2022) have
achieved remarkable performance on the image datasets. For example, DATM (Guo et al., 2023) achieves
lossless distillation using merely 1/5 and 1/10 original sizes of CIFAR100 (Krizhevsky et al., 2009) and
TinyImageNet (Le & Yang, 2015) respectively. However, their potential in other domains remains largely
underexplored.

With the recent advancements in audio-visual learning (Zhao et al., 2018; Tian et al., 2018; Lin et al.,
2019; Gao et al., 2018; Wei et al., 2022), the size of audio-visual datasets (Chen et al., 2020c; Xu et al.,
2016; Gemmeke et al., 2017) has significantly increased, which leads to the heavy storage and computational
cost of training on these datasets. In this work, we investigate the extension of the dataset distillation to
the audio-visual domain. Unlike image distillation (Wang et al., 2018; Cazenavette et al., 2022), audio-
visual distillation presents unique challenges: preserving complex cross-modal correlations and addressing
the complexities of high-resolution images and the additional audio modality.

Audio-visual integration has proven beneficial for various audio-visual tasks, such as audio-visual event
localization (Tian et al., 2018; Wu et al., 2019; Lin et al., 2019), audio-visual sound separation (Zhao et al.,
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Figure 1: Vanilla audio-visual dataset distillation using distribution matching (A) The synthetic audio and
visual data are learned by minimizing the distribution discrepancy between real and synthetic data in these
sampled unimodal embedding spaces. (B) Mean test accuracy plot of VGGS-10k dataset for different images
per class (IPC) settings. We observe that joint audio-visual can improve performance in data distillation.
(C) Feature distribution plot of real audio(■)-visual(●) and synthetic audio(★)-visual(✚) data for vanilla
distribution matching(DM) and Our approach. We observe that independently distilled audio-visual syn-
thetic data in DM is pulled towards their modality centers while our additional joint audio-visual losses
better cover the real distribution.

2018; Gao et al., 2018; Tian et al., 2021), and audio-visual action recognition (Kazakos et al., 2019; Zhang
et al., 2022; Nagrani et al., 2020). This success raises an important question: Is audio-visual integration still
effective when applied to distilled audio and visual data? To explore this, we propose audio-visual dataset
distillation, which aims to learn a smaller, yet representative synthetic audio-visual dataset that is useful
for audio-visual learning tasks, distilled from the original large dataset. The task is inherently challenging.
An effective audio-visual dataset distillation approach not only needs to condense data from two different
modalities, but also preserve the natural cross-modal association between them to ensure the effectiveness
of the synthetic multimodal data.

To explore this new problem, we use audio-visual event recognition as the main proxy task and build our
approach on top of Distribution Matching (DM) (Zhao & Bilen, 2023). We first propose a vanilla audio-
visual distribution matching approach in which we separately train the visual-only and audio-only DM (as
shown in Fig. 1A). This vanilla approach allows us to evaluate the effectiveness of audio-visual integration
with condensed data and analyze the impact of different multimodal fusion methods on audio-visual event
recognition performance. The results are presented in Fig. 1B, which demonstrates the advantage of joint
audio-visual integration over single audio or visual modality in audio-visual dataset distillation setting.

However, distilling audio and visual modalities independently may not effectively capture the natural inter-
play and alignment between audio-visual elements during the condensation from real to synthetic data (as
shown in Fig. 1C). And to address this limitation, we further introduce two novel matching losses: implicit
cross-matching and cross-modal gap matching. These losses align distributions between synthetic and real
data in joint spaces and work in conjunction with vanilla unimodal distribution matching loss in DM to
enhance the audio-visual data distillation process. Their combined effect ensures that the synthetic data
closely represents the real data, effectively aligning unimodal, cross-modal, and modality gap distributions,
resulting in effective audio-visual event recognition and retrieval with the synthetic data. Furthermore, we
improve the synthetic data initialization and utilize the high-resolution images (along with audio modality)
using herding-based initialization (Welling, 2009) and factor technique (Kim et al., 2022), respectively. The
herding aligns the initial synthetic data distribution with the real training data, while the factor method in-
creases the number of features helping overcome the redundancy. Our extensive experiments on four widely
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used audio-visual datasets: AVE (Tian et al., 2018), MUSIC-21 (Zhao et al., 2019), VGGSound (Chen
et al., 2020c), and VGGS-10k (Chen et al., 2020c) support the following findings: effective joint audio-visual
integration outperforms unimodal performance in audio-visual dataset distillation, implicit cross-matching
and cross-modal gap matching improves the vanilla audio-visual distribution matching by distilling the
audio-visual alignment into synthetic data, herding initialization & factor technique further helps improve
audio-visual distillation.

The contributions of our work include: 1) a novel audio-visual dataset distillation problem that aims to
compress the knowledge of large audio-visual datasets into much smaller synthetic ones. To the best of
our knowledge, this is the first work in audio-visual dataset distillation; 2) a systematical investigation into
audio-visual dataset distillation to evaluate the efficacy of condensed audio-visual data for audio-visual event
recognition; 3) two new audio-visual distribution matching losses that align distributions between synthetic
and real data in joint spaces, enforcing cross-modal alignment; and 4) extensive experiments on four audio-
visual datasets validating that audio-visual integration with synthetic data is still helpful and our approach
can outperform other dataset distillation baselines.

2 Related Work

Audio-Visual Learning. Videos consist of naturally co-occurring audio and visual signals. To exploit the
synchronized and complementary information in the two modalities, several audio-visual learning problems
have been explored, such as self-supervised representation learning (Arandjelovic & Zisserman, 2017; 2018;
Aytar et al., 2016; Lin et al., 2023; Gong et al., 2022; Owens & Efros, 2018; Hu et al., 2019), audio-visual
sound separation (Zhao et al., 2018; Gan et al., 2020; Gao et al., 2018; Tian et al., 2021; Zhou et al., 2020),
audio-visual action recognition (Zhang et al., 2022; Lee et al., 2020; Nagrani et al., 2020), audio-visual
navigation (Chen et al., 2021; 2020a;b), audio-visual event localization (Tian et al., 2018; Wu et al., 2019;
Lin et al., 2019), etc. Audio-visual integration has generally demonstrated the ability to improve model
performance compared to unimodal models in these tasks. In this work, we investigate the validity of joint
audio-visual integration in the context of dataset distillation. We employ audio-visual event recognition
(Tian et al., 2018; Lin et al., 2023) and cross-modal retrieval (Surís et al., 2018; Kushwaha & Fuentes, 2023;
Wu et al., 2023) as proxy to evaluate the effectiveness of condensed data.

Dataset Distillation. The traditional method to reduce the training set size is coreset selection (Castro
et al., 2018; Welling, 2009), which heuristically selects a subset of training data. A recent approach, dataset
distillation or condensation aims to learn a smaller dataset while still preserving the essential information
from the large training dataset. Unlike coreset selection methods, data condensation methods are not
limited by the subset of selected real data. It has been shown to benefit several tasks like efficient neural
architecture search (Zhao & Bilen, 2023; Zhao et al., 2020), continual learning (Gu et al., 2023; Sangermano
et al., 2022; Zhao et al., 2023), federated learning (Xiong et al., 2023; Huang et al., 2023), and privacy
preservation (Vinaroz & Park, 2023; Dong et al., 2022). The problem was first introduced in (Wang et al.,
2018), which learns condensed data with meta-learning techniques and has since been significantly improved
by more sophisticated techniques like gradient matching (Zhao et al., 2020), trajectory matching (Cazenavette
et al., 2022), data parameterization (Kim et al., 2022) and feature alignment (Wang et al., 2022). Most of
these methods rely on bi-level optimizations resulting in intensive computation requirements. In contrast,
distribution matching (DM) (Zhao & Bilen, 2023) avoids this bi-level optimization and condenses data
by matching the feature distribution of real and synthetic data. Recently, Wu et al. (2023) introduced
vision-language dataset distillation using joint image-text trajectory matching. However, a straightforward
extension of their method to audio-visual distillation is impractical due to differences in modality, task, and
scalability. Unlike text, audio is temporally synchronized with visual components, exhibits greater variability,
and is typically represented as spectrograms with rich, isolated time-frequency patterns. Additionally, while
they focus on instance-based retrieval, our task involves class-based tasks. This difference shifts the focus from
learning instance-wise distilled data pairs to class-wise pairing in our approach. Furthermore, their extension
of the MTT approach to instance-wise distilled data pairs struggles to scale to higher images-per-class settings
in our experiments due to increased memory requirements. In contrast, we extend training-based distillation
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baselines, moving beyond the coreset selection baselines of Wu et al. (2023). In this work, we advance dataset
distillation into audio-visual learning, concentrating on techniques that effectively condense data from both
audio and visual modalities while preserving their cross-modal associations.

