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ABSTRACT

Pose refinement after the initial pose estimator has been demonstrated to be effec-
tive for 6D object pose estimation. The iterative closest point (ICP) is the most
popular refinement strategy, which however suffers from slow convergence due
to the nature of iterative nonlinear optimization. In this paper, we propose a sim-
ple yet efficient self-supervised point cloud aligenment method via implicit neural
network, which can serve as an alternative of ICP to achieve fast and accurate
pose refinement. Our key idea is to encode the surface of target point cloud into
a signed distance function (SDF); the optimal rigid transformation then can be
derived by addressing a minimization problem over the SDF. The workflow of
our method does not require any pose annotations. Experimental results show our
method can achieve 6.4%, 16.2%, and 3.9% performance improvement over the
prior art OVE6D (w/o ICP) on LINEMOD, Occluded LINEMOD and T-LESS
datasets respectively, and is comparable with other state of the art methods even
the supervised ones. Compared with point-to-plane ICP, our method has the ob-
vious advantage on computation speed, due to the merit of full play to the high
parallel characteristics of deep learning based on GPU acceleration.

1 INTRODUCTION

Estimating the 6D pose of an object that includes 3D rotation and 3D translation, plays an important
role in many real-world applications, such as robotic manipulation (Collet et al., 2011), 3D scene
understanding (Huang et al., 2018), and augmented reality (Marchand et al., 2015). The object pose
estimation task aims at predicting the geometric mapping from the camera coordinate system to the
object coordinate system (Hodan et al., 2018), relying on the sensory input. This is a challenging
and active problem, receiving extensive attentions from both academia and industry.

In 6D pose estimation, two main data modalities for robotic visual perception are color and depth,
the former contains structure and texture information, while the latter contains surface geometry
information. RGB-based 6D pose estimation attempts to establish sparse or dense 2D-3D corre-
spondences between the 2D coordinates in the RGB image and the 3D coordinates on the object
3D model surface (Sundermeyer et al., 2018; Peng et al., 2019; Hodaň et al., 2020). Methods along
this line achieve impressive performance when objects with rich textures, which however are not
robust enough against typical challenges such as dynamic changes of the environment illumination.
To overcome the limitation of RGB-only, many methods turn to take full advantage of multi-modal
information. For instance, works (Sundermeyer et al., 2018; Hodaň et al., 2020) first perform the
initial pose estimation based on RGB images and then further refine the result with depth images
using geometry-based optimization.

Depth images contain rich geometric information of the object shape, which is helpful for inferring
the object pose. Recently, with the widespread use of depth cameras and LiDAR, depth information
becomes the main force for pose estimation instead of just serving as auxiliary information of RGB.
Some methods emerge to use depth information represented by point clouds for deep learning based
6D object pose estimation. CloudPose proposed by Gao et al. (Gao et al., 2020) attempts to exploit
3D point clouds generated from object depth to perform 6D pose regression in a supervised manner.
To alleviate the dependence on supervision information that is usually expensive to obtain, Gao et al.
further propose CloudAAE (Gao et al., 2021) to perform network training on synthetic depth data.
In both CloudPose and CloudAAE, the 6D pose estimated by deep learning is further refined with
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Sensory Input Method (+ICP refinement) Occ. LINEMOD T-LESS Avg. Run. ICP Avg. Run. Ours Avg. Run.

Point Clouds
OVE6D (Cai et al., 2022) 55.3 (+15.9) 69.4 (+5.4) 50ms

50ms∼60ms 8ms ∼ 10ms

CloudAAE (Gao et al., 2021) 57.1 (+6.1) - 70ms

RGB-D

AAE (Sundermeyer et al., 2018) - 19.3 (+49.3) 23ms

PVNet (Peng et al., 2019) 42.4 (+26.6) - 40ms

MP-Encoder (Sundermeyer et al., 2020a) - 20.5 (+49.0) 200ms

PoseCNN (Xiang et al., 2017) 24.9 (+53.1) - -

Table 1: We report the initial pose performance of the methods and the improvement with ICP
refinement in brackets. Obviously, ICP can further improve the performance with a large margin
and thus the refinement process is critical in real applications. We report ADD(S) on Occluded
Linemod and VSD on T-LESS. The detail of metric can be found in Sec. 4.3.

a geometry-based optimization process to produce the final estimation result. Although achieving
great progress, the existing point cloud based methods are not efficient in terms of run-time, as well
as are restricted to the requirement for large amounts of pose annotations.

