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Abstract

For scalable machine learning on large data sets, subsampling a representative subset is a
common approach for efficient model training. This is often achieved through importance
sampling, whereby informative data points are sampled more frequently. In this paper, we
examine the privacy properties of importance sampling, focusing on an individualized privacy
analysis. We find that, in importance sampling, privacy is well aligned with utility but at
odds with sample size. Based on this insight, we propose two approaches for constructing
sampling distributions: one that optimizes the privacy-efficiency trade-off; and one based
on a utility guarantee in the form of coresets. We evaluate both approaches empirically in
terms of privacy, efficiency, and accuracy on the differentially private k-means problem. We
observe that both approaches yield similar outcomes and consistently outperform uniform
sampling across a wide range of data sets.

1 Introduction

When deploying machine learning models in practice, two central challenges are scalability, i.e., the
computationally efficient handling of large data sets, and the protection of user privacy. A common approach
to the former challenge is subsampling, i.e., performing demanding computations only on a subset of the
data, see, e.g., Alain et al. (2016); Katharopoulos & Fleuret (2018). Here, importance sampling is a powerful
tool that can reduce the variance of the subsampled estimator. It assigns higher sampling probabilities to
data points that are more informative for the task at hand while keeping the estimate unbiased. For instance,
importance sampling is commonly used to construct coresets, that is, subsets whose loss function value
is provably close to the loss for the full data set, see, e.g., Bachem et al. (2018). For the latter challenge,
differential privacy (Dwork et al., 2006b) offers a framework for publishing trained models in a way that
respects the individual privacy of every user.

Differential privacy and subsampling are related via the concept of privacy amplification by subsampling
(Kasiviswanathan et al., 2008; Balle et al., 2018), which states, loosely speaking, that subsampling with
probability p improves the privacy parameter of a subsequently run differentially private algorithm by a
factor of approximately p. A typical application of this result involves re-scaling the query by a factor of
1/p to eliminate the sampling bias, thereby approximately canceling out the privacy gains, but keeping
the efficiency gain. It forms the foundation for many practical applications of differential privacy, such as
differentially private stochastic gradient descent (Bassily et al., 2014; Abadi et al., 2016).

So far, privacy amplification has been predominantly used with uniform sampling (Steinke, 2022). Although
the potential of data-dependent sampling for reducing sampling variance is well understood (e.g., Robert
& Casella (2005)), it has largely remained untapped in differential privacy because its privacy benefits have
not been as clear (Bun et al., 2022; Drechsler & Bailie, 2024). A longstanding objection to data-dependent
sampling is that the privacy amplification factor scales with the maximum sampling probability when applied
to heterogeneous probabilities, leading to worse privacy than uniform sampling when controlling for sample
size. Recently, Bun et al. (2022) confirmed that this also holds for probability-proportional-to-size sampling
– a sampling strategy closely related to importance sampling – and further noted that additional privacy
leakage may arise from data points influencing other data points’ sampling probabilities.

We find that these challenges can be addressed with an appropriate sampling scheme and an individualized
privacy analysis incorporating more information than previous work. We propose Poisson importance
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sampling, defined as sampling each data point independently with a probability that depends only on the
data point itself and weighting the point by the reciprocal of the probability. In this setting, we conduct
a privacy analysis that explicitly considers the individual privacy loss of each data point when sampled with
a specific weight and probability. Our analysis reveals that, in importance sampling, privacy is typically not
at odds with utility but with sample size. This is for two reasons: (i) the most informative points typically
have the highest privacy loss, and (ii) when importance weights are accounted for, decreasing the sampling
probability typically increases the privacy loss. Perhaps counterintuitively, we conclude that we should assign
high sampling probabilities to data points with high privacy loss to have good privacy and good utility.

At first, statement (ii) might seem to suggest that we should reject weighted sampling altogether because
there is no privacy gain. However, this is misleading because the statement applies even more to the widely
used uniform sampling when weights are accounted for. Indeed, we find that importance sampling is superior
to uniform sampling in terms of mitigating the impact on privacy and utility. By including sampling weights
into the framework of privacy amplification, we make this effect explicit and highlight that the primary
purpose of subsampling (whether uniform or data-dependent) is to improve the efficiency of the mechanism,
not its privacy-utility trade-off.

Based on this insight, we derive two specific approaches for constructing importance sampling distributions
for a given mechanism.

• Our first approach navigates the aforementioned adverse relationship between privacy and sample
size by minimizing the expected sample size subject to a worst-case privacy constraint. This
approach effectively equalizes the individual privacy losses of the mechanism. We call this approach
privacy-constrained sampling. It applies to any differentially private mechanism whose individual
privacy loss profile is known. We provide an efficient algorithm that optimizes the sampling
probabilities numerically. Notably, with privacy-optimal sampling, we can achieve some sampling
“for free” by assigning a sampling probability of 1 to the data point(s) with the highest privacy loss
and probabilities less than 1 to the remaining points.

• Our second approach is based on the concept of coresets, which are small, representative subsets
that come with strong utility guarantees in the form of a confidence interval around the loss function
value of the full data set. We derive the privacy properties of a coreset-based sampling distribution
when used in conjunction with differentially private k-means clustering.

The two approaches are visualized in Figure 1 alongside uniform sampling. The figure shows that the
privacy-constrained weights are highly correlated to the utility-based coreset weights, supporting the intuition
that privacy and utility are well aligned in importance sampling.

We empirically evaluate the proposed approaches on the task of differentially private k-means clustering. We
compare them to uniform sampling in terms of efficiency, privacy, and accuracy on eight different data sets of
varying sizes (cf. Table 1). We find that both of our approaches consistently provide better utility for a given
sample size and privacy budget than uniform sampling on all data sets. We find meaningful privacy-utility
improvements even in the medium-to-low privacy regime where uniform sampling typically fails to do so.
One practical implication is that importance sampling can be used effectively to subsample the data set once
at the beginning of the computation, while uniform subsampling typically requires repeated subsampling at
each iteration.

2 Preliminaries

We begin by stating the necessary concepts that also introduce the notation used in this paper. We denote
by X ⊆ Rd the set of all possible data points. A data set D ∈ X ∗ is a finite subset of X . We use
Bd,p(r) = {x ∈ Rd | ∥x∥p ≤ r} to refer to the ℓp-norm ball of radius r in d dimensions. When the dimension
is clear from context, we omit the subscript d and write Bp(r).

Differential Privacy. Differential privacy (DP) is a formal notion of privacy stating that the output of
a data processing method should be robust, in a probabilistic sense, to changes in the data set that affect
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Figure 1: Illustration of three subsampling strategies for the learning task of k-means clustering on the Song
data set. We show a scatter plot of the first two principal components of the sampled points. The marker size
is proportional to the importance weight, while the color represents the individual privacy loss before sampling.
Left: Our privacy-constrained sampling selects data points with higher individual privacy loss more frequently
and with lower weight. Middle: Coreset-based sampling selects data points based on their potential impact
on the objective function. Right: Uniform sampling selects data points with equal probability.

individual data points. It was introduced by Dwork et al. (2006b) and has since become a standard tool for
privacy-preserving data analysis (Ji et al., 2014). The notion of robustness is qualified by a parameter ϵ ≥ 0
that relates to the error rate of any adversary that tries to infer whether a particular data point is present in
the data set (Kairouz et al., 2015; Dong et al., 2019). Differential privacy is based on the formal notion of
indistinguishability.
Definition 1 (ϵ-indistinguishability). Let ϵ ≥ 0. Two distributions P,Q on a space Y are ϵ-indistinguishable
if P (Y ) ≤ eϵQ(Y ) and Q(Y ) ≤ eϵP (Y ) for all measurable Y ⊆ Y.
Definition 2 (ϵ-DP). A randomized mechanism M : X ∗ → Y is said to be ϵ-differentially private (ϵ-DP) if,
for all neighboring data sets D,D′ ∈ X ∗, the distributions of M(D) and M(D′) are ϵ-indistinguishable. Two
data sets D,D′ are neighboring if D = D′ ∪ {x} or D′ = D ∪ {x} for some x ∈ X .

Formally, we consider a randomized mechanism as a mapping from a data set to a random variable. Differential
privacy satisfies several convenient analytical properties, including closedness under post-processing (Dwork
et al., 2006b), composition (Dwork et al., 2006b;a; 2010; Kairouz et al., 2015), and sampling (Kasiviswanathan
et al., 2008; Balle et al., 2018). The latter is called privacy amplification by subsampling.
Proposition 3 (Privacy Amplification by Subsampling). Let D be a data set of size n, S be a subset of D
where every x has a constant probability p of being independently sampled, i.e., q(x) = p ∈ (0, 1], and M be
an ϵ-DP mechanism. Then, M(S) satisfies ϵ′-DP for ϵ′ = log(1 + (exp(ϵ)− 1)p).

In the case of heterogeneous sampling probabilities p1, . . . , pn, the privacy amplification scales with maxi pi

instead of p. It is important to note that this only provides meaningful privacy amplification if ϵ is sufficiently
small. For ϵ > 1, we only have ϵ′ ≈ ϵ− log(1/p).

Personalized Differential Privacy. In many applications, the privacy loss of a mechanism is not uniform
across the data set. This heterogeneity can be captured by the notion of personalized differential privacy
(PDP) (Jorgensen et al., 2015; Ebadi et al., 2015; Alaggan et al., 2016).
Definition 4 (Personalized differential privacy). Let ϵ : X → R≥0. A mechanism M : X ∗ → Y is said to
satisfy ϵ-personalized differential privacy (ϵ-PDP) if, for all data sets D and differing points x ∈ X , the
distributions ofM(D) andM(D∪{x}) are ϵ(x)-indistinguishable. We call the function ϵ(·) a PDP profile ofM.