3 Method

3.1 Preliminaries

In this section, we describe the problem formulation, introduce the proxy task for evaluating distilled syn-
thetic data, and revisit distribution matching for visual-only dataset distillation.

Problem Formulation. Let xai and xvi denote the audio waveform and video frame of the i-th sample,
respectively, with xavi = (xai , xvi ) and yi as the corresponding ground truth category label. Given a large
audio-visual training set T = {xavi , yi}

|T |
i=1, our audio-visual dataset distillation task aims to learn a smaller,

yet representative synthetic set S = {savi , yi}
|S|
i=1, where savi = (sai , svi ). This dataset S, with significantly

fewer samples |S| ≪ |T |, should encapsulate the essential information contained in T . The ultimate goal is
for models trained on each T and S to perform similarly on unseen test data:

E(xav,y)∼D [ℓ(ϕθT (xav), y)] ≃ E(xav,y)∼D [ℓ(ϕθS (xav), y)] ,

where D is the real test data, ℓ is the loss function (i.e. cross-entropy), ϕθ is a neural network parameterized
by θ, and ϕθT and ϕθS are networks trained on T and S respectively.

Task. Following image dataset distillation methods (Sachdeva & McAuley, 2023; Yu et al., 2023), we
use audio-visual event recognition task as a proxy to investigate the effectiveness of audio-visual dataset
distillation. The task involves predicting the event category of a short video clip, characterized by audio
waveform xa and video frame xv. We employ an audio-visual network, illustrated in Fig. 2, to integrate data
from both modalities. Specifically, the model uses a visual encoder to extract feature fv from xv and an
audio encoder extracts feature fa from the audio spectrogram ma transformed from input audio xa. These
extracted features are then fused to feature fav by a fusion module for predicting the class-event probability
p. We utilize cross-entropy loss as the objective function LCE = −

∑|C|
i=1 yi log(pi), where |C| denotes the

total number of event categories. Through this task, we will investigate whether integrating synthetic audio-
visual data can enhance recognition in dataset distillation and to what extent different fusion methods affect
the model performance.

Visual 
Encoder 

Audio 
Encoder 

Fusion

Predicted 
scores

Figure 2: Audio-visual event recognition. Given
an audio clip and the corresponding video frame,
our model fuses multimodal features to predict
the video’s event category.

Revisit Distribution Matching. Dataset distilla-
tion has demonstrated remarkable success in compressing
large image datasets into smaller synthetic ones for visual
recognition tasks. Distribution matching (DM) (Zhao
& Bilen, 2023) stands out as one of the prominent ap-
proaches, which aims to generate synthetic data that
closely resembles the distribution of real samples in the
feature space. This is achieved by minimizing the feature
distance between the distributions of real and synthetic
samples, ensuring that the synthetic data effectively cap-
tures the essential characteristics of the original dataset.
Specifically, it uses randomly initialized neural networks as feature extractors and minimizes the spatial
distribution using an empirical estimate of maximum mean discrepancy (MMD) (Gretton et al., 2012). DM
maps each training image xv ∈ Rd to a lower dimensional space using a family of parametric functions
ψθv : Rd → Rd′ where d′ ≪ d. Here, ψθv can be implemented using neural networks with random weights.
It also augments data by applying differential Siamese augmentation Aω(·) (Zhao & Bilen, 2021) to real
and synthetic data, where ω ∼ Ω is the augmentation parameter. To this end, we will solve the following
optimization problem:

minSv E ω∼Ω
θv∼Pθv

∥∥∥ 1
|Tv|

∑|Tv|
i=1 ψθv (Aω(xvi )) − 1

|Sv|
∑|Sv|
j=1 ψθv (Aω(svj ))

∥∥∥2
(1)
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Figure 3: The proposed audio-visual dataset distillation framework. The synthetic audio-visual feature
distribution and real audio-visual feature distribution are matched using three main components: Vanilla
audio-visual distribution matching, Implicit Cross-Matching (ICM), and Cross-modal Gap Matching (CGM).
The vanilla distribution matching loss ensures the alignment of the same modality matching while ICM and
CGM facilitate cross-modal matching. Ra, Rv, Sa, Sv are the real audio, real visual, synthetic audio,
synthetic visual distribution respectively. Maximum Mean discrepancy (MMD) (Gretton et al., 2012) is
used as a measurement for distribution matching. The distilled image and audio spectrogram pairs are
shown at an intermediate state and hence slightly modified from the initialized real data.

where Pθv
is the distribution of network parameters. By minimizing the discrepancy between two distribu-

tions in various embedding spaces by sampling θv, we can learn the synthetic visual data Sv. Upon generating
the synthetic dataset Sv, we will use it as training data to train our visual recognition model, optimizing it
with the cross-entropy loss. This trained model will then predict class labels for real test image samples.

3.2 Audio-Visual Dataset Distillation
In this section, we will explore dataset distillation approaches capable of simultaneously learning synthetic
audio and visual data for audio-visual event recognition. We will first introduce a vanilla model that extends
visual distribution matching and then present two novel approaches tailored to this task, utilizing joint
distribution matching. Our approach is illustrated in Fig. 3.

Vanilla Audio-Visual Distribution Matching. We build our audio-visual dataset distillation approach
on the top of DM. To tackle the new multimodal task, one naive approach is to use DM to condense audio
and visual data separately during data distillation and then combine the trained distilled audio and visual
data for audio-visual event recognition. Alongside a visual-only DM loss Lvbase as detailed in Eq. 1, we
introduce a DM loss1 for the audio modality:

Labase = || 1
|Ta|

|Ta|∑
i=1

ψθa
(Aω(xai )) − 1

|Sa|

|Sa|∑
j=1

ψθa
(Aω(saj ))||2, (2)

where ψθa
denotes randomly initialized audio network. The vanilla approach to audio-visual distribution

matching optimizes the following objective function:

Lavbase = Labase + Lvbase. (3)
1For simplicity, we omit the E term in the loss.
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However, distilling modalities separately fails to capture the natural interplay between real audio-visual data,
so we introduce two joint matching losses to better align the distilled synthetic data.

Figure 4: Feature distribution plot of
real audio(■)-visual(●) and synthetic
audio(★)-visual(✚) data at an inter-
mediate training stage of the vanilla
audio-visual distribution matching.
The audio and visual features are ex-
tracted from randomly initialized au-
dio and visual networks, respectively.
We can observe the strong modality
gap between the two modalities.

