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Abstract

Change captioning aims to describe differ-001
ences between a pair of images using natural002
language. However, learning effective differ-003
ence representations is highly challenging due004
to distractors such as illumination and view-005
point changes. To address this, we propose006
a change-entity-guided disentanglement net-007
work that explicitly learns difference represen-008
tations while mitigating the impact of distrac-009
tors. Specifically, we first design a change en-010
tity retrieval module to identify key objects in-011
volved in the change from a textual perspec-012
tive. Then, we introduce a difference repre-013
sentation enhancement module that strength-014
ens the learned features, disentangling genuine015
differences from background variations. To016
further refine the generation process, we in-017
corporate a gated Transformer decoder, which018
dynamically integrates both visual difference019
and textual change-entity information. Exten-020
sive experiments on CLEVR-Change, CLEVR-021
DC and Spot-the-Diff datasets demonstrate that022
our method outperforms existing approaches,023
achieving state-of-the-art performance. The024
code will be released.025

1 Introduction026

Change captioning aims to describe the differences027

between two images using natural language. Un-028

like conventional image captioning that describes029

main content of a single image, change captioning030

requires understanding both the semantic corre-031

spondence and the differences between a pair of032

images. This task has garnered significant atten-033

tion due to its wide-ranging applications in fields034

such as visual monitoring (Jhamtani and Berg-035

Kirkpatrick, 2018), remote sensing image analysis036

(Liu et al., 2024), and medical image comparison037

(Chen et al., 2024).038

Existing methods (Park et al., 2019; Shi et al.,039

2020; Kim et al., 2021) mainly follow an encoder-040

decoder framework, which first extracts patch fea-041
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Figure 1: Examples of change captioning. (a) depicts
a change occurring in a real-world scenario. (b) shows
a change involving a viewpoint shift. (c) illustrates a
change occurring under extreme viewpoint variation.

tures from a pair of images, then models the dif- 042

ference features in between, and finally decodes 043

these features to generate change captions. To ac- 044

curately locate the change regions, current works 045

(Qiu et al., 2021; Yao et al., 2022) mostly match 046

similar features between the two images and then 047

disentangle the difference features. Additionally, 048

to generate higher-quality captions, some studies 049

(Hu et al., 2024; Zhang et al., 2024) introduce large 050

language models (LLMs) into this task. They pri- 051

marily replace the LSTM/Transformer structure 052

with pre-trained LLMs, and further fine-tune the 053

LLMs with different strategies to make them adapt 054

to change captioning. 055

Despite the progress, there are two major lim- 056

itations in existing approaches. First, viewpoint 057

variation (Figure 1 (c)) between image pairs often 058

leads to deformation of objects in the images (i.e., 059

pseudo changes (Tu et al., 2023c)). Such pseudo 060

changes make the distinguishing of really seman- 061

tic changes more challenging. Existing works at- 062

tempt to reduce the influence of irrelevant factors 063

through introducing additional mechanisms in the 064

visual encoder, such as using contrastive learning 065

to align the visual features (Tu et al., 2023c, 2024a). 066
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This approach, however, does not demonstrate067

