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Abstract
We characterize the differential privacy guar-
antees of privacy mechanisms in the large-
composition regime, i.e., when a privacy mech-
anism is sequentially applied a large number of
times to sensitive data. Via exponentially tilt-
ing the privacy loss random variable, we derive
a new formula for the privacy curve expressing
it as a contour integral over an integration path
that runs parallel to the imaginary axis with a free
real-axis intercept. Then, using the method of
steepest descent from mathematical physics, we
demonstrate that the choice of saddle-point as the
real-axis intercept yields closed-form accurate ap-
proximations of the desired contour integral. This
procedure—dubbed the saddle-point accountant
(SPA)—yields a constant-time accurate approx-
imation of the privacy curve. Theoretically, our
results can be viewed as a refinement of both
Gaussian Differential Privacy and the moments
accountant method found in Rényi Differential
Privacy. In practice, we demonstrate through nu-
merical experiments that the SPA provides a pre-
cise approximation of privacy guarantees compet-
itive with purely numerical-based methods (such
as FFT-based accountants), while enjoying closed-
form mathematical expressions.

1. Introduction
Differential privacy (DP) is a widely adopted standard for
privacy-preserving machine learning (ML). Differentially
private mechanisms used in ML tasks typically operate in
the large-composition regime, where mechanisms are se-
quentially applied many times to sensitive data. For exam-
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ple, when training neural networks using stochastic gradient
descent, DP can be ensured by clipping and adding Gaus-
sian noise to each gradient update (Abadi et al., 2016). Here,
a DP mechanism (gradient clipping plus noise) is applied
hundreds or thousands of times to the training data.

Quantifying the privacy loss after a large number of compo-
sitions of DP mechanisms is a central challenge in privacy-
preserving ML. A key result by Murtagh & Vadhan (2016,
Theorem 1.5) states that computing exact privacy parameters
under composition is in general #P-complete, hence infea-
sible. This challenge has spurred several follow-up works
on privacy accounting, e.g., (Dong et al., 2022; Koskela
et al., 2020; Koskela & Honkela, 2021; Koskela et al., 2021;
Gopi et al., 2021; Ghazi et al., 2022; Doroshenko et al.,
2022), which compute upper bounds on the privacy budget
parameters (ε, δ) in DP (see (6) for a formal definition).

The currently available accountants have several limita-
tions. The accountants that have closed-form formulas—
thereby attaining constant (in composition) runtimes—such
as the moments accountant (Abadi et al., 2016; Mironov,
2017) and the CLT-based Gaussian-DP accountant (Bu et al.,
2020), suffer from either overestimating or underestimat-
ing, respectively, the privacy parameters. On the other
hand, convolution-based accountants, such as FFT-based
approaches (Koskela et al., 2020; Gopi et al., 2021), while
working well in practice, do not have constant runtimes,
cannot generate the full privacy curve, and are limited by
machine precision due to their purely numerical nature.1

For example, existing implementations of the FFT-based
approaches fail to estimate values of δ below 10−10 (Gopi
et al., 2021, Appendix B) or 10−12 (Doroshenko et al., 2022,
Appendix C).

We overcome these challenges by introducing a new ap-
proach for estimating DP parameters using complex analy-
sis. Our approach is based on the method of steepest descent
for integral approximation—a well-known method in math-
ematical physics (Jeffreys & Jeffreys, 1999). We derive the
saddle-point accountant (SPA),2 which:

1Of course, this limitation can be alleviated by using custom
implementations and arbitrary float-point precision libraries. Our
point is that closed-form formulas do not have this limitation.

2We provide a Python implementation of the proposed SPA at
https://github.com/Felipe-Gomez/saddlepoint accountant
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Figure 1. Accounting for the composition of 3000 subsampled
Gaussian mechanisms, with noise scale σ = 2 and subsampling
rate λ = 0.01. The remaining FFT discretization parameters are
set4 to εerror = 0.07, δerror = 10−10 for the PRV Accountant (Gopi
et al., 2021), and discretization interval length of 2 × 10−4 for
Connect the Dots (Doroshenko et al., 2022).

1) has a computable closed-form formula, hence enjoys
constant runtime complexity in the number of compositions;

2) estimates the privacy parameters accurately and with
provable error bounds; and

3) works for any value of δ, however small, thus describing
the full range of (ε, δ) guarantees.

We illustrate the above properties of the SPA in Figure 1,
which shows a comparison between the SPA and the state-of-
the-art (SOTA) DP accountants when computing the (ε, δ)
curve of a composition of 3000 subsampled Gaussian mech-
anisms. Only the moments accountant and the SPA are able
to trace the whole privacy curve (see for example the region
δ > 10−15). Further, the SPA upper and lower bounds have
a narrow gap between them.

The SPA combines large-deviation and central-limit ap-
proaches for bounding expectations of sums of independent
random variables, thereby attaining the best of both worlds.
The large deviation approach uses the moment-generating
function to approximate the probability of very unlikely
events. The central limit theorem (CLT) approximates a
random variable by a Gaussian with the same mean and
variance. For DP accounting, the large deviation approach
led to the moments accountant (Abadi et al., 2016); the CLT
approach led to Gaussian-DP (Sommer et al., 2019; Dong
et al., 2022). Both these accountant methods can be com-
puted in constant time, but their accuracy is far less than

4Decreasing these error parameters makes the PRV accountant
more accurate, and we emphasize that the reason we include the
PRV accountant in this plot is that it serves as a proxy for the
ground truth.

the SOTA FFT accountant (Gopi et al., 2021). The saddle-
point method can be viewed as a combination of two basic
approaches: maintaining from large deviations the ability
to handle very small values of δ, as well as the precise
guarantees of the CLT. The resulting SPA achieves better
accuracy than either approach on its own, while maintaining
the optimality of the runtime complexity.

A brief overview of the SPA. Suppose that a DP mecha-
nism has a privacy loss random variable whose cumulant-
generating function K(t) is finite for positive values of t
(see Section 2 for precise definitions). Note that K(t) is
a familiar quantity used in DP accounting; for instance,
it can be verified that the mechanism satisfies exactly
(t+ 1,K(t)/t)-Rényi-DP for each t > 0 (Mironov, 2017).
The SPA performs the following steps to estimate δ given ε:

1) Set F (t) ≜ K(t)− εt− log t− log(t+ 1),

2) solve F ′(t) = 0 over t > 0,

3) return δ(ε) ≈ eF (t)/
√

2πF ′′(t).

From this general workflow, it is clear that the SPA runs
in constant time for n-fold self-composition; indeed, the
cumulant-generating function for the composition is nK.
Moreover, the root-finding in step 2 is similar to the one
performed in the moments accountant (Abadi et al., 2016),
which solves K ′(t)− ε = 0 instead.

We refer to the approximation returned by this simple pro-
cedure as SPA-MSD.5 The reason SPA-MSD approximates
the privacy curve well is the following three steps. First, we
express the privacy curve as the following contour integral:

δ(ε) =
1

2πi

∫ t+i∞

t−i∞
eF (z) dz, (1)

which holds independently of the choice of t > 0. Second,
we apply the method of steepest descent, which uses a judi-
cious choice of the integration path in the complex plane: the
line parallel to the imaginary axis with real part correspond-
ing to the saddle-point of the integrand, i.e., the unique point
t > 0 for which F ′(t) = 0. This approach leads to a new
series expansion for δ given a fixed ε (see (26)), where the
first term of this series corresponding to the approximation
in step 3 above. This new expression for the privacy curve
is our first main contribution.

Our experiments demonstrate that the SPA-MSD approxi-
mation is very accurate and can consistently achieve relative
errors below 0.1% in ε for a fixed δ (see Figure 3). However,
this approach does not provide a provable upper bound on
the privacy curve—only an approximation. Consequently,
we introduce another SPA, named SPA-CLT, where we first
expand the K term in the integrand in (1) as an Edgeworth

5MSD stands for “method of steepest descent.”
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series (Hall, 2013), then apply the Berry-Esseen theorem to
prove upper and lower bounds on the privacy curve. This
procedure is equivalent to applying CLT to a tilted version
of the privacy loss random variable.

The SPA-CLT amounts to replacing step 3 above by a
slightly different approximation given in Proposition 5.3.
This second approximation also enjoys constant runtime,
yields provable and accurate upper bounds for the privacy
curve even for very small values of δ, and is our second
main contribution.

Finally, our third main contribution is an asymptotically
tight DP composition theorem (see Theorem 4.1) which
is useful in the error rate analysis for the SPA and is of
independent interest.

The rest of the paper is organized as follows. Preliminar-
ies on DP and the method of steepest descent are recalled
in Section 2. We derive a contour-integral formula and
an asymptotic expansion for the privacy curve in Section 3.
This asymptotic expansion gives rise to heuristics for approx-
imating the privacy curve, which leads to the the SPA-MSD
method in Section 3.3. Then, we derive a tight composition
theorem and the decay rate of the saddle-point in Section 4.
In Section 5, we introduce the SPA-CLT (the second version
of the SPA) and apply the results from Section 4 to derive
rigorous bounds on the privacy curve. All proofs can be
found in the Appendices.

2. Preliminaries
We collect in this section some of the required background
on differential privacy, the method of steepest descent, and
exponential tilting. We also prove a useful inequality on
subsampling in Lemma 2.2, and we clarify our notation and
assumptions.

2.1. Notation

For a random variable L, the moment-generating function
(MGF) is denoted by ML(t) ≜ E[etL], and the cumulant-
generating function (CGF) by KL(t) ≜ logML(t). The
hockey-stick divergence (with parameter γ ≥ 1) of a proba-
bility measure P from another Q is defined as

Eγ(P ∥Q) ≜ sup
B Borel

P (B)− γQ(B). (2)

If X ∼ P and Y ∼ Q are random variables, we also write
Eγ(X ∥ Y ) ≜ Eγ(P ∥Q). The standard-normal cumulative
distribution function is denoted by Φ. The Q function is
defined by Q(x) ≜ 1− Φ(x). We also denote the function
q : R→ (0,∞) by

q(z) ≜ Q(z) ·
√
2π ez

2/2. (3)

The (m, k)-th partial Bell polynomial is denoted by (with

x = (x1, · · · , xm))

Bm,k(x) ≜
∑

k1+···+km=k
1·k1+···+m·km=m

(
m

k1, · · · , km

) m∏
j=1

(
xj

j!

)kj

(4)
where the sum runs over nonnegative integers kj , and the
m-th complete Bell polynomial by

Bm(x) ≜
m∑

k=1

Bm,k(x). (5)

The variance of a random variable X is denoted by σ2
X .