Distribution Matching Between Joint Spaces. To enforce
cross-modal alignment during distribution matching, one straight-
forward approach is to introduce a cross-modal distribution match-
ing loss. This loss function will minimize the discrepancy between
the distributions of real audio data and synthetic visual data, as
well as between real visual data and synthetic audio data. However,
this approach has limitations due to the use of randomly initialized
models ψθv and ψθa for mapping audio and visual data into sep-
arate embedding spaces in DM. As shown in Fig. 4, there exists a
strong modality gap between the two modalities. Since only the syn-
thetic data is learnable, real data remains fixed, and model weights
are randomly initialized and not trainable, directly matching one
modality to another cannot mitigate the modality gap and can lead
to instability during training (refer to Appendix A for a detailed
explanation of the failure exploration). This is in contrast to real
data, where audio-visual associations naturally exist. To address
these challenges, we propose two new learning losses that encour-
age cross-modal alignment in a joint embedding space, rather than
merely performing cross-modal matching in individual unimodal au-
dio and visual spaces.

Implicit Cross-matching (ICM). Given the inherent challenges
of achieving separate cross-modal distribution matching, we propose
a novel approach that bypasses the difficulty by introducing a joint audio-visual distribution matching loss.
This loss function effectively aligns the joint audio-visual distributions between real (Dr) and synthetic (Ds)
data, enabling implicit cross-modal distribution matching. The loss is formally defined for each class as
follows:

Dr = R̄a + R̄v =
[

1
|Ta|

|Ta|∑
i=1

ψθa (Aω(xa
i )) + 1

|Tv|

|Tv|∑
i=1

ψθv (Aω(xv
i ))

]
, (4)

Ds = S̄a + S̄v =
[

1
|Sa|

|Sa|∑
j=1

ψθa (Aω(sa
j )) + 1

|Sv|

|Sv|∑
j=1

ψθv (Aω(sv
j ))

]
, (5)

Lav
ICM = ||Dr − Ds||2, (6)

Optimizing this loss term effectively compels our model to learn synthetic audio-visual data {Sa,Sv} that
closely resembles and represents the real dataset {Ta, Tv}. Here, the loss term in Eq. 6 can be re-written as
LavICM = ||(R̄a + R̄v) − (S̄a + S̄v)||2 = ||(R̄a − S̄v) + (R̄v − S̄a)||2 ≤ ||(R̄a − S̄v)||2 + ||(R̄v − S̄a)||2. This
formulation reveals that the loss implicitly enforces cross-modal matching between real audio and synthetic
visual data, as well as between real visual and synthetic audio data.

Cross-modal Gap Matching (CGM). Besides the ICM loss, we introduce further constraints to align
the distributions of (R̄a and S̄v) and (R̄v and S̄a), as follows:

Dav =
[

1
|Ta|

|Ta|∑
i=1

ψθa
(Aω(xai )) + 1

|Sv|

|Sv|∑
j=1

ψθv
(Aω(svj ))

]
(7)

Dva =
[

1
|Tv|

|Tv|∑
i=1

ψθv
(Aω(xvi )) + 1

|Sa|

|Sa|∑
j=1

ψθa
(Aω(saj ))

]
(8)

LavMGM = ||Dav − Dva||2 (9)

This addition ensures that the synthetic data closely represent the corresponding real data without misalign-
ing the existing matches of S̄a ↔ R̄a and S̄v ↔ R̄v enforced in unimodal DM and Joint Matching. With
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a simple re-writing, we can obtain LavICM = ||(R̄a + S̄v) − (R̄v + S̄a)||2 = ||(R̄a − R̄v) − (S̄a − S̄v)||2. We
can see that it will help to align the modality gap between real and synthetic data to strengthen the joint
audio-visual distribution matching.

Final Loss. For training, we will jointly optimize the three loss terms:

Lavfinal = Lavbase + λICM · LavICM + λCGM · LavCGM . (10)

Here λICM and λCGM are the weights for implicit cross-matching and cross-modal gap matching losses
respectively. These three loss terms work collaboratively to enhance the audio-visual dataset distillation
process. Their combined effect ensures that the synthetic data closely corresponds to the real data, aligning
unimodal, cross-modal, and modality gap distributions effectively.

Training algorithm. We train the synthetic data for K iterations and for each iteration, we sample random
model ψθa

and ψθv
for audio and visual embedding. We then randomly sample real audio-visual data batch

and audio-visual synthetic data batch and augmentation parameter for each class. We calculate the mean
discrepancy between each modality individually and implicit cross-matching and cross-modal gap-matching
representations for each class and then sum them as loss L. We update the synthetic data by backpropagating
L for each class with learning rate η. The overall training algorithm is shown in Appendix Algorithm 1.

Improved initialization and storage. Herding (Welling, 2009) is a coreset selection method that greedily
selects data points to minimize the coreset center and the original data center. It has shown superior
performance among the coreset selection methods in several previous dataset distillation research (Sachdeva
& McAuley, 2023; Yu et al., 2023). We adopt herding as it aligns the initial synthetic data distribution with
the real data, offering an advantage over random initialization. The factor technique (Zhang et al., 2023;
Kim et al., 2022; Zhao et al., 2023) aims to increase the number of representative features extracted from
synthetic data without any additional cost. Specifically, given a factor parameter l each synthetic image is
factored into l2 mini-examples and then up-sampled to its original size in training. By combining herding
initialization and factor technique, we can further improve our joint audio-visual distribution matching.
(More details are provided in Appendix B)

4 Experiments
Following the evaluation protocols from previous dataset distillation studies (Zhao & Bilen, 2023; Cazenavette
et al., 2022), we use audio-visual event recognition as the main proxy task to assess the classification accuracy
on held-out test data of deep networks trained from scratch on our distilled audio and visual data.

4.1 Experimental Settings
Datasets. We use four widely used audio-visual datasets to validate distillation methods. Each sample
represents a one-second video clip, comprising a center frame and its corresponding audio.
VGGSound & VGGS-10k: VGGSound (Chen et al., 2020c) is a large scale audio-visual dataset consisting
of around 200k YouTube videos from 309 classes. We select the center one-second video from each original
clip of the train/test split and have around 165k/13k samples respectively. For exploratory analyses and
experimental setup of this novel task, we randomly selected a subset of 10 classes from VGGSound with
8808 train videos and 444 test videos. This subset is referred to as VGGS-10k.
MUSIC-21 : (Zhao et al., 2019) comprises synchronized audio-visual recordings featuring 21 distinct musical
instruments. For our study, we focus exclusively on the solo performances subset and segment each video clip
into discrete, non-overlapping windows of one second. We randomly partition this subset into train/val/test
splits of 146,908/7,103/42,440 samples, respectively.
AVE : (Tian et al., 2018) consists of 4,143 video clips spanning over 28 event categories. We segment
each clip into non-overlapping one-second windows aligned with the synchronized annotations, resulting in
train/val/test splits of 27,726/3,288/3,305 samples, respectively.
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Table 1: Recognition results with synthetic audio (A), visual (V), and audio-visual (AV) data on VGGS-10K.
We observe that audio-visual modeling generally outperforms individual ones, highlighting the necessity of
audio-visual data distillation.

Coreset Selection Training Set Synthesis
Random Herding1 MTT2 DM3 Whole data

IPC A V AV A V AV A V AV A V AV A V AV
1 14.27±0.97 11.65±1.45 15.44±1.87 26.32±1.57 14.72±2.87 20.77±2.77 30.99±1.48 24.15±2.25 34.13±3.62 29.60±2.33 26.40±1.10 36.54±2.52

62.07±0.54 48.19±0.54 68.24±0.7510 32.01±1.64 22.71±1.57 32.50±2.03 34.58±1.98 28.9±1.44 39.89±1.64 36.57±2.57 25.41±1.58 36.79±1.97 33.60±1.35 31.63±1.96 43.85±1.75
20 36.78±2.88 31.05±1.17 45.10±2.31 44.11±1.47 34.58±0.84 50.20±0.74 45.73±1.03 29.52±1.43 51.87±1.26 38.93±3.52 35.23±1.16 49.01±2.44
1 (Welling, 2009), 2 (Cazenavette et al., 2022), 3 (Zhao & Bilen, 2023)

Table 2: Audio-visual event recognition results for different fusion methods and images per class (IPC) on
VGGS-10K. The results are presented over synthetic audio and visual data distilled using audio-only and
visual-only DM (Zhao & Bilen, 2023), respectively. For fixed IPC, the same synthetic data is used. Ensemble
consistently achieves the highest accuracy.