As stated above, the state-of-the-art RGB-D and point cloud based 6D pose estimation methods take
the geometry-based optimization as the refinement stage. It has been demonstrated that using a pose
refinement stage after the initial pose estimator is effective for 6D object pose estimation (Iwase
et al., 2021a). The iterative closest point (ICP) is the most popular refinement strategy, which has
been used in numerous works, such as (Xiang et al., 2017; Sundermeyer et al., 2018; Peng et al.,
2019; Sundermeyer et al., 2020b; Hodaň et al., 2020; Gao et al., 2020; 2021; Cai et al., 2022), just to
mention a few. We summarize their performance comparison with and without the ICP refinement
procedure in Table 1, from which it can be found that the refinement stage plays a very important role
in performance boosting. However, such performance improvement is achieved at the price of much
more running time cost, since ICP suffers from slow convergence. Although some efficient variants
of ICP have been proposed, such as point-to-plane ICP and plane-to-plane ICP (Rusinkiewicz &
Levoy, 2001), the nature of iterative nonlinear optimization limit its efficiency.

In this paper, we present a simple yet efficient self-supervised point clouds alignment method via
implicit neural network, which can serve as an alternative of ICP to achieve fast and accurate pose
refinement. Our approach is inspired by the concept of signed distance function (SDF), which repre-
sents the surface of a shape by a continuous volumetric field. For a given spatial point, SDF outputs
the distance of this point to the closest surface. In this way, the underlying surface is implicitly
represented as the zero-level-set, i.e., SDF (·) = 0. Our key idea is to encode the surface of tar-
get point cloud into a SDF; the optimal rigid transformation then can be derived by addressing a
minimization problem over the SDF. The SDF is specifically formed as an implicit neural network
(INN). Implicit neural representation (Michalkiewicz et al., 2019) is a powerful tool to represent
a 3D scene, which can be used to predict predefined local properties of any 3D spatial position.
Moreover, it is a continuous representation, possessing stronger presentation ability compared with
discrete representations such as mesh, volume or point cloud. We train INN in a self-supervised
learning manner. Following the same setting as OVE6D (Cai et al., 2022), we assume that the 3D
mesh model of the target object is accessible. Based on the target mesh model, we can construct a
pretext task, where the supervision information is easy to obtain, to train the INN. Finally, using the
derived SDF as the objective function, we obtain the optimal transformation with auto-grad tools
(Paszke et al., 2019).

We conduct extensive experiments on three benchmark dataset: LineMOD (Wang et al., 2017),
LineMOD-occlusion and TLESS (Hodan et al., 2017) dataset, where we choose OVE6D (Cai et al.,
2022) that is most recently proposed SOTA method as the base stage and use our strategy for pose
estimation refinement. The workflow of our method does not require any pose annotations. Ex-
perimental results show our method can achieve 6.4%, 16.0%, and 3.9% performance improvement
over OVE6D on these datasets respectively, and is comparable with other SOTA methods even the
supervised ones. Compared with point-to-plane ICP, our method has the obvious advantage on run-
ning time, which allows full play to the high parallel characteristics of deep learning based on GPU
acceleration.

The main contributions of our method are summarized as follows:
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• We propose a simple yet efficient strategy for 6D object pose refinement without any re-
quirement on pose annotations, which achieves comparable accuracy with ICP while with
much faster running speed.

• We propose to implicitly encode the geometry information of the target 3D model as a SDF.
The task of 6D pose estimation is then reformulated as a minimization problem over the
SDF, which can be efficiently addressed by back propagation.

• Extensive experiment results are provided to demonstrate that our strategy achieves sig-
nificant improvement over the base method and achieves comparable results with current
SOTA methods. Our refinement strategy gets at least 6 times faster than point-to-plane ICP.