significant effectiveness under extreme viewpoint068

changes (Figure 1 (c)), as pseudo changes in these069

scenarios become more pronounced. This leads070

to difficulties in feature matching for unchanged071

objects, which affects subsequent change localiza-072

tion. We have observed that despite the challenge073

of distinguishing real changes from distractions074

based solely on visual features, the similarity be-075

tween the object representation in the image and its076

corresponding textual representation remains rela-077

tively unaffected. Some works (Kim et al., 2024)078

attempt to introduce full-sentence descriptions as079

prior knowledge. However, directly using an entire080

sentence as prior knowledge introduces a lot of re-081

dundancy and even incorrect information. In fact,082

it is sufficient to focus only on the change entity083

provided by the text (such as a red cylinder, a green084

cube, etc.) which indicates what has changed.085

Secondly, previous studies (Qiu et al., 2021;086

Huang et al., 2021) typically rely solely on visual087

features as input to the decoder. Some existing088

works incorporate additional information, such as089

part-of-speech tags (Tu et al., 2021b), to generate090

higher-quality descriptions. There are also methods091

based on LLMs (Hu et al., 2024) that yield good092

results, but they come with considerable compu-093

tational cost. If we can incorporate some seman-094

tic prior information to guide the model, it could095

improve model performance without introducing096

significant cost.097

In this paper, we propose a novel CHange098

Entity-guided hEterogeneous Representation099

diSentangling (CHEERS) network, which explic-100

itly models and uses textual change entities to101

guide both feature disentanglement and caption102

generation. Specifically, we first design a Change103

Entity Retrieval Module, to locate what has104

changed based on the similarity between change105

entities and images. Second, we design a Hetero-106

geneous Representation Disentangling module to107

decouple the genuine differences between two108

images and generate the representations that encap-109

sulate the difference information. Here, we devise110

a Commonality Representation Enhancement111

module (CRE) that strengthens visual features112

in similar regions to decouple the difference113

information from the similar features. Then, we114

use a Difference Representation Enhancement115

(DRE) module, to highlight the difference regions.116

Meanwhile, the change entities are further used to117

enhance the difference features, while enforcing118

consistency in the enhanced regions between the 119

image-image and image-entity pairs to constrain 120

the model. Finally, to generate more accurate 121

change captions, we design a gated transformer 122

decoder that dynamically fuses the change entity 123

textual information with the difference visual 124

features. Through the gating mechanism, the 125

model can adjust the fusion ratio of the textual 126

information containing the change entity and the 127

visual information representing the change based 128

on context when generating the next word. 129

The key contributions of this work are threefold: 130

(1) We propose a novel CHEERS that identifies 131

changed objects from a textual perspective, provid- 132

ing explicit guidance for representation learning. 133

Further, CHEERS uses HRD to effectively sepa- 134

rate differences and similarities while mitigating 135

viewpoint variations and enhancing subtle change 136

perception. (2) We design a gated Transformer 137

decoder, which dynamically adjusts the fusion of 138

textual and visual information based on context, pri- 139

oritizing textual entity information for subject de- 140

scriptions and visual features for change details. (3) 141

Extensive experiments on the three public datasets 142

demonstrate that our approach significantly outper- 143

forms state-of-the-art change captioning models. 144

2 Related Work 145

Change Captioning is a task that aims to gen- 146

erate natural language descriptions of the differ- 147

ences between two images representing a scene 148

before and after a change. Early works, such as 149

Jhamtani (Jhamtani and Berg-Kirkpatrick, 2018), 150

approach this task by approximating object-level 151

differences through pixel-wise clustering based on 152

the difference between images. Park (Park et al., 153

2019) uses dynamic attention maps to localize the 154

changes, while Shi (Shi et al., 2020) extracts both 155

changed and unchanged features to input into a 156

caption decoder. However, in real-world scenarios, 157

viewpoint variation often introduces interference, 158

reducing the model’s ability to accurately identify 159

changes. To enhance the robustness of models to 160

such viewpoint changes, Tu (Tu et al., 2023b) de- 161

signs neighboring feature aggregation to capture 162

contextual information and common feature dis- 163

tillation to learn contrastive information between 164

images. Liao (Liao et al., 2021) attempts to model 165

the relative spatial relationships of objects in a 3D 166

scene to eliminate interference based on this con- 167

textual information. Tu (Tu et al., 2023c) utilizes 168
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Figure 2: The overall architecture of the proposed Change Entity-guided Heterogeneous Representation Disen-
tangling (CHEERS) network. The CHEERS primarily consists of multiple layers of HRD module and a gated
transformer. Each HRD layer includes two CRE and two DRE.
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Figure 3: The process of change entity retrieval.