Audio-Visual Fusion
Only-A Only-V Concat Sum Attention Ensemble

IPC
1 29.60±2.33 26.40±1.10 33.77±1.65 34.72±1.27 9.97±0.83 36.54±2.52
10 33.60±1.35 31.63±1.96 41.71±1.27 40.49±1.83 10.11±0.35 43.85±1.75
20 38.93±3.52 35.23±1.16 46.59±1.34 46.05±1.74 11.10±1.88 49.01±2.44

Implementation Details. Following previous distillation methods (Zhao et al., 2023; Zhao & Bilen, 2023;
Cazenavette et al., 2022), we use a ConvNet architecture (Zhao et al., 2020) for both audio and visual
inputs. The audio ConvNet consists of 3 blocks with convolution, normalization, ReLU, and pooling layers.
For larger image inputs (224×224), we use 5 such blocks. We use a learning rate of 0.2 and an SGD optimizer
with a momentum of 0.5. Our synthetic data is initialized with Herding-selected audio-visual (AV) pairs and
trained with a batch size of 128. For IPC 1 and 10, we set λICM and λCGM to 10, and for IPC 20, we set
them to 20. Audio is sampled at 11kHz and transformed into 128 × 56 log mel-spectrograms.
Baselines. For DM (Zhao & Bilen, 2023), we use the same learning rate, optimizer, and AV pair batch size.
For DC (Zhao et al., 2020), DSA (Zhao & Bilen, 2021), and MTT (Cazenavette et al., 2022), we extend
image-only distillation to independently learn audio and visual distilled data. We randomly select AV pairs
for the random selection method. For Herding, we greedily select samples closest to the cluster center and
follow (Wu et al., 2023) to get AV data by concatenating AV features extracted from models trained on the
whole dataset. More details are in Appendix C.

Evaluation. We report the mean accuracy and standard deviation of 3 runs where the model is randomly
initialized and trained for 30 epochs using the learned synthetic data. Each run consists of 5000 iterations
and we use a similar setup as (Tian & Xu, 2021) to train the audio-visual event recognition models. For
reference, we also report the performance of models trained on the whole dataset under the same training
conditions.

4.2 Experimental Results

Audio-visual integration with distilled data is still helpful. Audio-visual integration has consistently
demonstrated superior performance over unimodal data across various tasks for real data. We aim to
further investigate whether this advantage extends to audio-visual distilled data for different data distillation
approaches. To explore this, we employed audio-visual event recognition as a benchmark to compare the
performance of unimodal distilled data and audio-visual distilled data. Using the VGGS-10K dataset and
an ensemble model trained on individually learned audio-visual data, we evaluate several data distillation
methods and different synthetic data sizes. The results, shown in Tab. 1, clearly demonstrate that audio-
visual integration consistently outperforms unimodal modalities in most cases. This observation suggests
that effective audio-visual integration remains beneficial even for distilled data.

Multimodal Fusion. Audio-Visual fusion plays a crucial role in the performance of multimodal models.
We investigated whether different audio-visual fusion strategies influence the performance of models trained
on distilled synthetic data. To address this question, we compared several standard audio-visual fusion
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Table 3: Comparison with previous data distillation methods for audio-visual event recognition. Following
common practice, we evaluate our method on four different datasets with different numbers of synthetic
images per class(IPC). Ratio(%): the ratio of condensed images to the whole training set. Whole Data: the
accuracy of the ConvNet model trained on the whole training set and is the upper bound of the performance.
‘-’ refers to configurations for which the method couldn’t scale up.

IPC Ratio% Coreset Selection Training Set Synthesis Upper Bound
Random Herding1 DC2 DSA3 MTT4 DM5 Ours Whole data

VGGS-10K
1 0.11 15.44±1.87 20.77±2.11 18.28±1.36 19.32±1.35 34.13±3.62 36.54±2.52 40.41±1.81

68.24±0.7510 1.13 32.01±1.64 39.89±1.64 32.10±0.84 36.61±1.04 36.79±1.97 43.85±1.75 54.99±1.73
20 2.26 45.1±2.31 50.2±0.74 - - 51.87±1.26 49.01±2.44 58.04±1.68

VGGSound
1 0.18 1.38±0.12 2.14±0.17 - - 1.55±0.15 3.08±0.21 4.97±0.30

25.54±0.1910 1.87 5.55±0.19 7.09±0.09 - - - 6.40±0.28 8.23±0.24
20 3.74 8.00±0.14 9.64±0.14 - - - 8.64±0.14 9.85±0.34

MUSIC-21
1 0.014 24.12±4.33 26.15±2.01 22.60±1.13 22.98±1.16 28.71±1.23 38.26±1.32 44.02±2.21

85.93±0.08410 0.14 45.77±1.74 51.89±1.39 - - 42.25±1.07 54.78±1.39 68.07±0.98
20 0.28 54.86±1.85 59.98±0.85 - - - 61.06±1.31 70.30±0.69

AVE
1 0.10 10.07±1.16 11.84±0.4 10.45±0.39 10.76±0.62 12.13±0.41 21.70±1.46 23.00±1.37

52.20±0.3810 1.0 20.0±1.45 26.86±0.52 - - 23.15±0.95 28.14±1.80 36.82±0.88
20 2.0 26.32±1.01 33.04±0.38 - - - 32.57±0.97 40.13±1.00

1 (Welling, 2009), 2 (Zhao et al., 2020), 3 (Zhao & Bilen, 2021), 4 (Cazenavette et al., 2022), 5 (Zhao & Bilen, 2023)

Table 4: Ablation study at IPC=10 for (left) proposed losses and (right) herding and factor.
Random Herding Factor Base ICM CGM VGGS-10k AVE

✓ 32.01±1.64 20.00±1.45
✓ 39.89±1.64 26.86±0.52
✓ ✓ 40.28±2.34 31.80±1.28
✓ ✓ ✓ 45.31±2.68 34.80±1.68
✓ ✓ ✓ 45.73±2.99 35.04±0.90
✓ ✓ ✓ 45.18±2.80 34.67±0.95
✓ ✓ ✓ ✓ 49.07±1.97 35.13±1.14
✓ ✓ ✓ ✓ 49.16±1.22 35.51±0.78
✓ ✓ ✓ ✓ 49.48±1.16 35.43±1.20
✓ ✓ ✓ ✓ ✓ 54.99±1.73 36.82±0.88

Random Herding Factor Base
ICM

+
CGM

VGGS-10k AVE

✓ ✓ 43.85±1.75 28.14±1.80
✓ ✓ ✓ 45.87±2.11 30.71±1.17

✓ ✓ 44.47±1.96 32.36±0.72
✓ ✓ ✓ 46.68±2.27 33.60±0.66

✓ ✓ ✓ 41.67±1.03 31.51±0.50
✓ ✓ ✓ ✓ 53.41±1.56 35.12±0.80

✓ ✓ ✓ 45.31±2.68 34.80±1.68
✓ ✓ ✓ ✓ 54.99±1.73 36.82±0.88

approaches: Sum, Concatenation (Concat), Ensemble, and audio-guided visual attention (Attention) (Pian
et al., 2023). Tab. 2 presents the audio-visual recognition accuracy across different synthetic data size
settings using separately learned VGGS-10K data with DM. From Tab. 2, we can see that the ensemble
method consistently outperforms other approaches in all image-per-class settings, followed by a comparable
performance of Concatenation and Sum, and the lowest performance of attention fusion. The comparatively
low fusion results in attention fusion can be accounted for classwise alignment losses, spatial distortions (as
visualized in Fig. 5), and a larger number of trainable model parameters (More details are in the Appendix).
Consequently, we employ the ensemble fusion as the default. Furthermore, these results can also demonstrate
that audio-visual integration with synthetic data is still helpful when employing different fusion methods.