We will use the standard Bachmann-Landau notations
O,Ω,Θ, o, ω, and we will let ≍ indicate the equivalence
of order, i.e., an ≍ bn if and only if an/bn → 1 as n→∞.
We will also write fn ∼

∑
k∈N an,k to indicate an asymp-

totic expansion, i.e., the series might not converge but the
first few partial sums approximate fn well.

2.2. Differential Privacy

We review the basics of differential privacy, and derive a
useful inequality for subsampling.
Definition 2.1 ((ε, δ)-DP (Dwork et al., 2006a;b; Zhu et al.,
2022)). A mechanism (i.e., randomized algorithm)M is
(ε, δ)-differentially private (DP) if, for every pair of neigh-
boring datasets, denoted D ≃ D′, and event E,

P [M(D) ∈ E]− eε P [M(D′) ∈ E] ≤ δ, (6)

i.e., if
sup

D≃D′
Eeε(M(D) ∥M(D′)) ≤ δ. (7)

A pair of probability measures (P,Q) is called a dominating
pair forM if, for every ε ≥ 0, event E, and neighboring
datasets D ≃ D′, the following inequality holds:

P [M(D) ∈ E]− eε P [M(D′) ∈ E] ≤ P (E)− eεQ(E).
(8)

If (8) is tight, i.e., if

sup
D≃D′

P [M(D) ∈ E]− eε P [M(D′) ∈ E]

= P (E)− eεQ(E)
(9)

for each fixed ε ≥ 0, then (P,Q) is said to be a tightly
dominating pair. For any dominating pair (P,Q) consisting
of equivalent measures, we associate a privacy loss random
variable (PLRV) that is defined as

L ≜ log
dP

dQ
(X), X ∼ P. (10)

It is not hard to see that a mechanismM having PLRV L
will satisfy (ε, δL(ε))-DP for every ε ≥ 0, where we define
the privacy curve (with a+ ≜ max(0, a))

δL(ε) ≜ E
[(
1− eε−L

)+]
. (11)
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Composition of DP Mechanisms. The use of PLRVs
facilitates DP accounting under composition. The adaptive
composition of two mechanismsM1 andM2 is given by
the mechanism

(M1 ◦M2)(D) ≜ (M1(D),M2(D,M1(D))), (12)

that is,M2 can look at both the dataset and the output of
M1. LetM(n) =M1 ◦ · · · ◦Mn denote the adaptive com-
position of n, possibly distinct, mechanisms. We can form
a PLRV for the composed mechanism that splits additively.
In other words, L(n) ≜ L1 + · · ·+ Ln, where L1, · · · , Ln

are independent PLRVs forM1, · · · ,Mn, respectively, is
a PLRV for the compositionM(n) (Dong et al., 2022, The-
orem 3.2). The ensuing privacy curve δL(n) (as defined
by (11)) gives a privacy guarantee forM(n). Like all ac-
counting methods cited herein, we focus on computing or
approximating the curve δL(n) , which we refer to henceforth
as the composition curve. We also denote the n-fold self-
composition of a mechanismM byM◦n, and in this case
we may choose the Lj to be i.i.d.

Subsampling and DP-SGD. In the context of
differentially-private stochastic gradient descent (DP-
SGD), one applies a DP mechanism on a subset of the
dataset. The fraction of the batch size over the size of
the dataset is called the subsampling rate, denoted by
λ. Subsampling is known to amplify the privacy guaran-
tees (Balle et al., 2018). In this setting, withMλ denoting
the subsampled mechanism, one should bound both orders
Eeε(M(D) ∥Mλ(D

′)) and Eeε(Mλ(D) ∥M(D′)) to
obtain the value of δ. In the following lemma, we show that
in fact one order dominates. See Appendix A for the proof
and further details on subsampling.

Lemma 2.2. Fix a Borel probability measure P over Rn

that is symmetric around the origin (i.e., P (A) = P (−A)
for every BorelA ⊂ Rn), and fix constants (s, λ, γ) ∈ Rn×
[0, 1]× [1,∞). Let TsP be the probability measure given by
(TsP )(A) = P (A−s), and let Q = (1−λ)P +λTsP . We
have the inequality Eγ(P ∥ Q) ≤ Eγ(Q ∥ P ), with equality
if and only if (γ − 1) λ ∥s∥ Eγ(Q ∥ P ) = 0.

Proof. See Appendix A.

2.3. The Method of Steepest Descent

We give a brief overview of the method of steepest descent
(see Appendix B for details). We need to compute

In =
1

2πi

∫ t+i∞

t−i∞
eFn(z) dz (13)

for a given Fn, provided that In is independent of the value
of t ∈ R. In a nutshell, the method of steepest descent is a
powerful tool for choosing the best parameter t that renders

the computation of In easiest. Namely, t is the saddle-point
of Fn, defined as the unique solution to F ′

n(t0) = 0. Then,
one would obtain the “asymptotic expansion”:

In ∼
eFn(t0)√
2πF ′′

n (t0)

(
1 +

∞∑
m=2

βn,m

)
, (14)

where we define the constants

βn,m ≜
(−1)mB2m(0, 0, F

(3)
n (t0), . . . , F

(2m)
n (t0))

2mm!F ′′
n (t0)

m
.

(15)
Recall that this does not mean that the above equation holds
for In with equality for any particular n. Rather, it is a
heuristic indicating the potential for the truncated expansion
to give close approximations for the intended integral In.

In our application of the method of steepest descent to DP,
we show in Theorem 3.1 that the privacy curve can be repre-
sented as the contour integral (13) for the choice of function

Fn(z) = KL(n)(z)− zε− log z − log(1 + z). (16)

2.4. Exponential Tilting

An essential tool that we use for our theoretical analysis is
exponential tilting of random variables, defined as follows.
Definition 2.3. The exponential tilting with parameter t ∈
R of a random variable L having a finite MGF at t is the
random variable L̃ whose probability measure is given by

PL̃(B) ≜
1

ML(t)

∫
B

etx dPL(x) (17)

for any Borel set B. If L has PDF pL, then L̃ is given by its
PDF

pL̃(x) =
etxpL(x)

ML(t)
. (18)

A simple key feature of exponential tilting, stated here with-
out proof, is that it respects addition and independence.
Lemma 2.4. For independent Lj , the exponential tilting of
L = L1+ · · ·+Ln with parameter t is L̃ = L̃1+ · · ·+ L̃n,
where L̃j is the exponential tilting of Lj with parameter t
for each j. Further, L̃1, . . . , L̃n are independent too.

2.5. Assumptions

We will require the PLRVs to have finite MGFs.
Assumption 2.5. The MGF ML(t) of the PLRV L is finite
for every t > 0.

Under Assumption 2.5, both the MGF and CGF can be
extended to be holomorphic functions over the half-plane
z ∈ (0,∞) + iR ⊂ C.

We impose the following technical assumption on the distri-
bution of the PLRV so that Parseval’s identity applies.
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Assumption 2.6. The induced probability measure PL by
the PLRV L decomposes as a sum PL = QL +RL for QL

absolutely continuous with respect to the Lebesgue measure
and discrete RL. Further, with qL denoting the PDF of QL,
we assume that x 7→ etxqL(x)

2 is integrable for each t > 0.

For our error analysis, we will assume the following on the
growth of the first three moments of a PLRV.

Assumption 2.7. With L̃ = L̃1 + · · ·+ L̃n being the expo-
nential tilting with parameter t > 0, and denoting

Pt ≜
n∑

j=1

E
[∣∣∣L̃j − E[L̃j ]

∣∣∣3] , (19)

we assume that there are constants KL,V > 0, and P such
that t = o(n−1/3) yields the limit (as n→∞)

1

n
· (E[L̃], σ2

L̃
,Pt)→ (KL,V,P). (20)

A few remarks on the satisfiability of the above assumptions
are in order.
Remark 2.8. Assumption 2.7 is automatically satisfied under
Assumption 2.5 for self-composition.
Remark 2.9. It is worth noting that all of the above as-
sumptions are satisfied by the usual continuous DP mecha-
nisms, including both the subsampled Gaussian mechanism
(because its PLRV is continuous with a PDF that decays
super-exponentially) and the subsampled Laplace mecha-
nism (because its PLRV’s continuous part is bounded). See
Appendix C for more details.
Remark 2.10. Although finiteness of the MGF rules out DP
mechanisms whose PLRVs are infinite with nonzero prob-
ability (e.g., discrete mechanisms or compactly-supported
mechanisms), our approach may be extended to encapsulate
this case too. Specifically, the mass at infinity should be
added to the value of δ directly. Indeed, we may rewrite the
privacy curve δL via conditioning on the event {L <∞} as

δL(ε) = P[L =∞] + E
[
(1− eε−L)+|L <∞

]
P[L <∞]

= P[L =∞] + δZ(ε) P[L <∞], (21)

where Z is a random variable obtained from L via condi-
tioning on the event {L < ∞}. Then, we may apply our
methods on δZ and obtain results for the original curve δL
in view of the relation (21).
Remark 2.11. It is not hard to see that the MGF ML of the
PLRV L is finite for any additive continuous mechanism
with PDF of the form e−g(x) for a continuous g such that
g(x) ≍ β|x|α for some α, β > 0. For such DP mechanisms,
the MGF of the ensuing PLRV is finite at any t > 0 and for
any subsampling rate λ ∈ [0, 1].

3. New Representations of the Privacy Curve
In Theorem 3.1, we derive two new formulas for the privacy
curve. Then, we apply the method of steepest descent to the
contour-integral formula (23). This yields the asymptotic
expansion (26) of the privacy curve, which is the basis for
the SPA-MSD as given by Definition 3.6. Later, in Section 5,
we derive rigorous bounds on a CLT-based approximation
that is inspired by the approximations in the present section.

We assume that we have access to a PLRV L for mecha-
nismM (see Definition 2.1). In most cases, the relevant
variable is L(n) = L1 + · · ·+Ln, such that, as discussed in
Section 2.2, δL(n) is the composition curve for the adaptive
compositionM(n) =M1 ◦ · · · ◦Mn (and L1, · · · , Ln are
PLRVs forM1, · · · ,Mn that are independent). However,
in this section we derive formulas for the privacy curve δL
for any variable L. We note that for these formulas to be
numerically computable, it suffices that the distribution of
L be known to an extent that the derivatives of the MGF
M

(k)
L (t) can be computed.