contrastive learning to align the representations of169

two images, thereby learning a stable difference170

representation. Additionally, to generate higher-171

quality captions, several works have attempted to172

incorporate additional information to assist the de-173

coding process. Tu (Tu et al., 2021b) introduces174

part-of-speech information during decoding and175

uses a dynamic switch to control the fusion of this176

information. More recent works have leveraged177

large pre-trained LLM for this task. For instance,178

Hu (Hu et al., 2024) employs learnable query to-179

kens that probe the multi-level encoded features of180

both images to effectively capture their differences181

and assist the LLMs in learning these differences.182

Zhang (Zhang et al., 2024) fine-tunes large models183

and incorporates a relevant corpus as additional184

assistance to generate more accurate captions.185

Overall, previous works have primarily focused186

on identifying differences from visual information,187

generating difference representations, and then us-188

ing a decoder to produce captions. In contrast, this189

paper shifts the focus to discovering differences190

from a textual perspective, leveraging additional 191

textual information to guide the visual encoder in 192

more accurately localizing differences. Further- 193

more, during the caption generation process, we 194

fuse textual information to produce higher-quality 195

descriptions. 196

3 Method 197

Given a pair of images (Ibef , Iaft), we first employ 198

the Change Entity Retrieval Module, As shown in 199

Figure 3, as to extract textual change entities, de- 200

noted as E, which provide explicit guidance for 201

identifying key differences. Next, the Heteroge- 202

neous Representation Disentangling module pro- 203

cesses (Ibef , Iaft) to separate difference features, 204

denoted as (Dbef , Daft) respectively. Finally, we 205

utilize a gated Transformer decoder, which dynam- 206

ically fuses E and D based on context to generate 207

the final change description Scap. 208

3.1 Change Entity Extraction and Retrieval 209

3.1.1 Change Entity Extraction 210

In change captioning, the caption typically focuses 211

on the differences between two images, describing 212

what has changed and how it has changed. Given 213

a caption, the change entity generally corresponds 214

to the subject of the sentence. In this study, we uti- 215

lize SpaCy (Honnibal, 2017) to extract the subjects 216

from captions. Our captions are collected from the 217

corresponding training set. For instance, in experi- 218

ments on the CLEVR-Change dataset (Park et al., 219

2019), we extract subjects from the training cap- 220
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tions of this dataset. After obtaining all change en-221

tities, we extract semantic-level features E through222

pre-trained CLIP ViT-L/14 (Radford et al., 2021),223

which offers strong text-image alignment capabil-224

ities. These embeddings serve as the foundation225

for subsequent modules that localize and describe226

visual changes.227

3.1.2 Change Entity Retrieval228

After extracting the semantic embeddings E for all229

change entities, the next step is to retrieve the most230

relevant change entity that matches the given image231

pair (Ibef , Iaft). The goal is to find the change en-232

tity with the largest difference in cosine similarity233

between the two images, as this entity is likely to234

correspond to the true change in the scene. The235

main method is to identify the change entity with236

the largest difference in cosine similarity between237

the two images, as this entity generally corresponds238

to the true change in the scene.First, the two images239

are encoded by CLIP into feature representations240

denoted as (Xbef , Xaft). Then, the cosine simi-241

larity between each image feature and all change242

entity embeddings E is computed as Si ∈ RM243

where i ∈ {bef, aft} represent the cosine similar-244

ity between the change entity embeddings E and245

the image features.Then select the most relevant246

change entity Ê by maximizing the difference be-247

tween the cosine similarity scores of the change248

entity with the two images:249

Ê = argmax
E

(Sbef − Saft) . (1)250

To ensure that the selected change entity represen-251

tation is relevant, we introduce a constraint that at252

least one of the two cosine similarity scores Si is253

higher than the average similarity S̄i ∈ R.254

3.2 Change Entity-guided Heterogeneous255

Representation Disentangling256

3.2.1 Commonality Representation257

Enhancement Module258

In the visual feature encoding stage, we design a259

representation enhancement module to disentangle260

the difference and common features between two261

images. The structure is illustrated in Figure 2.262

Given a target feature Ftarget ∈ RH×W×C and a263

source feature Fsource ∈ RH×W×C , the enhance-264

ment process is described as follows. First, the265

cosine similarity between each position in Ftarget266

and Fsource is computed as S ∈ R denotes the267

similarity between position i in the target and posi-268

tion j in the source.Next, the similarity values are269

transformed into a probability map using a softmax 270

function: 271

P (i, j) =
exp(Sim(i, j))∑
k exp(Sim(j, k))