Comparison with Data Distillation Baselines. Tab. 3 compares the performance of our audio-visual
distillation method with other baselines across four datasets and three images-per-class (IPC) values. Our
audio-visual data distillation approach consistently outperforms vanilla audio-visual distillation with DM,
demonstrating the effectiveness of incorporating joint matching losses to strengthen cross-modal alignment.
In addition, similar to previous image-only distillation methods (Cazenavette et al., 2022), we observe di-
minishing returns as IPC increases. For instance, in MUSIC-21, there’s a significant performance jump from
44.02% to 68.07% when moving from 1 to 10 IPC, while the improvement from 10 to 20 IPC is more modest,
reaching 70.30%. Interestingly, a simple heuristic method like herding becomes competitive starting at IPC
10 and may even outperform DM and MTT in some cases. This could be attributed to the increase in
the number of learning parameters due to the high-resolution images. Scaling in DM proved more feasible
compared to MTT, DC, and DSA. In fact, fitting visual-only distillation using MTT was not possible even
with minimal configurations. This is due to large memory consumption when unrolling optimization through
SGD steps Cui et al. (2022); Zhou et al. (2022); Cui et al. (2023) for large datasets and higher IPC.
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OursDMMTT

Figure 6: t-SNE distribution plot of synthetic audio-visual data (IPC=10) learned by DM and Ours(l=1),
with same initilization. (green, blue), (red, black) and (purple, yellow) points are the real (audio, visual)
points for the first 3 classes of VGGS-10k. The synthetic (audio, visual) data is represented by (⋆, ▲). We
observe that our synthetic audio and visual distributions better resemble the real distributions.

Ablation Study. We developed two novel audio-visual distribution matching losses aimed at more effec-
tively distilling essential audio-visual correlations into synthetic data. Additionally, we also use herding
initialization and factor technique. To validate the contributions of these components, we conducted an
ablation study by systematic addition. The ablation study results on VGGS-10K and AVE are shown in
Tab. 4, from which we can see that each of the proposed parts has a positive influence on the final results.
These findings unequivocally demonstrate the effectiveness of our proposed ICM and CGM losses and herding
initialization and factor technique in helping the audio-visual data distillation process.

Original IPC=1 IPC=10 IPC=50

Figure 5: Visualization of dis-
tilled data under different IPCs.

Visualization. To showcase our distilled data, we plot the learned au-
dio and visual data in Fig. 5 at different IPCs. We observe that with an
increased IPC, the synthetic data remains perceptually closer to the origi-
nal audio-visual sample. The artifacts/patches in the synthetic data arise
as the approach distills information from the entire training data into a
few synthetic samples. In addition, the spectrogram and image pixels are
learnable parameters, making artifacts more prominent in settings with
smaller IPCs. Despite this, the model achieves high accuracy on unseen
real test data, indicating that these artifacts do not negatively impact
performance. Furthermore, we compare the data distribution of the first
three classes of VGGS-10k in Fig. 6. It illustrates how our approach better
captures the underlying distribution of the real data.

Table 5: Cross-architecture performance for dis-
tilled data on VGGS-10k and IPC=1.

Evaluation Architectures
ConvNet VGG11 LeNet ResNet18 AlexNet

MTT 34.13±3.62 30.16±1.30 23.93±3.14 24.65±1.53 22.62±1.39
DM 36.54±2.52 26.95±3.59 26.14±2.66 21.99±1.03 26.68±1.82
Ours 40.41±1.81 34.00±1.81 32.37±5.23 30.48±1.98 31.69±2.72

Cross-architecture performance. In Tab. 5, we eval-
uate how well our distilled data performs on unseen archi-
tectures. We observe that our method outperforms DM
and MTT on all the unseen architectures by a large mar-
gin, thus highlighting its superior generalization ability.

Audio Query

Visual Query

Top 1
 Visual

Top 2
 Visual

Top 3
 Visual

Top 1
Audio

Top 2
Audio

Top 3
Audio

Figure 7: Audio-visual retrieval exam-
ples. We observe close alignment of
audio queries with top visual results
and vice versa.

Audio-Visual Retrieval. We have demonstrated that audio-visual
distilled data facilitates learning effective audio-visual representa-
tions for event recognition. To further examine the audio-visual
alignment, we explore whether distilled data could help learn a well-
coordinated audio-visual space for cross-modal retrieval. Since our
audio-visual distillation model focuses on semantic alignment rather
than instance-level alignment, we evaluate audio-visual retrieval in
a class-wise setting. Following (Gong et al., 2022), we create a re-
trieval test set by uniformly sampling a subset of five audio-visual
samples per class from the original test split. We train the audio and
visual ConvNet (Surís et al., 2018) with ArcFace margin loss (Deng
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Table 6: Audio-visual retrieval results on four different datasets. We train audio-visual ConvNet networks
with shared classifier and using Random, DM and Our distilled data of IPC 20. Whole data is the upper
bound and is trained using the entire training data. We observe that our approach helps to distill better
audio-visual alignment.

Method VGGS-10k test subset VGGSSound test subset Music-21 test subset AVE test subset
R@1↑ R@5↑ MedR↓ R@1↑ R@5↑ MedR↓ R@1↑ R@5↑ MedR↓ R@1↑ R@5↑ MedR↓

A→V

Random 13.33±5.03 52.00±14.00 5.83±1.75 0.69±0.32 3.26±0.88 123.0±1.73 15.55±1.09 34.92±2.39 9.33±0.57 7.62±3.21 30.23±4.06 12.33±2.30
DM(Zhao & Bilen, 2023) 8.66±1.15 47.33±5.77 6.66±1.52 0.82±0.35 3.88±0.26 113.00±6.24 16.82±2.39 37.14±1.90 9.00±1.00 6.90±2.29 32.14±0.71 11.16±1.75

Ours 19.33±2.30 59.33±1.15 3.66±0.57 0.90±0.28 4.1±0.35 110±5.19 31.74±0.54 53.01±1.98 5.00±0.00 13.09±2.88 35.00±1.88 9.00±0.00
Whole data 44.00±2.00 74.00±5.03 2.00±0.00 1.79±0.73 7.81±1.30 70.33±3.51 57.14±2.51 78.41±2.85 1.00±0.00 27.61±5.35 51.66±4.06 4.66±1.15

V→A
Random 10.66±2.30 49.33±5.77 6.00±0.86 0.79±0.27 3.60±0.54 160.66±2.64 10.16±2.19 24.12±1.45 14.00±1.00 9.04±1.48 26.66±2.29 16.00±2.00

DM(Zhao & Bilen, 2023) 11.33±3.05 44.00±4.00 6.66±1.15 0.71±0.17 4.22±0.32 151.66±2.51 7.30±1.09 33.65±1.98 11.33±0.57 10.95±3.59 29.52±3.52 14.33±3.25
Ours 27.33±2.30 59.33±7.02 3.83±0.57 0.82±0.10 4.16±0.40 143.00±5.56 27.30±1.98 42.54±4.89 7.66±1.15 6.43±3.11 34.52±3.30 10.16±1.60

Whole data 45.33±5.03 76.00±2.00 1.83±0.28 2.11±0.42 8.59±0.60 15.34±0.46 43.49±2.39 54.91±6.34 3.66±2.08 17.14±0.71 44.76±1.79 7.16±0.288

et al., 2019). The shared classifier and margin loss help to learn a joint-modal embedding space with angular
margins between classes. We train the model from scratch using the distilled data of IPC=20 and the same
learning setting as the classification model.