3.1. The Privacy Curve as a Contour Integral

The privacy curve is defined in (11) as the expectation
δL(ε) = E[f(L)], where f(x) = (1 − eε−x)+. We want
to transform this integral—via Parseval’s identity—into the
frequency domain. However, as f ̸∈ L1(R), we cannot di-
rectly apply Parseval’s identity. Nevertheless, exponentially
tilting L, we may replace f(x) by e−txf(x), which decays
fast. We carry out the details of this idea in Appendix E to
obtain the following new formulas for δL.

Theorem 3.1. If the PLRV L satisfies Assumption 2.5, then,
for every t > 0, we may write the privacy curve as

δL(ε) = ML(t)E
[
e−tL̃

(
1− eε−L̃

)+]
(22)

for all ε ≥ 0, where L̃ is the exponential tilting of L with
parameter t (see Definition 2.3). If, in addition, L satisfies
Assumption 2.6, then we also have the formula6

δL(ε) =
1

2πi

∫ t+i∞

t−i∞
eFε(z) dz (23)

for all ε ≥ 0, where we define the exponent by7

Fε(z) ≜ KL(z)− zε− log z − log(1 + z). (24)

Proof. See Appendix E.

6The independence of formula (23) of t is not surprising, given
Cauchy’s integration theorem. More importantly, the theorem
states that an integration path with real part t is actually equivalent
to exponential tilting with parameter t.

7We use the principal branch of the complex logarithm, so Fε

is well defined and analytic over the half-plane z ∈ (0,∞) + iR.
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The two formulas in (22)–(23) lead to two paths for approx-
imating δL. The first is a direct application of the method of
steepest descent, where Fε is expanded around the saddle-
point (see Section 2.3). The second simply approximates
the expectation formula in (22) via the CLT, by replacing
L̃ with a Gaussian. The first path (described next) leads to
better approximations numerically, but the second path is
more amenable to an error analysis (see Section 5).

3.2. The Privacy Curve in Terms of Bell Polynomials

As we have proved a formula in (23) for the privacy curve
δL representing it as a contour integral like in (13), we can
now apply the method of steepest descent to approximate it.
Recall from Section 2.3 that the best choice for the real-axis
intercept in (23) is the saddle-point.

Definition 3.2. The saddle-point associated with a PLRV
L satisfying Assumption 2.5 and a privacy parameter ε
satisfying ε < ess supL is the unique t0 > 0 such that
F ′
ε(t0) = 0, or equivalently

K ′
L(t0) = ε+

1

t0
+

1

t0 + 1
. (25)

Remark 3.3. The original moments accountant aims to solve
K ′

L(t) = ε, indicating the connection between the moments
accountant and the SPA, introduced formally in Section 3.3.

Remark 3.4. We show in Appendix D that the saddle-point,
as given by Definition 3.2, is indeed well-defined.

Applying the method of steepest descent to the contour inte-
gral in (23) with the choice of t being the saddle-point, we
obtain the following asymptotic expansion for the privacy
curve in terms of the derivatives of the MGF, connected via
Bell polynomials (see Section 2.3).

Heuristic 3.5. Let L be a PLRV satisfying Assumption 2.5.
Then, for any ε ∈ [0, ess supL), and with t0 denoting the
associated saddle-point, we have the asymptotic expansion

δL(ε) ∼
eFε(t0)√
2πF ′′

ε (t0)

(
1 +

∞∑
m=2

βε,m

)
, (26)

where, with Bk(x1, . . . , xk) denoting the k-th Bell polyno-
mial and F

(k)
ε the k-th derivative, we denote the constants

βε,m ≜
(−1)mB2m(0, 0, F

(3)
ε (t0), . . . , F

(2m)
ε (t0))

2mm!F ′′
ε (t0)

m
.

(27)
Further, with Bk,j(x1, · · · , xk) denoting the (k, j)-th par-
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Figure 2. Privacy budget ε of the subsampled Gaussian mechanism
after 1500 ≤ n ≤ 4500 compositions using the proposed SPA-
MSD (29) and the other closed-form accountants. We use the
subsampling rate λ = 0.01, noise scale σ = 2, and δ = 10−15.

tial Bell polynomial, the derivatives of Fε are8 (for k ≥ 2)

F (k)
ε (t0) = (−1)k−1(k − 1)!

(
1

tk0
+

1

(t0 + 1)k

)
+

k∑
j=1

(−1)j−1(j − 1)!

ML(t0)j
Bk,j(M

′
L(t0), · · · ,M

(k)
L (t0)).

(28)

3.3. Application: The Saddle-Point Accountant

Based on the asymptotic expansion in (26), we can derive
various approximations of δL depending on how many terms
we keep. This leads to the following versions of the saddle-
point accountant (SPA).

Definition 3.6. The order-k method-of-steepest-descent
saddle-point accountant (SPA-MSD) for the mechanism
M with PLRV L satisfying Assumption 2.5 is defined by

δ
(k)
L, SP-MSD(ε) ≜

eFε(t0)√
2πF ′′

ε (t0)

(
1 +

k∑
m=2

βε,m

)
(29)

when ε < ess supL, where t0 > 0 is the saddle-point (i.e.,
F ′
ε(t0) = 0), and we set δ(k)L, SP-MSD(ε) = 0 if ε ≥ ess supL.

Here, the βε,m are as defined in (27).

The first SPA-MSD is

δ
(1)
L, SP-MSD(ε) =

eFε(t0)√
2πF ′′

ε (t0)
, (30)

8The formula for F (k)
ε follows immediately by Faà di Bruno’s

formula for the derivatives of composition of functions.
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which can be expanded using the definition of Fε as

δ
(1)
L, SP-MSD(ε)

=
eKL(t0)−εt0

√
2π
√
t0(t0 + 1)K ′′

L(t0) + t20 + (1 + t0)2
.

(31)

The order-2 SPA-MSD is given by

δ
(2)
L, SP-MSD(ε) =

eFε(t0)√
2πF ′′

ε (t0)

(
1 +

1

8

F
(4)
ε (t0)

F ′′
ε (t0)

2

)
, (32)

and the order-3 SPA-MSD is given by

δ
(3)
L, SP-MSD(ε) =

eFε(t0)√
2πF ′′

ε (t0)
×(

1 +
1

8

F
(4)
ε (t0)

F ′′
ε (t0)

2
− 5

24

F
(3)
ε (t0)

2

F ′′
ε (t0)

3
− 1

48

F
(6)
ε (t0)

F ′′
ε (t0)

3

)
.

(33)

Empirical Accuracy of SPA-MSD. The expressions for
the SPA-MSD displayed in (31)–(33) can traverse privacy
curves that are virtually indistinguishable from the ground-
truth. We illustrate this in Figure 2 for the subsampled
Gaussian, where we estimate ε (for fixed δ = 10−15) un-
der a varying number of compositions. In this experiment,
SPA-MSD improves on the other closed-form accountants
(which run in constant time). Hence, SPA-MSD can be
seen a correction to both the large deviation method and the
CLT-based method found in the Moments Accountant and
Gaussian-DP, respectively. A zoomed-in version of this fig-
ure is given in Figure 3, which shows the relative errors. See
Appendix L for the SPA-MSD pseudocode, Appendix M for
computing the ground-truth in Figure 2, and Appendix N
for more experiments.

4. Asymptotically Tight Composition Theorem
We show next that the lowest ε under composition cannot
deviate from the mean of the PLRV by a large multiple
of the standard deviation of the PLRV. This result is used
afterwards to derive the asymptotic behavior of the saddle-
point. The asymptotic behavior of the saddle-point, in turn,
will be helpful in the next section to derive rigorous bounds
on the SPA approximation error. We prove the following
asymptotically tight DP composition theorem.

Theorem 4.1. Let M = M1 ◦ · · · ◦ Mn have a PLRV
L = L1+· · ·+Ln, where the Lj are PLRVs for theMj that
are independent. Assume that the Lj have finite absolute
third moments, and P0 = o(σ3

L) as n→∞ (see (19)). Let
δ ∈ (0, 1/2) be such that lim sup δ < 1/2 (so δ is allowed
to vary with n). If σL/(−Φ−1(δ)) → ∞ as n → ∞, then
M is (E[L] − Φ−1(δ)σL, δ · (1 + o(1)))-DP. Conversely,
this result is tight in the following sense. If δ0 ∈ (0, 1/2)

is fixed, σL → ∞, andM is (E[L] + bσL, δ0 + o(1))-DP,
then we must have lim inf b ≥ −Φ−1(δ0).

Proof. See Appendix F.

A more compact way to state the constant-δ claim in the
theorem is that, for any fixed δ ∈ (0, 1/2), we have

δL(E[L]− Φ−1(δ)σL)→ δ. (34)

For example, Theorem 4.1 implies that δL(ε) is close to
10−10 if and only if ε is around E[L] + 6.4σL for all large
n, since −Φ−1(10−10) ≈ 6.4. Thus, if one hopes to have
a small value of δ, the only “interesting” values of ε, in
the regime of high n, are those that are above E[L] by the
derived multiple of σL.

4.1. Asymptotic Formula for the Saddle-Point

We re-parameterize ε = E[L] + bσL, so b can be seen as the
“Z-score” of ε, which is justified by Theorem 4.1. For this
regime of values of ε, we prove the following asymptotic
characterization of the saddle-point.

Theorem 4.2. Let L = L1 + · · ·+ Ln for independent Lj

satisfying Assumption 2.5, and suppose that (E[L], σ2
L) ≍

n · (KL,V) for some constants KL,V > 0. Let ε = E[L] +
bσL, where b > 0 satisfies b = o(n1/6), and assume that
ε < ess supL. Then, the value of the saddle-point (as given
by Definition 3.2) satisfies the asymptotic relation

t0 ≍
b+
√
b2 + 4

2σL
. (35)

Proof. See Appendix G.

This asymptotic formula for the saddle-point will be useful
in deriving the asymptotic rate of the approximation error
of the SPA in the next section.

5. CLT Error Bound Analysis
While the approximations of Section 3 are often very precise
(see Figure 2), they are merely approximations, and do not
provide any hard guarantees on the (ε, δ)-DP of a given
mechanism. In this section, we derive the alternative form
of the SPA by applying the Berry-Esseen theorem to the
saddle-point exponentially tilted PLRV, thereby obtaining
upper and lower bounds on the achieved privacy parameters.