. (2) 272

To identify the parts of the target that have high 273

similarity with the source, the maximum similarity 274

across all positions in the source is computed and 275

expanded to the same dimensions as Ftarget through 276

a learnable linear layer: 277

P̂ (i) = Linear(max
j

P (i, j). (3) 278

Finally, a sigmoid function is introduced to control 279

the scaling ratio, and a residual connection is added 280

to prevent excessive information loss: 281

F ′
target = LN(σ(P̂ ) · Ftraget + Ftarget), (4) 282

where σ(·) denotes the sigmoid function and LN 283

represents layer normalization. This design allows 284

adaptive feature scaling while preserving the origi- 285

nal visual information. 286

3.2.2 Difference Representation Enhancement 287

Module 288

The difference enhancement module follows the 289

same basic structure and operational process as 290

the aforementioned CRE framework, with the only 291

difference being the computation process of P̂ : 292

P̂ (i) = Linear(I −max
j

P (i, j)). (5) 293

This method emphasizes the difference between the 294

two representations rather than the similar parts. 295

3.2.3 Heterogeneous Representation 296

Disentangling 297

During the visual encoding process, we primar- 298

ily use the aforementioned representation enhance- 299

ment module to decouple and highlight the differ- 300

ence features. The structure is illustrated in Fig- 301

ure 2. The input images Ibef , Iaft ∈ RC×H×W 302

are first processed by a ResNet backbone to ex- 303

tract the raw feature representations Fbef , Faft ∈ 304

RC′×H′×W ′
.Then, we feed the two raw features 305

into a CRE to highlight the common parts between 306

them and we also indirectly enhance image rep- 307

resentations using the change entities through the 308

DRE: 309
Ci = CRE(Fj , Fi),

C ′
i = DRE(E,Fi),

(6) 310
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where Ci, C
′
i ∈ RC×H×W . However, instead of311

directly using the output features, we apply the312

probability matrix P̂ in module to enforce consis-313

tency on the CRE as follows:314

LC = MSE(P̂C , P̂ ′
C), (7)315

where P̂C donates the probability matrix in CRE316

and P̂ ′
C donates the probability matrix in DRE. Af-317

ter highlight their common parts, multi-head cross-318

attention (Vaswani, 2017) is applied between the319

enhanced common features to model interactions320

between the two images:321

C̃i = MHCA(Ci, Cj), (8)322

where MHCA represents the multi-head cross-323

attention. Inspired by previous works (Tu et al.,324

2023c, 2024b), contrastive learning is introduced325

during the computation of cross-attention to further326

help it obtain stable change representations, with327

the loss function being InfoNCE loss:328

LI = − log
exp(sim(q, k+)/τ)∑N
i=1 exp(sim(q, ki)/τ)

(9)329

Then the difference between the attended features330

and the original raw features is computed and fur-331

ther enhanced by DRE. In a similar manner, we use332

the change entity to further enhance the differences:333

Di = DRE(Fi, Fi − C̃i).