We use these trained audio and visual components to get the corresponding representation of test samples
and calculate the class retrieval recall at rank 1, 5, and median rank based on the cosine similarity. The
results of audio-to-visual and visual-to-audio retrieval, in Tab. 6, demonstrate that our losses help distill
audio-visual alignment (from real data) and hence our method outperforms DM in almost all scenarios.
Fig. 7 visualizes the top-3 cross-modal retrieval from the VGG-10k test set. We observe that the retrieved
modalities from the same class are closely aligned when trained with our audio-visual distilled data.

5 Conclusion and Discussion
In this paper, we explore a new task of multimodal distillation using audio-visual data. To evaluate the
distilled data, we use audio-visual event recognition as the proxy task. To tackle this audio-visual dataset
distillation problem, we first introduce a vanilla AVDM method that could learn audio- and visual-only
distilled data and simply fuse the information for event recognition. We further improve the quality of
condensed data by introducing two new losses to strengthen cross-modal alignment. We further show the
improved alignment using the classwise cross-modal retrieval task. Experimental results on four audio-visual
datasets show that our approach outperforms other methods consistently and audio-visual integration with
condensed data is still helpful. This provides a new direction in the dataset distillation domain.

As the first attempt on this new task, our work has some limitations and introduces extents that are beyond
the scope of a single paper but represent compelling directions for future research: (1) Compression-accuracy
tradeoff: While our approach significantly reduces training data size, it does so at the cost of a performance
drop (w.r.t whole data). Future work could explore methods to improve accuracy, potentially leveraging pre-
trained weights (see Appendix F); (2) Short video segments: Our exploration focuses on short video segments.
Extending our approach to long-form videos is a promising avenue for future research (see Appendix G);
(3) Design for other audio-visual tasks: our approach learns synthetic data capturing class-level alignment
between audio and visual modalities but lacks the instance-level detail needed for more complex audio-
visual tasks. Future research will focus on creating synthetic data with improved instance-level alignment
to enhance training for complex tasks such as audio-visual sound source localization. (4) Large datasets:
Although our approach on VGGSound demonstrates better scalability and outperforms the baselines, the
overall performance remains limited. This limitation could be due to the large number of classes and the
complex label space that needs to be learned from smaller datasets. This scenario is similar to ImageNet-1K
for visual-only dataset distillation Zhou et al. (2022) performed poorly and required additional techniques like
soft label alignment and reduced memory Cui et al. (2023) usage to enhance performance. These extensions
are outside the scope of our current work, and we aim to tackle them in the future.
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Broader Impact Statement

Given that audio-visual datasets may contain personally identifiable information, improper handling, storage,
or sharing of distilled datasets could lead to privacy breaches and unauthorized access or misuse of sensitive
data. Addressing these privacy concerns through the development of robust safeguards would be crucial.
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Appendix

In this supplementary, we first explain the direct cross-modal distribution losses that fail to align audio-visual
synthetic data, our proposed algorithm, more details about herding and factor technique, additional imple-
mentation details, fusion methods, audio-visual retrieval, additional experiments and more visualizations.

A Failure Cross-Modal Distribution Matching

In this section, we delve into two direct cross-modal matching strategies that, contrary to intuition, do not en-
hance the alignment of audio-visual synthetic data within the audio-visual distribution matching framework.
We explored the integration of alignment between audio and visual distilled data by experimenting with
two simple cross-modal losses: Synthetic Cross-Modal Matching (SCMM) and Real-Synthetic Cross-Modal
Matching (RSCMM).

Synthetic Cross-Modal Matching(SCMM): Given the natural synchronization in real audio-visual data
it is logical to hypothesize that implementing a loss function to bring synthetic audio and visual distributions
closer would improve the alignment of synthetic audio-visual data. Precisely, we show the SCMM loss in Eq.
11:

Lav
SCMM = || 1

|Sa|

|Sa|∑
j=1

ψθa (Aω(sa
j )) − 1

|Sv|

|Sv|∑
j=1

ψθv (Aω(sv
j ))||2 (11)

Real-Synthetic Cross-Modal Matching(RSCMM): Another intuitive way to align synthetic audio-
visual data with real audio-visual data is to directly match synthetic audio distribution with real visual data
and vice-versa. Formally, we show the RSCMM loss in Eq. 14:

LavRS = || 1
|Ta|

|Ta|∑
i=1

ψθa
(Aω(xai )) − 1

|Sv|

|Sv|∑
j=1

ψθv
(Aω(svj ))||2 (12)

LvaRS = || 1
|Tv|

|Tv|∑
i=1

ψθv
(Aω(xvi )) − 1

|Sa|

|Sa|∑
j=1

ψθa
(Aω(saj ))||2 (13)

LavRSCMM = LvaRS + LavRS (14)

We can further combine these losses with the vanilla audio-visual distribution loss (Lavbase) to get a direct
cross-modal matching loss, as shown in Eq. 15:

Lavcombined = Lavbase + LavSCMM + LavRSCMM (15)

We do an ablation study to show the effect of different loss functions using one or more losses in Tab. 7.
We observe a negative effect of adding these direct cross-modal losses and observe a severe drop in accuracy.
This could be explained by the modality gap that is created by using randomly initialized feature extractors
(ψa, ψv). To visualize the effect of these losses we plot the distribution of the first three classes of VGGS-10k
data (as shown in Fig. 8) and observe that these losses lead to unstable training with the synthetic data
unable to cover the real audio-visual distribution.
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Table 7: Ablation study on the different loss terms and different datasets (IPC=10). Here Base, SCMM,
and RSCMM are vanilla audio-visual distribution matching, Synthetic Cross-Modal Matching, and Real-
Synthetic Cross-Modal Matching respectively. We observe that adding SCMM and RSCMM to the baseloss
results in lower performance.

Random Herding Factor Base SCMM RSCMM VGGS-10k AVE
✓ 32.01±1.64 20.00±1.45

✓ 39.89±1.64 26.86±0.52
✓ ✓ 40.28±2.34 31.80±1.28
✓ ✓ ✓ 45.31±2.68 34.80±1.68
✓ ✓ ✓ ✓ 31.15±2.87 29.55±1.36
✓ ✓ ✓ ✓ 30.22±3.19 29.12±1.29
✓ ✓ ✓ ✓ ✓ 24.38±2.21 26.13±0.97

Figure 8: Distribution of synthetic audio-visual data (IPC=10 and l=1) generated by using the direct cross-
modal matching approach(i.e. SCMM and RSCMM). (green,blue), (red,black) and (purple,yellow) points
are the real (audio, visual) points for the first 3 classes of VGGS-10k. The synthetic (audio, visual) data
is represented by (⋆, ▲). Note that the model trained on whole VGGS-10k data is used for extracting the
embeddings. We observe significant misalignment of the synthetic audio-visual data, which can be attributed
to unstable training losses.

B Herding and Factor technique

Herding iteratively selects data points (features) that are closest to the cumulative mean of previously
selected points, aiming to create a subset that closely represents the overall data distribution. We use the
pseudocode in Fig. 9 to get the data subset of IPC size for each class.

mean = torch.mean(features, dim=0, keepdim=True)
idx_selected = []
idx_left = np.arange(features.shape[0]).tolist()
for i in range(IPC):

det = mean*(i+1) - torch.sum(features[idx_selected],dim=0)
dis = distance(det, features[idx_left])
idx = torch.argmin(dis)
idx_selected.append(idx_left[idx])
del idx_left[idx]

Figure 9: Pseudocode for Herding.