Importance Sampling. In learning problems, the (weighted) objective function that we optimize is often
a sum over per-point losses, i.e., ϕD =

∑
x∈D w(x)ℓ(x). Here, we typically have w(x) = 1 ∀x ∈ D for the full

data D. Uniformly subsampling a data set yields an unbiased estimation of the mean. A common way to
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improve upon uniform sampling is to skew the sampling towards important data points while retaining an
unbiased estimate of the objective function. Let q be an importance sampling distribution on D which we use
to sample a subset S of m≪ n points and weight them with w(x) = (mq(x))−1. Then, the estimation of the
objective function is unbiased, i.e., ES [ϕS ] = ϕD.

3 Privacy Amplification via Importance Sampling

This section presents our framework for importance sampling with differential privacy. In Section 3.1, we
introduce the notion of Poisson importance sampling and state and discuss its general privacy properties. Sec-
tion 3.2 presents our first approach for deriving importance sampling distributions, namely privacy-constrained
sampling. Finally, in Section 3.3, we give a numerical example that illustrates the aforementioned results
and compares them to uniform subsampling for the Laplace mechanism. We defer all proofs to Appendix D.

3.1 General Sampling Distributions

We begin by introducing Poisson importance sampling, which is the sampling strategy we use throughout the
paper. It is a weighted version of the Poisson sampling strategy described in Proposition 3.
Definition 5 (Poisson Importance Sampling). Let q : X → [0, 1] be a function, and D = {x1, . . . ,xn} ⊆ X be
a data set. A Poisson importance sampler for q is a randomized mechanism Sq(D) = {(wi,xi) | γi = 1}, where
wi = 1/q(xi) are weights and γ1, . . . , γn are independent Bernoulli variables with parameters pi = q(xi).

By having each probability q(xi) depend only on the data point xi itself and keeping the selection events
independent, we ensure that the influence of any single data point on the sample is small. It is important to note
that the function definition of q must be data-independent and considered public information, i.e., fixed before
observing the data set, while the specific probabilities {q(xi)}n

i=1 evaluated on the data set are not published.
Note also that Poisson importance sampling outputs a weighted data set. We intend for the subsequent
mechanism to use these weights to offset the sampling bias, e.g., by using a weighted sum when the goal is to
estimate a population sum. However, note that our formal privacy results also apply to biased mechanisms.

In order to characterize the privacy properties of Poisson importance sampling, we analyze the impact of the
sampling probability jointly with the data point’s individual privacy loss in the base mechanism. For this
reason, we express our results within PDP, which is in contrast to previous characterizations of data-dependent
sampling (e.g., Bun et al. (2022)). Our first result describes the general case of an arbitrary PDP mechanism
subsampled with an arbitrary importance sampling distribution.
Theorem 6 (Amplification by Importance Sampling). Let M : [1,∞)×X ∗ → Y be an ϵ-PDP mechanism
that operates on weighted data sets, q : X → [0, 1] be a function, and Sq(·) be a Poisson importance sampler
for q. The mechanism M̂ =M◦ Sq satisfies ψ-PDP with

ψ(x) = log
(

1 + q(x)
(
eϵ(w,x) − 1

))
, where w = 1

q(x) . (1)

The sampled PDP profile in Equation (1) closely resembles the privacy amplification result for uniform
sampling (Proposition 3) with the important distinction that ϵ(w,x) depends on a weight w and a data
point x. This relatively small change has important implications for the trade-offs between privacy, efficiency,
and accuracy. In general, it is no longer obvious whether the privacy loss increases or decreases as a function
of the sampling probability. However, we show in Appendix A that, for an important class of PDP profiles,
the sampled PDP profile is decreasing in q(x). This class is important because it includes PDP profiles that
are linear in w. In the context of importance sampling, we argue that all mechanisms of interest are linear in
w, because linearity follows from a simple invariance condition: we should expect a mechanism to treat a
weighted data point (w,x) the same as if it were w distinct data points of value x, each with weight 1. For
(generalized) linear queries, this invariance coincides with unbiasedness and thus agrees with the intuitive
purpose of an importance weight. If this invariance holds, the PDP profile is linear in w due to group privacy.

From the above discussion, we conclude that a good sampling distribution should assign high probabilities
to informative data points in order to achieve good privacy and utility. Hence, the privacy-utility-efficiency
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trilemma reduces to a dilemma between efficiency on the one hand; and privacy and utility on the other.
This suggests two natural approaches to constructing sampling distributions: one that optimizes the
privacy-efficiency trade-off and one that optimizes the utility-efficiency trade-off. We explore the first
approach in Section 3.2 and the second approach in Section 4.

3.2 Sampling with optimal privacy-efficiency trade-off

We now describe how to construct a sampling distribution that achieves a given ϵ-DP guarantee with minimal
expected sample size. The motivation for this is twofold. First, as we have seen in the previous subsection,
sample size is the primary limiting factor to privacy in importance sampling and additionally serves as the
primary indicator of efficiency. Secondly, by imposing a constant PDP bound as a constraint we can ensure
that the subsampled mechanism satisfies ϵ-DP by design. This is not obvious from Theorem 6, as the resulting
PDP profile may be unbounded.

Minimizing the expected sample size subject to a given ϵ⋆-DP constraint can be described as the following
optimization problem.
Problem 7 (Privacy-constrained sampling). For a PDP profile ϵ : [1,∞)×X → R≥0, a target privacy guaran-
tee ϵ⋆, and a data set D ⊆ X of size n, we define the optimization problem for privacy-constrained sampling as

minimize
w1,...,wn

n∑
i=1

1
wi

(2a)

subject to log
(

1 + 1
wi

(
eϵ(wi,xi) − 1

))
≤ ϵ⋆ for all i, (2b)

wi ≥ 1, for all i. (2c)

The constraint in Equation (2b) captures the requirement that ψ should be bounded by ϵ⋆ for all x ∈ X ,
and the constraint in Equation (2c) ensures that 1/wi is a probability. When the PDP profile is linear in w,
the problem can be solved with standard convex optimization techniques. Below, we provide a more general
result that guarantees a unique solution and an efficient algorithm for a broad class of (possibly) nonconvex
PDP profiles. In order to guarantee a unique solution, we require the following mild regularity conditions.
Assumption 8. For all x ∈ X , ϵ⋆ ≥ ϵ(1,x).

Assumption 9. For all x ∈ X , there is a constant vx ≥ 1 such that ϵ(w,x) > log(1 + w(eϵ⋆ − 1)) for all
w ≥ vx.

Assumption 8 ensures that the feasible region is non-empty, because w1 = w2 = · · · = wn = 1 always satisfies
the constraints, while Assumption 9 essentially states that, asymptotically, ϵ should grow at least logarith-
mically fast with w, ensuring that the feasible region is bounded. Formally, our existence result is as follows.
Theorem 10. Let Assumptions 8 and 9 be satisfied. There is a data set-independent function w : X → [1,∞),
such that, for all data sets D ∈ X ∗, Problem 7 has a unique solution w⋆(D) = (w⋆

1(D), . . . , w⋆
n(D)) of the

form w⋆
i (D) = w(xi). Furthermore, let M be a mechanism that admits the PDP profile ϵ and Sq be a Poisson

importance sampler for q(x) = 1/w(x). Then, M◦ Sq satisfies ϵ⋆-DP.

The fact that the weights are of the form w∗
i (D) = w(xi) is important for privacy. It ensures that the

probability map q(·) is only a function of xi and not of the remainder of the data set, which is a requirement
for Poisson importance sampling.

Note also that, with privacy-constrained sampling, we can achieve some sampling “for free”: if the base
mechanism satisfies ϵ-DP and we choose ϵ∗ = ϵ, then the sampled mechanism also satisfies ϵ-DP while
operating on a smaller sample.

Next, in Algorithm 1, we describe an efficient algorithm to solve privacy-constrained sampling. We reduce
Problem 7 to a scalar root-finding problem and solve it via bisection. Since the sampled PDP profile might have
many roots, we require an additional assumption in order to identify which root is optimal. We introduce As-
sumption 11 which is slightly stronger than Assumption 9, but still permits a variety of nonconvex PDP profiles.
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Assumption 11. The function ϵ(w,x) is differentiable w.r.t. w and exp ◦ ϵ is µx-strongly convex in w for all x.

Algorithm 1 Optimization for privacy-constrained importance weights
1: Input: Data set D = {x1, . . . ,xn}, target privacy guarantee ϵ⋆ > 0, PDP profile ϵ, its derivative ϵ′ with

respect to w, and strong convexity constants µ1, . . . , µn

2: Output: Importance weights w1, . . . , wn

3: for i = 1, . . . , n do
4: Define gi(w) = 1

w

(
eϵ(w,xi) − 1

)
−

(
eϵ⋆ − 1

)
5: v̄i ← min{eϵ(1,xi) + µi/2, ϵ′(1,xi)eϵ(1,xi) + 1}
6: bi ← 2(eϵ⋆ − v̄i)/µi + 1
7: if ϵ(1,xi) = ϵ⋆ and ϵ′(1,xi) < 0 then
8: wi ← Bisect gi with initial bracket (1, bi]
9: else

10: wi ← Bisect gi with initial bracket [1, bi]
11: end if
12: end for

As the following proposition shows, Algorithm 1 solves Problem 7 using only a few evaluations of ϵ(w,x).
We note that faster solutions are possible, e.g., via Newton’s method, but we have found bisection to be
sufficiently fast in our experiments (see Section 5).
Proposition 12. Let Assumptions 8 and 11 be satisfied. Algorithm 1 solves Problem 7 up to accuracy α
with at most

∑
x∈D log2⌈(eϵ⋆ − v̄x)/(αµx)⌉ evaluations of ϵ(w,x), where ϵ′(w,x) = ∂/∂w ϵ(w,x) and v̄x =

min{eϵ(1,x) + µx/2, ϵ′(1,x)eϵ(1,x) + 1}.

