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ABSTRACT

Dataset distillation or condensation aims to condense a large-scale training dataset
into a much smaller synthetic one such that the training performance of distilled
and original sets on neural networks are similar. Although the number of train-
ing samples can be reduced substantially, current state-of-the-art methods heavily
rely on enormous soft labels to achieve satisfactory performance. As a result,
the required storage can be comparable even to original datasets, especially for
large-scale ones. To solve this problem, instead of storing these heavy labels, we
propose a novel label-lightening framework termed HeLlO aiming at effective
image-to-label projectors, with which synthetic labels can be directly generated
online from synthetic images. Specifically, to construct such projectors, we lever-
age prior knowledge in open-source foundation models, e.g., CLIP, and introduce
a LoRA-like fine-tuning strategy to mitigate the gap between pre-trained and tar-
get distributions, so that original models for soft-label generation can be distilled
into a group of low-rank matrices. Moreover, an effective image optimization
method is proposed to further mitigate the potential error between the original
and distilled label generators. Extensive experiments demonstrate that with only
about 0.001% of the original storage required for a complete set of soft labels,
we achieve comparable performance to current state-of-the-art dataset distillation
methods on large-scale datasets. Our code will be available.

1 INTRODUCTION

Dataset distillation Wang et al. (2018) is proposed to deal with the issues caused by large-scale
datasets, e.g., high computational overhead for training and heavy burden for storage and transmis-
sion. It aims to condense a large dataset into a much smaller synthetic one, which preserves the
original training performance, so that it can serve as an effective and efficient surrogate to train
downstream neural networks. For instance, it has been demonstrated that a network trained with
merely 1 synthetic image per class (IPC) can perform well on CIFAR-10 Krizhevsky et al. (2009).
However, with such a high compression ratio, it is challenging for the distilled sets to encapsulate
the whole knowledge of the original dataset used for training in a very limited space. Thus, classic
methods in this field like Wang et al. (2018); Zhao et al. (2020); Zhao & Bilen (2021; 2023) still
have a significant performance gap between the original set and the synthetic one, especially when
handling large-scale datasets Yu et al. (2023).

To compensate for such dramatic information loss, recent state-of-the-art dataset distillation meth-
ods Shao et al. (2024); Sun et al. (2024); Yin et al. (2024) turn to data augmentation, to make the
best use of the limited synthetic data. Specifically, strategies such as Mixup Zhang et al. (2017) and
Cutmix Yun et al. (2019) are applied in downstream network training, which effectively enhance
the performance of distilled datasets and scale dataset distillation up to larger and more complex
datasets like ImageNet Deng et al. (2009).

Nevertheless, these recent works heavily rely on soft labels generated by a pre-trained teacher
model on the original dataset. According to RDED Sun et al. (2024), networks trained with 10
IPC on ImageNet-1k achieve only 15.2% accuracy with categorical hard labels, compared to 42.1%
with soft labels. Since each augmented sample corresponds to a distinct soft label, as shown in
Fig. 1 (left), there are a number of generated soft labels that far exceeds the basic synthetic sam-
ples. Consequently, storage costs for these soft labels are non-negligible, especially for large-scale
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Figure 1: The soft label generation part of the current state-of-the-art large-scale dataset distilla-
tion (left), and our proposed online lightening image-to-label projector framework (right). For the
current state-of-the-art large-scale dataset distillation, for each downstream training epoch, soft la-
bels are generated for each augmented image and stored all the soft labels. For our proposed method,
we adopt the open-source foundation models as the base models, which are fixed during the whole
training process, and introduce a LoRA-like knowledge transfer method to narrow the gap between
the original label space and the target one. We only need to store the low-rank matrices, which
significantly reduces the storage costs.

datasets with numerous categories. For example, on ImageNet-1K with 1 IPC, the required storage
for distilled images is ∼ 15 MB, whereas the storage for soft labels exceeds 572 MB—more than
38 times greater. Furthermore, with 200 IPC, the storage required for soft labels reaches 110 GB,
making it even comparable to the original dataset size.

To address the issue of such heavy labels, we propose a novel label-lightening framework termed
Heavy Labels Out, or HeLlO in short. Fig. 1 (right) illustrates the overall framework of the proposed
HeLlO. By creating an effective and lightweight projector from the image to the label space, it
reduces the required storage significantly. Specifically, we build the projector upon recent foundation
models like CLIP Radford et al. (2021) that has been pre-trained on massive data and can readily
adapt to various target datasets. To achieve this, we propose an effective LoRA-like Hu et al. (2021)
knowledge transfer method that efficiently transforms the original feature space of CLIP into that
of the target data. As an efficient alternative to the teacher model trained on the target dataset for
soft-label generation, the derived low-rank matrices can be seen as a transferable and lightweight
representation for the original label space.