The factor technique (Zhang et al., 2023; Kim et al., 2022; Zhao et al., 2023) aims to increase the number
of representations extracted from S without additional storage cost. Specifically, with the factor parameter
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Algorithm 1 Audio-Visual Dataset Distillation
Require: Initial set of synthetic samples S for C classes, where each class c is represented by a subset Sc of synthetic data , deep neural

network ψθa parameterized with θa and probability distribution over Pθa , ψθv parameterized with θv and probability distribution
over Pθv , differentiable augmentation Aω parameterized with ω, augmentation parameter distribution Ω, training iterations K,
learning rate η, loss weights λICM , λCGM .
Input: Real training set T
for k = 0, . . . , K − 1 do

Sample θa ∼ Pθa ,θv ∼ Pθv

Sample mini-batch pairs BT
c ∼ T and BS

c ∼ S and ωc ∼ Ω for every class c
for c = 0, . . . , C − 1 do

R̄c
a = 1

|BT
c |

∑
(xav,y)∈BT

c
ψθa (Aωc (xa)) ▷ Audio real mean embedding

R̄c
v = 1

|BT
c |

∑
(xav,y)∈BT

c
ψθv (Aωc (xv)) ▷ Visual real mean embedding

S̄c
a = 1

|BS
c |

∑
(xav,y)∈BS

c
ψθa (Aωc (xa)) ▷ Audio synthetic mean embedding

S̄c
v = 1

|BS
c |

∑
(xav,y)∈BS

c
ψθv (Aωc (xv)) ▷ Visual synthetic mean embedding

Lbase = ||R̄c
a − S̄c

a||
2 + ||R̄c

v − S̄c
v||

2

LICM = ||(R̄c
a + R̄c

v)− (S̄c
a + S̄c

v)||2

LCGM = ||(R̄c
a + S̄c

v)− (R̄c
v + S̄c

a)||2

Compute L = Lbase + λICM · LICM + λCGM · LCGM

Update Sc ← Sc − η∇SL
end for

end for
Output: S

being l, each image savi ∈ S is factorized into l× l mini-examples and then up-sampled to its original size in
training. We show an example for audio datapoint but it can be similarly extended to visual datapoint.

sai −−−−→
Factor

s
1,1
ai

· · · s1,l
ai

...
. . .

...
sl,1ai

· · · sl,lai

 −−−−−−−→
Up-sample

{
s

′1
ai
, s

′2
ai
, . . . , s

′l×l
ai

}
.

We conduct an ablation study to find the optimal value of l in Tab. 8 and observe that l = 2 gives the best
performance for VGGS-10k at IPC=10. The performance of l = 3 is slightly worse as it discards too many
details in each partition.

Table 8: Ablation study of the number of partition l2 in our augmentation on VGGS-10k with 10 Img/Cls.
Partition (l × l) 1 × 1 2 × 2 3 × 3
Accuracy 45.66±2.53 54.99±1.73 54.53±1.57

To further demonstrate the advantage of our method, we provide the test accuracy with training steps in Fig.
10. We observe that our method out-perform DM at different factor l values and herding-based initialization
improves the initial performance.

C Detailed model architecture and hyperparameters

Following previous distillation methods (Zhao et al., 2023; Zhao & Bilen, 2023; Cazenavette et al., 2022),
we use the ConvNet architecture model (Zhao et al., 2020) for both audio and visual data inputs. The
audio ConvNet consists of 3 blocks with each block consisting of a 128-kernel convolution layer, instance
normalization, ReLU, and average pooling layer. The last average pooling layer is replaced by an adaptive
average pooling layer with (7,7) spatial filter to match the dimension of visual embedding (of size 6272) to
facilitate joint matching. For the large image input, we use 5 such blocks. We use the same audio and visual
model architecture for all the experiments.

For our approach, we use a learning rate of 0.2 for audio and image synthetic data and SGD optimizer
with a momentum of 0.5. We initialize our synthetic data with Herding-selected AV pairs(elaborated in the
coreset selection section) and use a real audio-visual pair batch size of 128 at each iteration. For images per
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Ours (l=2)
Ours (l=1)

Figure 10: Performance comparison between Distribution Matching(DM) and our approach with different
factor (l) values, across varying training steps for VGGS-10k dataset with IPC=10. The left and right plots
differ in initialization i.e. herding-based and random initialization respectively. We observe that herding
initialization gives a better initialization performance and our approach performs better than DM at different
factor values.

class(IPC) 1, and 10 we keep λICM=λCGM=10, while for IPC 20 we keep λICM=λCGM=20. Following the
previous works(Zhang et al., 2023; Kim et al., 2022; Zhao et al., 2023) we keep the factor parameter l to
2. We sample audio at 11kHz and transform them into log mel-spectrograms using a hop length of 200 and
128 mel banks, resulting in 128x56 size. The whole dataset indicates training on the entire real training set
which serves as an approximate upper-bound performance.

During evaluation, the initial learning rate for the audio model is kept 1e-3, the visual part is kept 1e-4 and
for the classifier layers are kept at 1e-4. The learning rates are lowered by multiplying by 0.1 after every 10
epochs.

C.1 Baseline implementations

Trajectory Matching(MTT). Contrary to DM, MTT involves a range of hyperparameters that require
optimization. For MTT, we retain 20 expert trajectories for each modality independently and conduct
a hyperparameter search (memory-constrained) across all synthetic images per class (IPC) and dataset
configurations. For the Audio-visual MTT, we separately train distilled data for audio-only and visual-
only MTT and then combine these datasets using an ensemble fusion to obtain AV results. The best
hyperparameters for each configuration are detailed in Tab. 9.

DC and DSA. The original methods are proposed for image-only dataset distillation. For audio-visual
datatset distillation, we extend the method to independently learn synthetic data for both modalities. Further
we use this distilled data for evaluation. We follow the optimal hyperparameters suggested by the authors
(Zhao et al., 2020; Zhao & Bilen, 2021) and due to large image resolution, it does not scale to visual-only
distillation.

D Audio-Visual Fusion

Audio-visual fusion is critical for multimodal model performance. We examined how different fusion strategies
affect models trained on distilled synthetic data. We compared several fusion approaches: Sum, Concate-
nation (Concat), Ensemble, and audio-guided visual attention (Attention) (Pian et al., 2023). The fusion
function takes in audio feature fa and visual feature fv to get fused feature fav. Here are the formulations
of the fusion functions:
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Table 9: Hyper-parameters for best performing Trajectory Matching(MTT) distillation experiments, for all
the experiments learning rate of step size is kept 10−5. "-" denotes the configuration for which the method
could not scale up.