3.3 Importance sampling for the Laplace mechanism

We conclude this section with a simple numerical example for Theorems 6 and 10 to illustrate that (i) privacy
and utility are well-aligned goals in importance sampling and (ii) uniform sampling is highly suboptimal
even for very fundamental mechanisms. For this purpose, we generate synthetic data on which we run a
Laplacian sum mechanism and compare privacy-constrained sampling to uniform sampling as well as to
an idealized benchmark in terms of privacy and variance at a fixed expected sample size.

Let D = {xi}n
i=1 be a data set and I ⊆ {1, . . . , n} a subset of indices. We consider the Laplacian weighted

sum mechanism MLWS(D̃) = ζ +
∑

i∈I wixi as an example, where D̃ = {(wi,xi)}i∈I is a weighted subset of
D and ζ is standard Laplace distributed. The PDP profile of MLWS is given by ϵLWS(w,x) = w∥x∥1. When
D̃ is obtained by Poisson importance sampling Sq from D, then the mechanism MLWS ◦ Sq has variance

Var
[
MLWS(D̃)j

]
= 2 +

n∑
i=1

(
1

q(xi)
− 1

)
[xi]2j

in the j-th dimension, where the randomness is over both the noise and the sampling. We compare three
sampling strategies: uniform sampling qunif(x) = m/n, privacy-constrained sampling qpriv according to
Theorem 10, and an idealized benchmark which we call variance-optimal sampling qvar, defined as the
solution to the following optimization problem:

minimize
q

d∑
j=1

Var
[
MLWS(D̃)j

]
subject to

n∑
i=1

q(xi) = m.

The variance-optimal distribution serves as a lower bound on the variance achievable by any DP sampling
distribution. It does not satisfy ϵ-DP itself, as it requires oracle access to the data set. As we show below, the
privacy-constrained distribution achieves performance close to variance-optimal while also satisfying ϵ-DP.

We generate n = 1000 points from an isotropic multivariate normal distribution in d = 10 dimensions
with variance σ2 = 1/d in each dimension. First, we visualize the importance weights w(xi) for each
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Figure 2: Comparison of sampling strategies for the Laplace sum mechanism. Left: The importance weight
for each data point. Each marker in the plot represents one data point. The points are ordered by their
ℓ1-norm. Right: Estimation error for varying noise scales. Lower is better. The horizontal axis is the
maximum PDP loss over the data set.

sampling strategy. For this, we fix a target sample size at m = 19 and compute the weights w(xi) for each
sampling strategy that achieve the target sample size in expectation. The results are shown in Figure 2 (left).
Remarkably, the privacy-constrained weights and the variance-optimal weights are almost identical.

Next, we compare mean-squared error (MSE) and privacy loss of the sampling strategies at different privacy
levels. For this, we vary the noise scale b of the Laplace mechanism over a coarse grid in [3, 3000]. For
each b, we fix the expected sample size mb by computing the privacy-constrained weights. Then, we compute
the corresponding weights for the other two sampling strategies such that they achieve mb in expectation.
We then compute the individual PDP losses ψ(xi) for each sampling strategy and obtain their respective
maximum over the data set. Finally, we compute the MSE between the quantities

∑
xi∈D xi and MLWS(D̃)

of each sampling strategy by averaging over 1000 independent runs. The resulting PDP losses and MSEs
in Figure 2 (right) show substantial improvements of privacy-constrained sampling over uniform sampling.

4 Importance Sampling for DP k-means

In this section, we apply our results on privacy amplification for importance sampling to the differentially
private k-means problem. We define a weighted version of the DP-Lloyd algorithm, and analyze its PDP
profile. Then, we derive the required constants for the privacy-constrained distribution and establish a privacy
guarantee for a coreset-based sampling distribution. All proofs are deferred to Appendix D.

Differentially Private k-means Clustering. Given a data set D as introduced before, the goal of k-means
clustering is to find a set of k ∈ N cluster centers C = {c1, . . . , ck} that minimize the distance of the data
points to their closest cluster center. The objective function is given as ϕD(C) =

∑n
i=1 d(xi, C), where d(·, ·)

is the distance of a point x to its closest cluster center cj , which is d(x, C) = minj ∥x− cj∥2
2. The standard

approach of solving the k-means problem is Lloyd’s algorithm (Lloyd, 1982). It starts by initializing the cluster
centers C and then alternates between two steps. First, given the current cluster centers C, it computes the
cluster assignments Cj = {xi | j = arg minj ∥xi − cj∥2

2} for every j = 1, . . . , k. Second, it updates all cluster
centers to be the mean of their cluster cj = 1

|Cj |
∑

x∈Cj
x. Those two steps are iterated until convergence.

The standard way to make Lloyd’s algorithm differentially private is to add appropriately scaled noise to both
steps of the algorithm. Gaussian noise has been suggested (Blum et al., 2005), resulting in (ϵ, δ)-DP and Laplace
noise has been suggested (Su et al., 2016; 2017) for ℓ1 geometry, resulting in ϵ-DP. Here, we give a generalized
version based on the exponential mechanism (McSherry & Talwar, 2007) that guarantees ϵ-DP for any ℓp

geometry. We refer to it as DP-Lloyd. Let ξ ∈ Rk be a random vector whose entries independently follow a
zero mean Laplace distribution with scale βcount > 0. Furthermore, let ζ1, . . . , ζk ∈ Rd be independent random
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vectors, each drawn from the density p(ζ) ∝ exp(−∥ζ∥p/βsum). The cluster centers are then updated as follows:

cj = 1
ξj + |Cj |

ζj +
∑
x∈Cj

x

 for j = 1, 2, . . . , k.

Assuming the points have bounded ℓp-norm, i.e., X = Bp(r) for some r > 0, then DP-Lloyd preserves ϵ-DP
with ϵ = (r/βsum + 1/βcount)T after T iterations.

Weighted DP Lloyd’s Algorithm. In order to apply importance subsampling to k-means, we first define
a weighted version of DP-Lloyd. Each iteration of DP-Lloyd consists of a counting query and a sum query,
which generalize naturally to the weighted scenario. Specifically, for a weighted data set S = {(wi,xi)}n

i=1,
we define the update step to be

cj = 1
ξj +

∑
(w,x)∈Cj

w

ζj +
∑

(w,x)∈Cj

wx

 for j = 1, 2, . . . , k.

We summarize this in Algorithm 2 which can be found in Appendix D. This approach admits the following
PDP profile which generalizes naturally from the ϵ-DP guarantee of DP-Lloyd.
Proposition 13. The weighted DP Lloyd algorithm (Algorithm 2) satisfies the PDP profile

ϵLloyd(w,x) =
(

1
βcount

+ ∥x∥p

βsum

)
Tw. (3)

Privacy-constrained sampling. In order to compute the privacy-constrained weights via Algorithm 1, we
need the strong convexity constant of ϵLloyd, which is readily obtained via the second derivative:

∂2

∂2w
exp(ϵLloyd(w,x)) ≥ T 2

(
1

βcount
+ ∥x∥p

βsum

)
exp

((
1

βcount
+ ∥x∥p

βsum

)
T

)
=: µ. (4)

Besides the privacy-constrained distribution, we also consider a coreset-based sampling distribution. Before
doing so, we first introduce the idea of a coreset.

Coresets for k-means. A coreset is a weighted subset S ⊆ D of the full data set D with cardinality
m≪ n, on which a model performs provably competitive when compared to the performance of the model
on D. Since we are now dealing with weighted data sets, we define the weighted objective of k-means to be
ϕD(C) =

∑
x∈D w(x)d(x, C), where w(x) ≥ 0 are the non-negative weights. In this paper, we use a sampling

distribution inspired by a lightweight coreset construction as introduced by Bachem et al. (2018).
Definition 14 (Lightweight coreset). Let ε > 0, k ∈ N, and D ∈ X ∗ be a set of points with mean x̄. A
weighted set S is a (ε, k)-lightweight coreset of the data D if for any C ⊆ Rd of cardinality at most k we have
|ϕD(C)− ϕS(C)| ≤ ε

2ϕD(C) + ε
2ϕD({x̄}).

Note that the definition holds for any choice of cluster centers C. Bachem et al. (2018) propose the sampling
distribution q(x) = 1

2
1
n + 1

2
d(x,x̄)∑n

i=1
d(xi,x̄)

and assign each sampled point x the weight (mq(x))−1. This is
a mixture distribution of a uniform and a data-dependent part. Note that by using these weights, ϕS(C)
yields an unbiased estimator of ϕD(C). The following theorem shows that this sampling distribution yields a
lightweight coreset with high probability.
Theorem 15 (Bachem et al. (2018)). Let ε > 0,∆ ∈ (0, 1), k ∈ N, D be a set of points in X , and S be the
sampled subset according to q with a sample size m of at least m ≥ ckd log k−log ∆

ε2 , where c > 0 is a constant.
Then, with probability of at least 1−∆, S is an (ε, k)-lightweight-coreset of D.