5.1. CLT Based Version of the SPA

We return to the expectation based formula for δL shown in
Theorem 3.1, which can be rewritten as

δL(ε) = eKL(t)−εt E
[
f̄
(
L̃− ε, t

)]
, (36)
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where
f̄(x, t) ≜ e−xt

(
1− e−x

)+
, (37)

with t > 0 varying freely and L̃ being the exponential
tilting of L with parameter t. Here, L = L1 + · · ·+ Ln for
independent Lj satisfying Assumption 2.5. We will simply
replace L̃ by a Gaussian with the same first two moments,9

and choose t to be the saddle-point of L as per Definition 3.2.
Thus, we introduce the following version of the SPA.

Definition 5.1. Under Assumption 2.5, the CLT version of
the saddle-point accountant (SPA-CLT) is defined by

δL, SP-CLT(ε) ≜ eKL(t0)−εt0 E
[
f̄(Z − ε, t0)

]
(38)

if ε < ess supL, where Z ∼ N (K ′
L(t0),K

′′
L(t0)), and t0

is the saddle-point for L as given by Definition 3.2. We
define δL, SP-CLT(ε) = 0 for ε ≥ ess supL.

Remark 5.2. The approach giving rise to δL, SP-CLT can be
seen as a series expansion of the eKL(z) part of the integrand
in Theorem 3.1, or equivalently as an (order-0) Edgeworth
expansion (Hall, 2013) of the distribution of L̃. However,
the Edgeworth expansion approach delineated herein is dif-
ferent from what can be found in the DP literature (Wang
et al., 2022). Specifically, we apply the Edgeworth expan-
sion on the tilted random variable L̃, whereas the approach
of Wang et al. (2022) uses the Edgeworth expansion of the
non-tilted version L. This distinction can yield very differ-
ent approximations. We include a comparison between our
approach and the standard CLT in Appendix H.

The following result expresses the CLT-based SPA in terms
of easily computable functions. In what follows, we let
δL, SP-CLT(ε; t) denote the same expression as in (38) but
with t0 replaced by a free t > 0, i.e.,

δL, SP-CLT(ε; t) ≜ eKL(t)−εtE
[
f̄(Z − ε, t)

]
1[0,ess supL)(ε)

(39)
where Z ∼ N (K ′

L(t),K
′′
L(t)). In particular δL, SP-CLT(ε) =

δL, SP-CLT(ε; t0) for t0 the saddle-point.

Proposition 5.3. Suppose Assumption 2.5 holds. Fix any
t > 0 and ε ∈ [0, ess supL), and denote

γ ≜
K ′

L(t)− ε√
K ′′

L(t)
, α ≜

√
K ′′

L(t) t− γ,

β ≜
√
K ′′

L(t) (t+ 1)− γ.

(40)

Then, we have that (with q as defined in (3))

δL, SP-CLT(ε; t) =
q(α)− q(β)√

2π
eKL(t)−εt−γ2/2. (41)

Proof. See Appendix I.1.
9It is not hard to see that the mean and variance of L̃ are given

by E[L̃] = K′
L(t) and σ2

L̃
= K′′

L(t).

Remark 5.4. It holds that 0 < q(z) < min(1/z,
√
π/2) for

all z > 0, and q(z) ≍ 1/z as z →∞ (NIS, Section 7.8).

While the two methods of approximation—the steepest
descent as in Section 3.3, and the CLT approach in this
section—lead to different approximations, these two approx-
imations are closely related, as described by the following
simple inequality.

Proposition 5.5. Under Assumption 2.5, for any t > 0

δL, SP-CLT(ε; t) ≤
eFε(t)√
2πK ′′

L(t)
. (42)

Proof. See Appendix I.2.

Note that the only difference between the right-hand side
of (42) and δ

(1)
L, SP-MSD(ε) is that the denominator involves

K ′′
L instead of F ′′

ε .

5.2. Finite-Composition Error Bound

Using the Berry-Esseen theorem, we prove the following
theorem for the error bounds on the approximation δL, SP-CLT
for arbitrary tilts.

Theorem 5.6. Suppose Assumption 2.5 holds. For any t > 0
and ε ≥ 0, there is a ζ ∈ [−1, 1] such that

δL(ε) = eKL(t)−εt E
[
e−t(Z−ε)

(
1− e−(Z−ε)

)+]
+ ζ errSP(ε; t),

(43)

where Z ∼ N (K ′
L(t),K

′′
L(t)) and the error is defined by

errSP(ε; t) ≜ eKL(t)−εt tt

(1 + t)1+t
· 1.12Pt

K ′′
L(t)

3/2
. (44)

Proof. See Appendix J.

Note that omitting the ζ term in the right-hand side of (43)
gives exactly δL, SP-CLT(ε; t) as per Definition 5.1. Thus,
Theorem 5.6 can be equivalently restated as the following
error bound for SPA-CLT: for each t > 0 and ε ≥ 0,

|δL(ε)− δL, SP-CLT(ε; t)| ≤ errSP(ε; t). (45)

5.3. Asymptotic Error Rate

While Theorem 5.6 holds for any positive value of t around
which the MGF is finite, a natural choice of t is the saddle-
point t0 itself, defined as the solution to (25). We analyze
the ensuing error rate for this particular choice of tilt next.

Specifically, we show that the error rate in approximating δL
by δL, SP-CLT decays roughly at least as fast as 1/(

√
n eb

2/2)
for the choice ε = E[L] + bσL, and we characterize the
constant term too.
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Theorem 5.7. Let L = L1 + · · · + Ln for independent
PLRVs L1, · · · , Ln that satisfy Assumption 2.5. Suppose
that Assumption 2.7 holds too. Let ε = E[L] + bσL for
b > 0 satisfying b = o(n1/6), and let t0 be the saddle-point
of L (see Definition 3.2). Then, as n→∞, we have

errSP(ε; t0) ≍
1.12
√
e P

V3/2 · C(b)τ ·
√
n
, (46)

where τ < 1 satisfies τ → 1, and we define the term
C(b) ≜ exp

(
(b2 + b

√
b2 + 4)/4

)
. Furthermore, writing

t0 = τ0 · b+
√
b2+4

2σL
, we may take τ = (2− τ0)τ0 in (46).

Proof. See Appendix K.

Remark 5.8. In Appendix H, we illustrate the benefit of
tilting the PLRV by comparing the error term in (46) with
the corresponding standard CLT error (i.e., without tilting).
For example, for a limiting value of δ = 10−10, the error
term incurred by our tilting-based approach is roughly 9-
orders of magnitude smaller than the standard approach
without tilting.

5.4. Relative-Error Comparisons

The SPA-CLT approximation (41) and its error bound (44)
can approximate the privacy parameters accurately. In Fig-
ure 3, we plot the relative error10 in estimating ε given
δ = 10−15 incurred by SPA-CLT (both for the approxima-
tion in (41) and the approximation ± the error term (44)),
SPA-MSD (for comparison), and the other closed-form ac-
countants. The setting is for the subsampled Gaussian mech-
anism, with the same parameters as in Figure 2. Here, SPA
improves on both the moments accountant and Gaussian-DP.

6. Conclusion and Open Problems
We introduce a novel application of the method of steepest
descent in DP. First, using the exponentially-tilted version
of the PLRV, we derive new formulas for the privacy curve
(Theorem 3.1). Inspired by the method of steepest descent,
we fix the exponential tilt to be the saddle-point of the
integrand’s exponent. This amounts to solving the scalar
equation

K ′
L(t) = ε+

1

t
+

1

t+ 1
. (47)

The ensuing closed-form formulas provide constant-runtime
accurate approximations that can traverse the full privacy
curve (e.g., for δ < 10−10). Our approach can be seen as
a correction to both large-deviation methods (e.g., the mo-
ments accountant, via the additional 1/t+ 1/(t+ 1) term)
and CLT-based methods (e.g., Gaussian-DP, via preprocess-
ing the PLRV with exponential tilting). This way, we retain

10We take the relative error of a privacy curve estimate ε̂(δ),
with a ground-truth of ε(δ), to be |1− ε̂(δ)/ε(δ)|.

1500 2500 3500 4500
compositions (n)
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10−3

10−4

10−5
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ti(
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  ε

GDP
Mo ents Accountant
SPA-CLT Bound
SPA-CLT

SPA-MSD (k=1)
SPA-MSD (k=2)
SPA-MSD (k=3)

Figure 3. Accounting for the privacy budget ε, given δ = 10−15,
for the subsampled Gaussian mechanism, with subsampling rate
λ = 0.01, and noise scale σ = 2. We plot the relative error in
estimating ε (i.e., |1 − ε̂(δ)/ε(δ)| for an estimate ε̂) versus the
number of compositions, n. the SPA outperforms the other closed-
form accountants for this experiment.

the constant runtime of closed-form accountants without
sacrificing accuracy, as demonstrated by our experiments.

The saddle-point approach leaves a few questions open. The
relative-error plot in Figure 3 indicates that, while the SPA-
CLT bounds achieve reasonable relative error, the original
approximation given by SPA-CLT and SPA-MSD seem to
be several orders of magnitudes more accurate than can
be captured by the bounds we derive herein. Hence, it
is an interesting future line of work to refine our bounds
to further reveal the power of the saddle-point approxima-
tion. One promising path towards such a refinement might
be through finding mechanism-specific bounds. Relatedly,
such finer bounds would shed light on the question of “how
large is large-enough n?” The additional experiments in
Appendix N show that n might only need to be of moderate
size for the SPA to provide tight guarantees, yet a more
complete answer requires additional techniques.
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Koskela, A., Jälkö, J., and Honkela, A. Computing tight
differential privacy guarantees using fft. In International
Conference on Artificial Intelligence and Statistics, pp.
2560–2569. PMLR, 2020.
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A. Subsampling: Proof of Lemma 2.2
Subsampling is a fundamental tool in the analysis of
differentially-private mechanisms. Informally, subsampling
entails applying a differentially-private mechanism to a
small set of randomly sampled datapoints from a given
dataset. There are several ways of formally defining the
subsampling operator, see, e.g., (Balle et al., 2018). The
most well-known one, Poisson subsampling, is parameter-
ized by the subsampling rate λ ∈ (0, 1] which indicates
the probability of selecting a datapoint. More formally, the
subsampled datapoints from a dataset D can be expressed as
{x ∈ D : Bx = 1}, where Bx is a Bernoulli random vari-
able with parameter λ independent for each x ∈ D. Given
any mechanismM, we define the subsampled mechanism
Mλ as the composition ofM and the Poisson subsampling
operator. Characterizing the privacy guarantees of subsam-
pled mechanisms is the subject of “privacy amplification
by subsampling” principle (Kasiviswanathan et al., 2011).
This principle is well-studied particularly for characterizing
the privacy guarantees of subsampled Gaussian mechanisms
in the context of a variant of differential privacy, namely,
Rényi differential privacy (Zhu & Wang, 2019; Abadi et al.,
2016; Mironov et al., 2019). We can mirror their formula-
tion to characterize ε and δ for the subsampled Gaussian
mechanisms. Recall that a Gaussian mechanism satisfies
M(D) = N (f(D), σ2Id) where f is a query function with
ℓ2-sensitivity 1. For the subsampled Gaussian, the optimal
privacy curve (of a single composition) is