2 RELATED WORK

2.1 6D POSE ESTIMATION AND REFINEMENT

Depth-based methods usually have satisfied performance. Traditional methods, such as Point Pair
Feature-based methods (Drost et al., 2010) build feature descriptors for model and scene and gen-
erate corresponding to retrieve pose by comparing the similarity of the descriptors. Deep learning
methods, such as CloudAAE (Gao et al., 2021) proposes a framework for directly regressing the 6D
object pose, which can predict pose more effectively. RGB-based methods have lower performance
than depth-based methods since it lacks spatial information. Most RGB-based methods focus on
finding the correspondence between the pixel in 2D image and the point in 3D model and solve
with Perspective-n-Point (PnP) algorithms (Lepetit et al., 2005; 2009). Methods with RGBD data
can achieve more impressive performance by directly leverage two modalities data (He et al., 2021;
2020).

The initial predicted poses are usually not sufficient for direct use in applications. Thus refinement
to further improve the performance is required. Most representative methods are Iterative Closet
Points (ICP) and its variants (Zhang et al., 2021; Bouaziz et al., 2013). Learning-based methods are
also proposed to solve the task. Several point cloud registration methods (Aoki et al., 2019; Choy
et al., 2020) are proposed to solve the limits of the ICP, such as slow convergence and robustness to
outliers. These methods usually need 3D mesh models and do the refinement with point cloud data.
So methods without 3D mesh models or point cloud data have also been explored. Repose (Iwase
et al., 2021b) proposes a deep texture render containing learn able parameter to align the input RGB
image feature extracted by neural network and thus retrieve the pose with LM algorithm. CATRE
(Liu et al., 2022) propose a refinement methods without requirement of 3D model in category level
setting.

Although the learning-based methods have made great progress with higher computational effi-
ciency, most of them require expensive 6D pose annotations. In view of this, methods without the
annotations has been proposed recently. OVE6D (Cai et al., 2022) is a general object pose estimation
method without 6D pose annotations from any dataset. It decomposes the 6D pose into viewpoint,
in-plane rotation around the camera optical axis and translation, and introduces novel lightweight
modules for estimating each component in a cascaded manner. For 6D pose estimation refinement,
leaning-based methods without pose annotations are hardly mentioned. In this paper, we discuss the
penitential of implicit neural network and adopt it to do 6D pose refinement task. The experiment
results will show the effectiveness of the method.

2.2 IMPLICIT NEURAL REPRESENTATION

Image, video, and voxel as records of the world all are discrete mapping from the 2D/3D position to
the pixel value. However, the real world should be continuous or approximately continuous. But it
is difficult to save or formulate such mappings before the rise of deep learning. The neural network
has proved its ability to approximate any function (Hornik et al., 1989). Thus, lots of attention has
been paid to leveraging the network to represent the continuous mappings and it is named as implicit
neural network.

Nerf (Mildenhall et al., 2020; Barron et al., 2021) is one of the most representative methods. The
target task of it is novel view synthesis, which means predicting color images from any view given
a few images. It uses the MLP network to predict color density and accumulation transparency of
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3D spatial position. Then Nerf renders the color image following the traditional volume rendering
procedure. Other works to leverage the implicit neural network to predict continuous SDF that im-
plicitly indicates the surface of the object have also made great progress in 3D model reconstruction
(Park et al., 2019; Takikawa et al., 2021).

The implicit neural network has proved its great potential in reconstruction work. But the develop-
ment of such technology has made it not limit to the reconstruction. In this paper, we fully discuss
and present the advantages of implicit neural work for the 6D pose estimation refinement task.

Figure 1: (a) is visualization of sdf value in space, which is presented by series of contour. (b) and
(c) are the way of ICP and implicit neural network for calucating the distance from the query points
to the nearest target surface.

