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ABSTRACT

Explanations of Machine Learning (ML) models often address a ‘Why?’ question.
Such explanations can be related with selecting feature-value pairs which are
sufficient for the prediction. Recent work has investigated explanations that address
a ‘Why Not?’ question, i.e. finding a change of feature values that guarantee a
change of prediction. Given their goals, these two forms of explaining predictions
of ML models appear to be mostly unrelated. However, this paper demonstrates
otherwise, and establishes a rigorous formal relationship between ‘Why?’ and
‘Why Not?’ explanations. Concretely, the paper proves that, for any given instance,
‘Why?’ explanations are minimal hitting sets of ‘Why Not?’ explanations and
vice-versa. Furthermore, the paper devises novel algorithms for extracting and
enumerating both forms of explanations.

1 INTRODUCTION

The importance of devising mechanisms for computing explanations of Machine Learning (ML)
models cannot be overstated, as illustrated by the fast-growing body of work in this area. A glimpse
of the importance of explainable AI (XAI) is offered by a growing number of recent surveys and
overviews Hoffman & Klein (2017); Hoffman et al. (2017); Biran & Cotton (2017); Montavon
et al. (2018); Klein (2018); Hoffman et al. (2018a); Adadi & Berrada (2018); Alonso et al. (2018);
Dosilovic et al. (2018); Hoffman et al. (2018b); Guidotti et al. (2019); Samek et al. (2019); Samek &
Müller (2019); Miller (2019b;a); Anjomshoae et al. (2019); Mittelstadt et al. (2019); Xu et al. (2019).
Past work on computing explanations has mostly addressed local (or instance-dependent) explana-
tions Ribeiro et al. (2016); Lundberg & Lee (2017); Ribeiro et al. (2018); Shih et al. (2018; 2019);
Ignatiev et al. (2019a); Darwiche & Hirth (2020); Darwiche (2020). Exceptions include for example
approaches that distill ML models, e.g. the case of NNs Frosst & Hinton (2017) among many oth-
ers Ribeiro et al. (2016), or recent work on relating explanations with adversarial examples Ignatiev
et al. (2019b), both of which can be seen as seeking global (or instance-independent) explanations.
Prior research has also mostly considered model-agnostic explanations Ribeiro et al. (2016); Lund-
berg & Lee (2017); Ribeiro et al. (2018). Recent work on model-based explanations, e.g. Shih et al.
(2018); Ignatiev et al. (2019a), refers to local (or global) model-agnostic explanations as heuristic,
given that these approaches offer no formal guarantees with respect to the underlying ML model1.
Examples of heuristic approaches include Ribeiro et al. (2016); Lundberg & Lee (2017); Ribeiro et al.
(2018), among many others2. In contrast, local (or global) model-based explanations are referred to as
rigorous, since these offer the strongest formal guarantees with respect to the underlying ML model.
Concrete examples of such rigorous approaches include Shih et al. (2018); Tran & d’Avila Garcez
(2018); Shih et al. (2019); Ignatiev et al. (2019a;b); Darwiche & Hirth (2020); Jha et al. (2019).
Most work on computing explanations aims to answer a ‘Why prediction π?’ question. Some work
proposes approximating the ML model’s behavior with a linear model Ribeiro et al. (2016); Lundberg
& Lee (2017). Most other work seeks to find a (often minimal) set of feature value pairs which is
sufficient for the prediction, i.e. as long as those features take the specified values, the prediction does
not change. For rigorous approaches, the answer to a ‘Why prediction π?’ question has been referred
to as PI-explanations Shih et al. (2018; 2019), abductive explanations Ignatiev et al. (2019a), but also
as (minimal) sufficient reasons Darwiche & Hirth (2020); Darwiche (2020). (Hereinafter, we use the
term abductive explanation because of the other forms of explanations studied in the paper.)

1A taxonomy of ML model explanations used in this paper is included in Appendix A.
2There is also a recent XAI service offered by Google: https://cloud.google.com/

explainable-ai/, inspired on similar ideas Google (2019).
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Another dimension of explanations, studied in recent work Miller (2019b), is the difference between
explanations for ‘Why prediction π?’ questions, e.g., ‘Why did I get the loan?’, and for ‘Why
prediction π and not δ?’ questions, e.g., ‘Why didn’t I get the loan?’. Explanations for ‘Why Not?’
questions, labelled by Miller (2019b) contrastive explanations, isolate a pragmatic component of
explanations that abductive explanations lack. Concretely, an abductive explanation identifies a set of
feature values which are sufficient for the model to make a prediction π and thus provides an answer
to the question ‘Why π?’ A constrastive explanation sets up a counterfactual link between what
was a (possibly) desired outcome of a certain set of features and what was the observed outcome
Bromberger (1962); Achinstein (1980). Thus, a contrastive explanation answers a ‘Why π and not
δ?’ question Miller (2018); Dhurandhar et al. (2018); Mittelstadt et al. (2019).
In this paper we focus on the relationship between local abductive and contrastive explanations3.
One of our contributions is to show how recent approaches for computing rigorous abductive
explanations Shih et al. (2018; 2019); Ignatiev et al. (2019a); Darwiche & Hirth (2020); Darwiche
(2020) can also be exploited for computing contrastive explanations. To our knowledge, this is new.
In addition, we demonstrate that rigorous (model-based) local abductive and contrastive explanations
are related by a minimal hitting set relationship 4, which builds on the seminal work of Reiter in the
80s Reiter (1987). Crucially, this novel hitting set relationship reveals a wealth of algorithms for
computing and for enumerating contrastive and abductive explanations. We emphasize that it allows
designing the first algorithm to enumerate abductive explanations. Finally, we demonstrate feasibility
of our approach experimentally. Furthermore, our experiments show that there is a strong correlation
between contrastive explanations and explanations produced by the commonly used SHAP explainer.