D′
i = CRE(E,Fi − C̃i),

(10)334

then enforce consistency on the DRE through the335

probability matrix:336

LD = MSE(P̂D, P̂ ′
D). (11)337

Finally, we fuse the two difference representations338

through a linear layer:339

Fdiff = Linear(Concat[Dbef ;Daft]), (12)340

3.3 Gated Transformer Decoder341

After obtaining the visual difference features Fdiff ,
the gated mechanism is applied to dynamically
combine them with the textual change entity in-
formation E during caption generation. The de-
coder first processes its hidden states H through a
self-attention mechanism:

H ′
n−1 = SelfAttention(Hn−1)

where H ′
n−1 represents the updated decoder hidden 342

states after self-attention.Next, the updated hidden 343

statesH ′Hare used in multi-head attention mecha- 344

nisms with both the textual change entity features 345

E and the visual difference features Fdiff . Specif- 346

ically, we compute: 347

HT
n−1 = MHCA(H ′

n−1, E,E)

HV
n−1 = MHCA(H ′

n−1, Fdiff , Fdiff )
(13) 348

These operations allow the model to attend to both 349

the textual and visual information based on the 350

updated hidden states from the self-attention. Then, 351

the attention outputs HT and HV are combined 352

through a learnable weighting mechanism. We use 353

a linear layer to generate two parameters, α and β , 354

that control the importance of each attention output 355

and the final feature representation HF
n−1 is then 356

computed as a weighted sum of HT and HV : 357

α = Linear(Concat([H ′
n−1;H

T
n−1])) (14) 358

359
β = Linear(Concat([H ′

n−1;H
V
n−1])) (15) 360

361
HF

n−1 = α ·HT
n−1 + β ·HV

n−1 (16) 362

Finally, this combined feature is added to the resid- 363

ual connection and passed through a normalization 364

layer to produce the updated hidden states: 365

Hn = LN(HF
n−1 +H ′

n−1) (17) 366

The final output at each decoding step is then com- 367

puted by passing through a Linear layer and a soft- 368

max layer to predict the next word in the caption. 369

3.4 Joint Training 370

The overall training of the proposed network fol- 371

lows an end-to-end approach, where the goal is to 372

maximize the likelihood of generating the correct 373

word sequence. Given the ground-truth sequence 374

of words (w1, . . . , wm), the network is trained by 375

minimizing the negative log-likelihood loss func- 376

tion: 377

LS(θ) = −
m∑
t=1

log pθ(w
∗
t |w∗

<t). (18) 378

In this equation, pθ(w∗
t |w∗

<t) is the predicted proba- 379

bility for the t-th word given all the previous words. 380

Here, θ represents the parameters of the network. 381

In addition to this standard captioning loss, the 382

model incorporate two alignment losses and a con- 383

trastive loss. These losses help the model learn bet- 384

ter feature alignments between visual and textual 385
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representations. The final loss function combines386