Coreset-based sampling distribution. We adapt the sampling distribution from Theorem 15 to the
Poisson sampling setting and propose q(x) = λm

n + (1− λ) m∥x∥2
2

nx̃ , where m≪ n is the expected subsample
size and x̃ = 1

n

∑n
i=1 ∥xi∥2

2 is the average squared ℓ2-norm. To ensure proper probabilities, it is necessary to

8
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constrain the subsampling size to m ≤ nx̃r−2. Compared to Bachem et al. (2018), there are three changes:
(i) the change to a Poisson sampling setting, (ii) the assumption that the data set X is centered, and (iii) the
introduction of λ ∈ [0, 1] which yields a uniform sampler for the choice of λ = 1.

We compute the ϵ-DP guarantee for DP Lloyd’s algorithm with coreset-based sampling as follows. We apply
Theorem 10 to the PDP profile derived in Proposition 13 and the coreset-based sampling distribution. For
positive constants a, b, s, t > 0, this yields a ψ-PDP guarantee of the form

ψ(x) = log
(

1 +
(

exp
(
a+ t∥x∥2

b+ s∥x∥2
2

)
− 1

)(
b+ s∥x∥2

2
))
. (5)

In order to derive an ϵ-DP guarantee, we need to bound ψ(x) over the domain of x ∈ B2(r). We observe that
ψ(x) depends on x only through ∥x∥2. Therefore, we can bound ψ(x) numerically by maximizing it over the
domain ∥x∥2 ∈ [0, r] via grid search. The maximum always exists because b and s are strictly positive.

5 Experiments

We now evaluate our proposed sampling approaches (coreset-based and privacy-constrained) on the task of
k-means clustering where we are interested in three objectives: privacy, efficiency, and accuracy. The point of
the experiments is to investigate whether our proposed sampling strategies lead to improvements in terms of
the three objectives when compared to uniform sampling. Our measure for efficiency is the subsample size m
produced by the sampling strategy. This is because Lloyd’s algorithm scales linearly in m (for fixed k and T )
and the computing time of the sampling itself is negligible in comparison. We measure accuracy via the
k-means objective evaluated on the full data set and privacy as the ϵ-DP guarantee of the sampled mechanism.

Data. We use the following eight real-world data sets: Covertype (Blackard & Dean, 1999) (n = 581,012,
d = 54), FMA1 (Defferrard et al., 2017) (n = 106,574, d = 518), Ijcnn1 2 (Chang & Lin, 2001) (n = 49,990,
d = 22), KDD-Protein3 (n = 145,751, d = 74), MiniBooNE (Dua & Graff, 2017) (n = 130,064, d = 50), Pose4

(Catalin Ionescu, 2011; Ionescu et al., 2014) (n = 35,832, d = 48), RNA (Uzilov et al., 2006) (n = 488,565,
d = 8), and Song (Bertin-Mahieux et al., 2011) (n = 515,345, d = 90).

We pre-process the data sets to ensure each data point has bounded ℓ2-norm. Following the common approach
in differential privacy to bound contributions at a quantile (Abadi et al., 2016; Geyer et al., 2017; Amin et al.,
2019), we set the ℓ2 cut-off point r to the 97.5 percentile and discard the points whose norm exceeds r. Moreover,
we center each data set since this is a prerequisite for the coreset-based sampling distribution, see Section 4.

Setup. The specific task we consider is k-means for which we use the weighted version of DP-Lloyd. We
fix the number of iterations of DP-Lloyd to T = 10 and the number of clusters to k = 25. The scale
parameters are set to βsum =

√
T r
B

3
√

d
2ρ and βcount = 3

√
4dρ2βsum, where ρ = 0.225 as suggested by Su et al.

(2016). Here, B is a constant controlling the noise scales that we select to achieve a specific target epsilon
ϵ⋆ ∈ {0.5, 1, 3, 10, 30, 100, 300, 1000.0} for a given (expected) subsample size m and vice versa.

We evaluate the following three different importance samplers and use various sample sizes, i.e., m ∈
[3000, 75000], depending on the data set. For the coreset-based (core) sampling, the sampling distribution is
qcore(x) = λm

n + (1− λ) m∥x∥2
2

nx̃ , where we set λ = 1
2 . The uniform (unif) sampling uses qunif(x) = m/n. Note

that it is the same q as in core but with λ = 1. For the privacy-constrained (opt) sampling, we compute
qpriv(x) numerically via Algorithm 1 for the target ϵ⋆ = (r/βsum + 1/βcount)T using the strong convexity
constant from Equation (4).

Due to the stochasticity in the subsampling process and the noises within DP-Lloyd, we repeat each experiment
50 times with different seeds and report on median performances. In addition, we depict the 75% and 25%
quartiles. Note that the weighted version of DP-Lloyd is only used when learning the cluster centers, i.e., not

1https://github.com/mdeff/fma
2https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
3http://osmot.cs.cornell.edu/kddcup/datasets.html
4http://vision.imar.ro/human3.6m/challenge_open.php
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Figure 3: The trade-off between the privacy parameter ϵ and the total cost of DP-Lloyd on KDD-Protein,
RNA, Song, and Covertype data. Non-private counterparts (ϵ =∞) are shown for reference. Lower is better
on both axes. The ϵ-axis is in log-scale.

for evaluation. Furthermore, we initialize the cluster centers as k random data points. For all sampling-based
approaches, we re-compute the objective function (cost) on all data after running DP-Lloyd on the sampled
subset and report on the total cost scaled by the number of data points n−1.

The code 5 is implemented in Python using numpy (Harris et al., 2020). Algorithm 1 is implemented in Rust.
All experiments run on a dual AMD Epyc machine with 2 × 64 cores with 2.25 GHz and 2 TiB of memory.

Results. We first evaluate the trade-off between the privacy parameter ϵ and the total cost of DP-Lloyd.
Figure 3 depicts the results for KDD-Protein, RNA, Song, and Covertype. Within the figure, each column
corresponds to a data set and the rows show different subsampling sizes m. The curves are obtained by
subsampling m data points and training DP-Lloyd on the obtained subset for which we vary B and re-compute
the total cost, i.e., the cost evaluated on all data. Thus, we see the performance DP-Lloyd as a function
of the privacy parameter ϵ. Note that the x-axis is in log-scale, shared column-wise, and that the optimal
location is the bottom left since it yields a low cost and a low privacy parameter. Additional results on Ijcnn1,
Pose, MiniBooNE, and FMA are shown in Figure 6 in Appendix B. The performance of a uniform subsample
of the data set of size m (unif, blue line) always yields the worst results. Our first proposed subsampling

5The code will be released on GitHub after the paper is accepted.
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Figure 4: The trade-off between subsample size m and the total cost of DP-Lloyd for fixed privacy parameters
ϵ ∈ {3, 100} on KDD-Protein, RNA, Song, and Covertype data. The performance of DP-Lloyd on the full
data is shown for reference. Lower is better on both axes.

strategy core (green line) consistently outperforms unif as it yields a better cost-ϵ-parameter trade-off. The
other proposed sampler opt (yellow line) usually performs on-par or slightly better than core. Note that the
privacy-constrained sampling strategy opt only optimizes two out of three objectives: privacy and efficiency
but not accuracy. Although privacy and accuracy are often well aligned in this problem, there is no formal
guarantee on the accuracy. In particular, the degree of alignment between privacy and accuracy depends
on the specific mechanism and data set used. This is why its cost is not necessarily smaller than for core.
Additionally, we show the non-private versions of unif and core (mostly overlapping) that correspond to
the choice of ϵ =∞ as a reference. Note that the performance converges to the non-private version as we
increase ϵ. Note also that, as ϵ→ 0, the cost approaches but stays below that of performing no learning at all.
This can be seen by comparison to the x̃ column of Table 1: when the cluster centers are initialized to zero,
the cost is precisely x̃, i.e., the average squared ℓ2 norm. The main take-away is that both our proposed
sampling strategies consistently yield a better trade-off between the privacy parameter ϵ and the total cost of
(DP-)k-means than unif.

Next, we evaluate the performance of the subsampling strategies as functions of the subsample size m, i.e.,
the trade-off between sample size m and the total cost of DP-Lloyd. For this scenario, we fix the privacy
budget to either ϵ = 3 or ϵ = 100. Figure 4 depicts the results for the data sets KDD-Protein, RNA, Song,
and Covertype. As expected, the total cost decreases as we increase the subsample size m. Moreover, we
can see that unif (blue line) – once again – performs consistently worst. In contrast, the coreset-inspired
sampling core (green line) and sampling using privacy-constrained weights opt (yellow line) yields lower
total cost for the same m and ϵ. For reference, we also include the performance of DP-Lloyd using the same
privacy parameter ϵ but on all data, i.e., without any subsampling, as a black line (full). Unsurprisingly, the
total cost of the subsampling methods approaches the total cost of full as m approaches n. Note that this
happens faster for our subsampling methods than for unif.