δMλ
(ε) = max

{
Eeε(P∥Q),Eeε(Q∥P )

}
, (48)

where P = N (0, σ2Id) and Q = (1−λ)P+λP ′, and P ′ ∼
N (e1, σ

2Id) where e1 is the first standard basis vector. In
Lemma 2.2 (restated below for convenience), we show that
the above maximum is always attained by Eeε(Q∥P ) for
any ε ≥ 0, and that it holds for a larger family of DP
mechanisms (including Gaussian and Laplace mechanisms).
A similar ordering bound was proved by Mironov et al.
(2019, Theorem 5) for the Rényi divergence.
Lemma A.1. Fix a Borel probability measure P over Rn

that is symmetric around the origin (i.e., P (A) = P (−A)
for every BorelA ⊂ Rn), and fix constants (s, λ, γ) ∈ Rn×
[0, 1]× [1,∞). Let TsP be the probability measure given by
(TsP )(A) = P (A−s), and let Q = (1−λ)P +λTsP . We
have the inequality Eγ(P∥Q) ≤ Eγ(Q∥P ), with equality if
and only if (γ − 1) λ ∥s∥ Eγ(Q∥P ) = 0.

Proof. The case λ = 0 is clear, so assume λ ∈ (0, 1]. Sup-
pose for now that γ · (1 − λ) < 1. Denote R ≜ TsP , and
consider the function G : (0,∞)→ [0,∞) defined by

G(t) ≜ t · E1+ γ−1
t
(P∥R). (49)

Since γ′ 7→ Eγ′(P∥R) is monotonically decreasing, we
have that G is monotonically increasing. Note that 0 <

γλ+ 1− γ ≤ λ. Thus, plugging t ∈ {γλ+ 1− γ, λ} into
G, we obtain

(γλ+1−γ) ·E γλ
γλ+1−γ

(P∥R) ≤ λ ·Eλ−(1−γ)
λ

(P∥R). (50)

Now, note that

(γλ+ 1− γ) · E γλ
γλ+1−γ

(P∥R)

= (γλ+ 1− γ) · sup
A

P (A)− γλ

γλ+ 1− γ
·R(A)

(51)

= sup
A

P (A)− γ · ((1− λ)P (A) + λR(A)) (52)

= Eγ(P∥Q), (53)

where the suprema are taken over all Borel sets A ⊂ Rn. In
addition, by symmetry of P around the origin, we have that

Eγ′(P∥R) = sup
A

P (A)− γ′P (A− s) (54)

= sup
A

P (−A)− γ′P (−A− s) (55)

= sup
A

P (A)− γ′P (A+ s) (56)

= sup
A

P (A− s)− γ′P (A) (57)

= Eγ′(R∥P ). (58)

Therefore,

λ · Eλ−(1−γ)
λ

(P∥R)

= λ · Eλ−(1−γ)
λ

(R∥P ) (59)

= λ · sup
A

R(A)− λ− (1− γ)

λ
· P (A) (60)

= sup
A

((1− λ)P (A) + λR(A))− γP (A) (61)

= Eγ(Q∥P ). (62)

We conclude from (50) the desired inequality Eγ(P∥Q) ≤
Eγ(Q∥P ). In addition, the case γ · (1 − λ) ≥ 1 follows
immediately since then Eγ(P∥Q) = 0 ≤ Eγ(Q∥P ).

In light of this lemma, the privacy guarantee of a subsampled
Gaussian mechanism is fully characterized by computing
only Eeε((1 − λ)P + λTsP∥P ), where P = N (0, σ2Id).
Based on this result, for our numerical experiments, we only
compute the saddle-point accountant with this order of P
and Q.

B. The Method of Steepest Descent
We describe the general approach for the method of steepest
descent. Our task is to compute the contour integral

In =
1

2πi

∫ t+i∞

t−i∞
eFn(z) dz. (63)

11
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What we will obtain is an asymptotic expansion

In ∼
eFn(t0)√
2πF ′′

n (t0)

(
1 +

∞∑
m=2

βn,m

)
. (64)

In a nutshell, the method of steepest descent is a powerful
tool for choosing the best parameter t that renders the com-
putation of In easiest. In particular, this choice of t is called
the saddle-point, which is found as follows.

Here, Fn is holomorphic over a strip (0, T ) + iR in the
complex plane, the parameter n ∈ N is growing without
bound, and t ∈ (0, T ) ⊂ R is a free parameter. In particular,
the value of the integral In is assumed to be independent of
the parameter t. This could be satisfied for certain choices
of Fn by virtue of its analyticity and in view of Cauchy’s
integral theorem. As we show in Theorem 3.1, computing
the above contour integral amount to exactly computing the
privacy parameter δL(n)(ε) if we choose the function

Fn(z) = KL(n)(z)− zε− log z − log(1 + z). (65)

Suppose that F ′′
n (t) > 0 over t ∈ (0, T )—in particular,

Fn is strictly convex over the real interval (0, T )—and that
there is a value t0 ∈ (0, T ) solving the equation F ′

n(t0) = 0,
which is then necessarily unique. Then, a second order
Taylor expansion around t0 yields that

Fn(z) = Fn(t0) +
(z − t0)

2

2
F ′′
n (t0) + o(|z − t0|3). (66)

Looking at the the values of the approximating quadratic
Fn(t0) +

(z−t0)
2

2 F ′′
n (t0) for z near t0 along the real axis

(so z = t for t0 ≈ t ∈ R) and along the axis t0 + iR (so
z = t0 + is for 0 ≈ s ∈ R), we see that this approximation
has a local minimum at t0 along the real axis and it has a
local maximum at t0 along the axis t0 + iR. Hence, t0 is
a saddle-point for the approximating quadratic. Further, as
the integral we are concerned with runs along the contour
t + iR, we expect the value of In to come primarily from
values z ≈ t0.

Now, consider the function

Gn(z) = Fn(t0 + z)− Fn(t0)−
z2

2
F ′′
n (t0). (67)

We have that Gn is holomorphic over some vertical strip
centered at the origin, and

G(k)
n (0) =

{
0, 0 ≤ k ≤ 2

F
(k)
n (t0), k ≥ 3.

(68)

We assume for the next steps that Gn is an entire function.
Thus, Gn has the expansion

Gn(z) =
∑
k≥3

F
(k)
n (t0)

k!
zk. (69)

Furthermore, eGn(z) has the power series expansion

eGn(z) = 1 +
∑
k≥3

αn,kz
k, (70)

where

αn,k =
1

k!
Bk(0, 0, F

(3)
ε (t0), . . . , F

(k)
ε (t0)). (71)

As we may write

Fn(t0 + is) = Fn(t0) +Gn(is)−
F ′′
n (t0)

2
s2, (72)

we get the exact value of the integral

In =
eFn(t0)

2π

∫ ∞

−∞
e−s2F ′′

n (t0)/2

1 +
∑
k≥3

αn,k(is)
k

 ds.

(73)

The derived steps thus far have all been justified rigorously.
The final step, however, is a heuristic, where we truncate
the power series expansion to obtain possible estimates of
In. The point is that the derived expressions through this
heuristic have the potential of being proved by other means
to be indeed close approximations of In.

For instance, dropping the whole series beyond the constant
term yields the basic saddle-point approximation

In,1 ≜
eFn(t0)

2π

∫ ∞

−∞
e−s2F ′′

n (t0)/2 ds =
eFn(t0)√
2πF ′′

n (t0)
.

(74)
Note that this approximation is in fact exact if Fn is a
quadratic, i.e., for computing the Gaussian integral. Keep-
ing the terms k ∈ {3, · · · , 2k⋆}, it is not hard to see that
one obtains the k⋆-th estimate

In,k⋆ ≜
eFn(t0)√
2πF ′′

n (t0)

(
1 +

k⋆∑
m=2

βn,m

)
, (75)

where we denote the constants

βn,m ≜
(−1)mB2m(0, 0, F

(3)
n (t0), . . . , F

(2m)
n (t0))

2mm!F ′′
n (t0)

m
.

(76)
Then one might say that In has the “asymptotic expansion”

In ∼
eFn(t0)√
2πF ′′

n (t0)

(
1 +

∞∑
m=2

βn,m

)
. (77)

Recall that this does not mean that the above equation holds
with equality for any particular n. Rather, it is a heuristic
indicating the potential for the truncated expansion to give
close approximations for the intended integral In.

12
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C. Satisfiability of the Assumptions
We explain here how Assumption 2.6 is satisfied by the
subsampled Gaussian and Laplace mechanisms. Note that
by the Lebesgue decomposition theorem, the probability
measure of the PLRV can always be decomposed into a sum
of an absolutely continuous measure, a discrete measure,
and a singular measure (such as the Cantor distribution).
Thus, Assumption 2.6 requires the exclusion of singular
components. This can be easily seen to be satisfied by the
subsampled Gaussian and Laplace mechanisms. Further,
Assumption 2.6 does not impose any requirement on the
discrete part. Thus, we consider the continuous part here.

Note that the PLRV for the subsampled Gaussian mecha-
nism (with subsampling rate λ, variance σ2, and sensitivity
s) is given by

L = log
(
1− λ+ λe(2sX−s2)/(2σ2)

)
, (78)

where X ∼ (1− λ)N (0, σ2) + λN (s, σ2). Hence,

P [L ≤ z] = P
[
X ≤ s

2
+

σ2

s
log

(
ez − (1− λ)

λ

)]
(79)

if z > log(1 − λ), and P[L ≤ z] = 0 otherwise. So, L is
continuous with PDF

pL(z) = A
e2z

g(z)3/2
·
(
g(z)

λ

)− σ2

2s2
log

g(z)
λ

·1(log(1−λ),∞)(z),

(80)
where g(z) = ez − (1− λ) and we have the constant A =
σ
s ·
√

λ
2π exp

(
− s2

8σ2

)
. From this, we see that pL(z) decays

superexponentially as z → ∞. Further, it is continuous.
Indeed, we only need to check continuity at z = log(1− λ).
But this is immediate using, e.g., y = log g(z)

λ and taking
y → −∞. These properties imply that Assumption 2.6 is
satisfied by the subsampled Gaussian mechanism.