the captioning loss with these contrastive losses:387

L = LS + λv(LC + LD) + λmLI , (19)388

where λv and λm are scalar trade-off parameters389

that control the relative importance of the losses,390

which are explained in further detail in the supple-391

mentary material.392

4 Experiments393

4.1 Datasets394

CLEVR-Change: This large-scale dataset (Park395

et al., 2019) focuses on moderate viewpoint396

changes. It consists of 79,606 image pairs across397

five change types: “Color”, “Texture”, “Add”,398

“Drop”, and “Move”. We use the official dataset399

split, with 67,660 pairs for training, 3,976 for vali-400

dation, and 7,970 for testing.401

CLEVR-DC: A more challenging dataset (Kim402

et al., 2021) that includes extreme viewpoint shifts.403

It contains 48,000 image pairs with the same404

change types as CLEVR-Change. The official split405

is used, with 85% for training, 5% for validation,406

and 10% for testing.407

Spot-the-Diff: A dataset (Jhamtani and Berg-408

Kirkpatrick, 2018) of 13,192 aligned image pairs409

taken from surveillance cameras. Following stan-410

dard practices, we evaluate our model on a single-411

change task. The dataset is split into training (80%),412

validation (10%), and testing (10%).413

4.2 Evaluation Metrics414

We evaluate the quality of the generated sentences415

using five standard metrics: BLEU-4 (Papineni416

et al., 2002), METEOR (Banerjee and Lavie, 2005),417

ROUGE-L (Lin, 2004), CIDEr (Vedantam et al.,418

2015), and SPICE (Anderson et al., 2016). All re-419

sults are computed through the Microsoft COCO420

evaluation server (Chen et al., 2015), providing a421

consistent and standardized evaluation across dif-422

ferent models.423

4.3 Implementation Details424

For feature extraction, we utilize ResNet-101 (He425

et al., 2016) pre-trained on the Imagenet dataset426

(Deng et al., 2009). Specifically, we extract features427

from the convolutional layers, yielding a tensor of428

size 14× 14. To handle these features, we set the429

hidden dimension of our model to 512.430

During training, we adjust the minibatch sizes431

based on the dataset: 128 for CLEVR-Change, 128432

for CLEVR-DC and 96 for Spot-the-Diff. We em- 433

ploy the Adam optimizer (Kingma, 2014) with 434

different learning rates for each dataset, specifi- 435

cally 1× 10−3 for CLEVR-Change, 1× 10−3 for 436

CLEVR-DC and 5 × 10−4 for Spot-the-Diff. In 437

the inference phase, we adopt a greedy decoding 438

strategy to generate captions from the model out- 439

puts. All experiments are carried out using PyTorch 440

(Paszke et al., 2019) and run on one RTX3090 GPU 441

to ensure efficient training and testing. 442

4.4 Performance Comparison 443

4.4.1 Results on CLEVR-Change 444

In this experiment, we compare our approach 445

with existing state-of-the-art methods and the re- 446

sults are summarized in Table 1. It is evident 447

that our method consistently outperforms existing 448

Transformer-based decoder models across all eval- 449

uation metrics, particularly in B, M, R metrics, 450

indicating that our model is effective at decoupling 451

differences and similarities. Compared to the LLM- 452

based FINER-MLLM, our method significantly 453

outperforms it in B, M, R, S metrics, highlight- 454

ing that our approach can more accurately pinpoint 455

differences, even without relying on large models. 456

In the case of semantic changes alone, it can 457

be observed that, our model outperforms existing 458

models across all metrics. This is primarily due 459

to the use of DRE, where the change entity acts 460

as a guide to strengthen the representation of dif- 461

ferences, allowing our model to more accurately 462

locate differences even under the interference intro- 463

duced by changes in perspective. 464

4.4.2 Results on CLEVR-DC 465

To evaluate the model’s performance under extreme 466

viewpoint changes, we conduct experiments on 467

the recently released CLEVR-DC dataset, which 468

primarily consists of image pairs with significant 469

viewpoint variations. In this experiment, we com- 470

pare our approach with state-of-the-art methods 471

and the results are summarized in Table 2. It is 472

clear that our model significantly outperforms ex- 473

isting methods in the R, C, S metric, demonstrating 474

stronger robustness to viewpoint changes compared 475

to prior works. This improvement can be largely 476

attributed to the DRE guided by the change enti- 477

ties, which effectively emphasizes the difference 478

features between two images. Additionally, the 479

decoder, which integrates textual information, en- 480

hances the generation of more accurate captions. 481

This combination enables our model to capture and 482
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Total Performance Semantic Change
Method B M R C S B M R C S

DUDA (Park et al., 2019) 47.3 33.9 - 112.3 24.5 42.9 29.7 - 94.6 19.9
IFDC (Huang et al., 2021) 49.2 32.5 69.1 118.7 - 47.2 29.3 63.7 105.4 -

DUDA+ (Hosseinzadeh and Wang, 2021) 51.2 37.7 70.5 115.4 31.1 49.9 34.3 65.4 101.3 27.9
VACC (Kim et al., 2021) 52.4 37.5 - 114.2 31.0 - - - - -
SRDRL (Tu et al., 2021b) 54.9 40.2 73.3 122.2 32.9 52.7 36.4 69.7 114.2 30.8
R3Net (Tu et al., 2021a) 54.7 39.8 73.1 123.0 32.6 52.7 36.2 69.8 116.6 30.3
BiDiff (Sun et al., 2022) 54.2 38.3 - 118.1 31.7 - - - - -