2.3 POINT-TO-PLANE ICP

Point-to-Plane ICP is one of the most popular traditional pose refinement method with point cloud
data. It can greatly improve the performance of the basement methods. It estimates the rigid trans-
formation R, t between the source point cloud {si|si ∈ S} and the target point cloud {di|di ∈ D}
with following optimization objective:

argmin
R,t

∑
i

||(R ∗ si + t− di) · ni||2. (1)

where ni is the surface normal of the target point cloud at di. It constrains the distance between the
point of the source point cloud and the surface of the target point cloud. It calculates the projection
on the surface normal. It could be solved by formulating the objective to a least square problem and
thus obtaining a closed-form solution. The main drawbacks are calculating the surface normals is
time-consuming, the close-form solution needs SVD decomposition, which is unstable and sensitive
to outliers and the linear approximation of the rotation matrix is inappropriate with the large-errored
pose. Our proposed method following similar procedure, which optimizes the distance between the
points of source point cloud and the surface of the target point cloud. We leverage a neural network
to fast and accurate compute the distance. A clearly comparison is illustrated in Fig. 1. Our method
solve the limits of ICP, and thus has great potential to the 6D pose estimation refinement task.

3 METHOD

In point cloud based 6D pose estimation, given a known object represented by a point cloud in the
camera coordinate C, the aim is to find the rotation R and the translation t that describe the rigid
transformation between the object coordinate system O and C. Specifically, defining the source
point cloud in C as {si|si ∈ S} and the target point cloud in O as {di|di ∈ D}, estimation of
R ∈ so(3) and t ∈ R3 from the source to the target can be formulated as:

R∗, t∗ = argmin
R,t

∑
i

G (R ∗ si + t , f(si,D)) . (2)

where f(·) denotes the operation of finding the nearest surface of si in the target point cloud; G(·)
presents Euclidean distance between the point from source point cloud and the point or surface of
target point cloud.
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Figure 2: Overall of proposed scheme. (a) Point Cloud Registration. We localize the point cloud with
segmentation mask predicted by Mask-RCNN (He et al., 2017) (b) Proposed 6D pose refinement
framework. The implicit neural network is off-line trained and remains fixed during the refinement
procedure. We iteratively optimize the SDF predicted by the network to retrieve the pose. (c)
Visualization of Optimization. The transformed points will get close to the target object surface
with the optimization process.

The proposed scheme is illustrated in Fig. 2. We first localize the source point cloud S with the
segment mask predicted by Mask-RCNN (He et al., 2017). For the target 3D model, an implicit
neural networks fθ(·) is trained offline to encode accurate 3D geometry by learning the signed
distance function (SDF), which defines the surface by its zero level-set. In online pose estimation,
fθ(·) is fixed and used to approximate the calculation process of g(·). The minimization problem
formulated in Eq. 2 is iteratively optimized with auto-grad tool to derive the optimal R∗ and t∗. In
the following, we will elaborate the main modules.

3.1 NEURAL SIGNED DISTANCE FUNCTION

A signed distance function (SDF) h : R3 → R is a continuous mapping function. For a given spatial
point x ∈ R3, h(x) outputs the closest distance to the object surface, whose sign indicates whether
x is inside (negative) or outside (positive) of the object (Park et al., 2019). The underlying surface
S of an object thus can be implicitly represented as the zero level-set of h:

S = {x ∈ R3|h(x) = 0}. (3)

Considering that the point clouds are points on the surface of objects, their corresponding SDF
values should be zero. Accordingly, we encode the surface geometry of the target 3D model by
SDF. We leverage an implicit neural network fθ to approximate the SDF h. Following the same
setting as OVE6D (Cai et al., 2022), we assume that the 3D mesh model of the target object is
accessible, according to which we can construct a large amounts of {x, d} pairs, where x is sampled
points in O and d is calculated by h(x) = d . The next step is to directly let the network learn to
regress the continuous SDF from point samples. In the following, we introduce in detail the network
architecture and training procedure.