Finally, we note that the case of the subsampled Laplace
mechanism is simpler. Indeed, taking the analogous ex-
pression for L as in (78), we see that L has only a discrete
component and a continuous component. Further, the con-
tinuous part comes from values of X between 0 and s. This
boundedness translates into the fact that the PDF of the con-
tinuous part of L is compactly supported, so Assumption 2.6
is satisfied in this case too.

D. Well-Definedness of the Saddle-Point
The well-definedness of the saddle-point, given ε <
ess supL, follows from convexity of Fε over the positive re-
als. Namely, we show that Fε is complex-differentiable and
that there is a unique positive real t0 such that F ′

ε(t0) = 0.
Let KL|R be the restriction of the CGF to the real axis.

We have that KL|R is convex over (0,∞), and thus, Fε|R is
strictly convex there. Thus, the minimum of Fε over the pos-
itive reals is unique; further, the real derivative at this mini-
mum vanishes. Nevertheless, finiteness of ML over (0,∞)
implies its analyticity over the half-plane (0,∞) + iR; in
particular, the complex derivative of Fε exists in the same
half-plane. Hence, the function Fε is complex-differentiable
at t0, and its derivative vanishes there, as required.

E. New Formulas for the Privacy Curve: Proof
of Theorem 3.1

Before proving Theorem 3.1, we show the following general
Parseval identity. For f ∈ L1(R), we denote the Fourier
transform by

f̂(ξ) ≜
∫
R
f(x)e−ixξ dx. (81)

Lemma E.1. Let P = Q+R be a Borel probability measure
on R, where Q is absolutely continuous with respect to the
Lebesgue measure whose PDF is square-integrable and R is
discrete. For any continuous function f : R→ R such that
f ∈ L1(R)∩L2(R), f̂ ∈ L1(R), and EX∼P [|f(X)|] <∞,
we have the Parseval identity∫

R
f(x) dP (x) =

1

2π

∫
R
f̂(ξ)ϕP (ξ) dξ, (82)

where ϕP (ξ) ≜ EX∼P [e
iξX ] is the characteristic function.

Proof. Let q denote the PDF of Q. Suppose R is supported
over {xj}j∈J , where J is at most countable, and write
rj = R({xj}). Then, we may write∫

R
f(x) dP (x) =

∫
R
f(x) dQ(x) +

∫
R
f(x) dR(x) (83)

=

∫
R
f(x)q(x) dx+

∑
j∈J

f(xj)rj . (84)

Since f, q ∈ L1(R) ∩ L2(R), we have the Parseval identity∫
R
f(x)q(x) dx =

1

2π

∫
R
f̂(ξ)ϕQ(ξ) dξ. (85)

As we also have continuity of f and integrability of f̂ , we
also have the Fourier inversion

f(x) =
1

2π

∫
R
f̂(ξ)eixξ dξ (86)

for every x ∈ R. In particular, we have that∑
j∈J

f(xj)rj =
1

2π

∫
R
f̂(ξ)ϕR(ξ) dξ. (87)

The desired result follows by ϕP = ϕQ + ϕR.

13
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Now, we apply Lemma E.1 to derive Theorem 3.1.

Proof of Theorem 3.1. Expectations of functions of L̃ can
be written in terms of L as E[f(L̃)] = E[etLf(L)]/ML(t).
Thus, the MGF of the tilted variable L̃ is given by

ML̃(z) = E[ezL̃] =
E[etLezL]
ML(t)

=
ML(t+ z)

ML(t)
. (88)

Similarly, expectations of functions of L can be written in
terms of L̃ as E[f(L)] = ML(t)E[e−tL̃f(L̃)]. Thus, we
can write the privacy curve δL in terms of the tilted variable
L̃ as

δL(ε) = E
[(
1− eε−L

)+]
(89)

= ML(t)E
[
e−tL̃

(
1− eε−L̃

)+]
. (90)

In other words, the formula in (22) holds.

Next, we use Assumption 2.6 to apply Parseval’s identity
(Lemma E.1) to the expectation in (90) to get the contour-
integral formula in (23). Specifically, consider the function

f(x) = e−tx
(
1− eε−x

)+
, (91)

Note that f is bounded, continuous, and f ∈ L1(R)∩L2(R).
Further, we have the Fourier transform

f̂(s) =
e−(t+is)ε

(t+ is)(t+ 1 + is)
∈ L1(R). (92)

In addition, by Assumption 2.6, the probability measure PL

induced by L may be written as PL = QL + RL, where
QL is absolutely continuous with respect to the Lebesgue
measure whose PDF qL satisfies that x 7→ eτxqL(x)

2 is
integrable for every τ > 0 and RL is discrete. Suppose RL

is supported over {xj}j∈J with J at most countable, and
write rL,j = R({xj}). Then, by definition of exponential
tilting, for every Borel set B ⊂ R, we have that

PL̃(B) =
1

ML(t)

∫
B

etx dPL(x) (93)

=
1

ML(t)

∫
B

etx dQL(x) +
1

ML(t)

∫
B

etx dRL(x)

(94)

=
1

ML(t)

∫
B

etxqL(x) dx+
1

ML(t)

∑
j∈J
xj∈B

etxjrL,j

(95)

= Q̃(B) + R̃(B), (96)

where we define the Borel measures

Q̃(B) ≜
1

ML(t)

∫
B

etxqL(x) dx, (97)

R̃(B) ≜
1

ML(t)

∑
j∈J
xj∈B

etxjrL,j . (98)

From these definitions, it is clear that R̃ is discrete and
Q̃ is absolutely continuous with respect to the Lebesgue
measure with PDF q̃(x) ≜ etxqL(x)/ML(t). Furthermore,
by assumption on qL, we have that q̃ ∈ L2(R). Therefore,
we may apply Parseval’s identity (Lemma E.1) on f and PL̃

to obtain

E
[
f(L̃)

]
=

1

2π

∫
R
f̂(s)ϕPL̃

(s) ds. (99)

Next, applying the formula for ML̃ in (88), we see that

ϕPL̃
(s) = E

[
eisL̃

]
= ML̃(is) =

ML(t+ is)

ML(t)
. (100)

Therefore, combining formulas (90) and (99), we get

δL(ε) = ML(t)E
[
f(L̃)

]
=

1

2π

∫
R
f̂(s)ML(t+ is) ds.

(101)
Now, using the contour {z = t + is : −∞ < s <
∞} oriented counter-clockwise, we see that (101) may be
rewritten as the contour integral

δL(ε) =
1

2πi

∫ t+i∞

t−i∞
f̂((z − t)/i)ML(z) dz. (102)

Finally, using the formula for f̂ in (92), we deduce

δL(ε) =
1

2πi

∫ t+i∞

t−i∞

e−zε

z(z + 1)
ML(z) dz (103)

=
1

2πi

∫ t+i∞

t−i∞
eFε(z) dz, (104)

where we define

Fε(z) ≜ KL(z)− εz − log(z)− log(1 + z) (105)

and we take the principal branch for the complex logarithm.
This is precisely the desired formula for δL stated in (23),
and the proof of the theorem is therefore complete.

F. The Large-Composition Regime: Proof of
Theorem 4.1

We may show this result using the standard Berry-Esseen
approach. By the Berry-Esseen theorem, we have for Z ∼

14
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N (E[L], σ2
L) that

δL(ε) = E
[(
1− eε−L

)+]
(106)

=

∫ ∞

0

P
[
(1− eε−L)+ > u

]
du (107)

=

∫ ∞

0

P
[
1− eε−L > u

]
du (108)

=

∫ 1

0

P
[
1− eε−L > u

]
du (109)

=

∫ 1

0

P [L > ε− log(1− u)] du (110)

= δZ(ε) + θ · 0.56 P0

σ3
L

(111)

where |θ| ≤ 1. A direct computation yields that for any
ε ≥ E[L] (with Z ∼ N (E[L], σ2

L))

δZ(ε) = Φ

(
E[L]− ε

σL

)
− eε−E[L]+σ2

L/2 Φ

(
E[L]− σ2

L − ε

σL

)
.

(112)

Plugging in ε = E[L]− Φ−1(δ)σL, we obtain that

δZ(E[L]− Φ−1(δ)σL)

= δ − e−Φ−1(δ)σL+σ2
L/2Φ

(
Φ−1(δ)− σL

)
.

(113)

Using Φ(−x) = Q(x) = q(x)e−x2/2

√
2π

for x > 0, we obtain

δZ(E[L]− Φ−1(δ)σL) (114)

= δ − q(σL − Φ−1(δ))√
2π

e−Φ−1(δ)2/2 (115)

= δ − q(σL − Φ−1(δ))√
2π

e−(−Φ−1(δ))2/2 (116)

= δ − q(σL − Φ−1(δ))

q(−Φ−1(δ))
Φ(Φ−1(δ)) (117)

= δ ·
(
1− q(σL − Φ−1(δ))

q(−Φ−1(δ))

)
. (118)

Note that q(x) ≍ 1/x as x→∞. Since σL/(−Φ−1(δ))→
∞ by assumption, we also have σL−Φ−1(δ))→∞. Thus,
we obtain

q(σL − Φ−1(δ))

q(−Φ−1(δ))
≍ 1

−Φ−1(δ)q(−Φ−1(δ))
· 1

σL

−Φ−1(δ) − 1
.

(119)
As lim sup δ < 1/2, we get that the term
−Φ−1(δ)q(−Φ−1(δ)) is bounded away from 0. Therefore,
we get that

δZ(E[L]− Φ−1(δ)σL) = δ · (1 + o(1)) . (120)

From (111), and since P0 = o(σ3
L) by assumption, we

conclude that

δL(E[L]− Φ−1(δ)σL) = δ · (1 + o(1)) . (121)

In other words,M is (E[L]−Φ−1(δ)σL, δ ·(1 + o(1)))-DP,
as desired.

G. Asymptotic of the Saddle-Point: Proof of
Theorem 4.2

We write K = KL for short. Consider the saddle-point
equation (25):

K ′(t) = ε+
1

t
+

1

1 + t
. (122)

The left-hand side strictly increases from E[L] to ess supL
over t ∈ [0,∞), whereas the right-hand side strictly de-
creases from∞ to ε over the same interval. Hence, there
exists a unique solution t = t0 > 0, which we call the
saddle-point.