2 PRELIMINARIES

Explainability in Machine Learning. The paper assumes an ML model M, which is represented
by a finite set of first-order logic (FOL) sentences M. (When applicable, simpler alternative
representations forM can be considered, e.g. (decidable) fragments of FOL, (mixed-)integer linear
programming, constraint language(s), etc.)5 A set of features F = {f1, . . . , fL} is assumed. Each
feature fi is categorical (or ordinal), with values taken from some setDi. An instance is an assignment
of values to features. The space of instances, also referred to as feature (or instance) space, is defined
by F = D1 × D2 × . . . × DL. (For real-valued features, a suitable interval discretization can be
considered.) A (feature) literal λi is of the form (fi = vi), with vi ∈ Di. In what follows, a literal
will be viewed as an atom, i.e. it can take value true or false. As a result, an instance can be viewed
as a set of L literals, denoting the L distinct features, i.e. an instance contains a single occurrence
of a literal defined on any given feature. A set of literals is consistent if it contains at most one
literal defined on each feature. A consistent set of literals can be interpreted as a conjunction or as a
disjunction of literals; this will be clear from the context. When interpreted as a conjunction, the set
of literals denotes a cube in instance space, where the unspecified features can take any possible value
of their domain. When interpreted as a disjunction, the set of literals denotes a clause in instance
space. As before, the unspecified features can take any possible value of their domain.
The remainder of the paper assumes a classification problem with a set of classes K = {κ1, . . . , κM}.
A prediction π ∈ K is associated with each instance X ∈ F. Throughout this paper, an ML model
M will be associated with some logical representation (or encoding), whose consistency depends
on the (input) instance and (output) prediction. Thus, we define a predicateM⊆ F×K, such that
M(X,π) is true iff the input X is consistent with prediction π given the ML model M6. We further
simplify the notation by usingMπ(X) to denote a predicateM(X,π) for a concrete prediction π.
Moreover, we will compute prime implicants ofMπ . These predicates defined on F and represented
as consistent conjunctions (or alternatively as sets) of feature literals. Concretely, a consistent

3In contrast with recent work Ignatiev et al. (2019b), which studies the relationship between global model-
based (abductive) explanations and adversarial examples.

4A local abductive (resp. contrastive) explanation is a minimal hitting set of the set of all local contrastive
(resp. abductive) explanations.

5M is referred to as the (formal) model of the ML model M. The use of FOL is not restrictive, with fragments
of FOL being used in recent years for modeling ML models in different settings. These include NNs Ignatiev
et al. (2019a) and Bayesian Network Classifiers Shih et al. (2019), among others.

6This alternative notation is used for simplicity and clarity with respect to earlier work Shih et al. (2018);
Ignatiev et al. (2019a;b). Furthermore, definingM as a predicate allows for multiple predictions for the same
point in feature space. Nevertheless, such cases are not considered in this paper.
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conjunction of feature literals τ is an implicant ofMπ if the following FOL statement is true:
∀(X ∈ F).τ(X)→M(X,π) (1)

The notation τ �Mπ is used to denote that τ an implicant ofMπ. Similarly, a consistent set of
feature literals ν is the negation of an implicate ofMπ if the following FOL statement is true:

∀(X ∈ F).ν(X)→ (∨ρ6=πM(X, ρ)) (2)
Mπ �¬ν, or alternatively (ν �¬Mπ) ≡ (ν �∨ρ6=πMρ). An implicant τ (resp. implicate ν) is
called prime if none of its proper subsets τ ′ ( τ (resp. ν′ ( ν) is an implicant (resp. implicate).
Abductive explanations represent prime implicants of the decision function associated with some
predicted class π7.
Analysis of Inconsistent Formulas. Throughout the paper, we will be interested in formulas F that
are inconsistent (or unsatisfiable), i.e. F �⊥, represented as conjunctions of clauses. Some clauses in
F can be relaxed (i.e. allowed not to be satisfied) to restore consistency, whereas others cannot. Thus,
we assume that F is partitioned into two first-order subformulas F = B ∪ R, where R contains
the relaxable clauses, and B contains the non-relaxable clauses. B can be viewed as (consistent)
background knowledge, which must always be satisfied.
Given an inconsistent formula F , represented as a set of first-order clauses, we identify the clauses
that are responsible for unsatisfiability among those that can be relaxed, as defined next8.
Definition 1 (Minimal Unsatisfiable Subset (MUS)) Let F = B ∪R denote an inconsistent set of
clauses (F �⊥). U ⊆ R is a Minimal Unsatisfiable Subset (MUS) iff B ∪ U �⊥ and ∀U ′(U , B ∪
U ′ 2⊥.
Informally, an MUS provides the minimal information that needs to be added to the background
knowledge B to obtain an inconsistency; it explains the causes for this inconsistency. Alternatively,
one might be interested in correcting the formula, removing some clauses inR to achieve consistency.
Definition 2 (Minimal Correction Subset (MCS)) Let F = B ∪ R denote an inconsistent set of
clauses (F �⊥). T ⊆ R is a Minimal Correction Subset (MCS) iff B ∪ R \ T 2⊥ and ∀T ′(T ,
B ∪R \ T ′ �⊥.
A fundamental result in reasoning about inconsistent clause sets is the minimal hitting set (MHS)
duality relationship between MUSes and MCSes Reiter (1987); Birnbaum & Lozinskii (2003): MCSes
are MHSes of MUSes and vice-versa. This result has been extensively used in the development of
algorithms for MUSes and MCSes Bailey & Stuckey (2005); Liffiton & Sakallah (2008); Liffiton et al.
(2016), and also applied in a number of different settings. Recent years have witnessed the proposal of
a large number of novel algorithms for the extraction and enumeration of MUSes and MCSes Bacchus
& Katsirelos (2015); Liffiton et al. (2016); Grégoire et al. (2018); Bendík et al. (2018). Although
most work addresses propositional theories, these algorithms can easily be generalized to any other
setting where entailment is monotonic, e.g. SMT de Moura & Bjørner (2008).
Running Example. The following example will be used to illustrate the main ideas.
Example 1 We consider a textbook example Poole & Mackworth (2010)[Figure 7.1, page 289]
addressing the classification of a user’s preferences regarding whether to read or to skip a given
book. For this dataset, the set of features is:

{ A(uthor),T(hread), L(ength),W(hereRead) }
All features take one of two values, respectively {known, unknown}, {new, followUp}, {long, short},
and {home,work}. An example instance is: {(A = known), (T = new), (L = long), (W = home)}
This instance is identified as e1 Poole & Mackworth (2010) with prediction skips. Figure 1a shows
a possible decision tree for this example Poole & Mackworth (2010)9. The decision tree can be
represented as a set of rules as shown in Figure 1b10.

7By definition of prime implicant, abductive explanations are sufficient reasons for the prediction. Hence the
names used in recent work: abductive explanations Ignatiev et al. (2019a), PI-explanations Shih et al. (2018;
2019) and sufficient reasons Darwiche & Hirth (2020); Darwiche (2020).

8The definitions in this section are often presented for the propositional case, but the extension to the
first-order case is straightforward.

9The choice of a decision tree aims only at keeping the example(s) presented in the paper as simple as
possible. The ideas proposed in the paper apply to any ML model that can be represented with FOL. This
encompasses any existing ML model, with minor adaptations in case the ML model keeps state.

10The abbreviations used relate with the names in the decision tree, and serve for saving space.
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Length?

skips

long

Thread?

reads

new

Author?

skips

unknown

reads

known

followUp

short

(a) Decision tree

IF (L = lng) THEN skips (R1)
IF (L = shrt) ∧ (T = flUp) ∧ (A = ukwn) THEN skips (R2)

IF (L = shrt) ∧ (T = new) THEN reads (R3)
IF (L = shrt) ∧ (T = flUp) ∧ (A = kwn) THEN reads (R4)

(b) Rule set

Mπ(L,T,A,W) ,

[(L ∨ ¬L ∧ T ∧ ¬A)→(π = skips)]∧
[(¬L ∧ ¬T ∨ ¬L ∧ T ∧ A)→(π = reads)]

(c) Encoding ofMπ

Figure 1: Running example Poole & Mackworth (2010)

Our goal is to reason about the ML model, i.e. to implement model-based reasoning, so we need to
propose a logical representation for the ML model.
Example 2 For implementing model-based reasoning, we need to develop an encoding in some
suitable fragment of FOL 11. 0-place predicates 12 are used for L, T, A and W, as follows. We will
associate (L = long) with L and (L = short) with ¬L. Similarly, we associate (T = new) with
¬T, and (T = followUp) with T. We associate (A = known) with A and (A = unknown) with ¬A.
Furthermore, we associate (W = home) with ¬W and (W = work) with W. An example encoding is
shown in Figure 1c. The explicit values of π are optional (i.e. propositional values could be used)
and serve to illustrate how non-propositional valued could be modeled.

3 CONTRASTIVE VS. ABDUCTIVE EXPLANATIONS

Recent work Shih et al. (2018; 2019); Ignatiev et al. (2019a); Darwiche (2020) proposed to relate
model-based explanations with prime implicants. All these approaches compute a set of feature
values which, if unchanged, are sufficient for the prediction. Thus, one can view such explanations as
answering a ‘Why?’ question: the prediction is the one given, as long as some selected set of feature
values is the one given. In this paper, such explanations will be referred to as abductive explanations,
motivated by one of the approaches used for their computation Ignatiev et al. (2019a).

3.1 DEFINING ABDUCTIVE EXPLANATIONS (AXPS)

As indicated earlier in the paper, we focus on local model-based explanations.
Definition 3 (Abductive Explanation) Given an instance τ , with a prediction π, and an ML model
represented with a predicate Mπ, i.e. τ �Mπ, an abductive explanation is a minimal subset of
literals of τ , σ ⊆ τ , such that σ �Mπ .
Example 3 With respect to Example 1, let us consider the instance (A = known,T = new, L =
short,W = work), which we will represent instead as (A,¬T,¬L,W), corresponding to prediction
π = reads. By inspection of the decision tree (seeFigure 1a), a possible answer to the ‘Why
pred. reads?’ question is: {¬L,¬T}. In this concrete case we can conclude that this is the only
abductive explanation, again by inspection of the decision tree.

3.2 DEFINING CONTRASTIVE EXPLANATIONS (CXPS)

As Miller (2019b) notes, contrastive explanations are,
“sought in response to particular counterfactual cases... That is, people do not ask why
event P happened,but rather why event P happened instead of some event Q.”

11Depending on the ML problem, more expressive fragments of FOL logic could be considered Kroening &
Strichman (2016). Well-known examples include real, integer and integer-real arithmetic, but also nonlinear
arithmetic Kroening & Strichman (2016).

12Which in this case are used as propositional variables.
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As a result, we are interested in providing an answer to the question ‘Why π and not δ?’, where π is
the prediction given some instance τ , and δ is some other (desired) prediction.
Example 4 We consider again Example 1, but with the instance specified in Example 3. A possible
answer to the question ‘Why pred. reads and not pred. skips??’ is {L}. Indeed, given the input
instance (A,¬T,¬L,W), if the value of feature L changes from short to long, and the value of the
other features remains unchanged, then the prediction will change from reads to skips.
The following definition of a (local model-based) contrastive explanation captures the intuitive notion
of the contrastive explanation discussed in the example above.
Definition 4 (Contrastive Explanation) Given an instance τ , with a prediction π, and an ML model
represented by a predicateMπ , i.e. τ �Mπ , a contrastive explanation is a minimal subset of literals
of τ , ρ ⊆ τ , such that τ \ ρ2Mπ .
This definition means that, there is an assignment to the features with literals in ρ, such that the
prediction differs from π. Observe that a CXp is defined to answer the following (more specific)
question ‘Why (pred. π and) not ¬π?’. The more general case of answering the question ‘Why
(pred. π and) not δ?’ will be analyzed later.