Lastly, we measure the computation times of the different sampling strategies to confirm that they are
short relative to the computation time of DP-Lloyd. This supplements the iteration complexity analysis
from Proposition 12. Figure 5 (left) shows the total relative computation times (left y-axis), i.e., the time to

11
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Figure 5: Left: Total relative computation times (left y-axis) and relative subset sizes (right y-axis) as
functions of subsample sizes m for five data sets. Right: Relative computation times decomposed in weight
computation, sampling, and DP-Lloyd for the Covertype data and a subsample size of m=20,000.

(i) compute the weights, (ii) subsample the data set, and (iii) compute DP-Lloyd for various subset sizes m,
relative to computing DP-Lloyd on all data using ϵ = 3.0 for five data sets. Each line in the figure refers to a
combination of data set and sampling strategy. In addition, we show the fraction m/ndata (right y-axis) per
data set as a black dotted line. To improve readability, we omit MiniBooNE, Song and RNA from the plot
because they overlap with the lines of other data sets. For completeness, we show the numbers in tabular form
in Appendix C for all data sets. A sampling strategy can be considered efficient if its relative vertical offset
from the black dotted line is small. This is the case for all data sets and sampling strategies. Additionally,
Figure 5 (right) depicts the decomposed computation times for the Covertype data set and a subsample
size of m=20,000. We can see that the time needed to subsample the data set (violet) is negligible and that
the time DP-Lloyd takes (green) is almost static. For this data set, the weight computation (blue) for the
opt weight computation takes significantly more time than for unif and core. However, the difference is
small relative to the runtime of DP-Lloyd on all data. Specifically, a subset size of m=20,000 amounts to
approximately 3.5% of the Covertype data set. Using the opt subsampling strategy takes slightly more than
4% of the time DP-Lloyd takes on the full data set.

6 Related Work

The notion of personalized differential privacy is introduced by Jorgensen et al. (2015) and Ebadi et al.
(2015), as well as by Alaggan et al. (2016) under the name of heterogeneous differential privacy. In Jorgensen
et al. (2015), the privacy parameter is associated with a user, while it is associated with the value of a
data point in the work of Ebadi et al. (2015) and ours. Jorgensen et al. (2015) achieve personalized DP by
subsampling the data with heterogeneous probabilities, but without accounting for the bias introduced by
the heterogeneity. Moreover, this privacy analysis is loose as it does not exploit the inherent heterogeneity of
the original mechanism’s privacy guarantee.

Recently, there has been renewed interest in PDP due to its connection to individual privacy accounting
and fully adaptive composition (Feldman & Zrnic, 2021; Koskela et al., 2023; Yu et al., 2023). In this
context, privacy filters have been proposed as a means to answer more queries about a data set by reducing a
PDP guarantee to its worst-case counterpart. Analogously, our privacy-constrained importance sampling
distribution can be used to subsample a data set by reducing a PDP guarantee to its worst-case counterpart.

The idea of using importance sampling for differential privacy is not entirely new. Wei et al. (2022) propose
a differentially private importance sampler for the mini-batch selection in differentially private stochastic
gradient descent. Their sampling distribution resembles the variance-optimal distribution we display in
Figure 2. The major drawback of this distribution is its intractability—it requires us to know the quantity
we want to compute in the first place. Note that our privacy-constrained distribution is very close to the
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variance-optimal distribution while being efficient to compute. Moreover, their privacy analysis is restricted
to the Gaussian mechanism and does not generalize to general DP or Rényi-DP mechanisms, because it is
based on Mironov et al. (2019)’s analysis of the subsampled Gaussian mechanism.

The first differentially private version of k-means is introduced by Blum et al. (2005). They propose the
Sub-Linear Queries (SuLQ) framework, which, for k-means, uses a noisy (Gaussian) estimate of the number
of points per cluster and a noisy sum of distances. This is also reported by Su et al. (2016; 2017) which
extend the analysis. Other variants of differentially private k-means were proposed, e.g., by Balcan et al.
(2017); Huang & Liu (2018); Stemmer & Kaplan (2018); Shechner et al. (2020); Ghazi et al. (2020); Nguyen
et al. (2021); Cohen-Addad et al. (2022).

7 Conclusion

We introduced and analyzed Poisson importance sampling for subsampling differentially private mechanisms.
We observed that, for typical mechanisms, privacy is well aligned with utility and at odds with sample size.
Based on this insight, we proposed two importance sampling distributions: one that navigates the trade-off
between privacy and sample size and another based on coresets which have strong utility guarantees. The
empirical results suggest that both strategies have stronger privacy and utility than uniform sampling at any
given sample size.

Promising directions for future work include extensions to (ϵ, δ)-DP or Rényi-DP as well as establishing formal
utility guarantees via coresets. For the latter, recent work on confidence intervals for stratified sampling (Lin
et al., 2024) might serve as a starting point. Moreover, Poisson importance sampling is directly applicable
to a streaming setting, because it considers each data point separately. This provides an opportunity to
improve efficiency further. In federated learning, Poisson importance sampling might be used to improve client
selection (Zhang et al., 2024). Additionally, its connection to fairness could be explored where importance
sampling can be used to mitigate bias (Wang et al., 2023).
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Appendix

• Section A discusses sufficient conditions under which importance sampling does or does not improve
privacy.

• Section B includes experimental results on additional data sets.

• Section C contains details on the computation time measurements.

• Section D contains the proofs for Theorem 6, Proposition 12 and Proposition 13. Moreover, it
contains Algorithm 2 which describes the weighted version of DP Lloyd.

A Can sampling improve privacy?

We have pointed out in Section 3 that, in importance sampling, the privacy loss is not necessarily reduced
by decreasing the sampling probability. In this section, we make this statement more precise and provide
formal conditions on the PDP profile under which weighted sampling does or does not improve privacy when
reweighting is accounted for.

First, note that any mechanism M that simply ignores the weights {wi}n
i=1 has a weighted PDP profile

ϵ(w,x) that is constant in w. In this case, Theorem 6 reduces to the established amplification by subsampling
result (Proposition 3), which indeed implies that M̂ satisfies a stronger privacy guarantee than M. This is
possible because such a mechanism is not invariant under splitting a weighted point (w,x) into w unweighted
points {(1,x)}w

i=1. The following proposition provides a more general sufficient condition under which M̂
satisfies a stronger privacy guarantee than M.
Proposition 16. Let M : X ∗ × [1,∞) → Y be an ϵ-PDP mechanism, M̃ be its unweighted counterpart
defined as M̃({xi}n

i=1) =M({(1, xi)}n
i=1), and ϵ̃(x) = ϵ(1,x) be the PDP profile of M̃. Furthermore, let

ϵ be differentiable in w and ϵ′(w,x) = ∂ϵ(w,x)/∂w. Then, there is a Poisson importance sampler S(·) for
which the following holds. Let ψ be the PDP profile of M◦ S implied by Theorem 6. For any x ∈ X , if
ϵ′(1,x) < 1− e−ϵ(1,x), then ψ(x) < ϵ̃(x).

Proof. Let x ∈ X be any data point for which ϵ′(1,x) < 1− e−ϵ(1,x) holds. We treat ψ(x) as a function of
the selection probability q(x) and show that it is increasing at q(x) = 1. We write ψq(x)(x) to make the
dependence on q(x) explicit and define ω(w) = exp(ψ1/w(x))− 1. We have

dω(1)
dw = eϵ(1,x)(ϵ′(1,x)− 1) + 1

< eϵ(1,x)
((

1− e−ϵ(1,x)
)
− 1

)
+ 1

= 0,

and, hence, dψq(x)(x)/dq(x) > 0 at q(x) = 1. As a result, there is a probability q(x) < 1 such that
ψq(x)(x) < ψ1(x) = ϵ̃(x).

Consequently, if the condition ϵ′(1,x) < 1− e−ϵ(1,x) holds in a neighborhood around the maximizer x⋆ =
arg maxx∈X ϵ̃(x), then M̂ satisfies DP with a strictly smaller privacy parameter than M.

However, for the following important class of mechanisms, M̂ cannot satisfy a stronger privacy guarantee
than M.
Proposition 17. Let M, M̃, ϵ, ϵ′, and ϵ̃ be as in Proposition 16, S(·) be any Poisson importance sampler,
ψ be the PDP profile of M◦ S implied by Theorem 6, and x ∈ X . If ϵ(w,x) ≤ wϵ′(w,x) for all w ≥ 1, then
ψ(x) ≥ ϵ̃(x).

Proof. As in Proposition 16, the core idea is to treat ψ(x) as a function of the selection probability q(x). We
show that ψ(x) is non-increasing in q(x) if the condition ϵ(w,x) ≤ wϵ′(w,x) is satisfied for all w.
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Let q(x) be the selection probability of x under S. We write ψq(x) to make the dependence on q(x) explicit.
Let x ∈ X be arbitrary but fixed and define ω(w) = exp(ψ1/w(x))− 1. We have

dω(w)
dw = eϵ(w,x)(wϵ′(w,x)− 1) + 1

w2

≥ eϵ(w,x)(ϵ(w,x)− 1) + 1
w2

≥ (ϵ(w,x) + 1)(ϵ(w,x)− 1) + 1
w2

≥ ϵ(w,x)2

w2

≥ 0,

where we used the assumption ϵ(w,x) ≤ wϵ′(w,x) in the first inequality and the fact that ez ≥ z + 1 for all
z ≥ 0 in the second inequality. As a result, ω is minimized at w = 1 and, hence, ψq is minimized at q(x) = 1.
To complete the proof, observe that ψq(x) = ϵ̃(x) for q(x) = 1.