Interestingly, by leveraging the vision-language alignment capability in CLIP Zhang et al. (2022),
we propose initializing the projector with the textual representation of label categories, providing
a strong starting point that improves training and convergence. Moreover, we propose an effective
image optimization method to further reduce the potential error between the original and distilled
label generators. Our extensive experiments show that with only 0.001% of the original storage for
soft labels, we achieve performance comparable to, or even better than, state-of-the-art large-scale
dataset distillation methods.

In summary, our contributions are as follows:

• We are the first to focus on the issue of heavy labels in dataset distillation to our best
knowledge and propose an effective label-lightening framework termed HeLlO to address
the problem.

• By leveraging pre-trained CLIP, the proposed HeLlO method compresses the storage of
massive soft labels into a set of lightweight low-rank matrices and tailors an initialization
method based on CLIP’s textual representation to enhance optimization.

• We introduce an image-level optimization technique that further minimizes the gap between
the original and distilled label generators.

• Extensive experiments validate the comparable or even superior performance to state of the
arts using just 0.001% of the storage required for synthetic labels.
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2 RELATED WORKS

Dataset distillation or condensation Wang et al. (2018); Zhao et al. (2020); Yu et al. (2023) aims to
solve the issues of massive storage, transmission burden, and computational costs for downstream
tasks caused by large-scale datasets. Specifically, it condenses the whole knowledge of the origi-
nal large-scale datasets into a much smaller space and preserves the performance. The mainstream
dataset distillation methods can be roughly classified into three categories, according to their opti-
mization objectives: performance matching Wang et al. (2018); Deng & Russakovsky (2022); Loo
et al. (2022); Zhou et al. (2022); Nguyen et al. (2020; 2021), parameter matching Zhao et al. (2020);
Zhao & Bilen (2021); Cazenavette et al. (2022); Cui et al. (2023); Du et al. (2023); Guo et al. (2023);
Liu et al. (2022a) and distribution matching Zhao & Bilen (2023); Wang et al. (2022); Zhao et al.
(2023); Sajedi et al. (2023).

Traditional dataset distillation methods suffer scaling-up problems due to the bi-level optimization
problems, such that the gradients should backpropagate through an unrolled computation graph Yu
et al. (2023). Recent work SRe2L Yin et al. (2024) proposes a variant distribution matching
paradigm to decouple the bi-level optimization and scales up to the full-size ImageNet-1K dataset.
It matches the distribution in feature space of the synthetic dataset and the statistical information
of the original dataset stored in the batch normalization layers of the pre-trained model. Further,
G VBSM Shao et al. (2024) utilize multiple pre-trained teachers to provide more statistical infor-
mation and improve the transferability across different architectures. RDED Sun et al. (2024) is the
current state-of-the-art large-scale dataset distillation method, which is based on selection instead of
synthesizing. It selects and concatenates the most representative patches evaluated by the pre-trained
teacher model.

However, due to the significant reduction in the size of the datasets, an apparent performance gap
still exists between the original dataset and the distilled one. For small-scale dataset distillation, a
series of works Bohdal et al. (2020); Sucholutsky & Schonlau (2021); Cui et al. (2023); Deng & Rus-
sakovsky (2022); Nguyen et al. (2021); Loo et al. (2022); Zhou et al. (2022) expand the label space
by transforming the one-hot labels to soft labels, which apparently improve the performance for
downstream tasks and also provides a new perspective to condense dataset comprehensively. How-
ever, simply transforming the one-hot label to a soft label for each synthetic image is not effective
for large-scale dataset distillation, as the plain soft labels do not provide sufficient extra knowledge
for downstream tasks. In order to solve this issue and compensate for the huge reduction in the num-
ber of data, current large-scale dataset distillation methods Shao et al. (2024); Sun et al. (2024); Yin
et al. (2024) adopt the extensive data augmentation strategies, e.g., Mixup Zhang et al. (2017) and
Cutmix Yun et al. (2019), and generate soft labels for each augmented image. It will increase the
diversity of the distilled data for downstream training, and significantly improve the performance for
downstream tasks. However, generating such labels requires restoring huge amount of soft labels,
and for large-scale datasets, it will cause non-negligible storage costs. Focusing on this issue, our
proposed method only requires 0.001% storage space while obtaining comparable performance with
the state-of-the-art large-scale dataset distillation methods.