We show first that t0 → 0 as n → ∞. Suppose, for the
sake of contradiction, that t∗ ≜ lim supn→∞ t0 > 0, and
let nk ↗∞ be a sequence of indices such that the sequence
of the nk-th saddle points, denoted t

(k)
0 , converge to t∗. Let

ρ2 : (0,∞) → (0,∞) be defined by ρ2(t) ≜ (K ′(t) −
E[L])/(tσ2

L), so ρ2(t)→ 1 as t→ 0+ and

K ′(t) = E[L] + σ2
Ltρ2(t). (123)

Note that ρ2 is a continuous function. Noting that ε =
E[L] + bσL, rearranging the saddle-point equation yields
that

1 +
σ2
L

E[L] tρ2(t)

1 + b σL

E[L]

= 1 +
1

εt
+

1

ε · (1 + t)
. (124)

Taking t ∈ {t(k)0 }k∈N, letting k → ∞, and recalling the
assumptions that (E[L], σ2

L) ≍ n · (KL,V) for KL,V > 0
and that b = o(

√
n), we infer from (124) that

Vt∗ρ2(t
∗)

KL
= 0. (125)

Equality (125) contradicts that V, t∗, ρ2(t
∗),KL > 0. Thus,

we must have that t∗ = 0.

Consider the reparametrization t = d/σL, so d is a variable
over (0,∞). The saddle-point equation can be rewritten as(
ρ2(t)−

b

σL

)
d2 −

(
b+

2

σL

)
d−

(
1− ρ2(t)d

3

σL

)
= 0.

(126)
We rewrite the saddle-point equation in this “quadratic”
form since it closely approximates the quadratic d2 − bd−
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1 = 0 at the saddle-point. Indeed, let d0 > 0 be such
that t0 = d0/σL. We obtain from (126) the inequality
1
2d

2
0− (b+1)d0− 1 ≤ 0 for all large n. This latter inequal-

ity yields that

d0 ≤ b+ 1 +
√

(b+ 1)2 + 2 = o(n1/6). (127)

Hence, ρ2(t0)d30/σL → 0 as n → ∞, i.e., the “constant”
term in (126) approaches 1. Thus, for all large n, completing
the square in (126) yields (denoting t = t0, ρ = ρ2, and
σ = σL for short)

d0 =

b+ 2
σ +

√(
b+ 2

σ

)2
+ 4

(
1− ρ(t)d3

0

σ

) (
ρ(t)− b

σ

)
2
(
ρ(t)− b

σ

) .

(128)
Taking n→∞, we obtain

d0 ≍
b+
√
b2 + 4

2
, (129)

which gives the desired asymptotic formula for the saddle-
point t0 = d0/σL.

H. Contrast between SPA and the Standard
CLT

To illustrate the advantage of our tilting approach, we
compare the asymptotic behavior of the error in Theo-
rem 5.7 to that obtainable from non-tilted Berry-Esseen.
Let L = L1+ · · ·+Ln for independent PLRVs L1, · · · , Ln

that satisfy Assumption 2.5. Suppose that Assumption 2.7
holds too.

By the Berry-Esseen theorem, we have for a Gaussian Z ∼
N (E[L], σ2

L) that11

δL(ε) = E
[(
1− eε−L

)+]
(130)

=

∫ 1

0

P [L > ε− log(1− u)] du (131)

= δZ(ε) + θ · 0.56 P0

σ3
L

(132)

where |θ| ≤ 1. By Assumption 2.7, the error term in the
standard Berry-Esseen approach shown above satisfies

errStandard(ε) ≜
0.56 P0

σ3
L

≍ 0.56 P

V3/2 ·
√
n
. (133)

Thus, the improvement our approach yields is asymptoti-
cally (see Theorem 5.7 for the definitions of C(b) and τ )

errSP(ε; t0)

errStandard(ε)
≍ 2

√
e

C(b)τ
. (134)

11Note that Z is not necessarily a PLRV associated to a Gaussian
mechanism, since in general σ2

L ̸= 2E[L].

Even for moderate values of b, the above ratio is very small
(recall that we denote ε = E[L] + bσL). For example, if
b ≈ 6.4 (so δ ≈ 10−10 in the limit; see Theorem 4.1 on the
high-composition regime), we obtain the limit of the ratio

lim
n→∞

errSP(ε; t0)

errStandard(ε)
≈ 3× 10−9. (135)

In addition, in the complementary regime of δ → 0, e.g.,
when ε = E[L] + bσL with b ≥

√
log n (and still b =

o(n1/6)), one has that the error term in the standard CLT
dominates the approximation of δ:

δZ(ε) = o (errStandard(ε)) . (136)

In contrast, in the same regime, our error term errSP(ε; t0)
is always vanishingly smaller than the approximation itself,
i.e.,

errSP(ε; t0) = o (δL, SP-CLT(ε)) . (137)

I. Proofs of Section 5.1
I.1. Proof of Proposition 5.3

Denote K = KL for short. The Gaussian expectation may
be computed as

E
[
f̄ (Z − ε, t)

]
= exp

(
K ′′(t)t2

2
− (K ′(t)− ε)t

)
×

Q

(√
K ′′(t) t− K ′(t)− ε√

K ′′(t)

)

− exp

(
K ′′(t)(t+ 1)2

2
− (K ′(t)− ε)(t+ 1)

)
×

Q

(√
K ′′(t) (t+ 1)− K ′(t)− ε√

K ′′(t)

)
. (138)

Using Q(z) = q(z)√
2π

e−z2/2 and the definitions of α, β, γ, we
get

E
[
f̄ (Z − ε, t)

]
=

q(α)− q(β)√
2π

e−γ2/2. (139)

Plugging this into the definition of δL, SP-CLT completes the
proof.

I.2. Proof of Proposition 5.5

Let Z ∼ N (K ′
L(t),K

′′
L(t)) be the variable in the expec-

tation in (38). Its PDF is upper bounded by pZ(z) ≤
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1√
2πK′′

L(t)
. Thus

E
[
e−t(Z−ε)

(
1− e−(Z−ε)

)+]
=

∫ ∞

ε

pZ(z)e
−t(z−ε)

(
1− e−(z−ε)

)
dz (140)

≤ 1√
2πK ′′

L(t)

∫ ∞

ε

e−t(z−ε)
(
1− e−(z−ε)

)
dz (141)

=
1√

2πK ′′
L(t) t(t+ 1)

. (142)

Applying this bound to the definition of δL, SP-CLT(ε) in (38)
completes the proof.

J. Error Bound for SPA-CLT: Proof of
Theorem 5.6

Fix t > 0. Recall from (36) that

δL(ε) = eKL(t)−εt E
[
f̄
(
L̃− ε, t

)]
(143)

where L̃ is the exponential tilting of L with parameter t, and

f̄(x, t) = e−xt(1− e−x)+ (144)

Note that K ′
L(t) = E[L̃] and K ′′

L(t) = Var[L̃]. We consider
the function f̄(x, t). We show next that, for fixed t, x 7→
f̄(x, t) is a unimodal function with a maximal value of
tt/(t + 1)t+1. Certainly f̄(x, t) ≥ 0 for all x. For x > 0
the derivative (with respect to x) is

f̄ ′(x, t) = −te−tx(1− e−x) + e−txe−x (145)

= e−tx
[
−t+ (t+ 1)e−x

]
. (146)

Note that −t+ (t+ 1)e−x is monotonically decreasing in
x, which means that f̄(x, t) is increasing until −t + (t +
1)e−x = 0, and is subsequently decreasing. In particular,
the maximal value of f̄ is attained when

x = x0 = − log
t

t+ 1
. (147)

Note that x0 > 0. Thus, the maximal value of f̄ is

fmax ≜ f̄(x0, t) = f̄

(
− log

t

t+ 1
, t

)
(148)

=

(
t

t+ 1

)t(
1− t

t+ 1

)
=

tt

(t+ 1)t+1
. (149)

Thus, between x = 0 and x = x0, f̄(x, t) is monotonically
increasing from 0 to fmax; then from x = x0 to x = ∞,
f̄(x, t) is monotonically decreasing from fmax to 0. Thus,
there exist functions f−1

1 (z), f−1
2 (z) such that, for any z ∈

(0, fmax), f̄(x, t) > z if and only if

f−1
1 (z) < x < f−1

2 (z).

Therefore,

E[f̄(L̃− ε, t)]

=

∫ fmax

0

P
[
f̄(L̃− ε, t) > z

]
dz (150)

=

∫ fmax

0

P
[
f−1
1 (z) < L̃− ε < f−1

2 (z)
]
dz. (151)

In addition, we may apply the Berry-Esseen theorem to
write

sup
x∈R

∣∣∣P [L̃ > x
]
− P[Z > x]

∣∣∣ ≤ 0.56 Pt

K ′′
L(t)

3/2
(152)

where Z ∼ N (K ′
L(t),K

′′
L(t)) and Pt is defined in the

beginning of Section 5. Thus we have the upper bound

δL(ε)

= eKL(t)−εt E
[
f̄
(
L̃− ε, t

)]
(153)

= eKL(t)−εt

∫ fmax

0

P
[
f−1
1 (z) < L̃− ε < f−1

2 (z)
]
dz

(154)

≤ eKL(t)−εt

(
1.12fmaxPt

K ′′
L(t)

3/2

+

∫ fmax

0

P
[
f−1
1 (z) < Z − ε < f−1

2 (z)
]
dz

)
(155)

= eKL(t)−εt

(
E
[
f̄ (Z − ε, t)

]
+

1.12fmaxPt

K ′′
L(t)

3/2

)
(156)

Similarly, we have the lower bound

δL(ε)

≥ eKL(t)−εt

(
E
[
f̄ (Z − ε, t)

]
− 1.12fmaxPt

K ′′
L(t)

3/2

)
. (157)

This completes the proof of the theorem.

K. Asymptotic of the SPA-CLT Approximation
Error: Proof of Theorem 5.7

We write K = KL for short. Recall the definition of the
error term in (44)

errSP(ε; t0) = eK(t0)−εt0
tt00

(1 + t0)1+t0
· 1.12Pt0

K ′′(t0)3/2
.

(158)

From the characterization of the saddle-point in Theo-
rem 4.2, we have that

t0 ≍
b+
√
b2 + 4

2σL
. (159)
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By Assumption 2.7, we have that σ2
L = K ′′(0) ≍ nV as

n→∞. Hence, t0 ≍ c/
√
n for c = (b+

√
b2 + 4)/(2V) =

o(n1/6). Thus, by Assumption 2.7 again, (K ′′(t0),Pt0) ≍
n · (V,P). As we also have that t0 → 0, we conclude that

tt00
(1 + t0)1+t0

· 1.12Pt0

K ′′(t0)3/2
≍ 1.12 P

V3/2 ·
√
n
. (160)

Thus, it only remains to analyze the asymptotic of
exp (K(t0)− εt0).