For instance, the condition ϵ(w,x) ≤ wϵ′(w,x) is satisfied everywhere by any profile of the form ϵ(w,x) =
f(x)wp, where p ≥ 1 and f is any non-negative function that does not depend on w. This includes any
mechanism that is invariant under splitting a weighted point (w,x) into w unweighted points {(1,x)}w

i=1
since group privacy implies a linear PDP profile in this case. All mechanisms considered in this paper satisfy
this invariance.

It is important to note that, even in a case where we cannot hope to improve upon the original mechanism,
it is still possible to obtain a stronger privacy amplification than with uniform subsampling at the same
sampling rate. Indeed, the uniform distribution is never optimal unless the PDP profile of the original
mechanism is constant.
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B Results on the Remaining Data Sets

Table 1: Information on the data sets. Remember that n, d, r and x̃ denote the sample size, dimensionality,
largest ℓ2-norm, and average squared ℓ2-norm, respectively.

Data Set n (after outlier removal) d r x̃
M

ai
n

Pa
pe

r KDD-Protein 142,107 74 8020.65 7031359.55
RNA 476,350 8 420.67 24902.47
Song 502,461 90 7507.16 6769375.49
Covertype 566,486 54 4489.17 3839798.28

A
pp

en
di

x Ijcnn1 48,740 22 1.51 1.26
Pose 34,936 48 2250.64 1249739.50
MiniBooNE 126,812 50 2213.05 295947.13
FMA 103,909 518 6020.23 5838871.88

Figure 6 depicts the results for the remaining data sets Ijcnn1, Pose, MiniBooNE, and FMA. Note that
those data sets are smaller in terms of the number of data points as the data sets shown in Figure 3, see
Table 1. As seen in Figure 6, we can observe the smallest difference among the subsampling strategies across
all data sets occurs for Ijcnn1, especially for the m=15,000 case. All subsampling strategies behave alike,
except for the m=10,000 case where unif is worse than core and opt. On Pose, MiniBooNE, and FMA, our
subsampling strategies consistently outperform unif. In addition, Figure 7 depicts the cost-sample-size-m
ratios for the remaining data sets Ijcnn1, Pose, MiniBooNE, and FMA for fixed privacy budgets of ϵ = 3 and
ϵ = 100. Once again, the only data set in which no clear improvement is visible is Ijcnn1.
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Figure 6: The trade-off between the privacy parameter ϵ and the total cost of DP-Lloyd on Ijcnn1, Pose,
MiniBooNE, and FMA data. Non-private counterparts (ϵ =∞) are shown for reference. Lower is better on
both axes. The ϵ-axis is in log-scale.
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Figure 7: The trade-off between sample size m and the total cost of DP-Lloyd for fixed privacy parameters
ϵ ∈ {3, 100} on Ijcnn1, Pose, MiniBooNE, and FMA. The performance of DP-Lloyd on the full data is shown
for reference. Lower is better on both axes.
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C Detailed Timing Results

Table 2: The exact numbers of Figure 5 for the first four data sets. Times are in seconds.
Data Set Sampling m tweights tsampling tDP-Lloyd ttotal rel. tot. time [%] m

n [%]
KDD-Protein full n - - 15.69 15.69 100 100
KDD-Protein unif 5000 0.0005 0.0026 0.54 0.55 3.49 3.52
KDD-Protein unif 10,000 0.0004 0.0029 1.09 1.10 6.99 7.04
KDD-Protein unif 15,000 0.0004 0.0035 1.69 1.69 10.79 10.56
KDD-Protein unif 20,000 0.0004 0.0042 2.20 2.20 14.04 14.07
KDD-Protein core 5000 0.0198 0.0025 0.55 0.57 3.64 3.52
KDD-Protein core 10,000 0.0187 0.0030 1.09 1.11 7.10 7.04
KDD-Protein core 15,000 0.0182 0.0034 1.66 1.69 10.75 10.56
KDD-Protein core 20,000 0.0185 0.0040 2.22 2.24 14.29 14.07
KDD-Protein opt 5000 0.1112 0.0023 0.53 0.65 4.12 3.52
KDD-Protein opt 10,000 0.1076 0.0031 1.10 1.21 7.72 7.04
KDD-Protein opt 15,000 0.1134 0.0034 1.64 1.76 11.22 10.56
KDD-Protein opt 20,000 0.1051 0.0039 2.20 2.31 14.73 14.07

RNA full n - - 42.24 42.24 100 100
RNA unif 5000 0.0004 0.0051 0.43 0.44 1.04 1.05
RNA unif 10,000 0.0006 0.0056 0.88 0.88 2.09 2.10
RNA unif 15,000 0.0005 0.0060 1.32 1.32 3.14 3.15
RNA unif 20,000 0.0006 0.0064 1.73 1.74 4.12 4.20
RNA unif 50,000 0.0005 0.0082 4.35 4.36 10.33 10.50
RNA core 5000 0.0153 0.0051 0.44 0.46 1.09 1.05
RNA core 10,000 0.0149 0.0057 0.87 0.89 2.12 2.10
RNA core 15,000 0.0136 0.0061 1.33 1.35 3.19 3.15
RNA core 20,000 0.0153 0.0066 1.74 1.76 4.18 4.20
RNA core 50,000 0.0160 0.0080 4.34 4.37 10.34 10.50
RNA opt 5000 0.3956 0.0051 0.44 0.84 1.98 1.05
RNA opt 10,000 0.3865 0.0055 0.88 1.27 3.02 2.10
RNA opt 15,000 0.3817 0.0061 1.30 1.69 3.99 3.15
RNA opt 20,000 0.3776 0.0066 1.73 2.12 5.01 4.20
RNA opt 50,000 0.3576 0.0085 4.40 4.77 11.28 10.50
Song full n - - 59.47 59.47 100 100
Song unif 5000 0.0016 0.0074 0.56 0.57 0.96 1.00
Song unif 10,000 0.0018 0.0077 1.14 1.15 1.94 1.99
Song unif 15,000 0.0017 0.0077 1.76 1.77 2.97 2.99
Song unif 20,000 0.0015 0.0084 2.29 2.30 3.86 3.98
Song unif 50,000 0.0017 0.0146 5.75 5.77 9.70 9.95
Song core 5000 0.0748 0.0067 0.56 0.64 1.08 1.00
Song core 10,000 0.0774 0.0076 1.15 1.24 2.08 1.99
Song core 15,000 0.0765 0.0084 1.74 1.82 3.06 2.99
Song core 20,000 0.0750 0.0091 2.31 2.39 4.03 3.98
Song core 50,000 0.0780 0.0145 5.80 5.89 9.90 9.95
Song opt 5000 0.4353 0.0063 0.57 1.01 1.69 1.00
Song opt 10,000 0.4020 0.0075 1.16 1.57 2.64 1.99
Song opt 15,000 0.4073 0.0083 1.73 2.15 3.61 2.99
Song opt 20,000 0.3945 0.0088 2.31 2.71 4.56 3.98
Song opt 50,000 0.3789 0.0146 5.85 6.25 10.51 9.95

Covertype full n - - 59.91 59.91 100 100
Covertype unif 5000 0.0013 0.0062 0.52 0.53 0.88 0.88
Covertype unif 10,000 0.0019 0.0070 1.05 1.06 1.76 1.77
Covertype unif 15,000 0.0013 0.0077 1.56 1.57 2.63 2.65
Covertype unif 20,000 0.0014 0.0082 2.15 2.16 3.61 3.53
Covertype unif 50,000 0.0014 0.0115 5.34 5.35 8.93 8.83
Covertype core 5000 0.0558 0.0062 0.52 0.58 0.97 0.88
Covertype core 10,000 0.0567 0.0068 1.05 1.11 1.86 1.77
Covertype core 15,000 0.0563 0.0076 1.57 1.63 2.72 2.65
Covertype core 20,000 0.0569 0.0082 2.10 2.17 3.62 3.53
Covertype core 50,000 0.0567 0.0115 5.28 5.34 8.92 8.83
Covertype opt 5000 0.4684 0.0063 0.53 1.00 1.67 0.88
Covertype opt 10,000 0.4614 0.0069 1.07 1.54 2.57 1.77
Covertype opt 15,000 0.4440 0.0077 1.58 2.03 3.38 2.65
Covertype opt 20,000 0.4404 0.0082 2.13 2.57 4.30 3.53
Covertype opt 50,000 0.4237 0.0115 5.28 5.71 9.54 8.83
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Table 3: The exact numbers of Figure 5 for the last four data sets. Times are in seconds.
Data Set Sampling m tweights tsampling tDP-Lloyd ttotal rel. tot. time [%] m