3.3 RELATING ABDUCTIVE & CONTRASTIVE EXPLANATIONS

The previous section proposed a rigorous, model-based, definition of contrastive explanation. Given
this definition, one can think of developing dedicated algorithms that compute CXps using a decision
procedure for the logic used for representing the ML model. Instead, we adopt a simpler approach.
We build on a fundamental result from model-based diagnosis Reiter (1987) (and more generally
for reasoning about inconsistency Birnbaum & Lozinskii (2003); Bailey & Stuckey (2005)) and
demonstrate a similar relationship between AXps and CXps. In turn, this result reveals a variety of
novel algorithms for computing CXps, but also offers ways for enumerating both CXps and AXps.
Local Abductive Explanations (AXps). Consider a set of feature values τ , s.t. the predicion is π,
for which the notation τ �Mπ is used. We will use the equivalent statement, τ ∧ ¬Mπ �⊥. Thus,

τ ∧ ¬Mπ (3)
is inconsistent, with the background knowledge being B , ¬Mπ and the relaxable clauses being
R , τ . As proposed in Shih et al. (2018); Ignatiev et al. (2019a), a (local abductive) explanation is a
subset-minimal set σ of the literals in τ , such that, σ ∧ ¬Mπ �⊥. Thus, σ denotes a subset of the
example’s input features which, no matter the other feature values, ensure that the ML model predicts
π. Thus, any MUS of equation 3 is a (local abductive) explanation for M to predict π given τ .
Proposition 1 Local model-based abductive explanations are MUSes of the pair (B,R), τ ∧ ¬Mπ ,
whereR , τ and B , ¬Mπ .
Example 5 Consider the ML model from Example 1, the encoding from Example 2, and the instance
{A,¬T, L,¬W}, with prediction π = skips (wrt Figure 1, we replace skips = skips with true and
skips = reads with false). We can thus confirm that τ �Mπ . We observe that the following holds:

A ∧ ¬T ∧ L ∧ ¬W� [(L ∨ ¬L ∧ T ∧ ¬A)→ true] ∧ [(¬L ∧ ¬T ∨ ¬L ∧ T ∧ A)→ false] (4)
which can be rewritten as,

A ∧ ¬T ∧ L ∧ ¬W ∧ [(L ∨ ¬L ∧ T ∧ ¬A) ∧ ¬true] ∨ [(¬L ∧ ¬T ∨ ¬L ∧ T ∧ A) ∧ ¬false] (5)
It is easy to conclude that equation 5 is inconsistent. Moreover, σ = (L) denotes an MUS of equation 5
and denotes one abductive explanation for why the prediction is skips for the instance τ .
Local Contrastive Explanations (CXps). Suppose we compute instead an MCS ρ of equation 3,
with ρ ⊆ τ . As a result,

∧
l∈τ\ρ(l) ∧ ¬Mπ 2⊥ holds. Hence, assigning feature values to the inputs

of the ML model is consistent with a prediction that is not π, i.e. a prediction of some value other
than π. Observe that ρ is a subset-minimal set of literals which causes τ \ ρ ∧ ¬Mπ to be satisfiable,
with any satisfying assignment yielding a prediction that is not π.
Proposition 2 Local model-based contrastive explanations are MCSes of the pair (B,R), τ ∧¬Mπ ,
whereR , τ and B , ¬Mπ .
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Example 6 From equation 3 and equation 5 we can also compute ρ ⊆ τ such that τ \ ρ∧¬Mπ 2⊥.
For example ρ = (L) is an MCS of equation 5 13. Thus, from {A,¬T,¬W} we can get a prediction
other than skips, by considering feature value ¬L.

Duality Among Explanations. Given the results above, and the hitting set duality between MUSes
and MCSes Reiter (1987); Birnbaum & Lozinskii (2003), we have the following.
Theorem 1 AXps are MHSes of CXps and vice-versa.
Proof. Immediate from Definition 3, Definition 4, Proposition 1, Proposition 2, and Theorem 4.4 and
Corollary 4.5 of Reiter (1987). 2

Proposition 1, Proposition 2, and Theorem 1 can now serve to exploit the vast body of work on
the analysis of inconsistent formulas for computing both contrastive and abductive explanations
and, arguably more importantly, to enumerate explanations. Existing algorithms for the extraction
and enumeration of MUSes and MCSes require minor modications to be applied in the setting of
AXps and CXps (The resulting algorithms are briefly summarized in Appendix B. Interestingly, a
consequence of the duality is that computing an abductive explanation is harder than computing a
contrastive explanation in terms of the number of calls to a decision procedure Appendix B.).

Discussion. As observed above, the contrastive explanations we are computing answer the question:
‘Why (π and) not ¬π?’. A more general contrastive explanation would be ‘Why (π and) not δ, with
π 6= δ?’ Miller (2019b). Note that, since the prediction π is given, we are only interested in changing
the prediction to either ¬π or δ. We refer to answering the first question as a basic contrastive
explanation, whereas answering the second question will be referred to as a targeted contrastive
explanation, and written as CXpδ . The duality result between AXps and CXps in Theorem 1 applies
only to basic contrastive explanations. Nevertheless, the algorithms for MCS extraction for computing
a basic CXp can also be adapted to computing targeted CXps, as follows. We want a pick of feature
values such that the prediction is δ. We start by letting all features to take any value, and such
that the resulting prediction is δ. We then iteratively attempt to fix feature values to those in the
given instance, while the prediction remains δ. This way, the set of literals that change value are a
subset-minimal set of feature-value pairs that is sufficient for predicting δ. Finally, there are crucial
differences between the duality result established in this section, which targets local explanations,
and a recent result Ignatiev et al. (2019b), which targets global explanations. Earlier work established
a relation between prime implicants and implicates as a way to relate global abductive explanations
and so-called counterexamples. In contrast, we delved into the fundamentals of reasoning about
inconsistency, concretely the duality between MCSes and MUSes, and established a relation between
model-based local AXps and CXps.