Modlity Dataset IPC Synthetic Steps Expert epochs Max Start Epoch Synthetic Learning rate Starting synthetic
Batch Size (Pixels) step size

A-only

VGGS-10K
1 10 2 2 20 103 10−3

10 10 2 2 20 103 10−3

20 10 2 2 10 104 10−3

VGGSound
1 10 2 2 20 103 10−3

10 10 2 2 20 103 10−3

20 5 2 2 2 101 10−3

MUSIC-21
1 10 2 2 20 103 10−3

10 10 2 2 20 103 10−3

20 5 2 2 2 101 10−3

AVE
1 20 2 2 20 103 10−3

10 10 2 2 20 103 10−3

20 10 2 2 10 104 10−3

V-only

VGGS-10K
1 5 2 2 5 103 10−4

10 5 2 2 5 104 10−4

20 10 2 2 5 101 10−4

VGGSound
1 5 2 2 5 103 10−4

10 - - - - - -
20 - - - - - -

MUSIC-21
1 5 2 2 5 103 10−4

10 5 2 2 5 103 10−4

20 - - - - - -

AVE
1 5 2 2 5 103 10−4

10 2 2 2 1 105 10−4

20 - - - - - -

Sum: It directly sums the audio and visual modality features: fav = fa + fv.
Concatenation: It directly concatenates the audio and visual modality features: fav = [fa; fv].
Ensemble: To get the ensemble prediction pav the predictions from the audio and visual modality features
are averaged. Given the audio and visual learnable projection matrices W a and W v respectively, we can
define pav as

pa = Softmax(faW a)
pv = Softmax(fvW v)

pav = pa + pv

2

Attention: Audio-guided visual attention has shown to be an effective mechanism to learn correlations
between audio and visual features adaptively (Pian et al., 2023; Li et al., 2021; Tian et al., 2018). Given
learnable projection matrices W a,W v, Ua, Uv and ⊙ as the Hadamard product, we can formally define
attention fusion fav as:

Scorea = tanh(faW a),
Scorev = tanh(fvW v),

w = Softmax(Scorea ⊙ Scorev)
f ′v = fv ⊙ w

fav = tanh(faUa) + tanh(f ′vUv)

D.1 Why does attention fusion perform worst?

We note three reasons for this.
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Classwise alignment. Our three losses aim at learning a classwise distribution matching (vanilla audio-
visual DM loss) and classwise alignment matching (Joint Matching and Modality Gap Matching loss). Our
distilled audio-visual data does not have any instance-wise constraints (we observed some performance degra-
dation on adding such constraints) and hence training an attention-based fusion which relies on the paired
audio-visual correspondence between the training examples, falls short in performance.

Spatial Distortion. Since all the image and audio-spectrogram pixel values are learnable parameters and
no additional constraint is added to preserve the spatial information from the original initialized data, the
distilled audio-visual data loses spatial information like object boundaries and frequency boundaries. Hence
while training, the distilled audio gets confused about which part of the distilled image to look at.

Table 10: Comparison of Learnable
Parameters

Fusion Parameters
Attention 192,798
Concatenation 125,450
Sum 62,730
Ensemble 125,360

Number of parameters. In addi-
tion to the classwise alignment and spa-
tial distortion, we observe that the com-
paratively large number of model param-
eters (shown in Tab. 10) and the
small condensed data add another hin-
drance to audio-guided attention perfor-
mance.

E Audio-visual retrieval

The framework for training Audio-visual retrieval using distilled data is shown in Fig. 11. We alternatively
train audio and visual encoder with ArcFace loss (Deng et al., 2019). The loss can be formulated as in eq.
16. Where θ is the angle between the audio (or visual) embeddings and mean class embeddings, m is the
additive angular margin penalty and s is the scaling factor. For our case, we keep s = 3.0 and m=0.2.

L = − log es cos(θyi
+m)

es cos(θyi
+m) +

∑N
j=1,j ̸=yi

es cos θj

(16)

   

Labels

Shared weights

Angular Margin Loss

Visual
Encoder

Audio
Encoder

Figure 11: Framework for Audio-visual retrieval using distilled data. We have shared classifier weights and
we use arcface margin loss to get discriminative class embeddings.
Retrieval results on VGGSound and Music-21 datasets are shown in Tab. ??.

E.1 Other details

VGGS-10k categories. We create a subset of VGGSound(Chen et al., 2020c) for initial experiments
and analysis. The selected categories are playing piano, playing acoustic guitar, police radio chatter, toilet
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flushing, driving buses, chicken crowing, child speech or kid speaking, basketball bounce, fireworks banging,
and ocean burbling.

Compute resources. We test our experiments on A5000 and A6000 GPUs with 24 GB memory and 48
GB memory respectively.

Table 11: Ablation study of the loss
weights λICM , λCGM for VGGS-10k
dataset with different IPC setting.
Here λICM = λCGM = λ

λ
1 10 20

IPC
1 39.07±2.98 40.41±1.81 39.62±2.03
10 48.92±2.43 54.99±1.73 56.19±1.62
20 49.48±1.68 56.99±0.80 58.04±1.68

Ablation study of loss weights λICM , λCGM . We do an abla-
tion study over the effect of loss weights λICM , λCGM for different
IPCs for VGGS-10k dataset and show the results in Tab. 11. From
the ablation, we observe that the highest accuracy for IPC 1, 10, 20
occur at λICM = λCGM = 10, 20, 20 respectively. Subsequently, we
choose λICM = λCGM= 10 for IPC 1 and λICM = λCGM = 20 for
IPC 20 for all other datasets. However, we observe λICM = λCGM
= 10 working better for IPC 10 for other datasets (especially bigger
datasets) and hence we keep it 10 for IPC 10. Due to limited com-
putational resources, we do not show ablation over other datasets.

F Pretrained initialization

We show that pretraining can help improve the performance of our approach and can further close the gap
with the upper-boundwhole-data. In Tab. 12 we observe that initializing evaluation model with VGGSound
trained weights can reduce the gap with upper boundwhole-data from ∼12% to ∼3% for AVE data.

Table 12: Comparison of different initilization for distilled data at IPC=20. Here Pretrained initialization
is of model initialized with VGGSound trained models.

Random init. Pretrained init. Whole data
AVE(IPC=20) 40.13±1.00 48.71±1.31 52.20±0.38

G Extending to 10-sec videos

In Tab. 13 we extend our problem setting to 10 secs videos. We observe that the trends for 10-sec are similar
to 1-sec problem setting.

Table 13: Performance comparison for 10 sec video segments
IPC Random Herding DM Ours

VGGS-10K 1 25.33±2.01 22.21±0.78 25.33±2.01 39.14±3.59
20 46.10±1.97 49.25±1.26 49.75±2.14 53.05±2.36

AVE 1 9.50±1.22 12.84±0.70 12.54±0.92 17.22±2.52
20 27.36±2.01 30.00±0.98 30.05±2.34 44.98±1.04

H Additional Visualizations

Figures 12 and 13 visualize the synthetic data for VGGS-10k for IPC=1 with l = 1 and l = 2, respectively.
We observe that all the audio-visual distilled data consists of repeating patterns and is more prominent in
the visual data. Due to the repetitive patterns in Fig. 12 (l = 1) we can ignore the fine-grained details and
achieve better performance by utilizing the storage (as in Fig. 13 (l = 2)) without increasing the synthetic
size. We also observe similar patterns in Fig. 14 when trained with DM. We further show that the data
becomes less far away from the original initialized real data in Figures 15, where we visualize VGGS-10k with
IPC=10. Fig. 16,17,18 visualizes the audio-visual data learnt through our method for IPC=1 and VGG,
Music-21 and AVE datasets, respectively.
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Figure 12: Visualization of audio-visual synthetic data for VGGS-10k for IPC=1, learned through our
proposed Audio-Visual Data Distillation approach (l = 1).

Figure 13: Visualization of audio-visual synthetic data for VGGS-10k for IPC=1, learned through our
proposed Audio-Visual Data Distillation approach (l = 2).

Figure 14: Visualization of audio-visual synthetic data for VGGS-10k for IPC=1, learned through DM
method.
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Figure 15: Visualization of audio-visual synthetic data for VGGS-10k for IPC=10, learned through our
proposed Audio-Visual Data Distillation approach
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Figure 16: Visualization of audio-visual synthetic data for first 100 classes of VGGSound for IPC=1, learned
through our proposed Audio-Visual Data Distillation approach
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Figure 17: Visualization of audio-visual synthetic data for Music-21 for IPC=1, learned through our proposed
Audio-Visual Data Distillation approach

26



Under review as submission to TMLR

Figure 18: Visualization of audio-visual synthetic data for AVE for IPC=1, learned through our proposed
Audio-Visual Data Distillation approach
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