Network Architecture: The network mainly consist of position encoding module PE(·), surface
extracting modules SE(·) and a collection of feature vectors Z , following (Takikawa et al., 2021).
Z is organised with a sparse voxel octree (SVO) spanning the the space B in object coordinate as
illustrated in Fig. 2. Each voxel Vi,l where the subscripts indicate i-th voxel in l-th resolution level
in the octree holds 8 learnable feature parameter {zkVi,l

}k=1...8 ⊂ Z at its corner. Given a query
point x and target resolution level L, PE(·) will search for voxels containing x with resolution no
more than L. Then it computes the features fxVi,l

of x for each voxel by trilinearly interpolating the
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Algorithm 1: Proposed Framework
Input: Implicit neural network fθ(·) with max resolution level Lmax; Initial pose Ro, to

Rotation learning rate λ1; Transition learning rate λ2; Iteration number n; 3D mesh
model O; Source point cloud {si}

Output: Refined pose parameter R∗, t∗

1 Formulate pairs training pairs of 3D position space and SDF value (x, d)
2 Train the implicit network fθ.
3 θ∗ = argminθ Ex,d

∑Lmax

L=1 L (dL, d)
4 Initialize pose parameter: R = Ro, t = to
5 for i = 1...n do
6 Calculate objective: J =

∑
i |f∗

θ (R ∗ si + t)|
7 Calculate gradients: ∆R = ∂J

∂R , ∆t = ∂J
∂t

8 Update with Adam optimizer: R← R+ λ1A(∆R), t← t+ λ2A(∆t)
9 end

10 Output pose parameter R∗ = R, t∗ = t

corner features:
fxVi,l

= ρ(x, {zkVi,l
}). (4)

where ρ(·) denotes interpolate operation. PE(·) will sum the features across the voxels and concat
them with query points x as outputs:

PE(x, L) = [x,

L∑
l=1

fxVi,l
]. (5)

Passing the results of PE(·) to the surface extractor SE(·) which consists of a combination of
several MLP layer and ReLU layer, it will predict the final SDF value with the query resolution level
L:

dL = SE(PE(x, L)). (6)
During the inference stage, the whole network will directly output the SDF value with max resolution
level Lmax: fθ(x) = dLmax

.

Training Procedure: Given the sampled pair (x, d), the loss function of the implicit neural network
is:

θ∗ = argmin
θ

Ex,d

Lmax∑
L=1

L (dL, d) . (7)

It calculates the prediction error across multi-level resolution. The parameters θ of INN contain the
feature vectors Z and the MLP layer in surface extractor module. They are optimized with Adam
optimizer (Kingma & Ba, 2014) and the whole process only needs about 10 minutes.

3.2 6D POSE ESTIMATION REFINEMENT FRAMEWORK

According to Sec. 3, we have obtained a well trained implicit neural network fθ∗ . We leverage it
to calculate the distance between the points of source point cloud and surface of target object point
cloud. We define the target optimized objective as:

R∗, t∗ = argmin
R,t

J (R, t) = argmin
R,t

∑
i

|fθ∗(R ∗ si + t)|. (8)

We solve the objective iteratively with initial pose provided by OVE6D (Cai et al., 2022) . We
calculate the gradients of the objective with auto-grad tool (Paszke et al., 2019). The network’s
parameters remain fixed during the whole procedure. Finally, we update rotation and transition
separately with Adam optimizers (Kingma & Ba, 2014) using the gradients and different learning
rate λ1, λ2:

R← R+ λ1A(
∂J
∂R

), t← t+ λ2A(
∂J
∂t

). (9)
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4 EXPERIMENT

4.1 IMPLEMENTATION DETAILS

All the experiments are implemented using PyTorch (Paszke et al., 2019). We trained the implicit
neural network with the pairs (x, d) as described in the method. The training time is around 10
minutes on a single Titan V gpu. For OVE6D, we use the pretrained model trained on ShapeNet
(Chang et al., 2015) which contains 12490 objects. And following OVE6D, we leverage Mask-
RCNN (He et al., 2017) to localize the target’s point cloud. In the refinement procedure, we adopt
Adam (Kingma & Ba, 2014) optimizers to auto-optimize the rotation and transition separately.