3 METHODS

3.1 PRELIMINARY

For the large-scale dataset T = (Xt, Yt), where Xt ∈ RNt×D and Yt ∈ RNt×C , dataset distillation
aims to learn a much smaller dataset S = (Xs, Ys), where where Xs ∈ RNs×D and Ys ∈ RNs×C ,
such that the models train on both two datasets can obtain similar performance. Here, Nt and Ns

refer to the number of samples in T and S, Nt ≫ Ns, and D and C are the dimension of the images
and labels. Current state-of-the-art large-scale dataset distillation methods Shao et al. (2024); Sun
et al. (2024); Yin et al. (2024) all follow the teacher(s)-guided soft label generation strategy. It
generates a soft label for each augmented image, and the label space is expanded to RK×Ns×C ,
where K is the number of training iterations for downstream tasks. It can be formulated as follows:

X∗
s = argmin

Xs

L(S, T ),

Y ∗
s =

1

|ΘT |
∑

fθ∼ΘT (A(X∗
s )),

(1)
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where L is the optimization objectives to update the distilled images, ΘT refers to teacher
model(s) (|ΘT | ≥ 1), and A is the augmentation methods. Each augmented distilled image re-
quires generating the corresponding soft labels, which will cause a huge storage burden.

3.2 EFFICIENT INITIALIZATION OF SURROGATE PROJECTION

To effectively and efficiently transfer the label space in a lightweight way and easily adapt it to
different datasets, we adopt the open-source and pre-trained foundation model, CLIP, as our base
model. It does not require extra storage space and can be accessed on demand. Specifically, we
adopt the paradigm of linear probe CLIP by utilizing the image encoder part of CLIP and following
with a linear transformation. The image encoder of CLIP is pre-trained on numerous paired data and
can provide accurate and knowledge-rich features, which makes the linear probe CLIP a powerful
classifier. Here, the parameters required to store is only the linear transformation part.

However, the storage cost of the linear transformation part depends on the number of classes of the
original dataset, which will be non-negligible for large-scale datasets with a large number of classes.
Also, there still exists a gap between the original label space and the lightening one, which may
make transferring to downstream tasks difficult. Here, to reduce the storage cost for the linear trans-
formation part and improve the ability to transfer, we propose a novel storage-efficient initialization
strategy. Here, given a pre-trained multi-modal foundation model, e.g., CLIP, we denote the image
encoder part as EI and the text part as ET . For any dataset D = (X,Y ), we can simply obtain the
text descriptions R = {r(i)}C−1

i=0 for the whole dataset by utilizing the vanilla prompt engineering
technique Radford et al. (2021) with fixed templates. We adopt the fixed normalized text embedding
of the descriptions for all classes as the initialization of the linear transformation, which significantly
saves storage space as we do not need to store the initial parameters. Also, it can improve the ba-
sic performance of our label projector as the proposed initialization is equivalent to the pre-trained
zero-shot classification. Following we will provide the theoretical analysis.
Proposition 1. Text embedding initialized linear transformation is equivalent to the pre-trained
zero-shot classification.

Proof. For basic zero-shot CLIP prediction, we have:

c∗ = argmax
i∈{0,...,C−1}

Sim(x, r(i)),

Sim(x, r(i)) = vI · (v(i)T )T , where

vI =
EI(x)

||EI(x)||
, v

(i)
T =

ET (r(i))
||ET (r(i))||

,

(2)

where x refers to the input image(s), r(i) is the text description for class i, and vI ∈ RB×df and
vT ∈ RC×df refer to the normalized embedding for the input image and the text description, v(i)T

is for ith class. B is the batch size of the input image(s), and df is the dimension of the output
embedding. As for linear probe one, denote the parameters of the linear transformation is W ∈
Rdf×C , W = [w(0), w(1), . . . , w(C−1)], and here, numerically, W = (vT )

T and w(i) = (v
(i)
T )T .

The classification can be formally written as:

c∗ = argmax
i∈{0,...,C−1}

vI · w(i) + b, where w(i) = (v
(i)
T )T . (3)

Here, we set the bias b zero, and these two operations are equivalent.

3.3 LORA-LIKE LOW-RANK KNOWLEDGE TRANSFER

As mentioned before, we adopt the fixed initialization for the linear transformation part, which will
not introduce any extra storage costs and can improve the basic classification ability of the linear
probe CLIP. However, there still exists a significant gap between the original label space and the
lightening one, which may cause difficulties transferring to downstream tasks. Here, one typical
way to solve the above issues is fine-tuning the whole projector to the target label space, but it
requires huge extra computational costs to train the complex foundation model and non-negligible
storage space to save the tuned parameters.
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In order to reduce the computational costs and the storage costs, while narrowing the gap and further
improving the transferability of the projector to the downstream tasks, we propose a novel parameter-
efficient knowledge transfer method. First of all, to minimize the cost of fine-tuning, we follow the
idea of LoRA Hu et al. (2021), which decomposes the weight matrix of the foundation models into
low-rank matrices. It will preserve the pre-trained knowledge and enhance efficiency by reducing
the number of updated parameters. Formally, for specific fine-tuning target L, we have:

θ∗ = argmin
θ

L(D; θ), where

θ∗ = θ0 +∆θ, ∆θ = A ·B.
(4)

Here, D refers to the target dataset, θ0 ∈ Rd×k is the initial pre-trained parameters of the model,
and ∆θ is the incremented weight, which is updated during the fine-tuning procedure. A ∈ Rd×r

and B ∈ Rr×k are the decomposed low-rank matrices of ∆θ, where r ≪ d and r ≪ k, largely
relieving the computational and storage burden. Specifically, we apply LoRA to both the image en-
coder and the linear transformation parts (while with different ranks), avoiding fine-tuning the whole
model and saving storage space. Moreover, to further improve the transferability to the downstream
tasks, we combine the original LoRA target optimization objective with the multi-teacher knowledge
transfer metric as follows:

L(D; θ) = MSE(fθ(X), Y
′
) + λCE(fθ(x), Y ). (5)

Here, θ is the parameters of the projector, fθ(X) = EI(X)W , and Y
′

refers to the soft labels
generated by the weak teachers Θ

′

T , such that Y
′
= 1

|Θ′
T |

∑
fθ∼Θ

′
T
(X). Here, weak teacher is the

model trained on the original dataset terminated at the early training stage. Practically, we adopt
the original dataset T as the target dataset, and weak teachers are from the early stage of the single
training trajectory for easy to obtain and transfer.

3.4 SYNTHETIC DATASET INITIALIZATION AND UPDATE

Here, we follow RDED Sun et al. (2024), to initialize the distilled dataset S. Specifically, as the
image patches can effectively represent object features, they select patches based on their difficulty
and concatenate the patches to form an image. Specifically, they adopt the teacher model θt as
the observer to evaluate the difficulty of the patches, and the most representative patches will be
selected. The selection metric is as follows:

p∗ = argmin
p∼P

CE(fθt(p), yp), (6)

where P is a bunch of patches random cropped from the images of the original dataset T , and yp is
the corresponding labels of the original image. However, to reduce storage costs, we propose a sur-
rogate parameter-efficient model to replace the original teacher model. This substitution introduced
a performance gap, as the observer model is not the projector model for the downstream tasks. To
narrow this gap, we further update the synthetic dataset to minimize the information loss of patches
on the surrogate projector. Here, we follow LIC Anonymous (2024) to do the image update, and the
adapted optimization metric is as follows:

G(EI , p) = MSE(EI(p), EI(p̂)), (7)

where p̂ is the transformed one with first down-sampled and then up-sampled to the original size. It
will further reduce the information loss on the projector, and narrow the performance gap between
the observer and the projector.

3.5 ALGORITHM SUMMARY

In summary, we propose a novel label-lightening framework, HeLlO, building an effective and effi-
cient image-to-label projection with lower storage requirements. The framework of HeLlO is shown
in Algorithm 1. Here, we first initialize the synthetic dataset S with the metric Eq. 6, which se-
lects the most representative patches of the dataset. Then, we initialize the linear transform part
using the normalized text embedding, generated by the fixed text descriptions and the pre-trained
text encoder without any extra storage space. Following we adopt the LoRA-like knowledge trans-
fer method Eq. 5 to efficiently fine-tune the projector with weak teachers’ guidance, and this step

5
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Algorithm 1 HeLlO Framework
1: Input:Original dataset T , open-source model θ, weak teachers ΘT ;
2: Output:Synthetic dataset S;
3: Initialize S with difficulty evaluation Eq. 6;
4: Generate normalized text embedding with text descriptions R = {r(i)}C−1

i=0 , v(i)T = ET (r(i))
||ET (r(i))|| ;

5: Initialize the linear transformation part with normalized text embedding, W = (vT )
T ;

6: repeat
7: Update incremented parameters ∆θ = A ·B with low-rank knowledge transfer Eq. 5;
8: until Convergence
9: repeat ▷ Optional

10: Update images using Eq. 7;
11: until Convergence
12: for e < K do ▷ For online image-to-label projecting during downstream task training
13: Y ∗ = fθ(A(Xs));
14: ϕe = ϕe−1 − α∇ϕ(MSE(fϕ(A(Xs)), Y

∗) + βCE(fϕ(A(Xs)), Ys)) ▷ A is the
augmentation method, and ϕ refers to the parameters of the student model

15: end for

will only cause very low storage costs. As we use the projector to replace the observer model to
relabel the images for downstream training, there exists a performance gap. To further narrow this
gap and reduce the information loss on the projector model, we adopt Eq. 7 to update the synthetic
data. Lastly, for the downstream training, the synthetic labels can be directly generated online from
synthetic images through the projector.