4 EXPERIMENTAL EVALUATION

This section details the experimental evaluation to assess the practical feasibility and efficiency of
the enumeration of abductive and contrastive explanations for a few real-world datasets, studied in
the context of explainability and algorithmic fairness. To perform the evaluation, we adapt powerful
algorithms for enumeration MCSes or MCSes and MUSes to find all abductive and contrastive
explanations Bailey & Stuckey (2005); Liffiton & Sakallah (2008); Grégoire et al. (2018); Bendík
et al. (2018) 14. Algorithm 1 and Algorithm 2 in Appendix B show our adaptations of MCS (resp.
MCS and MUS) enumeration algorithms to the enumeration of CXps (resp. AXps and CXps).
Enumeration of CXps. These experiments demonstrate a novel, unexpected practical use case
of CXps enumeration algorithms. In particular, we show that our method gives a new fine-grained
view on both global and local standard explanations extracted from ML models. The goal of these
experiments is to gain better understanding of existing explainers rather than generate all CXps
for a given input. We conduct two sets of experiments. The first experiment, called “real vs fake”,
distinguishes real from fake images. A dataset contains two classes of images: (a) original MNIST
digits and (b) fake MNIST digits produced by a standard DCGAN model Radford et al. (2016) (see
Figure 2a and Figure 2g for typical examples). The second experiment, called “3 vs 5 digits”, uses a
dataset that contains digits “3” and “5” from the standard MNIST dataset (discussed in Appendix C.1).
Next, we discuss the results of the “real vs fake” experiment in details (Figure 2). For “real vs fake”,

13Although in general not the case, in Example 5 and Example 6 an MUS of size 1 is also an MCS of size 1.
14The prototype and the experimental setup are available at https://github.com/xdual/xdual.
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(a) Real 6 (b) XGBoost (c) SHAP (d) CXp1 (e) CXp2 (f) CXp1–3

(g) Fake 6 (h) XGBoost (i) SHAP (j) CXp3 (k) CXp4 (l) CXp3–5

Figure 2: The ‘real vs fake’ images. The first row shows results for the real image 6; the second –
results for the fake image 6. The first column shows examples of inputs; the second – heatmaps of
XGBoost’s important features; the third – heatmaps of SHAP’s explanation. Last three columns show
heatmaps of CXp of different cardinality. The brighter pixels are more influential features.

we train an XGBoost model Chen & Guestrin (2016) with 100 trees of depth 6 (accuracy 0.85/0.80
on train/test sets). We quantized images so that each pixel takes a value between 0 and 15, image
pixels are categorical features in the model.
Brief overview of the SHAP explainer. Given a classifier f and an explainer model g, SHAP aims to
train g be similar to f in the neighborhood of some given point x. The objective function for SHAP is
designed so that: (1) g approximates the behavior of the black box f accurately within the vicinity of
x, and (2) g achieves lower complexity and is interpretable: ξ(x) = arg ming∈G L(πx, g, f) + Ω(g),
where the loss function L is defined to minimize the distance between f and g in the neighborhood
of x using a weight function πx and Ω(g) quantifies the complexity of g; Ω(g) and πx are defined
based on game-theoretic notions (Lundberg & Lee, 2017).
Global and local explainers. We start by discussing our results on a few samples (Figure 2a and
Figure 2g). First, we extract important features provided by XGBoost. As these features are global
for the model, they are the same for all inputs (Figure 2b and Figure 2h are identical for real and fake
images). Figure 2b shows that these important features are no very informative for this dataset as these
pixels form a blob of pixels that cover an image. Then we compute an image-specific explanation
using the standard explainer SHAP (see Figure 2c for the real image and Figure 2i for the fake image).
SHAP explanations are more focused on specific parts of images compared to XGBoost. However, it
is still not easy to gain insights about which areas of an image are more important as pixels all over
the image participate in the explanations of SHAP and XGBoost. For example, both XGBoost and
SHAP distinguish some edge and middle pixels as key pixels (the bright pixels are more important)
but it is not clear why these are important pixels.
CXps enumeration approach. We recall that our goal is to investigate whether there is a connection
between the important pixels that SHAP/XGBoost finds and CXps for a given image. The most
surprising result is that, indeed, a connection exists and, for example, it reveals that the edge pixels of
an image, highlighted by both SHAP and XGBoost as important pixels, are, in fact, CXps of small
cardinalities. Given all CXps of size k, we plot a heatmap of occurrences of each pixel in these CXps
of size k. Let us focus on the first row with the real 6. Consider the heatmap CXp1 at Figure 2d
that shows all CXps of size one for the real 6. It shows that most of important pixels of XGBoost
and SHAP are actually CXps of size one. This means that it is sufficient to change a single pixel
value to some other value to obtain a different prediction. Note that these results reveal an interesting
observation. DCGAN generates images with a few gray edges pixels (see Figure 4 in Appendix.
Indeed, some of them have several edge pixels in gray.) This ‘defect’ does not happen often for real
MNIST images. Therefore, the classifier ‘hooks’ on this issue to classify an image as fake. Now,
consider the heatmap CXp2 at Figure 2e of CXps of size two. It overlaps a lot with SHAP important
pixels in the middle of the image explaining why these are important. Only a pair of these pixels can
be changed to get a different prediction.
A correlation between CXps and SHAP’s important features. To qualitatively measure our observa-
tions on correlation between key features of CXps and SHAP, we conducted the same experiment as