4.2 DATASET

We evaluate our method on LINEMOD (Wang et al., 2017), Occluded LINEMOD, and T-Less
dataset (Hodan et al., 2018)). LINEMOD has 13 objects, 12 scenes, and about 18K images. We
follow the test protocol from the previous work (Wang et al., 2019). Occluded LNEMOD is a subset
of LINEMOD but is more challenging containing 8 objects with heavy occlusions. We evaluate
our performance of Occluded LINEMOD on its 1214 testing images. And T-Less dataset includes
30 texture-less and symmetric industrial objects with highly similar shapes. We evaluate the per-
formance on the PrimeSense test set following the procotol specified in the BOP challenge (Hodan
et al., 2018). Following OVE6D (Cai et al., 2022), we report ADD(S) score on LINEMOD and
Occluded LINEMOD and VSD score on T-Less.

4.3 EVALUATION METRICS

For Linemod and Linemod occlusion, the average distance metrics ADD and ADDS are used usu-
ally. For object O containing N vertex {vi}i=1...N , given the predicted pose R, t and ground truth
pose R∗, t∗ ADD is calculated as:

ADD =
1

N

∑
vi∈O

||(R ∗ vi + t)− (R∗ ∗ vi + t∗). (10)

For symmetric objects, ADDS is calcuated as :

ADDS =
1

N

∑
vi∈O

min
vj∈O

||(R ∗ v1 + t)− (R∗ ∗ v2 + t∗)||. (11)

For TLess dataset, visible surface discrepancy(VSD) is userd for evaluating the pose. Use the pre-
dicted pose and ground truth pose to render depth maps Ŝ and S̄ and masks V̂ and V̄ . The pose
error eVSD is caculated as:

eVSD

(
Ŝ, S̄, SI , V̂ , V̄ , τ

)
= avg

p∈V̂ ∪V̄

{
0 if p ∈ V̂ ∩ V̄ ∧ |Ŝ(p)− S̄(p)| < τ

1 otherwise
. (12)

And given a predefined error threshold θ, the final VSD score is:

V SD =

∑
eV SD < θ

N
. (13)

4.4 COMPARISON WITH SOTA AND ICP

We compare our method with a branch of SOTA methods on LINEMOD, Occluded LINEMOD and
T-LESS in Table 2. And we list the performance on each object in the dataset in Table 3 and Table 4
and provide qualitive results in Fig. 3 for a fully comparison between our proposed framework and
ICP.

Occluded Linemod: This dataset is a challenging dataset with heavy occlusion. But our method has
an improvement of 16.2% over OVE6D and outperforms FFB6D which is a supervised method with
a large margin as shown in Table 2. The results in Table 4 and Fig. 3 further prove the generality of
our framework under the situation of heavy occlusion are comparable with ICP.
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Dataset Method Sensor data type User anno. with ref. Results

Occluded LINEMOD

FFB6D (He et al., 2021) RGBD True 66.2
RePose (Iwase et al., 2021b) RGB True 51.6

CloudAAE(GT) (Gao et al., 2021) D True 63.2
OVE6D(MRCNN) (Cai et al., 2022) D 55.3
OVE6D(MRCNN) (Cai et al., 2022) D True 71.2

OVE6D+Ours D 71.5

LINEMOD

FFB6D (He et al., 2021) RGBD True 99.7
RePose (Iwase et al., 2021b) RGB True 96.1

CloudAAE(GT) (Gao et al., 2021) D True 92.5
OVE6D(MRCNN) (Cai et al., 2022) D 86.1
OVE6D(MRCNN) (Cai et al., 2022) D True 92.4

OVE6D+Ours D 92.5

T-Less

StablePose (Shi et al., 2021) D True 73.0
CopyPose (Labbé et al., 2020) RGB True 63.8

MP-Encoder (Sundermeyer et al., 2020a) RGBD True 69.5
OVE6D(MRCNN) (Cai et al., 2022) D 69.4
OVE6D(MRCNN) (Cai et al., 2022) D True 74.8

OVE6D+Ours D 73.3

Table 2: Evaluation on LINEMOD, Occluded LINEMOD and T-Less. We report the average ADD(-
S) recall on LINEMOD and Occluded LINEMOD and the average VSD recall on T-Less. We
highlight the best and the second best methods in bold and underline in each group. MRCNN and
GT indicate using the segmentations masks provided by Mask-RCNN and the ground truth.