4 EXPERIMENTS

4.1 EXPERIMENT SETTING

4.1.1 DATASETS AND NETWORKS

Our proposed method HeLlO aims to solve the heavy-label issue in the large-scale dataset distillation
methods. Here, we adopt the high-resolution datasets ImageNet-100, Places365-Standard Zhou et al.
(2017) and ImageNet-1K Deng et al. (2009) as the validation datasets to show the efficacy of our
proposed method. All of these datasets are 224 × 224 in size.

As for networks, we adopt CLIP (ResNet-50) from the official Open-AI as the base model, followed
by a linear transformation. For baseline comparison, we follow the prior works Yin et al. (2024);
Shao et al. (2024); Sun et al. (2024), adopting ResNet-18 He et al. (2016) as the evaluation model.
Also, to show the generalization ability across various architectures of our proposed method, we
select ShuffleNet-V2 Ma et al. (2018), MobileNet-V2 Sandler et al. (2018), EfficientNet-B0 Tan
& Le (2019), Swin-V2-Tiny Liu et al. (2022b), and VGG-11 Simonyan (2014) as the evaluation
architectures.

4.1.2 IMPLEMENTATION DETAILS

For surrogate projector training, we first initialize the linear transformation part with text embedding.
We use the official prompt engineering templates provided by the CLIP code base to generate the
text description and use the text encoder (from official CLIP with ResNet-50) to generate the text
embedding. During the training process, we propose a LoRA-like knowledge transfer method to
further improve the transferability of our method to the downstream tasks. Here, we efficiently fine-
tune the convolution layer in the image encoder part and the linear transformation part. Specifically,
for ImageNet-100, we use rank 8 for the image encoder part, and 64 for the linear transformation
part. For both Places365-Standard and ImageNet-1K, we use rank 8 for the image encoder part, and
128 for the linear transformation part. We also utilize multi-weak teachers as guidance to generate
the soft labels for projector learning. In practice, we train a ResNet-18 model from scratch using the
PyTorch official code base and select some checkpoints along the training trajectory. The teachers

6
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Table 1: Comparison with baseline methods. ∗ indicates the evaluation results reproduced by us,
bold refers to the best results and underline refers to the second best results. Here, all methods
adopt ResNet-18 as the evaluation model. Here, the Actual Extra Storage refers to the extra storage
required for downstream tasks for IPC 1, 10, and 50 (for teacher models (RDED) or the soft labels
and augmentation information (for SRe2L and G VBSM, for 300 epochs)).

Datasets SRe2L Yin et al. (2024) G VBSM Shao et al. (2024) RDED Sun et al. (2024) Ours

ImageNet-100

1 3.0 ± 0.3 - 8.1 ± 0.3 12.5 ± 0.2 (+ 4.4)
10 9.5 ± 0.4 - 36.0 ± 0.3 48.9 ± 0.1 (+ 12.9)
50 27.0 ± 0.4 - 61.6 ± 0.1 69.4 ± 0.1 (+ 7.8)

Actual Extra Storage [6.9MB, 64.8MB, 324.2MB] - [42.8MB, 42.8MB, 42.8MB] [2.6MB, 2.6MB, 2.6MB]

Places365-Standard

1 1.4 ± 0.2∗ - 5.0 ± 0.1∗ 7.1 ± 0.1 (+ 2.1)
10 9.5 ± 0.1∗ - 29.2 ± 0.1∗ 33.4 ± 0.3 (+ 4.2)
50 31.3 ± 0.1∗ - 44.0 ± 0.1∗ 41.2 ± 0.1 (-)

Actual Extra Storage [79.3MB, 790.4MB, 3950.6MB] - [43.4MB, 43.4MB, 43.4MB] [3.0MB, 3.0MB, 3.0MB]

ImageNet-1K

1 0.1 ± 0.1 1.7 ± 0.1∗ 6.6 ± 0.2 12.9 ± 0.3 (+ 6.3)
10 21.3 ± 0.6 31.4 ± 0.5 42.0 ± 0.1 43.7 ± 0.1 (+ 1.7)
50 46.8 ± 0.2 51.8 ± 0.4 56.5 ± 0.1 52.2 ± 0.1 (-)

Actual Extra Storage [579.8MB, 5798.3MB, 28990.8MB] [582.2MB, 5821.5MB, 29110.6MB] [44.7MB, 44.7MB, 44.7MB] [3.3MB, 3.3MB, 3.3MB]

Table 2: Evaluation results of cross-architecture generalization under the ImageNet-100, Places365-
Standard and ImageNet-1K with IPC 10. ∗ indicates the evaluation results reproduced by us.