n [%]
Ijcnn1 full n - - 4.68 4.68 100 100
Ijcnn1 unif 3000 0.0001 0.0008 0.29 0.29 6.15 6.16
Ijcnn1 unif 4000 0.0001 0.0008 0.38 0.38 8.15 8.21
Ijcnn1 unif 5000 0.0001 0.0009 0.48 0.49 10.37 10.26
Ijcnn1 unif 6000 0.0001 0.0010 0.58 0.58 12.33 12.31
Ijcnn1 unif 7000 0.0001 0.0011 0.67 0.67 14.38 14.36
Ijcnn1 unif 10,000 0.0001 0.0012 0.95 0.95 20.26 20.52
Ijcnn1 unif 15,000 0.0001 0.0015 1.43 1.43 30.55 30.78
Ijcnn1 unif 20,000 0.0002 0.0017 1.92 1.92 41.13 41.03
Ijcnn1 core 3000 0.0022 0.0008 0.30 0.30 6.37 6.16
Ijcnn1 core 4000 0.0022 0.0009 0.38 0.39 8.27 8.21
Ijcnn1 core 5000 0.0026 0.0009 0.48 0.48 10.33 10.26
Ijcnn1 core 6000 0.0021 0.0010 0.57 0.58 12.31 12.31
Ijcnn1 core 7000 0.0021 0.0013 0.69 0.70 14.86 14.36
Ijcnn1 core 10,000 0.0022 0.0012 0.96 0.96 20.49 20.52
Ijcnn1 core 15,000 0.0021 0.0015 1.46 1.47 31.36 30.78
Ijcnn1 core 20,000 0.0022 0.0017 1.93 1.94 41.40 41.03
Ijcnn1 opt 3000 0.0347 0.0008 0.29 0.32 6.90 6.16
Ijcnn1 opt 4000 0.0341 0.0008 0.39 0.42 9.03 8.21
Ijcnn1 opt 5000 0.0340 0.0009 0.48 0.52 11.02 10.26
Ijcnn1 opt 6000 0.0338 0.0009 0.58 0.62 13.23 12.31
Ijcnn1 opt 7000 0.0331 0.0010 0.67 0.70 15.01 14.36
Ijcnn1 opt 10,000 0.0329 0.0012 0.95 0.98 20.99 20.52
Ijcnn1 opt 15,000 0.0318 0.0015 1.43 1.47 31.36 30.78
Ijcnn1 opt 20,000 0.0319 0.0017 1.91 1.94 41.51 41.03
Pose full n - - 3.59 3.59 100 100
Pose unif 3000 0.0001 0.0007 0.30 0.30 8.49 8.59
Pose unif 4000 0.0001 0.0008 0.41 0.41 11.35 11.45
Pose unif 5000 0.0001 0.0009 0.51 0.51 14.15 14.31
Pose unif 6000 0.0001 0.0010 0.62 0.62 17.19 17.17
Pose unif 7000 0.0001 0.0011 0.72 0.72 20.04 20.04
Pose unif 8000 0.0001 0.0017 0.81 0.81 22.64 22.90
Pose core 3000 0.0029 0.0007 0.31 0.31 8.65 8.59
Pose core 4000 0.0026 0.0008 0.40 0.41 11.37 11.45
Pose core 5000 0.0026 0.0009 0.50 0.51 14.15 14.31
Pose core 6000 0.0025 0.0010 0.61 0.61 17.02 17.17
Pose core 7000 0.0026 0.0011 0.72 0.73 20.24 20.04
Pose core 8000 0.0028 0.0011 0.81 0.81 22.68 22.90
Pose opt 3000 0.0257 0.0008 0.31 0.33 9.30 8.59
Pose opt 4000 0.0255 0.0008 0.41 0.44 12.24 11.45
Pose opt 5000 0.0253 0.0009 0.50 0.53 14.79 14.31
Pose opt 6000 0.0252 0.0010 0.60 0.63 17.46 17.17
Pose opt 7000 0.0247 0.0011 0.71 0.74 20.59 20.04
Pose opt 8000 0.0245 0.0011 0.80 0.83 23.05 22.90

MiniBooNE full n - - 13.16 13.16 100 100
MiniBooNE unif 4000 0.0004 0.0019 0.41 0.41 3.12 3.15
MiniBooNE unif 5000 0.0004 0.0021 0.51 0.51 3.91 3.94
MiniBooNE unif 6000 0.0004 0.0022 0.61 0.61 4.66 4.73
MiniBooNE unif 7000 0.0004 0.0025 0.72 0.72 5.48 5.52
MiniBooNE core 4000 0.0122 0.0020 0.41 0.42 3.19 3.15
MiniBooNE core 5000 0.0127 0.0022 0.52 0.54 4.08 3.94
MiniBooNE core 6000 0.0128 0.0022 0.62 0.64 4.85 4.73
MiniBooNE core 7000 0.0129 0.0030 0.73 0.75 5.69 5.52
MiniBooNE opt 4000 0.1000 0.0019 0.41 0.51 3.88 3.15
MiniBooNE opt 5000 0.1019 0.0021 0.52 0.62 4.73 3.94
MiniBooNE opt 6000 0.1000 0.0023 0.61 0.71 5.39 4.73
MiniBooNE opt 7000 0.0976 0.0025 0.73 0.83 6.33 5.52

FMA full n - - 26.65 26.65 100 100
FMA unif 5000 0.0002 0.0040 1.27 1.28 4.79 4.81
FMA unif 10,000 0.0002 0.0068 2.56 2.57 9.63 9.62
FMA unif 15,000 0.0002 0.0145 3.86 3.88 14.55 14.44
FMA core 5000 0.0798 0.0040 1.28 1.36 5.10 4.81
FMA core 10,000 0.0798 0.0112 2.66 2.75 10.31 9.62
FMA core 15,000 0.0859 0.0133 3.86 3.96 14.87 14.44
FMA opt 5000 0.0785 0.0041 1.27 1.35 5.06 4.81
FMA opt 10,000 0.0760 0.0069 2.53 2.61 9.80 9.62
FMA opt 15,000 0.0754 0.0124 3.88 3.97 14.89 14.44
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D Proofs

This section contains the proofs of all our theoretical results. For completeness, we do not only restate the
theorems and propositions, but also the used algorithms, assumptions, and problems.

D.1 Theorem 6

Theorem 6 (Amplification by Importance Sampling). Let M : [1,∞)×X ∗ → Y be an ϵ-PDP mechanism
that operates on weighted data sets, q : X → [0, 1] be a function, and Sq(·) be a Poisson importance sampler
for q. The mechanism M̂ =M◦ Sq satisfies ψ-PDP with

ψ(x) = log
(

1 + q(x)
(
eϵ(w,x) − 1

))
, where w = 1

q(x) . (1)

Proof. The proof is analogous to the proof of the regular privacy amplification theorem with δ = 0, see, e.g.,
Steinke (2022, Theorem 29). Let A be any measurable subset from the probability space of M(D). We begin
by defining the functions P (Z) = Pr

[
M̂(D) ∈ A | Sq(D) = Z

]
and P ′(Z) = Pr

[
M̂(D′) ∈ A | Sq(D′) = Z

]
.

Let D = D′ ∪ {x} for some x ∈ X . Note that

Pr
[
M̂(D) ∈ A

]
= E[P (Sq(D))]

= q(x)E[P (Sq(D)) | x ∈ Sq(D)] + (1− q(x))E[P (Sq(D)) | x /∈ Sq(D)].
(6)

We can analyze the events x ∈ Sq(D) and x /∈ Sq(D) separately as follows. Conditioned on the event
x /∈ Sq(D), the distributions of Sq(D) and Sq(D′) are identical since all selection events γi are independent:

E[P (Sq(D)) | x /∈ Sq(D)] = E[P (Sq(D′)) | x /∈ Sq(D)] = E[P ′(Sq(D′))]. (7)

On the other hand, conditioned on the event x ∈ Sq(D), the sets Sq(D) and Sq(D) \ {x} are neighboring,
and the distributions of Sq(D) \ {x} and Sq(D′) are identical. We can use the PDP profile ϵ to bound

E[P (Sq(D)) | x ∈ Sq(D)] ≤ E
[
eϵ(1/q(x),x)P ′(Sq(D′)) | x ∈ Sq(D)

]
= eϵ(1/q(x),x)E[P ′(Sq(D′))].

(8)

Plugging Equations (7) and (8) into Equation (6) yields

Pr
[
M̂(D) ∈ A

]
≤ (1− q(x))E[P ′(Sq(D′))] + q(x)eϵ(1/q(x),x)E[P ′(Sq(D′))]

=
(

1 + q(x)
(
e1/q(x) − 1

))
E[P ′(Sq(D′))]

=
(

1 + q(x)
(
e1/q(x) − 1

))
Pr

[
M̂(D′) ∈ A

]
.

An identical argument shows that

Pr
[
M̂(D) ∈ A

]
≥ 1

1 + q(x)
(
e1/q(x) − 1

) Pr
[
M̂(D′) ∈ A

]
.
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D.2 Theorem 10

Problem 7 (Privacy-constrained sampling). For a PDP profile ϵ : [1,∞)×X → R≥0, a target privacy guaran-
tee ϵ⋆, and a data set D ⊆ X of size n, we define the optimization problem for privacy-constrained sampling as

minimize
w1,...,wn

n∑
i=1

1
wi

(2a)

subject to log
(

1 + 1
wi

(
eϵ(wi,xi) − 1

))
≤ ϵ⋆ for all i, (2b)

wi ≥ 1, for all i. (2c)

Assumption 8. For all x ∈ X , ϵ⋆ ≥ ϵ(1,x).
Assumption 9. For all x ∈ X , there is a constant vx ≥ 1 such that ϵ(w,x) > log(1 + w(eϵ⋆ − 1)) for all
w ≥ vx.
Assumption 11. The function ϵ(w,x) is differentiable w.r.t. w and exp ◦ ϵ is µx-strongly convex in w for all x.