IDC-PCL (Yao et al., 2022) 51.2 36.2 71.7 128.9 - - - - - -
NCT (Tu et al., 2023b) 55.1 40.2 73.8 124.1 32.9 53.1 36.5 70.7 118.4 30.9

VARD (Tu et al., 2023a) 55.2 40.8 74.1 124.1 33.3 53.6 36.7 71.0 119.1 30.5
SCORER (Tu et al., 2023c) 56.3 41.2 74.5 126.8 33.3 54.4 37.6 71.7 122.4 31.6
SMART (Tu et al., 2024b) 56.1 40.8 74.2 127.0 33.4 54.3 37.4 71.8 123.6 32.0

DIRL+CCR (Tu et al., 2024a) - - - - - 54.6 38.1 71.9 123.6 31.8
FINER (Zhang et al., 2024) 55.6 36.6 72.5 137.2 26.4 - - - - -

CHEERS (Ours) 57.1 42.2 75.8 130.0 33.9 54.1 39.0 73.6 127.4 33.2

Table 1: Comparing with state-of-the-art methods on CLEVR-Change dataset.

Method B M R C S

DUDA (Park et al., 2019) 40.3 27.1 - 56.7 16.1
VAM (Shi et al., 2020) 40.9 27.1 - 60.1 15.8

VACC (Kim et al., 2021) 45.0 29.3 - 71.7 17.6
NCT (Tu et al., 2023b) 47.5 32.5 65.1 76.9 15.6

VARD (Tu et al., 2023a) 48.3 32.4 - 77.6 15.4
SCORER (Tu et al., 2023c) 49.4 33.4 66.1 83.7 16.2

DIRL+CCR (Tu et al., 2024a) 51.4 32.3 66.3 84.1 16.8

CHEERS (Ours) 51.6 32.7 66.8 86.9 17.0

Table 2: Comparing with state-of-the-art methods on
CLEVR-DC dataset.

Method B M R C S

DUDA (Park et al., 2019) 8.1 11.8 29.1 32.5 -
VAM (Shi et al., 2020) 10.1 12.4 31.3 38.1 -

VACC (Kim et al., 2021) 9.7 12.6 32.1 41.5 -
VARD (Tu et al., 2023a) - 12.5 29.3 30.3 17.3

SCORER (Tu et al., 2023c) 10.2 12.2 - 38.9 18.4
DIRL+CCR (Tu et al., 2024a) 10.3 13.8 32.8 40.9 19.9

CHEERS (Ours) 10.5 12.9 33.1 41.0 19.6

Table 3: Comparing with state-of-the-art methods on
Spot-the-Diff dataset.

highlight subtle changes in images, making it supe-483

rior to previous approaches.484

4.4.3 Results on Spot-the-Diff485

To evaluate the expressive capability of our model486

in real-world scenarios, we conduct experiments on487

the recently released Spot-the-Diff dataset, which488

primarily consists of well-aligned image pairs with-489

out any viewpoint changes. In this setup, we com-490

pare our approach against state-of-the-art methods.491

As shown in Table 3 our model achieves improve-492

ments across various metrics compared to these493
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Figure 4: Effect of number of entities on three datasets.

models. This indicates that our model can still 494

accurately describe differences in more complex 495

scenes. Since the dataset contains diverse state- 496

ments but is not large, the models struggle to learn 497

the semantic information of less frequent words. 498

However, with the help of prior semantic informa- 499

tion about the change entity, CHEERS can more 500

accurately describe the changes present in such 501

scenarios. 502

Method B M R C S

Baseline 42.2 34.7 67.5 100.1 28.6
HDR 56.3 41.2 74.3 125.3 32.9
GATE 43.9 36.2 69.8 104.4 29.1

CHEERS 57.1 42.2 75.8 130.0 33.9

Table 4: Ablation study of each module on CLEVR-
Change dataset.