Datasets ShuffleNet-V2 MobileNet-V2 EfficientNet-B0 Swin-V2-Tiny VGG-11

ImageNet-100 RDED 27.7 ± 0.6∗ 35.7 ± 0.3∗ 37.9 ± 0.1∗ 18.0 ± 0.1∗ 21.2 ± 0.4∗

Ours 32.7 ± 0.8 (+ 5.0) 40.6 ± 0.8 (+ 4.9) 47.0 ± 0.1 (+ 9.1) 24.2 ± 0.3 (+ 6.2) 27.6 ± 0.1 (+ 6.4)

Places365-Standard RDED 18.1 ± 0.7∗ 21.0 ± 0.5∗ 26.3 ± 0.1∗ 14.0 ± 0.2∗ 12.8 ± 0.1∗

Ours 22.1 ± 0.6 (+ 4.0) 27.3 ± 0.2 (+ 6.3) 31.9 ± 0.3 (+ 5.6) 18.1 ± 0.3 (+ 4.1) 17.7 ± 0.3 (+ 4.9)

ImageNet-1K RDED 23.3 ± 0.1∗ 34.4 ± 0.2 42.8 ± 0.5 17.8 ± 0.1 22.7 ± 0.1
Ours 26.5 ± 0.2 (+ 3.2) 38.1 ± 0.5 (+ 3.7) 44.4 ± 0.2 (+ 1.6) 29.5 ± 0.1 (+ 11.7) 24.2 ± 0.3 (+ 1.5)

are in different stages for different IPCs, and we use 9 teachers for projector training. For more
implementation details, please refer to the supplementary materials.

4.2 RESULTS ON BASELINES

Our method aims to solve the heavy-label issues in the large-scale dataset distillation methods. Here,
we compare our proposed method with prior state-of-the-art large-scale dataset distillation methods,
SRe2L Yin et al. (2024), G VBSM Shao et al. (2024), and RDED Sun et al. (2024). Following the
experiment setting with previous works and fair comparison, we use the distilled dataset to train
several random initialized ResNet-18 from scratch, and the evaluation results are reported in Ta-
ble 1. From the results, our proposed method only requires very low storage space costs for label
generation that can get comparable performance. Particularly for the smaller distilled dataset gener-
ation (smaller IPCs or classes), our proposed method demonstrates superior performance, achieving
state-of-the-art results that exceed those of previous methods by a remarkable margin of up to 12.9%
under the setting of ImageNet-100 with IPC 10. Moreover, it accomplishes this while simultane-
ously siginificantly reducing associated storage costs.

4.3 RESULTS ON CROSS-ARCHITECTURE GENERALIZATION

The ability to generalize to different architectures is an important standard to measure the perfor-
mance of the distilled dataset, which shows the practicality to the downstream tasks. Here, we
evaluate the cross-architecture performance of the previous state-of-the-art method RDED and our
proposed method on the ImageNet-100, Places365-Standard and the ImageNet-1K with IPC 10.
We adopt five different architectures ShuffleNet-V2, MobileNet-V2, EfficientNet-B0, Swin-V2-
Tiny, and VGG-11. The results are shown in Table 2. From the results, our proposed method
demonstrates state-of-the-art performance across various architectures. For residual-like architec-
tures (ShuffleNet-V2, MobileNet-V2, and EfficientNet-B0), and convolutional networks (VGG-
11), our proposed method shows a superior transferability than the previous state-of-the-art method
RDED. Surprisingly, our method demonstrates exceptional transferability on transformer architec-
tures, surpassing the previous state-of-the-art by an impressive margin of 6.2% (ImageNet-100),

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 3: The results of the ablation studies for the effectiveness of each step of our proposed method.
From left to right, each step is incremented based on the former one. The experiments are under the
settings of ImageNet-1K with IPC 1 and 10.

Probe Linear CLIP + Multi-Weak-Teacher Guided + LoRA-Like Knowledge Transfer + Text-Embedding-Based Init. + Image Update
Acc.-IPC 1 5.3 ± 0.1 6.4 ± 0.2 (+ 1.1) 11.4 ± 0.2 (+ 5.0) 11.9 ± 0.1 (+ 0.5) 12.9 ± 0.3 (+ 1.0)

Acc.-IPC 10 28.2 ± 0.2 30.1 ± 0.1 (+ 1.9) 43.5 ± 0.1 (+ 13.4) 43.6 ± 0.1 (+ 0.1) 43.7 ± 0.1 (+ 0.1)
#Params 1.0M 1.0M (-) 1.5M (↑ 0.5) 0.8M (↓ 0.7) 0.8M (-)
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Figure 2: The trends of the loss, transfer training accuracy, and transfer validation accuracy during
the LoRA-Like Knowledge Transfer process. Here, the experiments is under the setting of IPC 10
for ImageNet-1K.