7
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Dataset

Adult Lending Recidivism Compas German Spambase

# of instances 5579.0 4414.0 3696.0 778.0 1000.0 2344.0

total time (sec.) 7666.9 443.8 3688.0 78.4 16 943.2 6859.2
minimal time (sec.) 0.1 0.0 0.1 0.0 0.2 0.1
average time (sec.) 1.4 0.1 1.0 0.1 16.9 2.9

maximal time (sec.) 13.1 0.8 8.9 0.5 193.0 23.1

total oracle calls 492 990.0 69 653.0 581 716.0 21 227.0 748 164.0 176 354.0
minimal oracle calls 14.0 11.0 17.0 13.0 23.0 12.0
average oracle calls 88.4 15.8 157.4 27.3 748.2 75.2

maximal oracle calls 581.0 73.0 1426.0 134.0 7829.0 353.0

total # of AXps 52 137.0 8105.0 60 688.0 1931.0 59 222.0 18 876.0
average # of AXps 9.4 1.8 16.4 2.5 59.2 8.1
average AXp size 5.3 1.9 6.4 3.8 7.5 4.6

total # of CXps 66 219.0 8663.0 77 784.0 3558.0 66 781.0 24 774.0
average # of CXps 11.9 2.0 21.1 4.6 66.8 10.6
average CXp size 2.4 1.4 2.6 1.5 3.6 2.3

Table 1: Results of the computational experiment on enumeration of AXps and CXps.

above on 100 random images and measured the correlation between CXps and SHAP features. First,
we compute a set T of pixels that is the union of the first (top) 100 smallest size CXps. On average,
we have 60 pixels in T . Note that the average 60 pixels represent a small fraction (7%) of the total
number of pixels. Then we find a set S of |T | SHAP pixels with highest absolute weights. Finally, we
compute corr = |S ∩ T |/|S| as the correlation measure. Note that corr = 0.4 on average, i.e. our
method hits 40% of best SHAP features. As the chances of two tools independently hitting the same
pixel (out of 784) are quite low, the fact that 40% of |S| are picked indicates a significant correlation.
Enumeration of CXps and AXps. Here, we aim at testing the scalability of explanation enumera-
tion and consider the six well-known and publicly available datasets. Three of them were previously
studied in Ribeiro et al. (2018) in the context of heuristic explanation approaches, namely, An-
chor Ribeiro et al. (2018) and LIME Ribeiro et al. (2016), including Adult, Lending, and Recidivism.
Appendix C.2 provides a detailed explanation of datasets and our implementation. A prototype imple-
menting is an adaptation of Liffiton & Sakallah (2008) abductive or (2) all contrastive explanations
was created. In the experiment, the prototype implementation is instructed to enumerate all abductive
explanations. The prototype is able to deal with tree ensemble models trained with XGBoost Chen
& Guestrin (2016). Given a dataset, we trained an XGBoost model containing 50 trees per class,
each tree having depth 3. (Further increasing the number of trees per class and also increasing the
maximum depth of a tree did not result in a significant increase of the models’ accuracy on the
training and test sets for the considered datasets.) All abductive explanations for every instance of
each of the six datasets were exhaustively enumerated using the duality-based approach (Algorithm 2
in Appendix B). This resulted in the computation of all contrastive explanations as well).
Evaluation results. Table 1 shows the results. There are several points to make. First, although it
seems computationally expensive to enumerate all explanations for a data instance, it can still be
achieved effectively for the medium-sized models trained for all the considered datasets. This may
on average require from a few dozen to several hundred of oracle calls per data instance (in some
cases, the number of calls gets up to a few thousand). Also observe that enumerating all explanations
for an instance takes from a fraction of a second to a couple of seconds on average. These results
demonstrate that our approach is practical.
Second, the total number of AXps is typically lower than the total number of their contrastive
counterparts. The same holds for the average numbers of abductive and contrastive explanations
per data instance. Third and finally, AXps for the studied datasets tend to be larger than contrastive
explanations. The latter observations imply that contrastive explanations may be preferred from a
user’s perspective, as the smaller the explanation is the easier it is to interpret for a human decision
maker. (Furthermore, although it is not shown in Table 1, we noticed that in many cases contrastive
explanations tend to be of size 1, which makes them ideal to reason about the behaviour of an ML
model.) On the other hand, exhaustive enumeration of contrastive explanations can be more time
consuming because of their large number.

Summary of results. We show that CXps enumeration gives us an insightful understanding of a
classifier’s behaviour. First, even in cases when we cannot enumerate all of CXps to compute AXps
by duality, we can still draw some conclusions, e.g. CXps of size one are exactly features that occur
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in all AXps. Next, we clearly demonstrate the feasibility of the duality-based exhaustive enumeration
of both AXps and CXps for a given data instance using a more powerful algorithm that performs
enumeration of AXps and CXps.

5 CONCLUSIONS

This paper studies local model-based abductive and contrastive explanations. Abductive explanations
answer ‘Why?’ questions, whereas contrastive explanations answer ‘Why Not?’ questions. Moreover,
the paper relates explanations with the analysis of inconsistent theories, and shows that abductive
explanations correspond to minimal unsatisfiable subsets, whereas contrastive explanations can
be related with minimal correction subsets. As a consequence of this result, the paper exploits a
well-known minimal hitting set relationship between MUSes and MCSes Reiter (1987); Birnbaum &
Lozinskii (2003) to reveal the same relationship between abductive and contrastive explanations. In
addition, the paper exploits known results on the analysis of inconsistent theories, to devise algorithms
for extracting and enumerating abductive and contrastive explanations.
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Appendices
A TAXONOMY

The taxonomy of explanations used in the paper is summarized in Table 2.