LINEMOD: As shown in Table 2 and Table 3, Our framework has an improvement of 6.4% over
OVE6D and is comparable with the annotation-free SOTA method CloudAAE (Gao et al., 2021)
while their method needs ground truth segmentation masks and ours uses masks predicted by Mask-
RCNN (He et al., 2017), which is more close to real applications. FFB6D (He et al., 2021) achieves
best performance with fully exploring RGB and depth information. It should be noticed that FFB6D
needs real pose annotations, which is expensive and challenging to collect. Overall, our refinement
framework can improve OVE6D to the satisfied results for real application. ICP can also improve
the performance of OVE6D to SOTA but with higher computation cost. As shown in Table 3 and
Fig. 3, Our framework guarantees both the performance on each object and high inference speed as
shown in Table 1.

T-Less: This dataset has large amounts of texture-less and symmetric objects, which is also chal-
lenging and difficult for pose estimation. OVE6D with ICP refinement outperforms the supervised
method StablePose and CopyPose as presented in Table 2. And we have comparable results with
it, which further illustrates the ability of generalizing to the complicate scenes and objects of our
proposed framework.

Object name ape bench. cam can cat driller duck
OVE6D w/o ICP 91.3 98.5 60.4 92.5 90.1 77.7 80.4
OVE6D w/ ICP 95.4 99.7 73.9 96.5 97.9 94.1 95.0
OVE6D+Ours 96.1 100.0 74.1 97.0 97.7 93.4 95.3
Object name egg. glue holep. iron lamp phone Avg.

OVE6D w/o ICP 93.6 93.6 83.4 95.3 79.1 82.8 86.1
OVE6D w/ ICP 93.6 94.3 86.0 97.7 87.2 89.8 92.4
OVE6D+Ours 93.6 93.7 86.4 97.7 87.6 90.3 92.5

Table 3: Compared with ICP on LINEMOD. We report ADD and ADDS score for each object. The
bold text indicates symmetric object.

Object name ape can cat driller duck eggbox glue holep. Avg.
OVE6D w/o ICP 48.5 59.8 39.4 27.9 51.9 66.7 68.9 79.6 55.3
OVE6D w/ ICP 66.9 80.9 55.4 69 67.8 68.1 71.1 90.6 71,2
OVE6D+Ours 67.5 82.7 53.6 69.1 69.6 68.4 71.5 89.6 71.5

Table 4: Compared with ICP on Occluded LINEMOD. We report ADD and ADDS score for each
object. The bold text indicates symmetric object.
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(a) OVE6D (b) ICP (c) SDFR

(d) OVE6D (e) ICP (f) SDFR

Figure 3: Qualitative results on Linemod and Linemod occlusion. The first raw and the second raw
present objects in Linemod and Linemod occlusion, respectively.

(a) LR of rotation (1e-3) (b) LR of transition (1e-4) (c) Iteration number

Figure 4: Ablation study on the hyper-parameter of our framework.

4.5 ABLATION STUDY

We build our ablation study on the learning rate of rotation, transition and iteration number, which is
illustrated in Fig.4. Fig.4(a) and Fig.4(b) indicate the learning rate of rotation and the learning rate
of transition should be different. Each figure indicates our framework’s performance remains stable
with a wide range of proper learning rate. In view of this, the hyper-parameters are easy to tune and
thus the refinement framework is more convenience to use in real applications.

5 CONCLUSION

In this paper, we presented a fast 6D pose estimation refinement strategy, which works as an alter-
native of the popular iterative closest point (ICP) to achieve fast and accurate pose refinement. Our
work is inspired by the observation that pose refinement after the initial pose estimator plays a very
important role in performance boosting while the ICP-based refinement suffers from slow conver-
gence. We propose to encode the surface of target point cloud into a signed distance function, which
further serves as the minimization objective function to derive the optimal rigid transformation.
Extensive experimental results are provided to demonstrate the superiority of our method.
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