Table 4: The results of the ablation studies for the impact of the different learnable parameters in
LoRA-like transfer learning (left), and the different stages of teachers (right). The experiments are
conducted under the setting of IPC 10 for ImageNet-100 and ImageNet-1K.

0.3M / 0.4M 0.6M / 0.8M 0.9M / 1.2M 1.2M / 1.6M 1-41 11-51 21-61 31-71 41-81 51-91
ImageNet-100 45.4 ± 0.2 48.9 ± 0.1 49.7 ± 0.1 49.8 ± 0.2 48.9 ± 0.1 47.5 ± 0.1 45.5 ± 0.1 44.2 ± 0.1 43.9 ± 0.7 41.5 ± 0.4
ImageNet-1K 38.8 ± 0.1 43.7 ± 0.1 44.2 ± 0.1 44.4 ± 0.1 42.3 ± 0.1 43.7 ± 0.1 42.1 ± 0.1 41.2 ± 0.1 40.6 ± 0.1 39.7 ± 0.3

4.1% (Places365-Standard) and 11.7% (ImageNet-1K) on Swin-V2-Tiny, while only requires very
low storage costs for the label generation.

4.4 ABLATION STUDY

4.4.1 THE IMPACT OF KEY FACTORS

To validate the effectiveness of our proposed method, we designed a series of ablation experiments
to evaluate each component of our method. The results are shown in Table 3. Here, we start from
the plain linear probe CLIP. We directly use the original dataset to train the linear probe CLIP and
use it to online generate the labels during the downstream tasks training. As the results shown in
Table 3, it only obtains 5.3% and 28.2% accuracy for IPC 1 and IPC 10, while requiring 1.0M
parameters to store. Based on that, we adopt multi-weak teachers to guide the linear probe CLIP
training, which gains 1.1% and 1.9% improvement and maintains the storage costs. Then, we intro-
duce the LoRA-like knowledge transfer method, which significantly improves the performance of
downstream training by 5.0% and 13.4% but causes an increase in storage. Following we propose
the text-embedding-based initialization strategy, such that we do not need to store the whole linear
transformation part but the low-rank matrices. It helps largely reduce the storage costs by 0.8M
while maintaining the performance. It also accelerates the convergence speed of the process of the
LoRA-Like Knowledge Transfer, as shown in Fig 2. Lastly, we narrow the gap of the original dis-
tribution and the target one by updating the images, which improves the performance of the distilled
dataset by 1.0% on ImageNet-1K with IPC 1.

4.4.2 THE IMPACT OF DIFFERENT RANK

We also explore the impact of ranks of the low-rank matrices in the LoRA-like knowledge transfer
part. It also reflects the relation between the number of learnable parameters and the performance.
The results are shown in Table 4 (left). From the results, we find that the ranks of the low-rank
matrices or the number of learnable parameters can significantly influence the performance of the
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Table 5: The downstream accuracy for different architectures of the projector. Here, “CLIP-
LoRA (Ours)” and “DINOv2-LoRA (Ours)” refer to the foundation models CLIP and DINOv2 with
our proposed methods. ResNet-18, ResNet-50, ViT b 16 are pre-trained on the ImageNet-1K, from
the official torchvision codebase. “CLIP” and “DINOv2” mean directly apply the pre-trained foun-
dation models CLIP and DINOv2 as the label projectors for downstream training. The experiments
are under the setting of ImageNet-1K with IPC 10.

CLIP-LoRA (Ours) DINOv2-LoRA (Ours) ResNet-18 ResNet-50 ViT-B-16 CLIP DINOv2
Downstream Accuracy 43.7 ± 0.1 44.2 ± 0.1 42.0 ± 0.1 34.9 ± 0.1 17.8 ± 0.2 28.2 ± 0.2 23.3 ± 0.2

Table 6: Comparison with logits quantization strategies. The experiments are under the setting of
ImageNet-1K with IPC 10.

FP32 FP16 INT8 INT4 Ours
Downstream Accuracy 42.0 ± 0.1 42.2 ± 0.2 41.2 ± 0.1 39.3 ± 0.1 43.7 ± 0.1

Memory Costs 11596.6MB 5798.3MB (0.5×) 2899.2MB (0.25×) 1449.6MB (0.125×) 3.3MB (3e-4×)

downstream tasks. However, this effect is pronounced only when the number of learnable parameters
is insufficient; once a sufficient level is reached, further increases in learnable parameters do not lead
to notable improvements in performance. The inflection point in the results occurs at 0.6M/0.8M
for ImageNet-100 and ImageNet-1K. This also indicates that our method is robust to the selection
of the ranks; as long as ranks reach a sufficient level, the results remain stable without significant
fluctuations.