Table 2: Taxonomy of ML model explanations used in the paper.

Instance-
dependent independent
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L
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od
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-
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ic

Heuristic local explanation for π.
Examples: SHAP, LIME, Anchor, etc.

Heuristic global explanation for π.
Examples: SHAP, LIME (e.g. submodular pick)

ba
se

d

Rigorous local explanation for π.
Examples:

‘Why π?’ ‘Why not ¬π ?’
PI- (abductive) contrastive (CXps)

explanations (AXps) (our work)

Rigorous global explanation for π.
Examples: absolute/global AXps

B EXTRACTING & ENUMERATING EXPLANATIONS

The results of Section 3.3 enable exploiting past work on extracting and enumerating MCSes and
MUSes to the setting of contrastive and abductive explanations, respectively. Perhaps surprisingly,
there is a stark difference between algorithms for extraction and enumeration of contrastive explana-
tions and abductive explanations. Due to the association with MCSes, one contrastive explanation can
be computed with a logarithmic number of calls to a decision procedure Liffiton & Sakallah (2008).
Moreover, there exist algorithms for the direct enumeration of contrastive explanations Liffiton &
Sakallah (2008). In contrast, abductive explanations are associated with MUSes. As a result, any
known algorithm for extraction of one abductive explanation requires at best a linear number of calls
to a decision procedure Junker (2004), in the worst-case. Moreover, there is no known algorithm
for the direct enumeration of abductive explanations, and so enumeration can be achieved only
through the enumeration of contrastive explanations Liffiton & Sakallah (2008); Liffiton et al. (2016);
Felfernig et al. (2012).
We adapt state-of-the-art algorithms for the enumeration MUSes and MCSes to find all the abductive
and contrastive explanations. Note that as in the case of enumeration of MCSes and MUSes, the
enumeration of CXps is comparatively easier than the enumeration of AXps. Algorithm 1 shows our
adaptation of MCS enumeration algorithm to the enumeration of CXps Liffiton & Sakallah (2008).
Other alternatives Grégoire et al. (2018) could be considered instead. Algorithm 1 finds a CXp,
blocks it and finds the next one until no more exists. To extract a single CXp, we can use standard
algorithm, e.g. Bailey & Stuckey (2005). In principle, enumeration of AXps can be achieved by
computing all CXps and then computing all the minimal hitting sets of all CXps, as proposed in the
propositional setting Liffiton & Sakallah (2008). However, there are more efficient alternatives that
we can adapt here Bailey & Stuckey (2005); Liffiton et al. (2016); Narodytska et al. (2018); Bendík
et al. (2018), Algorithm 2 adapts Liffiton et al. (2016) to the case of computing both AXps and CXps.
The algorithm simultaneously searches for AXps and CXps and is based on the hitting set duality.

Algorithm 1 Enumeration of CXps
Function CXPENUM(Mπ ,C, π)

Input: Mπ: ML model, C: Input cube, π: Prediction
Variables: N and P defined on the variables of C

1 I ← ∅ ; // Block CXps
2 while true do
3 µ← ExtractCXp(Mπ, C, π, I)
4 if µ = ∅ then break;
5 ReportCXp(µ)
6 I ← I ∪ NegateLiteralsOf(µ)
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Algorithm 2 Enumeration of AXps (and CXps)
Function XPENUM(Mπ ,C, π)

Input: Mπ: ML model, C: Input cube, π: Prediction
Variables: N and P defined on the variables of C

1 K = (N ,P)← (∅, ∅) ; // Block AXps & CXps
2 while true do
3 (stλ, λ)← FindMHS(P,N ) ; // MHS of P st N
4 if ¬stλ then break;
5 (stρ, ρ)← SAT(λ ∧ ¬Mπ)
6 if ¬stρ then // entailment holds
7 ReportAXp(µ)
8 N ← N ∪ NegateLiteralsOf(µ)
9 else

10 µ← ExtractCXp(Mπ, ρ, π)
11 ReportCXp(ρ)
12 P ← P ∪ UseLiteralsOf(ρ)

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 ENUMERATION OF CXPS

Setup. To perform enumeration of contrastive explanations in our first experiment, we use a
constraint programming solver, ORtools Perron & Furnon 15. To encode the enumeration problem
with ORtools we converted scores of XGBoost models into integers keeping 5 digits precision. We
enumerate contrastive explanations in the increasing order by their cardinality. This can be done by
a simple modification of Algorithm 1 forcing it to return CXps in this order. So, we first obtain all
minimum size contrastive explanations, and so on.

Second experiment. Consider our second the “3 vs 5 digits” experiment. We use a dataset that
contains digits “3” (class 0) and “5” (class 1) from the standard MNIST (see Figure 3a and Figure 3g
for representative samples). XGboost model has 50 trees of depth 3 with accuracy 0.98 (0.97) on
train/test sets. We quantized images so that each pixel takes a value between 0 and 15. As before,
each pixel corresponds to a feature. So, we have 784 features in our XGBoost model.

(a) Digit 3 (b) XGBoost (c) SHAP (d) CXp3 (e) CXp4 (f) CXp3–5

(g) Digit 5 (h) XGBoost (i) SHAP (j) CXp1 (k) CXp2 (l) CXp1–6

Figure 3: Results of the 3 vs 5 digits experiments. The first row shows results for the image 3. The
second row shows results for the image 5. The first column shows examples of inputs; the second
column shows heatmaps of XGBoost’s global important features; the third column shows heatmaps
of SHAP’s important features. Last three columns show heatmaps of CXp of different cardinality.