4.5 Ablation studies 503

Ablation Study of Each Module.To assess the con- 504

tribution of each module, we conduct the follow- 505

ing ablation studies on CLEVR-Change. Table 4 506

shows the overall performance of each component 507

of the proposed method across the entire dataset 508

and only scene changes. It is evident that each 509
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CLEVR-Change CLEVR-DC Spot-the-diff

GT: the gray cylinder has been 
newly placed
SCORER: no change was made

Ours: the tiny gray metal cylinder 
has been added 
Entity: the tiny gray thing

GT: the other cylinder has appeared

SCORER: the large yellow cube 
moved
Ours: the tiny gray metal cylinder 
has been added 
Entity: the rubber cylinder 

GT: that truck is not present in the 
after image
SCORER: the blue truck has moved

Ours: the blue truck is missing

Entity: many cars

Figure 5: Qualitative analysis between the state-of-the-art method SCORER (Tu et al., 2023c) and our CHEERS on
the CLEVR-Change, CLEVR-DC, and Spot-the-diff datasets.

module contributes to enhancing the baseline per-510

formance. Furthermore, the best performance is511

achieved when all modules are combined, demon-512

strating that each component not only fulfills its513

unique role but also complements the others. This514

indicates that, with the guidance of the change en-515

tity, the model can more accurately pinpoint differ-516

ences and generate higher-quality captions.517

Ablation Study of Number of Entities. We518

conduct an ablation study on the number of en-519

tities used in our model, as illustrated in Figure520

4 Across three different datasets, we observe that521

simply increasing the number of entities does not522

lead to significant performance improvements. In523

fact, having too many entities can make it difficult524

for the model to focus on the true change targets,525

as the increased variation in the entities may dis-526

tract the model from capturing the most relevant527

changes. Based on these findings, we set the num-528

ber of entities to optimal values of 3 allowing the529

model to focus on the true change targets without530

being distracted by irrelevant variations.531

4.5.1 Qualitative Analysis532

Figure 5 presents three representative examples533

from CHEERS, evaluated against the baseline534

model SCORER, across three different datasets.535

Each example shows the ground-truth change cap-536

tions alongside those generated by CHEERS and537

SCORER, with changed regions highlighted by red538

boxes. Besides, we also present the change entity539

retrieved by our model to demonstrate its correla-540

tion with the real changes. Additionally, to observe541

whether the model can focus on the difference re- 542

gions, we illustrate the attention distributions and 543

visualize them as a heatmap. 544

Upon reviewing the descriptions generated by 545

both methods in Figure 5, it becomes clear that 546

our model outperforms SCORER in recognizing 547

subtle differences, and it demonstrates greater ro- 548

bustness in handling extreme viewpoint changes. 549

The heatmap analysis reveals that our model ef- 550

fectively focuses on the different objects across 551

the paired images, highlighting its attention to key 552

details. Moreover, it can be observed that the ex- 553

tracted entities have a high correlation with the 554

ground truth, which further validates the approach 555

of using entities to guide the model in identify- 556

ing the differences, reinforcing the practicality and 557

effectiveness of this strategy. 558

5 Conclusion 559

This paper proposes CHEERS, which leverages 560

change entities to guide difference localization and 561

caption generation. CHEERS first determines the 562

change entity by maximizing the similarity differ- 563

ence between two images and candidate subjects. 564

Then, guided by the change entity, a representation 565

enhancement mechanism is applied to disentangle 566

difference features from distraction. Additionally, 567

we design a gated transformer that dynamically 568

fuses visual difference information with the tex- 569

tual change entity features. Extensive experiments 570

show that CHEERS achieves state-of-the-art results 571

on multiple benchmark datasets, demonstrating its 572

effectiveness in various change scenarios. 573

8



Limitations574

We propose a novel model, CHEERS, aimed at575

generating higher-quality text and having stronger576

robustness in the change captioning task. Although577

our model achieves state-of-the-art performance578

on several public datasets, there is still room for579

improvement. In the entity retrieval and encoding580

stage, we primarily use CLIP, which is not sensi-581

tive to numerical and spatial relationships. More582

powerful models could be used for entities retrieval583

or to generate prior textual information.584
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