We use the following Taylor expansion of K around 0:

K(t0) = t0 · E[L] +
t20
2
· σ2

L +
t30
6
·K ′′′(ξ), (161)

where 0 ≤ ξ ≤ t0. Using ε = E[L] + bσL, and writing
t0 = d0/σL (so d0 ≍ (b+

√
b2 + 4)/2 by (159)), we obtain

K(t0)− εt0 =
d20
2
− bd0 +

d30K
′′′(ξ)

6σ3
L

. (162)

Now, note that K ′′′(ξ) =
∑n

j=1 K
′′′
Lj
(ξ). Thus, applying

the triangle inequality, we obtain that |K ′′′(ξ)| ≤ Pξ. As
0 ≤ ξ ≤ t0, Assumption 2.7 yields that |K ′′′(ξ)| = O(n).
As σL = Θ(

√
n), and d0 = o(n1/6), we infer that

d30K
′′′(ξ)

6σ3
L

→ 0 (163)

as n→∞. Hence,

exp (K(t0)− εt0) ≍ exp

(
d20
2
− bd0

)
. (164)

Writing d0 = τ0 · (b+
√
b2 + 4)/2, so τ0 > 0 and τ0 → 1

by (159), then collecting terms, we obtain

d20
2
− bd0 =

τ20
2
− (2− τ0)τ0 ·

b2 + b
√
b2 + 4

4
. (165)

Therefore, we obtain that

exp (K(t0)− εt0) ≍
√
e

C(b)τ
(166)

where τ ≜ (2− τ0)τ0 → 1. Putting the asymptotics shown
above together, we conclude that

errSP(ε; t0) ≍
1.12
√
e P

V3/2 · C(b)τ ·
√
n
, (167)

as desired.

L. Instantiation of the Saddle-point
Accountant

The algorithm SADDLEPOINTACCOUNTANT (Algorithm 1),
giving the workflow of the versions of the SPA, is presented
here.

Algorithm 1 : SADDLEPOINTACCOUNTANT (SPA)

1: Input: A finite set E ⊂ [0,∞) (values of ε), and tightly
dominating distributions (P1, Q1), . . . , (Pn, Qn).

2: Output: Four approximations δ
(k)
L,SP-MSD, 1 ≤ k ≤ 3,

and δL, SP-CLT of the privacy curve δL, and an error
bound so that |δL(ε)− δL, SP-CLT(ε)| ≤ errSP(ε).

3: Lj ← log
dPj

dQj
(Xj) where Xj ∼ Pj j ∈ [n]

4: KLj
(t)← logE

[
etLj

]
j ∈ [n]

5: L← L1 + · · ·+ Ln

6: KL ← KL1
+ · · ·+KLn

7: for ε ∈ E do
8: t0 ← positive solution to K ′

L(t0) = ε+ 1
t0

+ 1
t0+1

9: Fε(t)← KL(t)− εt− log t− log(t+ 1)

10: βε,2 ←
1

8

F
(4)
ε (t0)

F ′′
ε (t0)

2

11: βε,3 ← −
5

24

F
(3)
ε (t0)

2

F ′′
ε (t0)

3
− 1

48

F
(6)
ε (t0)

F ′′
ε (t0)

3

12: δ
(1)
L, SP-MSD(ε)←

eFε(t0)√
2πF ′′

ε (t0)

13: δ
(2)
L, SP-MSD(ε)←

eFε(t0)√
2πF ′′

ε (t0)
(1 + βε,2)

14: δ
(3)
L, SP-MSD(ε)←

eFε(t0)√
2πF ′′

ε (t0)
(1 + βε,2 + βε,3)

15: γ ← K ′
L(t0)− ε√
K ′′

L(t0)

16: (α, β)←
(√

K ′′
L(t0) t0 − γ,

√
K ′′

L(t0) (t0 + 1)− γ
)

17: δL, SP-CLT(ε)← eKL(t0)−εt0−γ2/2 q(α)− q(β)√
2π

18: L̃j ← exp. tilt of Lj with parameter t0, j ∈ [n]

19: Pt0 ←
∑
j∈[n]

E
[∣∣∣L̃j −K ′

Lj
(t0)

∣∣∣3]

20: errSP(ε)← eKL(t0)−εt0
tt00

(1 + t0)1+t0
·
1.12 P(n)

t0

K ′′
L(t0)

3/2

21: end for
22: Return: δ(k)L,SP-MSD, 1 ≤ k ≤ 3, δL, SP-CLT, errSP.
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M. Ground-Truth Curve Computation
We explain here how the ground-truth curve in Figure 2 is
computed. Since the setting there is for self-composition,
we employ that here too. So, let L1, · · · , Ln be i.i.d. PLRVs
for the subsampled Gaussian mechanism, and consider the
PLRV L = L1 + · · ·+ Ln for the composed mechanism.

Recall that the saddle-point accountant gives various ap-
proximations to the contour integral given in Theorem 3.1,
which we copy here:

δL1(ε) =
1

2πi

∫ t+i∞

t−i∞
eFε(z) dz (168)

where the function Fε is defined as:

Fε(z) = KL1(z)− εz − log z − log(1 + z). (169)

After n compositions, the contour integral becomes:

δL(ε) =
1

2πi

∫ t+i∞

t−i∞
enKL1

(z)−εz−log z−log(1+z) dz.

(170)
Recall that this formula holds for any value of t > 0.

The ground-truth in (170) is then computed via standard
numerical integration, which evidently is a time-consuming
process, yet it is one that can produce a reference value to
relatively compare accountants’ accuracies.

Let P = N (0, σ2), Q = (1 − λ)N (0, σ2) + λN (s, σ2).
The composed subsampled Gaussian has the PLRV L =
L1 + · · · + Ln, where the Lj are independent and (see
Lemma 2.2)

Lj = log
dQ

dP
(X) = log

(
1− λ+ λes(2X−s)/(2σ2)

)
,

X ∼ (1− λ)N (0, σ2) + λN (s, σ2).

(171)

In addition, the MGF of L1 may be written as

ML1
(z) = E[ezL1 ] (172)

= EX∼Q

[(
dQ

dP
(X)

)z]
(173)

= EX∼P

[(
dQ

dP
(X)

)z+1
]

(174)

=

∫ ∞

−∞

(
1− λ+ λes(2x−s)/(2σ2)

)z+1

dP (x).

(175)

Recall that the CGF is given by

KL1(z) = logML1(z). (176)

Plugging in the log integral (176) into the contour inte-
gral (170), the contour integral can be directly computed

using standard numerical libraries. We note that this calcula-
tion is very slow, as the integrand in (170) itself involves an
integral over R. Moreover, we numerically invert this func-
tion via bisection to obtain the curve described in Figure 2.
This ground-truth curve was computed on a 64-core cluster
using multi-processing to distribute the workload, and took
a wall-time of 45 minutes. This amounts to a runtime of
48 CPU hours. In contrast, all other accountants run in the
order of seconds on a commercial laptop.

N. Additional Numerical Experiments
We provide further experiments exploring the flexibility
of the saddle-point accountant. We show that the SPA-
MSD approximations can be accurate even in the moderate-
composition regime, though the SPA-CLT bounds become
loose for a small number of compositions. We demonstrate
this using parameters used by a real-world application of
DP on the image classification SGD algorithm in (De et al.,
2022), which uses the subsampled Gaussian as the DP mech-
anism. In particular, we use the noise scale σ = 9.4 and
subsampling rate λ = 214/50000, as these were the values
that allowed a 40-layer Wide-ResNet to achieve a new SOTA
accuracy of 81.4% on CIFAR-10 under (ε = 8, δ = 10−5)-
DP. This algorithm went up to n = 2000 compositions to
achieve this SOTA.

First, we plot the (ε, δ)-curves at n ∈ {100, 250, 500, 2000}
compositions in Figure 4. We observe that the CLT bounds
get tighter as the number of compositions increases, but
the order-1 SPA-MSD remains consistently accurate for all
presented compositions and values of δ.

Second, we demonstrate the accuracy of the order-1 SPA-
MSD for all compositions less than 2000 in Figure 5, where
we fix δ = 10−5, vary the number of compositions, and plot
the resulting value of ε.

These two plots verify that the order-1 SPA-MSD is much
more accurate than the CLT bounds suggest.

Finally, to demonstrate the applicability of the saddle-point
accountant to other mechanisms beyond the subsampled
Gaussian. In Figure 6 we present results for the composed
Laplace mechanism. In particular, we borrow the mech-
anism parameters used in the PRV Accountant notebook
showcasing their implementation, i.e., n = 1000 composi-
tions with a sensitivity of s = 0.01 and a shape parameter
b = 1. We compare against the Moments Accountant (using
the Laplace cumulant), PRV Accountant and Connect the
Dots implementation, in the same spirit as Figure 1. Note
that we use εerror = 0.01 for the PRV Accountant, which is
an order of magnitude finer than the εerror = 0.1 used in the
linked notebook, for demonstration purposes. Once again,
the SPA upper and lower bounds have a narrow gap between
them.
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(a) 100 compositions
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(b) 250 compositions
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(c) 500 compositions
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(d) 2000 compositions

Figure 4. Accounting for the composition of n ∈ {100, 250, 500, 2000} subsampled Gaussian mechanisms, with noise scale σ = 9.4
and subsampling rate λ = 214/50000. The PRV Accountant (Gopi et al., 2021) discretization parameters are εerror = 0.1, δerror = 10−10.
The Connect the Dots (Doroshenko et al., 2022) discretization interval length is 0.005.
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Figure 5. Privacy budget ε of the subsampled Gaussian mechanism after 1 ≤ n ≤ 2000 compositions using the order-1 SPA-MSD, the
Moments Accountant, and the PRV Accountant (Gopi et al., 2021). We use subsampling λ = 214/50000, noise scale σ = 9.4, and
δ = 10−5. The discretization parameters for the PRV Accountant are εerror = 0.1, δerror = 10−10.
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Figure 6. Accounting for the composition of 1000 Laplace mechanisms having shape parameter b = 1 and with sensitivity s = 0.01.
The remaining FFT discretization parameters are set to εerror = 0.01, δerror = 10−10 for the PRV Accountant (Gopi et al., 2021), and
discretization interval length of 2× 10−4 for Connect the Dots (Doroshenko et al., 2022).
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