Algorithm 3.2 Optimization for privacy-constrained importance weights
1: Input: Data set D = {x1, . . . ,xn}, target privacy guarantee ϵ⋆ > 0, PDP profile ϵ, its derivative ϵ′ with

respect to w, and strong convexity constants µ1, . . . , µn

2: Output: Importance weights w1, . . . , wn

3: for i = 1, . . . , n do
4: Define gi(w) = 1

w

(
eϵ(w,xi) − 1

)
−

(
eϵ⋆ − 1

)
5: v̄i ← min{eϵ(1,xi) + µi/2, ϵ′(1,xi)eϵ(1,xi) + 1}
6: bi ← 2(eϵ⋆ − v̄i)/µi + 1
7: if ϵ(1,xi) = ϵ⋆ and ϵ′(1,xi) < 0 then
8: wi ← Bisect gi with initial bracket (1, bi]
9: else

10: wi ← Bisect gi with initial bracket [1, bi]
11: end if
12: end for

Theorem 10. Let Assumptions 8 and 9 be satisfied. There is a data set-independent function w : X → [1,∞),
such that, for all data sets D ∈ X ∗, Problem 7 has a unique solution w⋆(D) = (w⋆

1(D), . . . , w⋆
n(D)) of the

form w⋆
i (D) = w(xi). Furthermore, let M be a mechanism that admits the PDP profile ϵ and Sq be a Poisson

importance sampler for q(x) = 1/w(x). Then, M◦ Sq satisfies ϵ⋆-DP.

Proof. Since the objective is additive over wi and each constraint only affects one wi, we can consider each
wi separately. An equivalent formulation of the problem is

maximize
wi

wi

subject to log
(

1 + 1
wi

(
eϵ(wi,xi) − 1

))
≤ ϵ⋆

wi ≥ 1.

Assumption 8 guarantees that the feasible region is non-empty and Assumption 9 guarantees that it is
bounded. Since the objective is strictly monotonic, the solution must be unique.

D.3 Proposition 12

Proposition 12. Let Assumptions 8 and 11 be satisfied. Algorithm 1 solves Problem 7 up to accuracy α
with at most

∑
x∈D log2⌈(eϵ⋆ − v̄x)/(αµx)⌉ evaluations of ϵ(w,x), where ϵ′(w,x) = ∂/∂w ϵ(w,x) and v̄x =

min{eϵ(1,x) + µx/2, ϵ′(1,x)eϵ(1,x) + 1}.
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Before beginning the proof, we state the definition of strong convexity for completeness.
Definition 18 (Strong convexity). Let µ > 0. A differentiable function f : Rd → R is µ-strongly convex if

f(v) ≥ f(u) +∇f(u)T(v − u) + µ

2 ∥v − u∥
2
2 for all u, v ∈ Rd. (9)

Proof of Proposition 12. First, we show that Assumption 11 implies Assumption 9. That is, we want to
find a value vi for each i such that all wi ≥ vi are infeasible. For some fixed i, define g(w) = ϵ(w,xi) and
g′(w) = d

dwg(w). We apply the strong convexity condition from Equation (9) to exp ◦ g at u = 1 and v = w:

eg(w) ≥ eg(1) + g′(1)eg(1)(w − 1) + µ

2 ∥w − 1∥2
2

1
w

(
eg(w) − 1

)
≥ µ

2w +
(
eg(1) − g′(1)eg(1) + µ

2 − 1
) 1
w

+ g′(1)eg(1) − µ

1
w

(
eg(w) − 1

)
≥ b1w

1 + b0w
0 + b−1w

−1

for appropriately defined constants b1, b0, and b−1. We need to distinguish two cases, based on the sign of
b−1.

Case 1: b−1 < 0. In this case, we have b−1w
−1 ≥ b−1 for all w ≥ 1. A sufficient condition for infeasibility is

b1w + b0 + b−1 ≥ eϵ⋆

− 1

w ≥ eϵ⋆ − 1− b0 − b−1

b1

w ≥ eϵ⋆ − eg(1) + µ/2
µ/2

w ≥ 2
(
eϵ⋆ − eg(1) − µ/2

µ
+ 1

)
.

Case 2: b−1 ≥ 0. In this case, we have b−1w
−1 ≥ 0. Analogously to Case 1, the condition for infeasibility is

b1w + b0 ≥ eϵ⋆

− 1

w ≥ eϵ⋆ − 1− b0

b1

w ≥ eϵ⋆ − g′(1)eg(1) + µ− 1
µ/2

w ≥ 2
(
eϵ⋆ − g′(1)eg(1) − 1

µ
+ 1

)
.

We can summarize the two cases by defining

vi = 2
(
eϵ⋆ − v̄i

µ
+ 1

)
, where v̄i = min

{
eg(1) + µ

2 , g
′(1)eg(1) + 1

}
.

Then, vi is the desired constant for Assumption 9.

Having established that the optimal solution w⋆
i is in the interval [1, vi], it remains to show that it can be

found via bisection search. Bisection finds a solution to

log
(

1 + 1
w

(
eg(w) − 1

))
= ϵ⋆,

or, equivalently,

eg(w) = w
(
eϵ⋆

− 1
)

+ 1. (10)
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Since the left hand-side of Equation (10) is strongly convex and the right hand-side is linear, there can be at
most two solutions to the equality. We distinguish two cases.

Case 1: g(1) = ϵ⋆ and g′(1) < 1− e−g(1) In this case, there is a neighborhood around w = 1 in which we
have eg(w) < w

(
eϵ⋆ − 1

)
+ 1. This implies that there are two solutions to Equation (10), one at w = 1 and

one in w ∈ (1, vi]. The latter is the desired solution.

Case 2: g(1) < ϵ⋆ or g′(1) ≥ 1− e−g(1) In this case, either condition guarantees that there is exactly one
solution to Equation (10) in w ∈ [1, vi]. With the first condition, it follows from the convexity of exp ◦ g. If
the first condition is not met but the second one is, then we have eg(w) ≥ w

(
eϵ⋆ − 1

)
+ 1 for all w ≥ 1. Then,

the uniqueness follows from strong convexity.

The two cases are implemented by the if-condition in Algorithm 1.

Algorithm 2 Weighted DP Lloyd’s algorithm
Input: Weighted data set S = {(wi,xi)}n

i=1, initial cluster centers C, number of iterations T , noise scales
βsum, βcount
Output: Cluster centers c1, . . . , ck

for t = 1, . . . , T do
Compute cluster assignments C1, . . . , Ck, where Cj = {xi | j = arg minj ∥xi − cj∥2}
for j = 1, . . . , k do

Sample ξj ∼ Lap(0, βcount)
Sample ζj from the density proportional to exp(−∥ζj∥p/βsum)
Update cj = 1

ξj+
∑

(w,x)∈Cj
w

(
ζj +

∑
(w,x)∈Cj

wx
)

end for
end for

D.4 Proposition 13

Algorithm 2 summarizes the weighted version of differentially private Lloyd’s algorithm as introduced in
Section 4.

Proposition 13. The weighted DP Lloyd algorithm (Algorithm 2) satisfies the PDP profile

ϵLloyd(w,x) =
(

1
βcount

+ ∥x∥p

βsum

)
Tw. (3)

Proof. The weighted DP-Lloyd algorithm consists of T weighted sum mechanisms and T weighted count
mechanisms. The weighted sum mechanism is an exponential mechanism while the weighted count mechanism
uses Laplace noise. We first derive the PDP profile for a general exponential mechanism and then reduce the
two special cases to the general case.

Let D = {(wi,xi)}n
i=1 ∪ {(w0,x0)} and D′ = {(wi,xi)}n

i=1 denote neighboring data sets. Let M(D)
be a mechanism taking values in Rd, distributed according to the probability density function f(y) ∝
exp(−k d(y, g(D))) where k > 0, d(·, ·) is a metric on Rd and g : [1,∞)×X → Y is a function where Y ⊆ Rd.
In order to bound the privacy loss of M, we require that the influence on g of any single weighted point
(w0,x0) be bounded. Specifically, we require that there exist a function ∆ : X → R≥0 such that

d(g(D), g(D′)) ≤ w0∆(x0) for all neighboring D,D′ differing in (w0,x0). (11)
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Given these prerequisites, we can see that the PDP profile of M is bounded as

log
∣∣∣∣ f(y)
f ′(y)

∣∣∣∣ =
∣∣∣∣−k (d(y, g(D))− d(y, g(D′))) + log

∫
Rd exp(−k d(y, g(D))) dy∫
Rd exp(−k d(y, g(D′))) dy

∣∣∣∣
≤ k |d(y, g(D))− d(y, g(D′))|
≤ k d(g(D), g(D′))
≤ k w0∆(x0).

The first inequality follows because the two integrals are identical due to translation invariance (note that the
integrals are over all of Rd). The second inequality follows from the triangle inequality for the metric d. The
third inequality follows from Equation (11).

Having established the general case, we apply it to the two submechanisms that constitute the weighted
DP-Lloyd algorithm.

• The weighted sum mechanism is an exponential mechanism for g(D) =
∑

(w,x)∈D w x and d(y, y′) =
∥y − y′∥p for some p > 0 and k = 1/βsum. The sensitivity function is ∆(x) = ∥x∥p because

d(g(D), g(D′)) = ∥w0 x0∥p = w0 ∥x0∥p.

Thus, |log f(y)/f ′(y)| ≤ w0∥x0∥p/βsum.

• The weighted count mechanism is an exponential mechanism for g(D) =
∑

(w,x)∈D w and d(y, y′) =
|y − y′| and k = 1/βcount. The sensitivity function is ∆(x) = 1 because

d(g(D), g(D′)) = |w0| = w0.

Thus, |log f(y)/f ′(y)| ≤ w0/βcount.

The result now follows by adaptive composition over the T iterations of the algorithm.
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