4.4.3 THE IMPACT OF DIFFERENT STAGES OF TEACHERS

In our proposed method, we adopt multi-weak teachers to guide the projector training. Here, we
explore the impact of the stage of the teachers on the performance of the downstream tasks. Here, the
experiments are under the setting of IPC 10 for both ImageNet-100 and ImageNet-1K. The results
are shown in Table 4 (right). The results indicate that the stage of the teachers has a particularly
significant impact on the performance of the downstream tasks. For smaller IPCs, earlier-stage
teachers are more beneficial for transferring to downstream tasks. In contrast, later-stage teachers
tend to contain more complex knowledge that is difficult to decouple and learn effectively.

4.4.4 THE IMPACT OF THE ARCHITECTURES OF THE PROJECTOR

In our proposed method, we adopt the foundation model CLIP to validate the effectiveness of our
proposed method. We would like to note that our proposed method is also compatible with other
foundation models, such as DINOv2 Oquab et al. (2023), which can serve as an alternative to
CLIP for LoRA-like knowledge transfer and related strategies. As indicated in Table 5, our pro-
posed method remains highly effective when applied to other foundation models. Meanwhile, we
also experiment with directly applying pre-trained models of other architectures as projectors, e.g.,
ResNet-50, ViT-B-16. These models require significantly more storage space and show much poorer
performance on downstream tasks.

4.5 COMPARISON WITH LOGITS QUANTIZATION STRATEGIES

To demonstrate the effectiveness and efficiency of our proposed method, we conduct experiments
under the ImageNet-1K IPC 10 setting on an NVIDIA RTX A5000 GPU. In these experiments,
we apply precision reduction to the labels for the previous state-of-the-art method and compare
the results to those obtained with our proposed method. From the results in Table 6, it can be
observed that reducing the precision to FP16 (50%) or INT8 (25%) does not lead to a significant
decline in downstream performance. However, a noticeable decline occurs when the precision is
further reduced to INT4 (12.5%), which indicates the limit for logit quantization. Despite this, our
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Figure 3: The results on the continual learning for 5-step (left) and 10-step (right). All experiments
are conducted under the setting of IPC 10 for ImageNet-100.

Table 7: Results on the aerial dataset AID with IPC 1, 5, and 10. Here, the required extra storage
costs for RDED is the actual storage space for the teacher model.

Downstream Accuracy IPC 1 IPC 5 IPC 10 Required Extra Storage Costs
RDED 27.2 ± 0.8 61.1 ± 0.3 78.9 ± 0.2 42.69MB
Ours 28.8 ± 0.5 65.6 ± 0.8 79.2 ± 0.2 2.8MB (0.065× of the original extra storage)

proposed method achieves comparable performance while compressing storage requirements to less
than 0.1%.

4.6 RESULTS ON PRACTICAL DATASETS

To demonstrate the generalizability and effectiveness of our proposed method, we also conduct
experiments on the aerial dataset AID Xia et al. (2017). These experiments are performed under the
AID settings with IPC values of 1, 5, and 10. The performance results, along with the associated
extra storage costs, are presented in the Table 7 (where we adopt an online soft label generation
strategy and consider the teacher model as the extra storage cost). The results indicate that our
proposed method is effective across different high-resolution datasets.

4.7 RESULTS ON CONTINUAL LEARNING

Continual learning De Lange et al. (2021); Wang et al. (2024); Rebuffi et al. (2017) is an important
application for dataset distillation Yu et al. (2023). Here, for fair comparison, we follow the previous
works Zhao & Bilen (2023); Yin et al. (2024), adopting the GDumb Prabhu et al. (2020) framework
to evaluate the performance on continual learning. The experiments are conducted under the setting
of ImageNet-100 with IPC 10, and we evaluate both the 5-step and the 10-step settings. The results
are shown in Fig. 3. From the results, our proposed method is significantly superior to the previous
state-of-the-art method RDED.

5 CONCLUSION

In this paper, we propose a novel label-lightening framework termed HeLlO, aiming to solve the
heavy-label issue in large-scale dataset distillation. Our method involves an effective image-to-label
projector, with which the synthetic labels can be directly generated online from synthetic images
during training downstream networks. Specifically, we leverage the prior knowledge in open-source
foundation models and introduce a parameter-efficient LoRA-like fine-tuning method to narrow the
gap between the label distribution of the pre-trained and target ones, which improves the trans-
ferability of the projector to the downstream tasks as well. Moreover, we propose a text-guided
initialization strategy for the projector that enhances training. To further address the gap between
the original label generator and the projector, we also develop a strategy to optimize synthetic im-
ages within the projector. Extensive experiments demonstrate that the proposed HeLlO achieves
performance comparable or even superior to current state-of-the-art dataset distillation techniques
while using just about 0.001% of the original label storage space.
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