Global and local explainers. We start by discussing our results on few random samples (Figure 3a
and Figure 3g). First, we obtain the important features from XGBoost. As these features are global
for the model so they are the same for all inputs (Figure 3b and Figure 3h are identical for 3 and 5

15The prototype and the experimental setup are available at https://github.com/xdual/xdual.
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Figure 4: Additional fake images. We reduced values of zero-valued pixels to highlight gray pixels
on the edges for some fake images.

images). Figure 2b shows that these important features. The important pixels highlight that the top
parts of images are important, which is a plausible high-level explanation of the classifier behavior.
Digits 3 and 5 are mostly differ in the top part of the image. However, some pixels are way more
important than other and it is hard to understand why.
Next, we compute an image-specific explanation using the standard explainer SHAP ( see Figure 3c
for the digit 3 and Figure 3c for the digit 5). While SHAP explanations mimic XGBoost important
features, they do provide additional insights for the user. Note that both XGBoots and SHAP mark a
“belt” of pixels in the upper middle part that as important (bright pixels is the most important pixels).

CXps enumeration approach. We run our enumeration algorithm to produce CXps of increasing
cardinality. For each image, we enumerate first 2000 CXps. Given all CXps of size k, we plot a
heatmap of occurrences of each pixel in these CXps of size k. Let us focus on the second row with
the digit 5. For example, CXp2 (Figure 3k) shows the heatmap of CXps of size two for the digit
5. As we mentioned above, both XGBoost and SHAP hint that the ‘belt’ of important pixels in the
middle. Again, our method can explain why this is the case. Consider the heatmap CXp1 at Figure 3j.
This picture shows all CXps of size one for the digit 5. It reveals that most of important pixels of
XGBoost and SHAP are actually CXps of size one. We reiterate that it is sufficient to change a single
pixel value to some other value to obtain a different prediction. Now, consider the heatmap CXp1–6 at
Figure 3l. This figure shows 2000 CXps (from size 1 to size 6). It overlaps a lot with SHAP important
pixels in the middle of the image. So, these pixels occur in many small size CXps and changing their
values leads to misclassification.

Correlation between CXps and SHAP features. To qualitatively measure our observations on
correlation between key features of CXps and SHAP, we conducted the same experiment as above
on 100 random images and measured the correlation between CXps and SHAP features. First, we
compute a set T of pixels that is the union of the first (top) 100 smallest size CXps. On average,
we have 38 pixels in T . Note that the average 38 pixels represent a small fraction (5%) of the total
number of pixels. Then we find a set S of |S| SHAP pixels with highest absolute weights. Finally, we
compute corr = |S ∩ T |/|S| as the correlation measure. Note that corr = 0.6 on average, i.e. our
method hits 60% of best SHAP features. As the chances of two tools independently hitting the same
pixel (out of 784) are quite low, the fact that 60% of |T | are picked indicates a significant correlation.

C.2 ENUMERATION OF CXPS AND AXPS

Datasets. The results are obtained on the six well-known and publicly available datasets. Three
of them were previously studied in Ribeiro et al. (2018) in the context of heuristic explanation
approaches, namely, Anchor Ribeiro et al. (2018) and LIME Ribeiro et al. (2016), including Adult,
Lending, and Recidivism. These datasets were processed the same way as in Ribeiro et al. (2018).
The Adult dataset Kohavi (1996) is originally taken from the Census bureau and targets predicting
whether or not a given adult person earns more than $50K a year depending on various attributes, e.g.
education, hours of work, etc. The Lending dataset aims at predicting whether or not a loan on the
Lending Club website will turn out bad. The Recidivism dataset was used to predict recidivism for
individuals released from North Carolina prisons in 1978 and 1980 Schmidt & Witte (1988). Two
more datasets were additionally considered including Compas and German that were previously
studied in the context of the FairML and Algorithmic Fairness projects FairML; Friedler et al. (2015);
Feldman et al. (2015); Friedler et al. (2019), an area in which the need for explanations is doubtless.
Compas is a popular dataset, known Angwin et al. (2016) for exhibiting racial bias of the COMPAS
algorithm used for scoring criminal defendant’s likelihood of reoffending. The latter dataset is a
German credit data (e.g. see Feldman et al. (2015); Friedler et al. (2019)), which given a list of
people’s attributes classifies them as good or bad credit risks. Finally, we consider the Spambase
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dataset from the UCI repository Dua & Graff (2017). The main goal is to classify an email as spam or
non-spam based on the words that occur in this email. Due to scalability constraints, we preprocessed
the dataset to keep ten words per email that were identified as the most influential words by a random
forest classifier.

Implementation and Setup. A prototype implementing Algorithm 2 targeting the enumeration
of either (1) all abductive or (2) all contrastive explanations was created. In the experiment, the
prototype implementation is instructed to enumerate all abductive explanations. (Note that, as
was also mentioned before, no matter what kind of explanations Algorithm 2 aims for, all the dual
explanations are to be computed as a side effect of the hitting set duality.) The prototype is able to deal
with tree ensemble models trained with XGBoost Chen & Guestrin (2016). For that purpose, a simple
encoding of tree ensembles into satisfiability modulo theories (SMT) was developed. Concretely, the
target formulas are in the theory of linear arithmetic over reals (RIA formulas). (Note that encodings
of a decision tree into logic are known Bonfietti et al. (2015); Lombardi et al. (2017); Verwer et al.
(2017). The final score summations used in tree ensembles can be encoded into RIA formulas.)
Due to the twofold nature of Algorithm 2, it has to deal with (1) implicit hitting set enumeration
and (2) entailment queries with SMT. The former part is implemented using the well-known MILP
solver CPLEX IBM ILOG. SMT solvers are accessed through the PySMT framework Gario &
Micheli (2015), which provides a unified interface to a variety of state-of-the-art SMT solvers. In the
experiments, we use Z3 de Moura & Bjørner (2008) as one of the best performing SMT solvers. The
conducted experiment was performed in Debian Linux on an Intel Xeon E5-2630 2.60GHz processor
with 64GByte of memory.
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